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Abstract

This document contains the Supplementary Information for the manuscript ‘A mean field
view of the landscape of two-layer neural networks’. In particular, we present here proofs and
additional technical details for our mathematical results, as well as additional information con-
cerning the numerical experiments.
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1 Notations

We use lowercase bold for vectors (e.g. u,v,...), uppercase bold for matrices (e.g. A, B,...), and
lowercase plain for scalar (z,y,...).

Given a measurable space €2, we denote by Z2(Q2) the set of probability measures on §2.

B(x;7) denotes the Euclidean ball with center & and radius r in R We will drop the
dimension superscript whenever clear from the context.

Given a measurable function f, and a measure pu, we denote by (f, u) = (u, f) = [ fdu the
corresponding integral.

For a univariate function f : R — R, we denote by f’(x) its derivative at x. If the argument
is time, we will also use f(t).

| fllLip = sup,, [f(2) — f(y)]/ll® — yll2 denotes the Lipshitz constant of a function f.

dgi (-, +) is the bounded Lipschitz distance between probability measures

() =sup{| [ F(@ (o) = [ F@)vide) s Il <LIF <1) )

<2 inf (le =y, A1)y(de, dy) < 4dp(p,v). (1.2)
YEC(p,v)



Here C(u,v) is the set of couplings of 1 and v.

o Wy(-, ) is the Wasserstein distance between probability measures

: 1/p
W) = (_int [ e = yllirta.ay)) " (13)

For p = 1, the Kantorovich-Rubinstein duality gives
Wis) =swp {| [ f@)utda) - [ f@)vida)| = Ifluw <1} )

e K is a generic constant depending on Ky, K1, Ko, K3, where K;’s are constants which will be
specified from the context.

e N=1{0,1,2,...} denote the set of natural numbers.

2 General results: Statics

In this section, we discuss some properties of the population risk, Ry (6), and its continuum coun-
terpart R(p). For future reference, we copy the key definitions from the main text:

Ra(6) ER#+3§jV(9-)+i ivj U(6,,6,) (2.1)
N3 v N? ij=1 B

Rip) = Ry +2 [ V(6) p(6) + [ U(61,62) p(d61) p(d6). (2.2)

Ry =E{y*}, V(0)=-E{yo.(x;0)}, (2.3)

U(01,02) = E{a*(m;el)a*(w;Og)} . (2.4)

We further recall the notation
V(8:p) = V(6) + [ U(6.6') pla0)). (2.5)

We will always assume that the expectations defining V' (8),U (01, 02) exist finite for all 8,601,805 €
RP. A necessary and sufficient condition for this is that E{c.(x;0)?} < oo for all 8. Since in most
cases of interest |o.(x; 0)| < M(0)||x||2, for this to happen, it is sufficient that x has a finite second
moment.

Note that this p —+ R(p) is a convex function on the set of probability measures on R”. We will
denote by &y iy the subset of probability measures p such that the expectations on the right-hand
side are finite. We define R(p) = oc if p € Z(RP)\ Py .

2.1 Proof of Proposition
The proof is divided in two parts:

1. We show that minimizing the population risk Ry (0) yields similar results to minimizing its
continuum counterpart R(p):

| inf Ry (6) - i%fR(p)\ < (2.6)

2| >

3



2. We establish the condition for p, to be a minimizer:
«) C in U(0;p,) . 2.7
supp(p.) € arg min W(6; p.) (2.7)
First notice that, for any 6 = (6;);<n, we have
Ry(6) > inf R(p). (2.8)
Indeed, Ry(8) = R(p) for p= (1/N) N, 5.

In order to prove Eq. (2.6), let p. € Z(RP) be such that R(p.) = R. under assumption (a), or
R(p«) < Ry + € under assumption (b). Let (8;)i<n ~iia p«. A simple calculation shows that

EolRn(0)] ~ R(p.) = 1 { [ 00.0)5.00) ~ [ U01,62) p.(001) p*<de2>} (2.9)
< % /U(H,O) p.(d0) < % (2.10)

where the first inequality follows since [U(01,02) p.(d01) p«(d82) = E{y(x)?} > 0 for y(x) =
[ ox(x;0) p«(dB), and the second inequality follows by assumption. It follows that

K
. <Rr B 7 ‘
HéfRN(O) < R, + N + e (2.11)

whence the claim follows since € is arbitrary.

We next establish the minimum condition (2.7). Notice that since V() is continuous, and
U(-, -) is bounded below, it follows from Fatou’s lemma that, for any p, the function 8 — ¥(8; p)
is lower semicontinous and takes values in (—oo, 00]. In particular the set Sp(p) = arg ming ¥(0; p)
must be closed.

We first prove that any minimizer must satisfy . Let p, be a minimizer and define ¥, =
infg ¥(0; p.). By rearranging terms, for any probability measure p, we have

R(p) = R(ps) = 2(¥ (-5 ps), (p = ps)) + (U, (p — p) %) (2.12)

First we will assume ¥, > —oo (whence, by lower semicontinuity, So(psx) must be a non-empty closed
set). Let 61 € Sp(p«), and assume by contradiction that there exist 8y € supp(p«), 6o & So(p«)-
Let B(8¢;¢) be a ball of radius € around 6. By lower semicontinuity, we can find €9, A > 0 such
that infgep(gico) ¥(0; p+) = Vi + A > U, Further tg = p.(B(6o;€0)) > 0 because 8y € supp(px).

Let v = 1g(gy;e0)P+/to (i-e. v is the conditional distribution given 6 € B(6o;c0)). Define, for
t € [0,to], the probability measure

pt = psx — tv +tdeg, . (2.13)

Using Eq. , we get
R(pt) = R(ps) = 2(¥ (-3 px), (9, — v)) t + (U, (dg, — v)**)t* (2.14)
<2V, — U, — A)t+Cot? = —2At+ Co t?, (2.15)

where the second inequality follows from the fact that U is continuous and dg,, ¥ have bounded
support. By taking ¢ small enough, we get R(p) < R(p«) hence reaching a contradiction.



Next consider the case in which U, = infg ¥(0;p.) = —co. For M € N, M > 1, let 83, € RP
be such that W(0ys;p.) < —M. For 6y € supp(0,), construct v as before. Note that, and call
infgep(gy;eo) Y(0; p+) = Wo. Define, for ¢ € [0, ]

P = px — tV +tdg,, - (2.16)

By applying again Eq. , we get
R(pars) — R(p.) = 20(-: pu), (80, — )t + (U, (80, — 1) 7222 (2.17)
< —2(M 4 Wo) t + Co(M) 2. (2.18)

By selecting ¢ = ¢y = min(to, (M + Uy)/Co(M)) (which is positive for all M large enough), we
obtain R(part) — R(p«) < 0 for all M large and hence reach a contradiction.

We finally prove that condition is sufficient for p, to be a minimizer. Indeed, for any
non-negative measurable function x : RP — R, letting ¥, = ming ¥(8; p.),

R(p) = Ry +2(V, p) + (U, p**) — {1, p) (2.19)
= R(ps) + 20¥( -5 p4), p — pu) + (U, (p — p)®?) — (1, p) (2.20)
= R(ps) +2(U(-5p4) = Vs, p = ps) + (U, (p = p)®2) = (1, p) - (2.21)

Setting p = 2[¥(-; ps) — ¥,J, and noticing that condition (2.7) implies (V(-;p.) — Uy, ps) = 0, we
get R(p) > R(p«) + (U, (p = p)®*) > R(p.).

2.2 Some additional results

We often find empirically that the optimal density p, is supported on a set of Lebesgue measure 0
(sometimes on a finite set of points). The following consequence of the previous results partially
explains these findings.

Corollary 2.1. Assume 6 +— V(0) to be an analytic function and (01,02) — U(01,02) to be
analytic with respect to 01, uniformly in 5. Namely there exists a locally bounded function 6 —
B(0) such that Hvle(Ol,Oz)Hz < K\B(61)F for all k, 61, 03. If p. is a minimizer of R(p), then
one of the following holds

(a) W(O;p.) = V. for some constant ¥, and all @ € RP.

(b) The support of p. has zero Lebesque measure.

If D = 1, then (b) can be replaced by: (V') ps is a convexr combination of countably many point
masses with no accumulation point (finitely many if V(6; ps) — 0o as || — o00).

Proof. Note that, under the stated conditions f(0) = [U(0,0’) p.«(d@’) is analytic. Indeed,
by a standard dominated convergence argument, we have that V*f is given by the integral of
[V*U (01, 03) p.(dB2) for any k > 0. Further, by an application of the intermediate value theorem
there exists tg, 9,5 € [0, 1] such that

k—1
1 1
fO1+8) = 7 (VEf(61),6%| < 7 /<V’51U(91 +t0,,0,,50,02), 6°%) p.(d6>) (2.22)
27 |
< [ B+ to,.0.58)" 18] p-(d62) (229
< s BOF[9]5, (224
0€B(01;]|9]|2)



which vanishes as k — oo for uniformly over ||d]|2 < g for dp small enough.

Let ¥, = mingcpp ¥(0; pi). We thus have that 6 — U(6;p,) is also analytic and so is 8 —
U(0; ps) — ¥,. Since supp(p«) C {6 : ¥(0;p.) = U, }, the claim follows from the fact that the
set of zeros of a non-trivial analytic function has vanishing Lebesgue measure [Mit15]. In the case
D =1, the set of zeros of an analytic function cannot have any accumulation point [Lani3|, which
therefore allows to replace (b) with (b'). O

3 General results: Dynamics

In this section we consider the SGD dynamics with step size s; = ££(ke), under the assumptions
Al, A2, A3 stated in the main text. For the readers convenience, we reproduce here the form of the
limiting PDE

Oun(6) =2£(1)Y - [pu(0)V V(6 p1)] (3.1)
W(0: p) =V (0) + / U(0,6') p(do'). (3.2)

Recall that this is an evolution in the space of probability measures in R?, and is to be interpreted
in weak sense. Namely p; is a solution of Eq. (3.1)), if, for any bounded differentiable function
¢ : RP — R with bounded gradient:

o) = =26(0) [(6(0), V(05 ) pu(d0). (5:3)

For background on this and similar PDEs (and the analogous ones at finite temperature, cf. Section
[6), we refer to [MV00, [CMV*03, [CMV06, [AGS08, [CDE*11]. Our treatment will be mostly self-
contained because of some differences between our setting and the one in these papers.

Remark 3.1. Recall assumptions Al, A2, A3 in the main text. By [Szn91, Theorem 1.1], assump-
tions Al and A3 are sufficient for the existence and uniqueness of solution of PDE (3.1J).

A very useful tool for the analysis of the PDE (3.1]) is provided by the following nonlinear
dynamics. We introduce trajectories (52)195 N, teRs, Dy letting 5? = 0? to be the same initialization
as for SGD and, for t > 0 (here Px denotes the law of the random variable X):

_ t _
6, =602 [ £(5) VU@S:p.)ds. (3.4)
0
This should be regarded as an equation for the law of the trajectory (EZ)tERzm with boundary
condition determined by 5? ~ po. As implied by [Szn91, Theorem 1.1], under the same assumptions

Al and A3, the nonlinear dynamics has a unique solution, with p; satisfying Eq. (3.1).

Lemma 3.1. Assume conditions Al and A3 hold. Let (p)i>0 be the solution of the PDE . Let

(0;)720 be the solution of nonlinear dynamics (M Then t — @; is K1K3-Lipschitz continuous,
and t — p; is K1 Ks-Lipschitz continuous in Wy Wasserstein distance, with K1 and K3 as per
conditions Al and A3. In particular, t — p; is continuous in the topology of weak convergence.



Proof. Since £ and VV are K7 and K3 bounded respectively, t — 52 is K1 K3-Lipschitz continuous.
Further, Eq. (1.2)) implies that ¢ — p; is Lipschitz continuous in W5 Wasserstein distance, namely

7t J—
dus(pr, ps) <Walpr, ps) < (E[|16; — 67 ]3])"/? < K1 Kt — 5. (3.6)
O
We notice that, under the nonlinear dynamics, the trajectories (éﬁ)teRzo, Cee (§§V)t€RZO are

independent and identically distributed. In particular, this implies that, almost surely,
1 X d
Ni}‘%: = i (3.7)
=

3.1 Proof of Theorem [3; Convergence to the PDE

The proof follows a ‘propagation of chaos’ argument [Szn91]. Throughout this proof, we will use
K to denote generic constant depending on the constants K7, Ko, K3 in conditions Al, A2, A3.
It is convenient to introduce the notations zj; = (@, yx) to denote the k-th example and define

Fi(0;z1) = (yx — 9(xx;0)) Vo, 04(x15 05) 0 = (0,)i<n € RPN (3.8)
G(0:p) = V(8 p) = —VV () — / VoU(6,0') p(d0'), 6 eRP. (3.9)

Note that the assumption of bounded Lipschitz VV, ViU (here and below VU (61,603) denotes
the gradient of U with respect to its first argument) implies ||G(0;p)|2 < K and ||G(01;p) —
G(02;p)|l2 < K||01 — 62||2. Further

1G(8: 1) ~ G(O: pa)ll2 = | [ Vol (6:6)(p1 ~ p2)(d8))

, S K dgi.(p1, p2) - (3.10)

With these notations, we can rewrite the SGD dynamics [3] in the main text as

05+ = 0F 1 2:€(ke) Fi(0F; 2141) (3.11)
which yields
k—1
0F = 00 +2: 3 £(te) Fi(0);2011) - (3.12)
/=0

Recall (8);<n ~ po independently.
For t € R>g we will define [t] = ¢[t/e]. Eq. (3.12) should be compared with the nonlinear
dynamics (3.4), which reads

at _ 00 t *S‘
- i+2/ £(s) G(B%: ps) ds. (3.13)
0

We next state and prove the key estimate controlling the difference between the original dy-
namics and the nonlinear dynamics.



Lemma 3.2. Under the assumptions of Theorem|[3, there exists a constant K depending uniquely
on K1, Ky, K3 in conditions Al, A2, and A3, such that for any T > 0, we have

max ~ su 0; — < K" \J1/NVe- |\/D+log(N(T/eV 1))+ 2z 3.14
<N kelo, T}D]QNH H \/ / [\/ g(N(T/ ) ] (3.14)
22

with probability at least 1 — e~

Proof. Consider for simplicity of notation ¢ € Ne N [0,7]. Taking the difference of Egs. (3.12) and
(3-13), we get

HOt/E—B H2 —2”/ Z,ps ds —e¢ Z &(ke) F 0 3 Zht1 dsH

<2/H§ zms—abDG@me>

+2 [ [eds)

t/e—1

+2H Zéks{ (0% 211) — G(Of;p’“)}Hg

=2F%(t) + 2E4(t) + 2EL(t).

’st

G@; pry) — €(s) GOF7: ) (3:.15)

’2ds

We next consider the three terms above. Using the Lipschitz continuity of G(8;p) with respect to

0 and p (see Eq. ), and due to condition Al and Lemma (implying that &, 52, and pg are
Lipschitz continuous), we get

Ei(t) <t u {H€ (85 ps) — £(s]) GBS ps)||, + [1€([5]) GBS ps) — (1)) GO p),
|6 G@: po) — £(1s) G@Y: pio)l, )
< Kte. (3.16)

Bounding the second term yields (by using the Lipschitz continuity of G with respect to its first
argument):

B <k [ 1G@Y o) — Gele as < k2 [ 119 _ ol q 3.17
Q(t) = 0 || ( i 7p[s]) ( i 7p[s])”2 S = 0 H i i ||2 S. ( : )

In order to bound the last term we denote by Fy, for k € N, the sigma-algebra generated by (0?)@-SN
and z1,...,z;. Note that

E{F;(6"; z41)| Fi} = —VV(6F) — — Zle (0%, 0%) = G(ol; o), (3.18)
_] 1
where ﬁ](gN) = (1/N)> ;<N 6gr- Hence
t/e—1 N t/e—1 .
e Y k) { GO ) - G(OF; pre) || +|le Yo €lke) 2 (3.19)
k=0 2 k=0 2
= Ej0(t) + Q1(1), (3.20)



where we introduced the martingale differences Z§ = F;(0%; z;,1) — E{F;(8%; Zk+1)|Fi}. We can
apply Azuma-Hoeffding inequality, cf. Lemma Indeed, condition follows from the fact
that o.(x; @) is bounded and Vgo.(x;0) is sub-Gaussian (the product of a sub-Gaussian random
vector and a bounded random variable is sub-Gaussian, cf. for instance Lemma 1.(d) in [MBM16]),
hence each &(ke)Z}, are K2-sub-Gaussian. We therefore get

P(ke max  Qi(ke) > KvVie(VD +u)) <e ™, (3.21)

[0,t/¢]NN

and taking union bound over i < N, we get

]P’(max max Q' (ke) < Kv'te (/D +log N + z)) >1—e 7. (3.22)

i<N ke[0,t/ejNN

For the term Eéyo(t), we use the Lipschitz continuity property lb whence

|G(0F; 5™) — G (6F; i),
gHJbgj[le(ek 0y — v,U (6%, 9" H +H* 3 ST ViU(0),85°) — EgviU(65,8) )]H

RR (RG] RR) 7]

Jj=1 J=1 2 (323)

K& k
e ;
<5 21165 = 85712 + Qo (ke) +
j=1
Here Q% (ke) for k € N is defined as

, 1
Qske) = | > [ViU(8:8)) ~EgViU(65.8)7)]] -
JE<N,j#i

Since for any fixed k, (éj )j<nN,j=i are ii.d. and independent of 0,, and V1U is bounded, we get
by another application of Azuma-Hoeffding inequality, cf. Lemma [A7T]

P(Q4(ke) > K\JI/N(VD +u)) < e (3.24)

Therefore, the union bound for k € [0,¢/e] NN, and ¢ < N gives

P(I%% e Qh(ke) < K\J1N - (/D +10g(N(t/c V1) +2)) > 1—¢ . (3.25)

Conditional on the good events in Eq. (3.22)) and (3.25), Eq. (3.20]) thus yields

Kt

~ (3.26)

< K [ ot
(1) < 5 > [ 1007 82 ds + Qo) +
j=1

where

Q) =max Qi (t) + 1 - max pehax Q5 (ke)

<K\F(z+\/D+logN)+tK\/1/N<\/D+log (t/z V1) +2) (3.27)
K(Vtvit)- \/I/N\/s [\/D+log t/e\/l))%—z]

9



22

with probability at least 1 — e~
We finally define the random variable

A(t;N,e) =max sup |@F — EfEHQ- (3.28)
iSN Lefo,t/elnN

Using the bounds (3.16)), (3.17)), (3.26) in Eq. (3.15)), we get

t Kt
At N, ) < K/ A5 N)ds + K te + = + Q1) (3.29)
0
By Gronwall’s inequality, we have
1
A(t;N,e) <K ef{e+ =+ Q1)) (3.30)
N
Using the bound (3.27)), the claim follows. O

Lemma 3.3. Under the assumptions of Theorem[3, we have

—ke k k —ke
Rn(07) — Ry(O%)| < K - 0k —0.°| .
e [PV — R (O9)| < Ko maxe (165~ 87

Proof. Let 6 = (01,...,0;,...,0,) and 8’ = (04,...,0,,...,0,) be two configurations that differ
only in position 7. Then

| Ry (6) — Ry (6)]

(3.31)

1 1 2
SNW(Gi) - V(0] + W|U(0i70i) - U(6;,0;)| + N2 Y. |U(6:,65) - U(8;,6))]

AR 2
J<Nj#i (3.32)
K
<—(||6; — @ 1).
< (10: = 0lfl2 A1)
Then, Eq. (3.31)) follows immediately.
O
Lemma 3.4. Under the assumptions of Theorem[3, we have,
—ke
e [Bx(0") = Rpxo)| < K\J1/N - (\/D +1og(N(T/e v 1)) + 2) (3.33)
with probability at least 1 — e .
Proof. By Eq. (3.32) and by Azuma-Hoeffding inequality and union bound, we get
—ke —ke
- R (0) — ERy(8")| < K\J1/N - (\/D +1og(N(T/e v 1)) + 2) (3.34)
with probability at least 1 — e=*". The claim follows since
_ 1 K
ERN(@) - R(p)| = +| / U(8,6) pi(d6) — / U(61.0) pu(d61) pr(d82)| < = (3.35)
O

The proof of the theorem follows from a straightforward application of Lemma
The proof for any bounded Lipschitz function f follows the same argument as Lemma[3.3] 3.4} Asa
result, for any sequence (N, e = ey) with N/log(1/en) — oo and enx — 0, we have ﬁ,gN) converges

weakly to pi. almost surely immediately.

10



3.2 Proof of Theorem [3; Generalization to [ < oo

Here we generalize the proof given in the previous section to noisy SGD at finite temperature
B < oo. Since the proof follows the same scheme as in the noiseless case, we will limit ourselves to
describing the differences.

Throughout this section we assume that conditions Al, A2, A3 hold. We also let

WA(0:0) =3 1013+ V(8) + [ U(0,0)p(6)0" (3.36)

for some A < 1. Further we assume py is K3-sub-Gaussian. Finally, we assume 1 < 8 < oo.
For the reader’s convenience, we reproduce here the form of the limiting PDE

Oupi(0) =2£(t)Vg - [p1(0)VaWA(0; pr)] +26(t)/8 - Nopi(8) (3.37)

which again should be interpreted in weak sense.

Remark 3.2. Recall conditionss Al, A2, A3 in the main text. By a modified argument of [Szn91),
Theorem 1.1], conditions Al and A3 are sufficient for the existence and uniqueness of solution of
PDE in weak sense. Section @] provides further information of this PDE, including a proof
of existence and uniqueness.

As in the noiseless case, there is an equivalent formulation of this PDE as a fixed point distribu-
tion for the following nonlinear dynamics, which is an integration form of a stochastic differential

equation,
o' _00+2/5 @ ps ds+/ 26 (s)/8 AW (s (3.38)

ps = Pg: , (3.39)

where {W(s)}s>0 for i < N are independent D-dimensional Brownian motions, and G(6;p) =
—V W, (0;p). The assumptions on U, V', A\, and £ ensures that this nonlinear dynamics has a unique
continuous solution.

This nonlinear dynamics should be compared with the noisy SGD dynamics in the main
text that can be written as follows for k € N:

0k 9%252555 (0% zp) + /ka,/ )/BAW (s (3.40)

where
Fi(0;2z) = —\0; + (yx — 9(x1;0)) Vo,00 (21 0;), 0= (0,);<y € RPN, (3.41)
It is convenient to collect some standard estimates about the solution of the stochastic differ-

ential equation ([3.38).

Lemma 3.5. Assume po is Kg-sub- Gaussian &(s) and G(0; ps) are Ko-bounded, G(0; ps) is Ko-

Lipschitz in 0, and 8 > 1. Let (0 )t>0 for i < N be the solution of (|5’ S’él) with independent
iniatialization (0?)¢§N ~ po. Let (pt)i>0 be the solution of PDE (3.37). Then there exists a constant
K depending uniquely on Ky, such that

P(sup sup (6]l < KeXT[y/D+logN +2]) > 1 -, (3.42)
1<N te[0,T]
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and

IP’(sup sup sup |]§f€+u—§f€\|2 < KeKT[\/D +log(N(T'/e v 1))+z} \/§> >1—e7, (3.43)
i<N ke[0,T/e]NN ue[0,e]

and for any t,h > 0,t+h <T,
dis.(pt: prin) < Walpr, pryn) < Ke"TVDh. (3.44)

Proof. We decompose the proof into three parts.
Part (a). First, note that for any D-dimensional K3-sub-Gaussian random vector X, we have

Ex[exp{| X|}3/2}] =Ex clexp{7(G. X)}] < Eglexp{rK{|G|3}/2] = (1 - 7Kg) P2 (3.45)
Note that (9?)i§ N ~ po independently, and pg is KZ-sub-Gaussian. Therefore
P((|67]12 > u) < Elexp(r|6il[3/2)]/ exp{r2?/2} < (1 — 7K§)~"/? exp{—ru?/2}.
Taking union bound over ¢ < N gives
IP’(I%%( 169|2 > u) < (1 —7K2)"P2 exp{—1u®/2 +1log N}.
Taking 7 = 1/(2K3) and u = 2Ky(v/D + log N + z), we get

P(g% 16912 > 2Ko(\/D + log N + z)) < exp{—22}. (3.46)

Then we define We;(t) = f5 /26(s) dWi(s). We have Var(W{,(t)) = [§2¢(s)ds < 2Kqt for
j < D. Note exp{7||W¢,;(t)||3} is a submartingale, due to Doob’s martingale inequality, we have

P(sup [Wes®lle > u) < Elexp{r|We(T)3/2}] -exp{=ru?/2} < (1= 2K0Tr) /2 exp{—ru?/2}.

Taking union bound over i < N gives

P(max sup [|[Wei(t)|2 > u) < (1 —2KoT7)" P2 exp{—7u® + log N}.
i<N t<T ’

Taking 7 = 1/(4K(T) and u = 4/KoT'(v/D +log N + z), we get

P(maxsup [We(t)]|> > 4VEoT(vD +1log N + 2)) < exp{—22}. (3.47)
<N t<T

By noting that £(s), G(0; ps) are Ko-bounded, and G(0; ps) is Ko-Lipschitz in 6, according to
Eq. (3.38), there exists some constant K depending on Ky, such that

Ai(t) < K/Ot Aq(s)ds + K[W/\/B + 0],

where A;(t) = sup,< 16: ]2, W = max;<y supi<r [[Wei(t)|2, and © = max;<y ||8%]2. Due to
Gronwall’s inequality, we have

Ai(T) < K exp(KT)[W//5 + €].
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The high probability bound holds by noting the high probability bound for © and W in Eq.
and

Part (b). Deﬁne Ai(hik,e) = supg<,<p [10;  — ?fEHQ. By noting that £(s), G(0; ps) are Ko-
bounded, and G(6; ps) is Ko-Lipschitz in 0, according to Eq. , we have

—ke+u

—s 1
Ai(hk,e) <K 6>+ 1|n %% , ,
(hik,e) [gggu 2+ 1jht 5 sup [Wein(w), (3.48)
where W i (u) = [FT \/26(s) AW (s). Similar to the bound Eq. (3.47), we have

P(max sup sup ||Weir(u)|l2 < 4V Koh <\/D+log (T/a\/l))—i—z)) >1—e .
i<N ke[0,7/¢]NN 0<u<h
(3.49)

Plugging the bound Eq. (3.42)) and Eq. (3.49) into Eq. (3.48)), we have

max sup  Aj(h;k,e) <KefT[\/D +1log N + z]h + K(\/D +log(N(T/eVv 1))+ z)x/ﬁ
iSN ke[0,T/e)NN

<KeKT [\/D +1log(N(T/eVv 1))+ z} vh

22

with probability at least 1 —e™
Part (c). Equation (3.44) holds directly by noting that

t+h (2
Walpt, pein)? <E{||9 -6 15}

and applying a integration over z in a modified version of Eq. (3.43|) without union bound over
i< N and k €[0,T/¢]NN.
O

As in the noiseless case, the key step consists in bounding the difference between the nonlinear
dynamics and the SGD dynamics.

Lemma 3.6. Under the assumptions of Theorem|[3, there exists a constant K depending uniquely
on Ko, K1, Ko, K3, such that for any T > 0, we have

—ke KT
max  sup 9?—91- < Ke y/1/N Ve - D +log(N(T/e V1)) + 2 350
SN kelo,T/e ]nNH I \// {\/ g(N(T'/e V1)) ] (3.50)
42

with probability at least 1 — e~
Proof. We take the difference of Egs. (3.40) and (3.38)), for ¢ € Ne n [0, T):

|6/ 8l <2 [ [665) G@:p2) — 1) G @ ] s

w2 f Hg G0, pry) — (1) G(OF: py)
t/e—1
—|—2H Z £(ke) { (0% zp41) — G(ef;pks>}H2

I <¢25<s>/6— V2D W)

=21 (t) + 2E5(t) + 2E4(t) + Ei(t).

‘ ds

(3.51)
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Terms E}(t), F4(t) can be bounded the same as in Lemma ie., Eq. and , by noting
that the replacement of W by Wy does not affect these estimates.

To bound Ej(t), notice that We; = [ (v/2€(s) — v/2E([s])) dWi(s) is a Gaussian random
vector, W ; ~ N(0,72Ip), where, using the Lipschitz continuity of &,

P = [ (y2606) — 26(0D) s < K T

By Gaussian concentration
P(|Weills > (VD +2)7) < e /2,

and therefore by applying Doob’s inequality to the submartingale ¢ — Ej(t), we get
]P(mgj}gEi(s) > K(VD + z)x/Ts) <e?2
s<
and hence

]P’(maxmax Ei(s) < K(v/D +1ogN + 2) ) >1—e /2 (3.52)
i<N s<T

We need to modify the proof of Lemma to bound terms Fji(t).

m@sutgm E(DIGE: s, + || | <15 (G p.) — GBS p1)) s
2

+| [ e (6@ ) - @ 1) dsH
:El,A( )+E1,B( )+E1,C(t)'

(3.53)

To bound the first term Ei 4(t), due to the Lipschitz property of G(;p) and the boundedness
of G(0; p), with probability at least 1 — 6_22, we have for all t < N and t < T,

Ej o(t) <TKe- sup [|G(8];ps)ll < TKe - [K sup |62 + K]
s€[0,T] s€[0,17]

<KefT[\/D +1og N + z]e.

Here the last inequality is due to Eq. (3.42)) in Lemma
To bound the second term Eﬁ p(t), using the fact that VU is bounded Lipschitz, we have for
all it < Nand t < T,

(3.54)

Ei,B(ﬂ <TK - SupD HVlU(é), ps) — VlU(e;p[s})”z < TK?. dBL(ﬂs:ﬂ[s}) < KeKT\/ De. (3‘55)
6eR

Here the last inequality is due to Eq. (3.44) in Lemma

To bound the third term E{vc(t), with probability at least 1 — 6_22, we have for all ¢ < N and
t<T,

EiC(t) <TK - sup HG zvp[s]) G(§£S]7P[s])“2
s€[0,T] (3 56)

<TK?. sup |07 - 0., < KeXT[/D +1og(N(T/e v 1)) + 2] V.
s€[0,T7]
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Here the last inequality is due to Eq. (3.43) in Lemma
As a result, combining Eq. (3.17), (3.26), (3.27), (3.51), (3.52), (3.54), (3.55), and (3.56]),
defining

A(t;N,e) =max sup ||6F — 0|2, (3.57)
i<N ke[0,T/e]NN
we get
: Kt
A(t: Nye) < K/ A(s; N, e)ds + = + E(T), (3.58)
0
where
E(T) = KK \J1/N ve-[\/D+1og(N(T/e V1)) + 2. (3.59)

Applying Gronwall’s inequality gives the desired result.
O

The generalization of Theorem [3|to 8 < oo follows from this lemma exactly as in the previous
section.

3.3 Proof of Proposition [2; Monotonicity of the risk
By simple algebra, we have
Ripen) = R(pr) =2 [ 90 p0) e~ p0)(6) + (U, (prin — p)™). (3.60)

By Lemma t — p¢ is Lipschitz continuous in Wasserstein distance Wa(py, , pr,) < K|t1 — tal.
Hence, we get

R(pr+n) — R(p) = 2/‘11(9;Pt)(Pt+h — pi)(d0) + O(h?) (3.61)
2
= —46(t) [ IV(6: p0l pr(d0) b+ o) (3.62)
where in the second step we used Eq. (3.3)). This immediately implies that R(p;) is non-increasing

in t.
Let p be a fixed point of Eq. (3.1). Since 0;R(p¢)|po=p = 0, the above formula implies

/ IV (8; p)[5 p(d6) =0, (3.63)

and therefore p is supported in the set of 8’s such that V¥ (6;p) = 0.
Vice versa, if this is the case, setting po = p, Eq. (3.3)) implies 9;(p, p;) = 0, then p, = pg is a
fixed point.

3.4 A general continuity result

It is useful to notice that the solution (p;)i>0 of the PDE (3.1]) is continuous with respect to changes
in V(-),U(-, -). Namely, we consider the following two PDEs:

Ope(0) = 26()V - [p(0)VY(0; p1)] (3.64)
0:pr(8) = 2£(1)V - [5(0)VE(6; )] (3.65)
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where
W(0: p) = V(0) + / U(0,6') p(de'), (3.66)
U(0;p) =V(0) +/U(0,0’) p(de’). (3.67)
Lemma 3.7. Let assumptions Al, A3 hold both for V,U and V,U, and consider the solutions of

Eqgs. and with initial conditions po, po. Then there exists K < oo depending only on
the constants K1, Ks in the assumptions (independent of D), such that

sup dp(pt, pt) < KT [ds(po, Po) + €0 , (3.68)
te[0,T
where
o= sup [|VV(8) = VV(8)]s+ [ V1U(8,0') —~ V1U(6,6')]2]. (3.69)
0,0'cRD

Proof. The proof adapts the argument used to establish uniqueness in [Szn91]. Without loss of
generality, we fix £(t) = 1/2. We further denote by K generic constants depending on K7, Ks.

The assumption of bounded Lipschitz VV and VU implies that V¥(8;p) is K-bounded Lips-
chitz with respect to argument (6, p), that is,

|VU(O1501) = VU(O:02)| | < K161 O2ll2 AL+ i (01, p2)]- (3.70)
The assumption of bounded Lipschitz VV and VU implies that V¥ (8; p) is K-bounded Lipschitz.
Under these conditions, according to [Szn91l Theorem 1.1], there is existence and uniqueness of
PDE (3.64) and (3.65). We denote their solutions at time ¢ to be py, gy € Z(RP) respectively.

Let 79 € 2(RP x RP) be a coupling of pp and jg that achieves 2dgr.(po, fo). Given these fixed
(pt)t>0 and (pt)e>0, consider the nonlinear dynamics

t
6" :00—/0 V(0% ps)ds, (3.71)

- t
6’ :00—/ V(0°; s )ds, (3.72)
0

with initialization (00,90) ~ 70. As implied by [Szn91, Theorem 1.1], since we have 6° ~ py,
6° ~ po, it follows that 8y ~ py, 0; ~ pt, and therefore

dis (ps ) < 2/ (10"~ 8ll2 A 1) 70(a6°, ad") (3.73)

Taking the difference of Egs. dS.?lI) and (I3.72|), for any (6°, éo) € supp(0),

s t Lo, ;
6" =" < [ [T0(6% ) = VE@" )| a5 + 10" = 0°)

t ~s t =5 . = =S 0 ~0 (3 74)
< / | Ve p) - vE(@"; 5| ds+ / |Ve@;p) - Vi@ 5| ds+6° — 8",
0 0

~0
=FE1(t) + Ea(t) +1/6° — 6| 2.
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Using bound ({3.70)), the first term FE;(¢) is simply bounded by

t -
Ei(t) < K/O [10° 8%l A1+ die (pan )] - ds. (3.75)

To bound the second term Es(t), we have

Ep(t) <tx  sup  [[V¥(6;p) — VI(6;p)ll2
0cRPD pc 2(RD)
<t x sup [||VV(0) —~VV(O)|2+[|V1U(8,8") — vlﬁ(e,e')HQ] =t - g, (3.76)
0,0’ cRP

with the definition of £y given by Equation (3.69)).
Combining Equation (3.74)), (3.75]), and (3.76[), we have

~ t ~ ~
16" =82 A1 < K/ 16 = 8%lls A1+ duw(ps, )| -ds +1-e0+[0° =8 A 1. (3.77)
0
. . . 0o 70 . . .
Averaging the above inequality over (6”,0") ~ 79, and using inequality 1) we have

[16° =812 A1 dop < 20, o) +3K/0t [[16° =8 a1 dng] -ds+t-20. (379
Using Gronwall’s inequality, for any ¢ € R, we have
[18° = 8"l 7 1-70(16°,48°) < K exp(K?) - [dus (o, 7o) + <ol
Applying Equation , the result follows. O

3.5 Some properties of the solution of the PDE (3.1])

In this section we prove four lemmas on the properties of the solution of the PDE , under
conditions Al and A3. All of these facts are quite standard, but we provide complete proofs for
them for reader’s convenience.

We will use several times the following notations. Let p; be a solution of the PDE (3.1)) with
initialization pg. Let (6%);>0 be the solution of the ordinary differential equation (ODE)

9! = —26(1)VU(6% py), (3.79)

with initial condition °. Without loss of generality, we will assume £(¢) = 1/2 throughout this
section. If 8° ~ pg, then for any ¢t > 0, we have 8" ~ p;. We will denote by ¢! : RP — R the map
between initial conditions of this ODE, and its state at time ¢ (i.e. ©(8°) = 8"). Since VU(-;p;) is
bounded and Lipschitz continuous, it follows that ¢’ is a homeomorphism on its image by Picard’s
theorem.

With these notations, p; is the push forward of pg under ': p; = plpg. In other words, for
any Borel set B, pi(¢'(B)) = po(B).

Lemma 3.8. Assume conditions Al, A3 hold. Let (pi)i>0 be the solution of the PDE with
initialization po. Let @ C RP be a Borel set. Suppose p!(2) C Q, then we have py(2) > po(S2).
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Proof. The lemma holds immediately by noting that p:(Q) > pi('(Q)) = po(Q). O

Lemma 3.9. Assume conditions Al, A3 hold. Further assume there exists a constant K < oo such
that

0;9(0; p)| <K - 0;, (3.80)

for any 0 € (0,00)" and p € P([0,0]P). Let (p)i>0 be the solution of the PDE with initial
condition py with po((0,00)P) = 1. Then for any t < oo, pi((0,00)P) = 1.

Proof. According to Egs. (3.80) and (3.79)), we have for i € [d],
Y - exp{—Kt} < 0! <6 - exp{Kt}. (3.81)

Denote
Qr(t) = [1/k - exp{ =K1}, k - exp{ Kt}]. (3.82)

Then according to (3.81)), we have ¢!(Q1(0)) C Q4 (). Note Q4 (t) is increasing in k for fixed ¢, and
U (t) = UpQ:(0) = (0,00)P. Hence,

pr((0,00)7) = lim py(Qn(t)) > lim pi('(2%(0))) = lim po(2(0)) = po((0,00)”) =1 (3.83)
OJ

Lemma 3.10. Let (p:)i>0 be a continuous curve in a compact metric space (2,d). Denoting
Si ={p« € Q: I(tp)k>1, lim t; = 00, s.t., lim d(py, , p«) = 0}
— k—oo k—ro0

to be the set of all limiting points of (pt)t>0. Then S, is a connected compact set.

Proof. First, it is easy to see that S, should be closed. Note that €2 is a compact space, then S,
should be a compact set. If S, = {p.} is a singleton, this lemma holds automatically. Therefore,
we would like to consider the case when S, is not a singleton.

For any p1, p2 € S, and d(p1, p2) > 0. We would like to show p; and ps are connected in S,.

We use proof by contradiction. Now suppose p; and ps are not connected. Define A C S, to be
the maximal connected subset of S, containing p;. It is easy to see that A is compact. It is also
easy to see that its complement B = S, \ A is also a compact set, and pa € B. As a result, we have
AUB=S8,, ANB=0,and p; € A, ps € B.

Note that €2 is a metric space, so it satisfies T4 separation axiom. Since A and B are closed
sets and AN B = (), there exists an open set O, such that A C O, O N B = (). Hence, 00 C S¢.

Note that p; and pp are limiting points of (p;);>¢ which is a continuous curve in Q. Therefore,
it must cross the boundary 0O infinite times. That is, there is a sequence (t;)>1 of time with
limy_,o0 tgy = o0, such that p;, € 00. But since 0O is compact, there exists a limiting point
p« € 00, so that a subsequence of sequence p;, converges to p.. Therefore, p, should be a limiting
point of (p¢)¢>0. But this contradict with 00 C S¢. O

Lemma 3.11. Under the assumptions of Al and A3, further assume that U,V are twice continuous
differentiable, and that pg has density with respect to the Lebesque measure, bounded by My. Then
pt also has a density, bounded by My = K Myexp{K Dt} (where K depends on the constants in the
assumptions).
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Proof. Let J(0;t) for the Jacobian of ¢f(-) at 8° = . Then Eq. (3.79) implies that J(8;t) satisfies

CT(0:1) = VU (0): p) T (0:1). (3.84)

with initial condition J(0;0) = Ip. This implies

d
@ N (T(8:1)) = [0 (0): 1) oy A ((0:1)). (3.85)
Therefore, using the fact that |[V2¥(0; p;)||., is K-bounded, we obtain Amin (J(6;t)) > exp(—Kt).
Finally, since ¢! is a diffeomorphism, we have

pu(8) = pol(¢) 7 (0)) | det (T (") @):1)| 3.86)
< po((¢")71(6)) exp(K DY) . (3.87)
This completes the proof. O

3.6 Proof of Theorems [6} Stability conditions

In this section, we will prove the stability result in Theorem [6] Throughout the proof we can
assume, without loss of generality, £(t) = 1/2. Indeed £(t) amounts just of a change of time.
Further we introduce the matrix Hy = H1(dg,) € RP*P by

Hl (59*) - VZV(O*) + V%JU(O*, 0*) + viZU(e*a 0*) ) (388)
= Ho(p.) + Vi ,U(6.,90.), (3.89)

where Hg = Ho(6g,) = V2V (0,) + V%lU(H*, 0.). Notice that
(u, V15U (8., 0.)u) = E{(u, Voo (z; 0.))"} (3.90)

and therefore V%QU(O*, 0.) = 0, whence Hy = H.

We first establish the condition for p, = dg, to be a fixed point. Note that ¥(0;p,) = V(0) +
U(6,0.) and supp(ps) = {0.}. Hence the condition [20] in the main text is satisfied if and only if
ng/(e;p*ﬂgzg* = 0, i.e. VV(O*) + VlU(O*,E)*) =0.

To establish the stability result of Theorem [6] the following lemma provides a key estimate.

Lemma 3.12. Under the assumptions of Theorem @ let X\ = Amin(Ho) > 0. Then there exists
ri,€1,7 > 0 such that the following hold

(i) If supp(p) C B(04;71) =40 : || — O.]|2 < 71}, then,
1@~ 0.),v00:p)) pt0) 2 5 [0~ 6.] p(c0). (3.91)

(ii) If []|0 — 0|3 p(dO) < 2 and supp(p) C B(O4;71), then for any 6 € B(04;11) \ B(04;71/2),

(6 — 80,),VU(8:p)) > > 0. (3.92)
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Proof. Note that

V2U(6; p) = V2V (0) + / V2U(6,6') p(d6') .

(3.93)

Since V2V (8) is continuous and V3U (0, 8') is bounded continuous, it follows that 8 — V2U(8; p) is
continuous, and p — V2¥(8; p) is continuous in the weak topology, and in fact (8, p) — V2¥(8; p)

is continuous in the product topology.
Further, we have

ViU (0,;p.) = V2V (0.) + VHU(6.,0.) = Hy.
Since Hg > 0 strictly, for any 6 > 0 we can choose r; = r1(d) > 0 such that

V2U(8; p) = (1 - 6) Ho,
HV%U(O*,G) - v%2U(0*70*)H0p < 57

for all @ € B(0;r1), and p such that supp(p) C B(0,; 7). If these conditions hold

(6 —6.), VE(8;p)) = ((6 — 0.), V(O p) — VU(B:p)) + (0 — 6), VE(B; p))
(0 —0.), V> (8:p) (0 — 6,)) +((0 — 0.), VI(8s; p))

(1-0)((6—0.), Ho (6 —0.)) + ((6 — 0.), VI¥(0.;p)) .

AV

In order to bound the second term, note that, since V¥ (8,; p,) = 0,
VU(0.5p) = [ [ViU(6..8)) ~ V1U(6.,6.)] p(d6) = VEU (6.0 )1 + &

n=[6-06.)p(0).

&= [ [ViU(6..8) ~ V1U(6..6.) ~ V,U(6.,6.)(6' — 6.)] p(d) .

Substituting in Eq. (3.99)), we obtain

(3.97)
(3.98)
(3.99)

(3.100)
(3.101)

(3.102)

((0—6.),VU(8;p)) > (1-06){(0 —6.), Ho(6 — 6.)) + (0 — 6),(H1 — Ho)p) + ((0 — 6.),) .

(3.103)

By the intermediate value theorem, for any v € R, there exists 8 = (v, ) € [0., 8] such that

(v,€) = /(v, [Vi,U(8.6.) — V.U (6., 6.)](6 — 6.)) p(d6)

v

= [ 10l 93,0 (8.6.) = V3,U(6...6.), 6 ~ 6. p(c6)
~dllvll2 [ 116~ 6.] p(d6)

—ol|vll2 /Tr(@Q) + [|113
> —0vll2/Tr(@Q) = dlvll2mll2

where Q = [(0 — u)(0 — )T p(d@) is the covariance of (8 — 6,).

v

v

\%
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(3.105)
(3.106)

(3.107)
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Let now consider the claim at point (7). Integrating Eq. (3.103) with respect to p(d@), we get

(6= 0.).99(0: ) p(d0) = (1 = 6)(Fo, @+ ps") + (s (H1 — Holp) + {1, €)  (3.109)

> (1 8)(Ho, Q) + (s, (Hy — SHo)) — 6lplls y/TH(@) — (3.110)
> (1 0)(H0.Q) + (. () — SHo)pw) — 2 3~ S (@) (3.111)
= (1~ )Ho — S1.Q) + (. (Hy — 3H — 2 D). (3.112)

By choosing ¢ sufficiently small, we can ensure that (1 — 0)Ho — (6/2)I > Apin(Ho)I/2, Hy —
0Ho — (36/2)I = Amin(H1)I/2, and therefore

A (o) THQ) + Shin () [l (3.113)

DN | =

[0 =6.),79(8:0)) p(a6) =

which yields the claim (3.91)).
Next consider point (i7). In this case, Eq. (3.107) implies

((0—0.),&) > —dc1||6 — 0.]]2. (3.114)
Substituting in Eq. (3.103]), and using ||p|l2 < &1, we get

<(0 - 0*), V\IJ(0§ P)> > (1 - 5)<H0; (0 - 0*)®2> - 51()‘max(H1) + )\maX(HO) + 5)”9 - 0*”2

2
> (1 — 5))\ (2) — El(AmaX(Hl) + Amax(HO) + (5)7‘1 . (3.115)
This is strictly positive for all £; small enough, hence implying the claim (3.92]). ]

We are now in position of proving Theorem [6]

Proof of Theorem[f. Let ro = min(r1/2,£1/2) and assume, without loss of generality ty = 0, so
that supp(pg) € B(04;70). We also define

Ty =inf {1 /Ho—e*ngpt(de) >, (3.116)
Ty = inf {t : supp(p:) € B(0s; 7’1)} , (3.117)
T* = min(Tl, Tz) . (3118)

As usual, we adopt the convention that the infimum of an empty set is equal to +oo.
Define ¢1(6) = h(||@ — 0.]|2), with h to be an non-decreasing function with

0 if r <r/2,
smooth intropolation if 71 /2 <r < 5r1/8,
h(r)=<2r/r —1 if 5r1/8 <r < 7ry/8, (3.119)
smooth intropolation if 7r1/8 < r < ry,
1 if r > rq.
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For any t < T, the PDE ({3.1)) implies

{1, pe) = — / (Vo1 (8), VU(6; p1)) pi(d6) (3.120)
=2 [ W16 = 0.l — g T¥(6:1) i) 121)
< —4% Pt(B(0*§ 7r1/8) \ B(0.; 5r1/8)) : (3.122)

1

where, in the last inequality, we used Lemma (7i). Next, define
1
£a(0) = 510~ 013 (3.123)

Applying again Eq. (3.1), we get, for t < T,

Oz i) = — [ (V2(6), Y0 (6: 1)) pu(d0) (3124)
—— [1(6 - 6.), V(8: p0) pr(d6) (3.125)
< =Mlg2 ). (3.126)

Together the last two bounds imply T, = co. Indeed assume by contradiction T, < oo. Then either
Ty <T5, T < o0, or Ty <Ty, Ty < oo.

Consider the first case: Ty < Ty, T1 < 0o. Since (pry, @) > 2 but (po, p2) < 73 < 2 /4, there
exists t < T, such that 9 (po,p2) > 0. However this contradicts Eq. (3.126)). Consider then the
second case: Ty < Ty, Th < oo. This implies (pp,, 1) > 0, but on the other hand (pg, 1) = 0.
Hence, there exists t < T, such that 0.(pg, p1) > 0. However this contradicts Eq. (3.122]).

We conclude that T, = oo and hence we can apply Eq. for any t, thus obtaining
Ot (p2, pt) < = {2, pr) and hence (@2, p;) < (rg/2)e~*, which concludes the proof. O

3.7 Proof of Theorem [7} Instability conditions

In this section we will prove the instability result of Theorem[7] Throughout the section, we assume
£(t) = 1/2. We will use several times the nonlinear dynamics, defined for p; a solution of Eq. (3.1
with initial condition po:

0! = -V (0 p). (3.127)

Lemma 3.13. Let v be a probability measure on R?, absolutely continuous with respect to the
Lebesgue measure, with density bounded by M, and let w € R? be a unit vector. Further assume
that, for some g € R, r > 0, we have v(B(xg;7)) > 1 — ¢, with 0 < ¢ < 1/20. Then there
exists a coupling v of v with itself (i.e. a probability distribution on RY x R with marginals
J(,de) = [~(dz, ) = v(-)) and a constant L = L(d,r, M) such that the following holds. If
(x1,x2) ~ 7, then

0 ((u, r] — x2) > (3.128)

where Pi =TI —uu' is the projector orthogonal to vector w.
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Proof. First consider the case d = 1: in this case, the assumption v(B(xg; 7)) > 1—¢ is not required.
Denote by F' the distribution function associated to v (i.e. F(z) = v((—o0,z])). By assumption
F is differentiable with F'(z) < M. In order to construct the desired coupling, let Z be a random
variable uniformly distributed in [0,1]. For a small constant £ > 0, define the random variables
(X1, X5) by letting

X, =F1(2), (3.129)
Xy — {F_i(Z —&o) %f Z > &, (3.130)
F (Z—i—l—fo) if Z <&.

(Note that X is not defined for Z = &y but this is a zero-probability event.) On the event {Z > &}
(which has probability 1 — &y), we have, for some W € [X7, X5],

§o=F'(W) (X1 — Xp) < M(X; — Xp). (3.131)

By choosing &y small enough, this proves the claim for d = 1.

Consider next d > 1 and assume without loss of generality u = e;.

Let 7(-) = v(-|X € B(xo;7)), X% = (X,,...,Xy), and denote by fi)j2,a) the density of 7(X; €
| X%), and by fl4) the density of (XY € -). We then have

d
foag(@) M (3.132)

1[2,d) (T1]3) Jo.a(®3) = flo.q(x3)

Further, we have

(@ fpa@d <A) = [ 15, when fina(@d) daf (3.133)

<A ded < CyArdt. (3.134)
B((z0)%;r)

In order to construct the coupling, we sample Z ~ v. If Z & B(xo;r), then we take X1 = X9 = Z.
If Z € B(xo;7) and maxy, fij2,q (x1]Z%) > M/A, we also take X; = X3 = Z. Otherwise we
have Z € B(xo; ) and maxy, fi|j2,q (21|Z3) < M/A, then we sample (X711, X21) from the coupling
developed in the case d = 1 applied to fijj2,4(" |Z9), and set X = (X11,23), X2 = (X21, Z9).
Now define «v to be the joint distribution of X1, Xs. Then v is a coupling of v with itself.

The above analyisis yields

A
v (<u, X, - X,) > %; PL(X, - X,) = 0> >1—¢& — CgArtt —¢. (3.135)
Hence, we can choose A, &y small enough so that the claim (3.128]) holds. 0

For any u € R, define the level set £(u),
L(u)={0cR”: (6;p,) <u}. (3.136)

According to the notation of Theorem (7} we have L£(n) = /j(\I/(G*; p«) —n) for any n € R.
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Lemma 3.14. For any u € R, A > 0 such that 0L (ug) is compact for all ug € (u — A, u),
there exists eg 4 > 0 such that the following holds. Let (pi)i>t, be a solution of the PDE
such that dgy,(pt, ps) < €04 for allt > to. Let (6")i>t, be a solution of the ODE with
V(0% p,) <u—A. Then ¥(0% p,) < u for all t > tg.

Proof. By Sard’s theorem [GPI10], there exists ug € (u — A, u) such that the boundary 9L (uo)
contains no critical points of W(-;py). If we define go = mingcyz (0 [[VY(0; pi) 2, the minimum is
achieved by compactness, and therefore we have gy > 0 strictly. Notice that by the differentiability
assumptions on V and U, L (ug) is a C! submanifold of RP | with V¥(8; p,) orthogonal to 0L (ug)
and directed toward the exterior. Further, as observed already above,

IV U: 1) = VU(0: ) = | [ VaU(8:6) (5~ p.)(6") | (3.137)

< K dpy(pi, ps) < K o4 - (3.138)

By choosing g 4 small enough, we can ensure [|[VU¥(0;p;) — VU (0; )2 < go/3 for all 8 and all
t > to.

Assume by contradiction that ¥(6%;p,) > u for some t; > to, and let ¢, = sup{t < t; :
U (0%; p.) < up}. Note that, by continuity of the trajectory, 8 € dL(ug). We then must have

d
0< WO p.) = —(TU(O"5pr,), V(0" p.) (3.139)
< (VO™ p) 5+ V(0" p) 2]V pr) — V(0™ p.) 2 (3.140)
2
< 200 V(O™ )]l (3.141)
which leads to a contradiction since 8% € 9L (ug) and hence |[V¥(8; p.)[|2 > 0. O

To prove Theorem m let now assume by contradiction that p; = p. = p.dg, + (1 — ps) s weakly.
Then for any £¢,79 > 0 (to be chosen below), we can find ¢ty = ty(€g, r¢) such that

dsi(pe, px) < €0, |pe(B(B+;70)) — pa| < 0 (3.142)

for all £ > to. Let py, be the conditional probability measure of py, given 6 € B(6.;70). By
Lemma Pt, has a density upper bounded by a constant M = M(eo,%o) (note that p, (S) <
p1a(8)/ (D = 20))-

Set Hy = Ho(ps) = V2U(0,;p,). Since 0, is a critical point of 8 — ¥(8;p,), for any § > 0,
we can find 71(d) > 0 such that

5
0 €B(6.;m1) = [V?U(8;p.) — Hy| < 50 IV¥(0.p0)]2=0. (3.143)

As shown in the proof of Theorem@ the function (0, p) — V2¥(0; p) is continuous when the space
of probability distributions p is endowed with the weak topology. Analogously p — VWU(0,;p) is
continuous in the weak topology. Hence for this § > 0 and 71(d) > 0, there exists €g.(d,71) > 0
small enough such that, the following inequalities hold

0 € B(0.571), dun(p,ps) <cos = [[V2U(0;p) — Hol| <0, [VE(Os5p)lla < 0%r1/2.
(3.144)
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Let us emphasize that 1 depends on § but can be taken to be independent of €y. Further, by an
application of the intermediate value theorem, for all 6 € B(0.;7r),

1 1
W(0:p.) — U023 p.) — (6 0.). Ho(6 — 6.))| < 356~ 6. 3. (3.145)
For rg < r1, 8% € B(0.;70), we let (0");>4, be the solution of Eq. (3.127) with this initial
condition. We then define

ten(0,r1) =1inf {t > tg : 0" € B(0.;71)}, (3.146)
troturn (070,70, 71) = inf {t > toas(0%,71) : ' € B(O.;70)} - (3.147)
Lemma 3.15. Under the conditions of Theoremm there exists 11 > 0 and €9« > 0 such that, for all

ro <11, €0 < €04, there exists Tug(e0,70,71,t0) such that the following happens. If dgr(pe, p«) < €0
and |pt(B(04;70)) — pi| < o for allt >ty for some to, then

1
pro ({0% € B(8:70) : 100u(0%,71) < Tum(en,mo,71,10) }) = 5 i (3.148)
Proof. Let u be an eigenvector of H( corresponding to the eigenvalue Apin(Ho) = —A1. By

condition B1 of Theorem [7| we have A; > 0. Let —\g denote the second smallest eigenvalue (which
can be positive). We further denote by P € RP*P the orthogonal projector onto the eigenspace
corresponding to Apin(Ho) and by P, = I — P the projector onto the orthogonal subspace.

We fix a § < (A1 — A2)/10. Then we choose 71 > 0 and £ > 0 such that Eq. holds,
with an additional requirement that . < p./10. We will prove this lemma with this choice of 7
and €g «.

We always denote (8%);>, to be the solution of Eq. with initial condition 8%°, for i = 1,2.
First we claim that, for 0 < 6 < (A1 — A2)/10, assuming

IV2W(0; 1) — Holl, <8, Vi>ty, V0 €B(B:71), (3.149)
then for any 0%, 0% € B(0,;r) with P, (6 — 8%) = 0, we have
y Uy,09 ) 1 2 )
167 — 6|5 > (|10 — %[5 eMr(i7H0)/2 (3.150)

for all t € [to, text (0%, 71) A tox (OF, 71)].

For now we assume this claim holds. Fix rg < r; and g9 < €g«. Define v to be the coupling
of Lemma [3.13] corresponding to w which is the eigenvector corresponding to the least eigenvalue
of Hy, and v = p,, which is the conditional measure of py, given 8 € B(8,;7). Note p;, has a
density upper bounded by a constant M = M (gg, tg). By Lemma we have v(€) > 9/10, where

1

£ = {(030,930) € B(0:;70) X B(Bxi70) = (u, 07 — 05) > —; Py (6] — 07) = o} (3.151)
for some Z = Z(gq,70,t0) > 0. Now we take (8°,05) € £. Note the assumption of this lemma
gives dgp(pt, px) < €9 < €0, for all t > tg. According to Eq. , we have Eq. holds, and
due to this claim, we have ||6% — 5|y > (1/2)eME—40)/2 for all t € [to, te (0, 71) A te (05, 71)].

Define Ty (g0, 70,71, t0) = (2/A1) log(2Z r1). Then for t > Typ, we have ||@] — 0%]|2 > 2r;. This
is impossible if 84,05 € B(0.;71) and hence we deduce (fo.(0%,71) A tew (0% ,711)) < Typ for all
(6%, 0%) € €.
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Therefore, we get

1% <€) <({(07,6%) € B(8.i70) X B(8470) e (O1,71) At (09, 71) < T })
< ({6 €B(O.ir0) + te(6F,11) < T} ) +7({0F € B(O.ir0) ¢ te(0F,71) < T })
_ 2@0({0'50 €B(0,:70) ¢ ton(0,71) < TUB}) .

Denoting by S the event in the last expression, we obtain py, (S) > (px — €0)py, (S) > (9/20)(ps —
€0) > p«/3 by noting that gy < p./10.
Proof of the claim. Define the quantities

) (t) =|| P60} — 65)]3, (3.152)
2y (t) =||PL(6] — 6513 (3.153)
We then have, for ¢ € [to, texit(eﬁo,rl) A texit(ag‘), )],
iy (t) = 2(P(6] — 65), =V (8; pr) + V(05 pr))
W op(6t — 8Y), —V2W(8"; pr) (8. — 6Y))
—2((6% — 65), PV2U(8'; p,) P8} — 65)) — 2((6 — 6%), PV2U(8'; p,) P L (6} — 6))

2(\1 — )| P(0] — 05)|3 — 20]| P(65 — 65)][2]| PL (6] — 63)]2
2(A1 = 8)ay(t) — o2y (t) + 2L (1)),

where in (a) we used the intermediate value theorem (with ' a point between 8% and 6%), and in

(b) we used Eq. (3.149).

Proceeding analogously for z (¢), we get (for a new choice of 9t)
#1(t) =2(P (0] — 65), =V¥(01; pi) + V¥(05; 1))
= 2(P(6] - 6), ~V*U(8'; ) (6] — 65))
= —2((6} — 65), PLV2U(8'; o) P L (8} — 65)) — 2((6) — 65), PLV>W(8"; py) P(6) — )
2(\2 + 0)[|P L (6] — 03)][3 + 26| P(6] — 6)]|2]| P (8] — 63)]l2

<
< 2()\2 + (5):6“(15) + (5(1‘||(t) + 1'J_(t)) .

Summarizing, we obtained the inequalities

1) 2 (20 = 30)2)(0) 9.0, (3.154)
(t) < dx ||( ) (2)\2 + 35)(13J_(i) . (3.155)

The matrix of coefficients on the right-hand side is

(22 =35 =6
A_< 5 2A2+35>. (3.156)
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This has a (un-normalized) left eigenvectors (1, —v), (—v, 1) with eigenvalues £+ given by:

v = %[)\1—/\2—36—\/()\1—/\2—36)2—52}, (3.157)

Er =M+ da /(A — Ao —36)2 - 62 (3.158)

Note we took § < (A1 — A2)/10, we have v > 0, and £ > A;.
Multiplying the inequalities (3.154)), (3.155) by (1, —v), we thus obtain

d

@) —vz (1) = & () (1) —vai(t)) . (3.159)

Since we assumed z (t9) = 0, whence, for all ¢ € [to, tcxit(Oﬁo, r1) A tcxit(Bé‘), r1)], we have
wH(t) > .fH(t) — ij_(t) > .%'”(t()) 6§+(t—t0) > x”(to) 6)‘1(t_t0). (3.160)
]

We next strengthen the last lemma and prove that trajectories that exit B(6,;r1) do not re-enter
B(O.;r0).

Lemma 3.16. Under the conditions of Theorem@ there exists ros,r1 > 0 (with rox < r1) and
€0« > 0 such that, for all ro < ro., €0 < €0, there exists Tyg(eo,70,71,%0) such that the following
happens. If dgy(pi, px) < €0 and |p(B(Ox;10)) — ps| < &0 for all t >ty for some ty, then

1
pto ({ato e B(O*vro) : texit(etov’r‘l) S TUB(€07T07T17t0)7 treturn(0t07r0’r1) - OO}) Z gp* . (3161)

Proof. Let Py be the projector onto the eigenspace of —H corresponding to positive eigenvalues,
and P_ the projector onto the subspace corresponding to negative eigenvalues, and let Ay =
min;<p |Ai(Ho)| to be the least absolute value of eigenvalue of Hy. By condition B1 of Theorem
[, we have A\g > 0. Let Apax denote the largest absolute value of eigenvalue of H.

Fix a ¢ such that 0 < 0 < min{Ao/(1+ Ao+ Amax), v/ A0/ Amax, A1 — A2, 1}/10, where A\, Ay are as
defined in Lemma Next we choose r; as per Lemma and we further require \or$ < 1o,
where 1g is as per condition B3 in the statement of Theorem m We take €¢ « to be the minimum of
the parameter ¢g . as per Lemma and the parameter g » as per Lemma @, where in Lemma
we choose u = U(0; ps) — Aor1/8, and A = \gr?/8. Then we will choose smaller r; and &g .
so that Eq. holds. Finally, we take rg. = dr1 < 1. We will prove this lemma with this
choice of 71, €0.«, and 79 «, and with the same function Ty as per Lemma

Define

(0" 71,8) = sup {t € (to, texs(0,71)) 1 [|0% — Oull2 < 671}, (3.162)

and define
()= P60~ 6.} (3.163)
()= |P_(0" 0.3 (3.164)
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We bound the evolution of these quantities following the same argument used above for z(t),
x (t). Namely

2(t) =2(P (8" - 6.), —wwt; pr) + V(0.5 1)) — 2(P 4 (0" — 0.), VU(6.: pr))
= —2(P (0" — 6.),V2U(8'; p1)(0" — 6.)) — 2(P (0" — 6.), VU(6.: 1))
=—2((6' - 0.), PLV?U(8'; ) P1.(6' - 0.))
—2((6' — 0,), PLV2U(8'; o) P_(0" — 0.)) — 2(P.(8' — 6.), V(8. py))
>2(\g — 6)|[P1(6" — 0.)[3 — 20| P (6" — 0.)12]| P (8} — 65)[|2 — 6%r1| P (6" — 8.2

>(20 — 30) 24 (t) — 0z (t) — 8%r14/ 24 (1) -

Fort € [t.(0";71,8), tex (0";71)], we have /24 (t) + z_(t) > 6r1. Using the inequality \/a(a + b) <

a + b holding for non-negative a and b, we have

24 (t) > (200 — 30) 24 (t) — 62— (t) — 6%r1/ 24 (t) (3.165)
> (220 — 38)24.(8) — 62— (1) — 81/ 24 (1) (2 (1) + 2 (1)) (3.166)
> (200 — 30)z4(t) — dz—(t) — 9z (t) — dz_(¢) (3.167)
> (200 — 49)z4(t) — 262_(t) . (3.168)
Proceeding analogously for z_, we arrive at the inequalities
Z20(t) > (2h0 — 40) 24 (t) — 202_(t) (3.169)
Z2_(t) <20z4(t) — (2h0 — 49)2_(t), (3.170)

for t € [t.(0";71,0), e (6";71)]. The matrix of coefficients on the right-hand side has a left
eigenvector of the form (—w, 1) with corresponding eigenvalue —¢, whereby € = \/ A3 — 462 and

= (Ao — /N2 —462)/(26). In particular, since § < \o/10, we have £ > X\g/2 > 0 and w > 0.
Multiplying the above inequalities by (—w, 1), we get

%( —wap (1) + 2 () < ~€(— war(t) +2- (1) , (3.171)

and therefore, for all t € [t,(0";71,0), Lo (07;71)], 2_(t) < w2y (t) + e_gt( —wz4(0) + 2-(0)) <
wz (t) + 82r2. In particular, for ¢ =t (0;71), using 2y (tea) + 2 (tee) = %, we finally obtain

‘ 1— 42
HP+(0tex1t _ H2 > Tl <w> > T%(l — 5) , (3.172)

HP* (Otcxit _ 0

Using Eq. (3.145)), we obtain

<7r?. (3.173)

1 1
W(Qit: p) < W(B,;ps) + 5((0 = 0.), Ho(6 - 6.)) + 557% (3.174)
1 1 1
< U(0,:p.) — 5 0HP+ etexxt -0, H; + 5)\max ||P_(9texit -0, H; + 557“% (3.175)
1
< V(B ps) — §A0r§ + 5(1 4+ 20 4 Amax )72 . (3.176)
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Since 6 < Ao/(10(14 Ao+ Amax)), We can ensure that W (@'t p,) < W(0,; p.) — A\or? /4. By Lemma
since dgr.(pt, px) < €0, < €04 for all t > ¢y, we have V(0% p.) < W(0,;ps) — Aor?/8 for all
t > teu(0";71). Note for all @ € B(0,;0r1), we have W(0; p,) > U(0s;ps) — Amaxd°73/2. Since
§ < v/ A0/ Amax/10, we have 8' & B(0,;6ry) for all t > t...(0°;71).

This implies that, for any 8% € B(8.;rg) for ry < 70+ With toxie (0%, 71) < Tys(eo,70,71,10) < 00,
it will never return to B(0.;rg). This gives the desired result. O

Finally we upper bound the probability that 8" € B(8,;rg) for some t > tg, given that 8% ¢
B(6.;70). We define

tenter (00, 70) = inf {t > 1o : 0" € B(Os;70)} . (3.177)

Lemma 3.17. Under the conditions of Theorem m for any n > 0, there exists ro > 0 and
€0« > 0 such that, for all 1o < ros, €0 < €04, the following happens. If dgy(pt, p«) < €0 and
|pt(B(64570)) — pi| < €0 for allt >ty for some tg, then

pto({OtO ZB(04;70) ¢ towe:(0,70) = oo}) >1—p.—1. (3.178)

Proof. Due to condition B2 of Theorem (7| we can choose u; with U(0.;p.) —np < uy < ¥(0y; ps)
(where 79 is as per condition B3 of Theorem [7)) such that p,(L(u1)) > 1 — p, — n/2 (recall the
notation £ defined as Eq. (3.136))). By taking eg, small enough, and since 8 — ¥(0;p,) is
Lipschitz continuous, we can also choose us € (u1, ¥(0y; ps)) such that ps (L(uz)) > 1 —p. —n. Fix
us € (ug, ¥(04, ps)). Applying Lemma we can further reduce ¢ ., so that for any initialization
0% ¢ L(uz), we have 8" € L(u3) for all t. Further, by continuity of W(-;p4), we can choose g .
small enough so that B(8.;70.) N L(u3) = (), whence

pto({9t° # B(60:70) ¢ Toner (6",70) = oo}) (3.179)
>p1y ({67 W(0'5p.) < up, tuwser(60'°,70) = 00}) (3.180)
:Pto({‘)tO D005 p) <up}) 2 1—p. = (3.181)

0

The proof of Theorem [7] follows immediately from Lemma and Lemma, Indeed, let
n = ps«/10. Take g9 < min{eg 4, ps/10} where gg is the minimum of £¢ . as per Lemma and
Take r; as per Lemma Take ro < min{rg.,r1} where o, is the minimum of rq, as
per Lemma and With this choice of €y and 7, there exists ty > 0 such that Eq.
holds for all ¢ > ty. Setting t. = Tus(c0,70,71,t0) > to with Typ given in Lemma Denoting
by P, p,, be the probability distribution over trajectories of with 6% ~ Ptos We have

. (B(0:;70)) =Py, (6™ € B(84;70))
=Pty p,, (0 € B(B1;10); 0 € B(0.4570)) + Pry p,, (0" & B(B4;70); 8™ € B(B4370))
<Prg.pi, (0 € B(8:570)) — Prg p, (00 € B(B1370) 5 tas (0°571) < L brerunn (83 70) = 00)
+ Pto,ﬂto (Oto & B(04;70)) — ]P’to,pto (Gto Z B(0.;r0); tenter(0t07r0) = 0)

1
SL—gpe = (L=pe—n) = 2p:/3 41

Since we also had p;(B(04;70)) > p«—ep for all t > to, note 0,9 < p./10, we reached a contradiction.
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4 Centered isotropic Gaussians

In this section we consider the centered isotropic Gaussians example discussed in the main text.
That is, we assume the joint law of (y, ) to be as follows:

With probability 1/2: y = +1, £ ~ N(0, (1 + A)?I,).
With probability 1/2: y = —1, & ~ N(0, (1 — A)%1,).

We assume 0 < A < 1, and choose o.(x;0;) = o({x,w;)) for some activation function o. Define
q(r) = E{o(rG)} for G ~ N(0,1). We assume o( -) satisfies the following conditions SO - S4:

SO0 z + o(x) is bounded, non-decreasing, Lipschitz continuous. Its weak derivative x — o'(z) is
Lipschitz in a neighborhood of 0.

S1 ¢ is analytic on (0, 00) with sup,¢(g ) ¢ (1) < 0.

S2 ¢'(r) > 0 for all r € (0,00), with sup, (o ¢'(7) < 00, and lim, 0 ¢'(r) = lim, 00 ¢'(1) = 0.
S3 —oc0 < q(0+) < =1, 1 < g(+00) < 00, and —1 < (q(0+) + g(+2))/2 < 1.

S4 Letting Z(r) = ¢'(7—r)/q¢ (t4r) for some 74 > 7_ > 0 we have Z'(r) > 0 for all r € (0, c0).

Note that condition S1 and part of S2 are implied by SO, but we list them here for conveniency.
Some of these assumptions can be relaxed at the cost of extra technical work. In the interest of
simplicity, we prefer to avoid being overly general.

As our running example we will use

S1 if t <tq,
o(t) = (s2(t —t1) +s1(t2a = 1)) /(ta — 1) if t € (t1,t2), (4.1)
S9 if t > 1.
In particular, we choose s; = —2.5, so = 7.5, t; = 0.5, to = 1.5 in our simulations. In section

we check that this choice satisfies the above assumptions.

Throughout this section, we set 7+ = (1 + A) and ¢ (r) = q(747), ¢—(r) = q(7—r). Also, we
will assume &£(t) = 1/2, since other choices of {(-) merely amounts to a time reparametrization.

Before analyzing our model, we introduce the function space and space of probability measures
we will work on. We equip the set [0, oo] with a metric d, where d(z,y) = |1/(1+x) —1/(1+y)] for
any x,% € [0,00]. Then ([0, oc],d) is a compact metric space, and we will still denote it by [0, 00]
for simplicity in notations. We denote Cy([0,00]) to be the set of bounded continuous functions
on [0, 0o, where continuity is defined using the topology generated by d. More explicitly, we have
isomorphism

Cp([0,0]) ~ {f € C([0,00)) : Af(+00) = lim f(r), sup f(r) < oo}. (4.2)

r—+4oo r€[0,00]

Because of condition S2 and S3, we have ¢, ¢ € Cy([0, x0]).

Let 22(]0,00]) be the set of probability measures on [0, c0]. Due to Prokhorov’s theorem, there
exists a complete metric d on Z([0,00]) equivalent to the topology of weak convergence, so that
(2([0,]),d ) is a compact metric space. In this section, we will denote by & = 2([0, o0]).
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4.1 Statics

Since the distribution of x is invariant under rotations for each of the two classes, so are the
functions

V(w) =o([lwl2), U(wi, wa) = up([|[will2, [[wall2, (w1, w2)) - (4.3)

These take the form

o) = g alrir) + s alrr),  alt) = E{o(0)) (14)

1 1
uO<T’1, T2,T17T9 COS Oé) = §E{U(T+T1G1)U(T+T’2G2)} + §E{U(T_T’1G1)U(T+7’2G2)} N (4.5)
where expectations are with respect to standard normals G, G1, G2 ~ N(0, 1), with (G, G2) jointly
Gaussian and E{G1G2} = cos a.
In order to minimize R(p), it is sufficient to restrict ourselves to distributions that are invariant

under rotations. Indeed, for any probability distribution p on R?, we can define its symmetrization
by letting, for any Borel set Q C R¢,

ps(Q) E/P(RQ) Htaar (AR) (4.6)

where fiy,., is the Haar measure over the group of orthogonal rotations. Since p — R(p) is convex,
R(ps) < R(p).

We therefore restrict ourselves to p’s that are invariant under rotations. In other words, under p,
the vector w is uniformly random conditional on ||w||2. We denote by p the probability distribution
of [Jwl|]2 when w ~ p and we let R4(p) denote the resulting risk. We then have

Ba(p) =1 +2 / o(r) B(dr) + / wa(r1,v2) pdry) p(drs) | (4.7)
ug(ri,ra) =E[ug(r1,re, r172 cos ©)]. (4.8)

where © ~ (1/Z3)sin®20 - 1{0 € [0, 7] }d6.
As d — oo, we have limg_,o ug(r1,72) = Uoo(r1,72) (uniformly over compact sets), with

Uoelr1,72) = 3 [a(rr)a(rirs) + a(r-m)a(rers)] (4.9)

and the risk function converges to

Rap) =5 (1= [atmnptan) + 2 (14 [atrnptan) (4.10)
We also define

ba(rip) = v(r) + / war, ) p(dr") (4.11)
For d = oo, we have the simpler expression
Yool P) = A (B) - 41 (1) + A_(P) - 4 (r), (4.12)
A+ (0) =3 l(a+.7) 1], (413)
A7) =5lla-7) +1]. (4.14)

The following theorem provides a characterization of global minimizers of Ry(p).
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Proposition 4.1 (Lemma [l|in the main text). For any d < oo, define

Galrip) = o) + [ ualrr’) plar). (415)
Then
1. p, is a global minimizer of Ry(p) if and only if supp(p,) C arg min, 14(r; p,).

2. In particular, p, = 6., is a global minimizer or Rq(p) if and only if v(r) + ug(r,rs) >
v(ry) + u(re, i) for all r.

Proof. Point 1 is essentially a special case of the second part of Proposition (1| in the main text (cf.
Eq. (2.7)) and follows by the same argument. Point 2 is follows by taking p, = 0y, . O

Given the last result, it is interesting to understand whether the optimal radial distribution p,
is a single point mass or not. Under the ansatz p = §, (a single point mass at radius r) we obtain
an effective risk RS)(T) = R4(6,) defined by E&l)(r) = 1+ 2v(r) 4+ ug(r,r), which is plotted in
Figure for the case of our running example , and A =0.4.

Let r, = r«(A,d) be the minimizer of E((jl)(r), and define, for d < oo,
Ag=sup{A: v(r)+ug(r,re) > v(re) + ug(rs, m), Vr >0} . (4.16)

In the case d = oo, the minimization problem simplifies further. Either the minimum risk is 0,
or it is achieved at a point mass g, = 6, .

Theorem 4.2. Consider d = co. Recall P = 2([0,00]). In this case Ay, defined as per Eq. (4.16
is such that A, € (0,1). Further

1. For A < Ay, infpeg—,, Roo(p) > 0 and the unique global minimizer of risk function Reo(p) is
a point mass located at some r.(A) € (0,00).

2. For A > A, all global minimizers of risk function Rs(p) have risk zero, and there exists a
global minimizer that has compact support bounded away from 0.

Proof of Theorem [{.3. Recall the definitions ¢4 (r) = ¢(74r) and ¢_(r) = g(r—r). Further, we
define the set I' C [0, 1] by

I'={A:3r € (0,+00), s.t., ¢g+-(r) > 1 and ¢_(r) < —1}. (4.17)

According to condition S3, for A = 1, we have ¢_(r) = ¢(0) < —1 and ¢4 (+00) = g(+00) > +1.

Since ¢ is continuous, it is easy to see that there exists an € > 0, such that [1 —,1] C I". Further,

for A =0 we have g4 (r) = g_(r). By continuity, there exists an € > 0, such that [0,¢] € [0,1] \ T
Since ¢ is an increasing function, we have

I'=[Ax, 1], As = inf A. (4.18)
Ael

By the remarks above, we have 0 < Ay, < 1. Notice that this definition does not coincide with the
one in Eq. . However, the proof below (together with Proposition implies that the two
definitions actually coincide.

Part (1): A < Ax.
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Step 1. Prove that infﬁeyﬁm(ﬁ) >0as A< Ax.
First, we consider the optimization problem

f« = sug{<q+,ﬁ> -1 st (¢-,p) < 71}. (4.19)
eP
We claim that, for A < A, we have f, < 0. Indeed, for any A € [0, +00), we have the following
upper bound

fo < SUp{L(PA) = (a5 7) =1 = Mla=7) + 1)} (4.20)
pEY

Since ¢+ —A q— € Cp([0, +00]), then L( -, \) is continuous in p in weak topology. By the compactness
of &, the supremum of L(-,\) is attained by some p, € &. This p, should satisfy

supp(py) C afgmaxre[0,+oo]{(J+(7‘) —Ag—(r)}.

Let h(r) = q4+(r) — Ag—(r). Note the supremum of h should either satisfy

W(r)=d\(r) = Ad_(r) = 0, (4.21)

for r € (0,00), or the supremum should be attained at the boundary 0 or +oo. According to
condition S4, [¢" (r)/¢ (r)]" > 0 for r € (0,00), the equation (4.21) has at most one solution
T+ € (0,00).

Assume that there exists r, € (0,00) such that h'(ry) = 0. Then we have h'(r) > 0 for
0 <r <ry and A'(r) < 0 for . < r < +oo, whence supp(py) = {r«}. If A'(r) = 0 does not
have a solution in (0,00), the only supremum of h(r) could be achieved at 0 or +00. Therefore,
supp(py) = {0} or supp(py) = {+oo}. This concludes that, for any A € [0, +00), sup, .7 L(p, A) is
achieved by a point mass. Therefore, we have

fo< it s {gr () = 1—Ma-(1) + 1} = g4 (—1) — 1.
A€[0,400) re[0,+00]
For A < A, the right hand side of the above inequality is less than 0. Therefore, we cannot have
a probability distribution p such that (¢;,p) = 1 and (¢q—, p) = —1. The infimum of the risk cannot
be 0.
Step 2. Show that the global minimizer should be a delta function for A < A.

According to Proposition [I| the global minimizer p, € & should satisfy

supp(p,) C arg min Yoo (r;5,)
r€[0,400]
with 1 given in Eq. (4.12).

As proved in the last step, as A < A, we cannot have both Ay (p,) =0 and A_(p,) = 0. The
argument given above also implies that 1o (7;7,) is minimized at a unique point, and hence the
support of p, should be a single point. This proves the first part of the theorem.

Part (2): A > A.

For A > A, there exists r > 0, such that ¢(74r) > 1, and g(7—r) < —1. Therefore, there
exists r, > 0 such that ¢(747r.) — 1 = =1 — g(7—rs) = &, > 0. Consider the following probability
measure on [0, +00],

SR S =
Cl4es T (T+e)(g(+00) — q(0))

Pe [g(+00)d0 — 4(0)d-4oc)-
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It can be checked that Roo(p,) = 0.
We would like to show further that there exists a global minimizer that is compactly supported.
We construct this global minimizer as following. First, define

ro = inf{r: q_(r) > —1}.

Then we know that ¢_(ro) = —1 and ¢4+(ro) > 1. Now for any 0 < r < rg, define u(r) =

q¢~'(=2 — q_(r)). According to condition S3, we have —1 < [¢(0) 4+ g(+00)]/2 < 1, then u(r) is

well defined on [0,7¢]. It is easy to see that u(rg) = 79, and [¢—(r) + g—(u(r))]/2 = —1 for any

0 <r < rg. Now we consider the function z(r) = [g+(r) + g+ (u(r))]/2 — 1. Note that z(r9) > 0,

and z(0) < [¢(0) + ¢(c0)]/2 — 1 < 0. Therefore, there exists r, satisfying 0 < r, < 7 such that
z(r«) = 0. Consider the following probability measure on (0, 400),

1
Px = 5[57"* + 6u(r*)]

It is easy to see that Roo(p,) = 0. O

4.2 Dynamics: Fixed points

We specialize the general evolution (3.1) to the present case. Assuming pg to be spherically sym-
metric, then p; is spherically symmetric for any ¢ > 0. We let 5, denote the distribution of ||w||2
when w ~ p;. This satisfies the following PDE:

0ipy(r) = 28()0: [Py (r)0p1ba(r; y)] - (4.22)

We will view this as an evolution in the space of probability distribution on the completed half-line
2((0, 00]).

In analogy with Proposition [2| we can prove the following characterization of fixed points.

Proposition 4.3. A distribution p € ([0, 0]) is a fized point of the PDE if and only if

supp(p)  {r € [0,00] : O,vha(rs7) = 0}. (4.23)

Notice, in particular, global minimizers of Ry(p) are fixed points of this evolution, but not
vice-versa. The next result classifies fixed points.

Theorem 4.4. Consider d = oo and recall the definition of Ay (p) and A_(p) given by Egs.
and . Then the fized points of the PDE (i.e. the probability measures p € 2 ([0, oo])

satisfying ) are of one of the following types
(a) A fixed point with zero risk.

(b) A point mass p,, = o, at some location 1, & {0,400}, but not of type (a).
(¢) A mixture of the type p = agdp + Goo0+oo + ady,, but not of type (a) or (b).

For A < A, the PDE has a unique fized point of type (b), with \+(p,) < 0 and A\_(p,) > 0;
it has no type-(a) fixed points; it has possibly fized points of type (c).

For A > A, the PDE has some fized points of type (b), with A+ (p,) > 0 and A_(p,) < 0; it
also has some type-(a) fized points; it has possibly fixed points of type (c).

For A = Ay, the PDE has a unique fized point of type (a) which is also a delta function at
some location r«, and no type (b) fixed points; it has possibly fized points of type (c).
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Proof. We use the characterization of fixed points in Proposition Recall that ¥ (r;p,) is
defined as in Equation (4.12). The derivative 0,1 (r; ) gives

Orthoo (159) =M1 (D)4 (r) + A-(P)g_(r). (4.24)

If a fixed point has Ay (p,) = A_(p,) = 0, then R (p,) = 0. This is type-(a) fixed point. Consider
then the case (A4 (p,), A\=(p,)) # (0,0). For the same reason as in the proof of Theorem we
conclude that 0,1 (r;p,) has at most three zeros, two of which are located at 0 and +o0o0. This
proves that all fixed points are of type (a), (b) or (¢).

We already proved in Theoremthat7 for A < Ao, inpr)o (p) > 0. Therefore, for A < Ay,
there is no type (a) fixed points.

We next prove that, as A < A, fixed point of type (b) is always unique. The location of the
delta fixed point should satisfy

Orthoo (143 6r.) = [¢ (r) (g4 (re) — 1) + ¢ (r4) (g (rs) + 1)]/2 = 0. (4.25)

Note that 0,100 (r4;9r,) < 0 for r > 0 small enough, and 9,1eo(74; 0y, ) > 0 for r large enough,
whence this equation has at least one solution r, € (0,00). In order to prove that it has a unique
solution in (0,+00), define ry = inf{r : gy(r) > 1} and r— = inf{r : ¢_(r) > —1}. Note that
¢' (r+),¢_(r«) > 0 and that, in order to satisfy Eq. , the terms A\ (dy,) = 1/2 (¢4 (r+) — 1)
and A_(d,,) = 1/2-(q—(r«) + 1) must have opposite signs. For A < A, we must have A\ (d,,) <0
and A_(d,,) > 0, and all stationary points should be within [r_,7,]. Note that ¢_(r)/¢ (r) is
strictly increasing, and [1 — ¢4+ (7)]/[1 + ¢—(r)] is decreasing on [r_,r,]. Therefore, the fixed point
of type 0,, with r, € (0, 00) is unique.

For A > A, we must have \;(p,) > 0 and A_(p,) < 0, and all solutions should be within
[r4,r_]. There could possibly be multiple fixed points of type d,, with r, € [ry,r_].

If A = Ay, it is easy to see that, p, = d,, at some r, € (0,00) is the unique fixed point with
zero risk, and the unique fixed point as a point mass. ]

4.3 Dynamics: Convergence to global minimum for d = oo

In this section, denote Z,,.q to be

Pyooa = {Py € Z((0,0)) : Roo(pg) < 1,y has bounded density on (0,00)}. (4.26)

We then prove that the d = co dynamics converges to a global minimizer from any initialization

in Z,04-

Theorem 4.5. Consider the PDE for d = oo, with initialization py € Peoa- It has a unique
solution (py)t>0, such that

Proof. Without loss of generality, we assume £(t) = 1/2. First we show the existence and uniqueness
of solution of the PDE.

Step 1. Existence and uniqueness of solution. Mass 7,((0,00)) =1 for all ¢.
According to conditions S1 - S3, ¢(r), ¢'(r), and ¢”(r) are uniformly bounded on [0, oc]. Recall

that
v(r) =1/2-[q-(r) — g+ ()],
Uoo(T1,72) =1/2 - [q4+(11)q+(r2) + q—(r1)q-(2)].
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Hence v/ (1), 1o (11, 72), 0" (1), 03 Uoo (11, 72), O9Ueo (71, 72) are uniformly bounded. Recall we fur-
ther assumed £(t) = 1/2. Therefore, conditions Al and A3 are satisfied with D = 1, V = v, and
U = u. By Remark there is the existence and uniqueness of solution of PDE for d = oo.
Denote this solution to be (p;):>0.

Recall the formula of 0,9 (r;p) given in Equation , it is easy to see that the assumption
of Lemma is satisfied with d = 1 and ¥ = 1,. Hence, we have p,((0,00)) = 1 for any ¢ < co.

Step 2. Classify the limiting set S,.

Recall the definition of (2 ([0, +00]),d) at the beginning of Section Since (2([0, +c]), d»)
is a compact metric space, and (p;):>0 is a continuous curve in this space, then there exists a
subsequence (tj)x>1 of times, such that (ﬁtk) k>1 converges in metric d 2 to a probability distribution
Py € 2([0,+00]).

Analogously to Proposition [2| (using Eq. (4.22))), we have

OT(p) = — [0 (rip) puldr).

Since Roo(p;) > 0, we have
lim [ [Orpoc (T;ﬁt)]Qﬁt(dT) = 0.

t—4o00

Recall the definition of A;(p) and A_(p) given by Eq. (4.13)) and (4.14]). Since ¢ € Cy([0, oc]),

we have

k—o0

Note 0,10 (13 ) is given by Eq. (4.24), and ¢’ € Cy([0, +0c0]), hence

lim ({[0:t00 (3 21,)1%, P, ) = ([0rtboo (3 2.)%, P4),

k—+4o00

which implies

In other words, any limiting point p, of the PDE is a fixed point of the PDE (4.22)).
Note R (p) = 1/2 - [A+(p)? + A (p)?], we have

Note Roo(p;) is decreasing with ¢, hence

lim Roo(p;) = Roo(Ps)-

t—+o0
Let Sy = S«(py) be the set of all limiting points of the (p;)¢>0,
S ={p. € 2([0,0]) : H(tk)kzhkliigo ty = +oo, s.t.,klingo d (., Py,) = 0}
Due to Lemma S, is a connected compact set. Since Ro.(p;) is decreasing as t increases, we

have Roo(p,) = R is a constant for all p, € S,. Since we assumed Ry (py) < 1, and Reo(py) is
decreasing in t, we have R, < 1.
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Let 5, be a fixed point of PDE such that A\ (p,) > 0,A_(p,) > 0 or Ay (p,) <0, _(p,) <O
but not both A4 (p,) and A_(p,) equal 0. In this case, according to Eq. (4.24)), 9,90 (r; p,) must
be strictly increasing or strictly decreasing in r. Since supp(p,) C {r € [0,00] : 9,¥0(r;p,) = 0},
P, must be a combination of two delta functions located at 0 and +o0, i.e., 5, = agdo + (1 — ap)dco-
But for a fixed point of this type, it is easy to see that R (p,) > 1. Such fixed points p, cannot
be one of the limiting points of the PDE since Roo(pg) < 1.

Let L be a mapping L : Z([0,+00]) — R2, 5+ (A4 (p),A_(p)). The above argument implies
that for any py € Pye0a, We have

L(S:(0)) N ({(A, A2) t Ay > 0,22 >0, or Ay <0,A- <0} \{(0,0)}) =0.

Since S, is a connected set, L(S,) should also be a connected set. Further notice that Ro.(p,) =
1/2 - [A (7)) + A_(p,)%], and Roo(p1) = Reo(ps) for any py, py € Si. Therefore, we can only have
L(S.) CPy={(As,A2) : Ay > 0,A- < 0}, or L(Sx) CP1 = {(A,A2) : Ax < 0,A\_ >0}, or
L(S.) = {(0,0)}.

Step 3. Finish the proof using two claims.
We make the following two claims.

Claim (1). If L(Ss) C P1, then for any p, € S, we have p,((0,00)) = 1.

Claim (2). We cannot have L(S,) C Ps.

Here we assume these two claims hold, and use them to prove our results. For A < A, we
proved in Theorem that, there is not a fixed point such that L(p,) = (0,0). Therefore, we
cannot have L(S,) = {(0,0)}. Due to Claim (2), we cannot have L(S.) C P,. Hence, we must
have L(Sy) € P;. According to Theorem for A < A, the only fixed point of PDE with
7.((0,00)) = 1 is a point mass at some location r,. Furthermore, this delta function fixed point is
unique and is also the global minimizer of the risk. Therefore, we conclude that, as A < A, the
PDE will converge to this global minimizer.

For A > AL, according to Claim (1), if p, is a limiting point such that L(p,) € P, then
7.((0,00)) = 1. According to Theorem [1.4] a fixed point p, with 7,((0,00)) =1 and L(p,) # (0,0)
must be a point mass at some location r,, with L(p,) € Pa. Therefore, we cannot have L(S,) C Py.
Claim (2) also tells us that we cannot have L(S,) C Py. Hence, we must have L(S,) = {(0,0)}. In
this case, all the points in the set S, have risk 0. Therefore, we conclude that, as A > A, the
PDE will converge to some limiting set with risk 0.

Step 4. Proof of the two claims.

We are left with the task of proving the two claims above. Before that, we introduce some
useful notations. Recall Z(r) = ¢’ (r)/q' (1) for r € (0,400). According to condition S4, Z'(r) > 0
for r € (0,+00). This implies that Z(0+) = Zy > 0 and Z(+00) = Zs < o0 exist. We rewrite
Orihoo(r;p) as

Orthoo(r3p) = Ap(P)d (1) + A= (P)a(r) = A-(p)d () [A+(P) /A~ (p) + Z(r)]. (4.28)

Proof of Claim (1). If L(S.) C P;, then for any p, € S,, we have p,({0,00}) = 0.

Assume L(S.) C P;. Then, we must have L(S.) C P1 N{(A+,A\2) : Zp < —Ap/A_ < Zoo}.
Otherwise suppose there exists p, € Sy, such that —Ay(p,)/A=(p,) > Zoo or =2+ (0,) /A= () < Zo,
according to Eq. , Yoo(r; p,) must be strictly increasing or strictly decreasing in r. Since
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supp(p,) C {r € [0,00] : Orthoo(r; p,) = 0}, then p, must be a combination of two delta functions
located at 0 and +oco. But such p, must have R (p,) > 1, and thus p, cannot be a limiting point
of the PDE. Hence the claim that L(S.) C P1 N {(AL,A_) : Zp < =A1/A_ < Z} holds.

Since S, is a compact set, and L is a continuous map, then L(S,) is a compact set. Therefore,
there must exist eg > 0, so that for any p, € Si, we have Zy + 39 < —A1(p.)/ A= (P.) < Zoo — 3e0.
For this €9 > 0, since S, contains all the limiting points of PDE starting from p, there exists g
large enough, so that as t > tg, we have Zy + 2e9 < —A1(p) /A= (D) < Zoo — 2e0, and A (p;) < O,
A—(p;) > 0. For the same ¢, since Z(r) is continuous at 0 and +o0, there exists 0 < 1y < 7 < 00,
so that Z(r) < Zy + eg for r € (0,79), and Z(r) > Zoo — €g for r € (roo,0). Therefore, for any
t > to, Orthoo(1;9,) < 0 for any r € (0,79), and Orheo(r;9,) > 0 for any r € (ro, +00).

As a result, according to the equation ([4.28), we must have 0,10 (r; ;) < 0 for any 7 € (0,r9)
and t > tg, and 0,9oo(r; ;) > 0 for any r € (rog,00) and ¢ > to.

Due to Lemma P1,((0,00)) = 1. Denoting € = [1/k, k], then limy_,oc py, (%) = 1. With
this choice of Q, for any k > {roo, 1/ro}, and for any ¢t > to, we have (0,90 (r;p;), n(r)) > 0 for
r € 0, where n(r) is the normal vector point outside €. Therefore, if we consider the ODE

7(t) = =0oo(r(t); py)- (4.29)

starting with r(tg) € Qg, r(t) cannot leak outside Qj, from either boundaries of {2, and we must
have r(t) € Qj for any ¢ > t3. Due to Lemma () > Py, () for any t > tg. As a result, we
conclude that for any p, € S,

P« (Ufl) = lim p,(Q) > lim py, () = 1. (4.30)
k—o0 k—o0

Note UpQi = (0, 00). This gives 5,({0,00}) = 0, which proves Claim (1).

Proof of Claim (2), step (1). If L(S.) C P2, then S, must be a singleton.

In the case L(S.) C Pa, the argument is similar to the proof of Claim (1), and hence will be
presented in a synthetic form. First, we must have L(S,) € PoN{(A1,A_) : Zo < —A1 /- < Zo}.
Therefore, there must exist ¢g > 0, so that for any p, € S,, we have Zy+3co < —A4(p,)/A=(p,) <
Zso — 3eg. For this eg > 0, there exists ¢ty large enough, so that as t > tg, we have Zy 4 2¢¢ <
A+ (P) /A= (P) < Zoo — 220, and A1 (p;) > 0, A_(p;) < 0. Further, there exists 0 < ro < 1o < 00,
so that 0,10 (r;p,) > 0 for any r € (0,7rg) and t > tg, and 0,1 (1;9,) < 0 for any r € (reo, 00) and
t > to.

Therefore, if we consider the ODE starting with r(tg) € [0,70), we must have r(t) €
[0,r0) for any t > to; if we start with 7(tg) € (roo, 0], we must have r(t) € (roo,00] for any
t > to. Due to Lemma {p:([0,7)) }4>¢, for 0 < r < ro and {p,((r, +00]) hi>t, for r > 7o
must be non-decreasing in ¢. According to Theorem [{.4] we can express p, € S, in the form
Py = 00(P,)00 + aoo(Py )00 + a(p,)dr,. By the stated monotonicity property, for any p;,py € Ss, it
holds that ag(p;) = ao(P2), aoo(P1) = aoo(P2), and hence a(p;) = a(py). We denote them in short
as ag, oo, and a.

For any such fixed point p, € S, since we must have supp(p,) C {r : 0¥s(r;p,) = 0},
7+ € (0,400) should be a solution of ¢(r) = 0 where

o(r) = (a0q(0) + aoofoo + aq+ (1) = 1)g (r) + (a0g(0) + aoogoo + ag—(r) +1)g_ (7).

By condition S1, the function ¢(r) is analytic, and it is not constant. Therefore, the set of all its
zeros {ri}ien C (0,+00) is a countable set, and it does not have accumulation points in (0, +00).
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Furthermore, according to Lemma [3.10, the limiting set S should be a connected compact set
with respect to the metric d». Therefore, the limiting set could only be a singleton. That is,
Sy = {apdp + @000 + ady, } for some 7.

Proof of Claim (2), step (2). If p, is a fixed point with L(p,) € P,, then p, is unstable.
We apply Theorem [7] to p, = agdp + aocdoc + ady,. We will check the conditions of Theorem [7]
to show that this type of fixed point is unstable.
First we check condition B1. Since [¢" (r)/¢/ ()] > 0 and ¢ () > 0 for r € (0,+00), we have

¢ (r)d (re) — ¢L(ra)qd_(r«) > 0. (4.31)

Note the stationary condition of the PDE implies

3r¢(7"*;ﬁ*) = >‘+(ﬁ*)qir(7'*) + )‘—(p*)qL (T*) = 07 (432)

and A4 (p,) > 0, A_(p,) < 0. Combined with the equation above, we have

Rt (143 D) =M (P () + A= (P.)d” ()
=[¢ (r)q" (rs) — ¢ (r)dt (r)] - A=(p.)/d, (re) < 0.

This verifies condition B1 of Theorem [7

Second, since A;(p,) > 0 and A_(p,) < 0, according to Equation (4.28), we must have
Ortoo (13 p,) > 0 for r € (0,7y), and 0,0 (75 9,) < 0 for r € (74, 00). Therefore, we have 15, (0;,) <
Voo (T's5 Px) a0 Yoo (+005,) < Yoo (745 Py). Note L(n) = {r : oo (r;94) < Yoo(r4:p,) — 1} For any
1 > 0 small enough, 5,(L£(n)) = 1 — a, which verifies condition B2. It is also easy to see that, for
any 1 > 0, dL(n) is a compact set, hence condition B3 holds. Note that we assumed further that
7o has a bounded density with respect to Lebesgue measure, all the assumptions of Theorem [7] are
satisfied. Theorem [7] implies that the PDE cannot converge to p,. As a result, we conclude that
we cannot have L(S.(py)) C Ps for py € P,00a. This proves Claim (2).

(4.33)

O

4.4 Proof of Theorem [1]

The key step consists in proving that the dynamics for large but finite d is well approximated by
the dynamics at d = co. The key estimate is provided by the next lemma.

Lemma 4.6. Assume o satisfies condition S0, recall the definition of ug and us, given by Equation

@ and @) Then we have

lim  sup  |ug(ri,re) — uso(r1,72)| =0,
d—00 1) ro€[0,00)

and

lim sup  |O1uq(r1,r2) — Oruco(r1,72)| = 0.
d—oo r1,r2€[0,00)

Proof. Recall that ug is given by

ug(ry,r2) =1/2 - [ug1(ry, r2) + ug2(ry, ro)],
ug1(ri,r2) =Elo(ri(1 4+ A)G1)o(r2(1 + A)(G1cos© 4+ Gosin ©))],
ug2(ri,r2) =Elo(ri(1 = A)G1)o(r2(1 — A)(G1cos© 4+ Gosin ©))],
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where (G1,G2) ~ N(0,I5), and © ~ (1/Z4)sin()4=2 - 1{6 € [0, 7]}d# are mutually independent.
Define G3 = G cos © + G5 sin O, then

[ug,1(r1,72) = Uoo,1(11,72)]
=|E[o(ri(1 4+ A)G1)[o(r2(1 + A)G3) — a(ra2(1 + A)G9)]]| (4.34)
<|lollcEllo(r2(1 + A)G3) — o (r2(1 + A)Ga)ll,
and
|01uq,1(71,72) — O1Uoo,1(71,72)]
=|E[(1 4+ A)Gy - o' (r1(1 + A)GY)[o(ro(1 + A)G3) — o(ra(1 + A)GL)]]|
<(1+ A0’ | E[GI]2E[[o(ra(1 + A)G3) — o (ra(1 + A)Ga)*] /2
<1+ Ao’ oo 2lolI3?) - Eljo(ra(1 + A)Gs) — o (ra(1+ A)Ga)|]/2.

(4.35)

According to condition SO, ||0’|| and ||o|e are bounded, it is sufficient to bound the following
quantity uniformly for r € [0, o)

T(r)=1/2-E{|lo(rG2) — o(rGs)]|} = E{[o(rG2) — o(rG3)| 1Gy>as | - (4.36)
We claim that, for any a € R,
P(Gs < a,Ga > a) < B(Gy < 0,Ga > 0) = E[lr/2 — ©]/(2)] (137)

Assuming this claim holds, let us show that it implies the desired bound on T'(r). We have

T(r) =E {/Ral(t) 1,Gy>t>rGa dt} = /Ra’(t)P{GQ >t/r>Gs}dt

<supP(Gs < a,G > a) / o' (£) dt < 2||o|| - E[|7/2 — O]/ (27)].
acR R

Note that cos(©) 4 Z1/||Z||2 for Z ~ N(0,1I,) and hence E{|© — w/2|} < K/+/d for a universal
constant K. We therefore obtain

sup [T'(r)] < (K /m)llor]|oo/ V. (4.38)

We are left with the task of proving Eq. (4.37)).

Denote X = G2 and Y = (3 for simplicity in notations. Note that (X,Y)
(=X,-Y). It follows that we can assume, without loss of generality, a > 0. We have

4 4

(Y, X)

PY<a,X>a)=P(Y <0,X>a)+P0<Y <a,X >a),
PY<0,X>0)=PY <0,X >a)+P(Y <0,0<X <a),
suffice to prove that
PO<Y <a,X>a)<PY <0,0<X <a).

Define U = (X -Y)/2,V=(X4+Y)/2,and A; ={0<Y <a,X >a}, Ao ={Y <0,0< X <a}.
It is easy to see that [U]|© = 6] and [V |© = 0] are independent normal random variables. Therefore,
it is sufficient to show P(A1|U = 4,0 = 0) < P(A2|U = u,0 = 0) for u > 0 and 0 € [0,7] (as
u < 0, both conditional probability equal 0).
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Fix an v > 0 and # € [0,7]. Consider the closed interval Z; = Z;(u) C R for i = 1,2,
with definition Z;(u) = {v : {U = w,V = v,0 = 0} C A;}. Then P(4|U = u,0 = 0) =
Iz, Pvie(v|f)dv, where pyjg(v|f) is the density of [V|© = 6] at v. It is not hard to see that
every element in Z; is greater or equal to a/2, and every element in Zy is less or equal to a/2; in
the meanwhile, 7Z; and Z» are symmetric with respect to a/2. Note that [V|© = 6] is a Gaussian
random variable with zero mean, therefore pyg(a/2 + s[0) < py|g(a/2 — s|0) for any s > 0 and
0 € [0,7]. This implies that P(A41|U = 4,0 = 0) < P(A2|]U = 4,0 = 6), for any v > 0 and
0 € [0,n]. O

Lemma 4.7. Let y ~ Unif({—1,+1}), [z|ly = +1] ~ N(0,X4), [z|ly = —1] ~ N(0,3_) with
2Ip <= 3,,%_ < T_%_ID for some 0 < 7_ < 74 < o0. Assume that the activation function o
satisfies condition SO. Define

V(0) = - Elyo((z,6))],

U(01,0s) =E[o({x,01))0({z, 02))]. (4.39)

Then assumptions A2 and A3 are satisfied.

Proof. Note that « is sub-Gaussian, and by condition SO we have ¢’ is bounded, then Vgo((x, 8)) =
o'({(x,0))x is also sub-Gaussian (with sub-Gaussian parameter independent of D). Condition SO
also gives that o is bounded, therefore assumption A2 is satisfied.

To verify assumption A3, it is sufficient to check that VV, ViU, V3,U, V2V, and V%,U are
uniformly bounded in ¢ norm (for the gradients) or operator norm (for the Hessians). For any
unit vector n, we have

(VV(0),n) = — E[yo’((z, 0))(z, n)], (4.40)
(V1U(61,62),n) E[ "((z, 01)) (@, n)o((x, 02))], (4.41)
(ViaU(01,02),n?) =E[o’ ((z, 01))(z, n)°0" ({(z, B2))]. (4.42)

Since ||0||oo, |0l < 00, applying Cauchy-Schwarz inequality, we have VV,V U, V2,U are uni-
formly bounded.

It is difficult to bound V2V and V?U directly because ¢’ may not be differentiable. We will
use a longer argument to bound them.

First, for a bounded-Lipschitz function f, and for g € {1,0}, define

Wig(01,02) = Ec[f((61, G))g({62, G))], (4.43)

where G ~ N(0, I4). Since we have 72Ip < ¥,,3_ < T_%_ID for some 0 < 7— < 74 < 00, in order
to bound V2V and V3U, it is sufficient to bound ViW, 1 and ViW, .
Since ¢’ is Ko-Lipschitz on [—2dg, 20¢] for some g > 0 and Ky < oo, then, there exists a function
0 : R = R, so that op is non-decreasing and K-bounded-Lipschitz, o(, is K-bounded-Lipschitz,
and oo(r) = o(r) for r € [—dp,dp]. For this og, a second weak derivative exists and |o(| < K.
Hence
(V3Woq4(81,02),n%%) = Elo} ({81, G))(G, n) g ((62, G))] (1.44)

is uniformly bounded for g =1 or g = 0. Let h = 0 — 0, then h = 0 for r € [—dy, do], and h is
K-bounded-Lipschitz for some constant K. It is sufficient to bound ViW}, , for g € {1,0}.
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Since G is Gaussian, using Stein’s formula, for any unit vector n, we have

(ViWhg(01,02),n) = B[N ({61, G))(n, G)g((02, G))]

= %E[h“el? G>)<017 G> <’I’l, G>g(<027 G>)] - 72E[h(<017 G>)<017 n>g(<027 G>)]
161115 161115
E1(01,02,n) E2(01,02,n) (4.45)
- o pEI (8. G . Gy (8:.G))(62.01)].

E3(61,02,n)

Taking directional derivatives of F and Es, we have

1

<V1E1(91, 027 n)7n> ~ T 12
161113

E[h,(<01a G>)<917 G) <n7 G>29(<027 G>)]

E1n
N 2<017 n>
16113

Ei2 E13

(4.46)

! E[h((6:, G)) (61, G)(n. G)g((62, G))],

+ ——=E[h((01,G))(n, G)g((62, G))]
161115

and

(V1E3(01,02,n),n) = E[1' ({61, G)){61, n)}(G,n)g((02, G))]

1
16:113

E2

E[h((01,G))(01,n)9((02,G))] .

(4.47)
1 2<91, ’I’L>
Eoo Eas

To bound Ej1, note h/(r) =0 for r € (—dp,dp), and |h/(r)| < K for r € R, we have

B E[1{](61.G)| > 6o} - [(01/]161]12. )| - {n, G)?]g((62. )]

< K
11 >77 A
160112

K
<
16012

Take r = [|01]|2, then

(4.48)
P(|(61,G)| = 60)"* - {E[((61/61 12, G)*(m, G) g((62, G)))*}/2.

1/1161]lz - P([(61, G)| = 60)"/? < 1/r - exp{—65/(4r%)} (4.49)

is uniformly bounded for r € [0, 00]. Hence Ej; is uniformly bounded. Using a similar argument,
we can show that each terms Fio, F13, Fo1, Foo, and Es3 are uniformly bounded.
Now we look at V1 FE3(01,02,1n). We have
1

(V1E5(01,02,n),n) = WEW(@H, G))(n, G)*g'((02,G))(62,61)]

Es1

L n / n _2(01,71,)

E32 ESS

E[h((01, G))(n,G)g'((62,G))(62,01)].

(4.50)
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In order to bound Fs39, we apply Stein’s formula to get

<927n> n
[0, 316.75 =101 G, Gl (62,602, ) (w51)

= E[1((61, G))(n, 02)9((02, G))] — E[1({61, G))(61,02) (n, G)g((62, G>)]}-

E3y =

For each terms above, we can bound them using the same argument as for bounding E1;. Similarly,
we can bound F33. We cannot apply directly Stein’s formula to Fs3; similar to what we did for E39,
because h' = ¢’ — o{, may not have weak derivative. However, recall that h'(r) = 0 for r € [—do, o]
and A’ is K-bounded. Therefore, we can find a function hg : R — R, such that |h/(r)| < ho(r) for
r € R, ho(r) = 0 for r € [—00/2,d0/2], and hg is K-bounded-Lipschitz (for some larger constant
K). Hence, recalling that ¢'(r) > 0, we get

Es < Elho((01,G))(n, G)’g'((82, G))|62]2]- (4.52)

= 110112
We can apply Stein’s formula to the right hand side of the last equation. Using the same argument
as above, we obtain that Fs3; is uniformly bounded.

As a result, V2V and V32U are uniformly bounded. Therefore, assumption A3 is satisfied.
O

We are now in position to prove Theorem

Proof of Theorem[1. First we consider PDE (4.22) for d = co. We fix an initial radial density
Po € Peooa- Due to Theorem for any n > 0, there exists T' = T'(n,py, A) > 0, so that the
solution (p°)>0 of PDE (4.22) for d = oo with initialization p, satisfies

Eo(ﬁ?’)é in nf Ro (P) +n/5

for any ¢t > T.
Then we consider the general PDE

0upi(0) =2£(1)V - [pe(O)VU(8: p1)] (4.53)

with initialization pg the distribution of rn, where (r,m) ~ 7y x Unif(S?~!). Due to Lemma we
have the existence and uniqueness of the solution of PDE , and let (p:)i>0 be the solution.
Let p¢ be the radial marginal distribution of p;. It is easy to see that (p¢);>¢ is the unique solution
of (4.22] - ) for d finite.

Now, we would like to bound the distance of p and 5° using Lemma We take D = 1,
V=uv,U=ug V =uv, U= us in Lemma [3.7 E Let €p(d) be defined as in Eq. (3.69). Due
to Lemma we have eo(d) — 0 as d — oo. Therefore, according to Lemma we have
limg o0 SUPs< 197 der (B, pi°) = 0. Further note that R, is uniformly continuous with respect to p
in bounded-Lipschitz distance. Therefore, there exists dy = do(n, po, A) large enough, so that for
d > dy we have

[Res(pt) — Roo(07°)] < /5.
for any ¢t < 107
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Next we would like to bound the difference of R (p) and Ry(p) for any p. Note

|Roo(p) — Ra(P)| < / |ua(r1,m2) — Uoo (1, 72)| p(dr1)p(dra). (4.54)
By Lemma there exists dy = do(n, A) large enough, so that for d > dy, we have

SUup [Roo(p) — Ra(p)] < n/5. (4.55)

Finally, let (6%);>1 be the trajectory of SGD, with step size s, = e£(ke), and initialization
w? ~iiq po for i < N. We apply Theorem [3|to bound the difference of the law of trajectory of SGD
and the solution of PDE (4.53)). The assumptions of Theorem |3| are verified by Lemma As a
consequence, there exists constant K (which depend uniquely on the constants in assumptions Al
A2 A3), such that for any ¢t < 107", we have

Ry (0/<)) — Ry(pf) < KeOKT. erry q(z).

_ 2

with probability 1 — e™*", where

erryq(z \/I/N\/a {\/d—i—log 1/6V1>)—|—Z].

As a consequence, for any d > 0, there exists Cy = Cy(d,n,py, A), so that as N,1/e > Cypd and
e >1/N1 for any t < 10T, we have

Rn(8%/)) — Ry(pd) < n/5

with probability at least 1 — 4.
Therefore, the trajectory 6//¢] of SGD as t € [T, 10T satisfies

Ry (0Y5)) <R4() + n/5 < Roo(p}) + 20/5 < Roo(pf°) + 3n/5
< inf Roo(p) +4n/5 < mf f Ry(p)+n= inf R(p)+n

peEP pe P (R4)
< f Rn(0)+
GE}RQ“N N( ) K

with probability at least 1 — §. This gives the desired result.

4.5 Checking conditions S0—-S4 for the running example

Lemma 4.8. Consider the activation function o with definition in Equation , with s1 < Sa,
s1 < —1, (s1+s2)/2>1, 3s1 +s2)/4 € (—1,1), 0 < t; < ta. Forr € (0,400), define q(r) =
Eqlo(rG)] where G ~ N(0,1). Then conditions SO-S4 hold.

Remark 4.1. The requirements of Lemma are not restrictive. An example of parameters that
satisfies all conditions gives s; = —2.5, so = 7.5, t; = 0.5, t5 = 1.5.
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Proof. Tt is straightforward to see that condition SO holds. To show condition S1, denote by o’(r)
the weak derivative of o(r), we calculate the function ¢'(r) for r > 0 explicitly,

S92 S1 2

¢(r) =E[o’(rG)G] = tQ_tl/1{me[t1,t2]}.J%exp{_g}.m.dgg

S9 — 81 t% t% (4'56)
28 o[- ] - ew |- 2]}

Since s1 < s9 and 0 < #1 < t9, it is easy to see that ¢'(r) is analytic on (0,00), and hence ¢(r) is
analytic on (0, 00). Differentiating ¢/(r) in Eq. ([£.56), it is easy to see that lim, . ¢"(r) = 0, and
q¢"(0+) = 0. Hence, we have sup,c( 4o ¢"(r) < 00. Then condition S1 holds.

Since s > s1, 0 < t1 < to, we have ¢/(r) > 0 for r € (0, +00), lim, o ¢'(r) = 0, and ¢’'(0+) = 0.
Hence, we have sup,¢[g ) ¢'(r) < co. Then condition S2 holds. Note that ¢(0) = o(0) = s1 < —1,
and g(400) = (s1 + s2)/2 > 1. In addition, [¢(0) + ¢(4+00)]/2 = (351 + s2)/4 € (—1,1). Therefore,
condition S3 holds.

Finally, we show that condition S4 holds. Define p(r) = exp[—t2/(2r?)] — exp[—t3/(2r?)], which
is a positively scaled version of ¢’(r). To show that for r € (0, 00),

[ (7-r) /' (7)) = [r— - ¢"(r=1)q (r4) — 7 ¢/ (r=r)q" (r7)] /[ (747)] > 0,
we only need to show that for r € (0, 00)
Fy(r) =7 p'(r-r)p(rsr) — 74 - p/(747)p(7-1) > 0.
We have
FL(r) = +1/(720%) - {8 expl £/ (2r2r)] - Bexp|#3/ (2r2r)]}
x {exp[—t7/(273r%)] — exp[—t3/(2r3r%)]}
= 1/(r3r®) - {tT exp[—t1/(273r%)] -t exp[~t3/(272r?)]}
x {exp[~t7/(2721%)] — exp[~t3/(272r?)]}.
Define z = t3/(273r%) > 0, s =72 /72 > 1,0 < c = t3/t3 < 1, we have
xs]} - {exp[—wc] — exp[—z]}

-
—t3/(72r°) - {c- exp[~xc] — exp[~a]} - {exp[~wsc] — exp[—as]}
=t3/(731*){(cs — ¢) exp[—zc — wsc| + (c — s) exp[—zs — 2]

Fi(r) =+1t3/(r3r°%) - {cs - exp[—wsc] — sexp

+ (1 — ¢s) exp|—z — xsc] + (s — 1) exp[—z — xs]}
=t3/(7273) exp{—x — zsc}{(cs — ¢) exp[z — 2|
+ (¢ — s)explz — xs —xc+ xsc] + (1 — ¢s) + (s — 1) exprsc — zs]}.

Define
Fy(z;s,¢) = (e¢s — ¢) exple — xc] + (¢ — s) explx — xs — xzc + xsc] + (1 — ¢s) + (s — 1) exp[xsc — xs].

It is sufficient to show that Fy(x;s,¢) > 0 for x > 0, s > 1, and 0 < ¢ < 1. Note that F»(0+;s,¢) =
0. Hence it is sufficient to show that 0, F5(x;s,¢) > 0 for x > 0.
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We have
O Fo(x;s,¢) =c(s — 1)(1 — ¢)explr — zc] + (s — ¢)(s — 1)(1 — ¢) exp[z — x5 — xc + x5(]
+ (s —1)s(c — 1) exp[xzsc — zs]
=(s — 1)(1 — ¢) exp[zsc — zs|{c - exp[r — xc — xsc + xs] + (s — ¢) exp[x — zc] — s}.
Define
F3(x;s,¢) = c-explz — xc — xsc+ xs] + (s — ¢) exp[z — xc] — s.

Note that s > 1 and 0 < ¢ < 1, F53(0+; s,¢) = 0. It is therefore sufficient to show that 0, F3(z; s, c) >
0 for z > 0.
We have

O F3(x;s,¢) = ¢(1 —¢)(1 4 s) explx — xc — xzsc + xs] + (s — ¢)(1 — ¢) exp[z — zc].

Since 0 < ¢ < 1, s > 1, and x > 0, we have 0, F3(z;s,c) > 0, and hence condition S4 holds. O

5 Centered anisotropic Gaussians

In this section we consider the centered anisotropic Gaussian example discussed in the main text.
That is, we assume the joint law of (y,x) to be as follows:

With probability 1/2: y = +1,  ~ N(0, 3).
With probability 1/2: y = —1,  ~ N(0,3_).

We will assume 3,3 to be diagonalizable in the same orthonormal basis, and to differ only on
a subspace of dimension sg. We want to study whether and how the neural network will identify
this subspace of relevant features. Without loss of generality, we can assume that the eigenvalues
correspond to the standard basis. In order to focus on the simplest possible model of this type, we
will choose:

S, =Diag((1+A)%...,(1+A)%1,...,1), (5.1)
N—_——
80 d—so
S =Diag((1-A)% ..., (1-A)?1,...,1). (5.2)
d
S0 —S0

We assume 0 < A < 1. As in the previous section, we choose o.(x;0;) = o({x,w;)) for some
activation function o. Define ¢(r) = E{o(rG)} for G ~ N(0,1). We assume o( - ) satisfies conditions
SO - S4 stated at the beginning of Section We will still use the specific ¢ in Eq. as our
running example.

Throughout this section, we assume sg = 7y - d for some fixed 0 < v < 1. Therefore, as d — oo,
we have s) = -d — oo and d — sg = (1 —7) -d — co. For any w € R we denote w; € R® and
wy € R%0 by writing w = (wy,ws). We denote 74 = 1+ A and 7. = 1 — A. Then we have
0<7 <1<7y <2 Denote qi(r) =q(rir) and q_(r) = q(7_r). For any a = (a1,as) € R?,
denote

ri(a) = (rjai +a3)"?, r_(a) = (2ai + a3)"/*. (5:3)
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Before analyzing our model, we introduce the function space and space of probability measures
we will work on. Let Ey = [0,+00)? U {cc}. Note there is a bijection ¢ between Eo and S? N
{(z,y,z) € R3 : 2,y > 0}. Indeed, for any r = (r1,72) € [0,4+00)?, consider the line crossing
(r1,72,0) and (0,0, 1). This line intersects with S? at two points. One intersection point is (0,0, 1),
and we denote the other intersection point as ¢(r). Moreover, let ((oc0) = (0,0,1). With this
bijection ¢, we equip Ey with a metric d induced by the usual round metric on S?. Then (E»,d)
is a compact metric space, and we will still denote it as F» for simplicity in notations. We denote
Cy(E») to be the set of bounded continuous functions on Es, where continuity is defined using the
topology generated by d. More explicitly, we have isomorphism

Cy(BE) ~ {f € C([0,00)%) : If(c0) = lim f(r), sup f(r) < oo}. (5.4)

l[r{l2—o00 Tk,

Because of condition S2 and S3, we have gory,qor_,q ory,q or_ € Cy(Es).

Let Z(E3) be the set of probability measures on Ey. Due to Prokhorov’s theorem, there exists a
complete metric dg on P (F,) equivalent to the topology of weak convergence, so that (2(Es), ds)
is a compact metric space. In this section, we will denote by &2 = Z(Ej).

5.1 Statics

Since the distribution of @ is invariant under rotations in first sg coordinates, and invariant under
rotations in last d — sg coordinates, so are the functions

V(a) =v(|laill2, [|az]2), (5.5)
Ul(a,b) =uo([lai]2,[|b1ll2, (@1, b1), |laz]|2, |b2]|2, (a2, b2)) .

These take the form
1 1
v(a1,az) = 3 q(ry(a1,a2)) + 5 q(r—(a1,a2)), q(t) =E{c(tG)}

and
up(a, by, a1by cos a, ag, by, asbs cos j3)

1 1
:iE{O’(T+a1F1 + a2G1)0(7+b1F2 + bQGg)} + §E{U(7LCL1F1 + CLQGl)O'(T,blFQ + bgGg)} ,

where expectations are with respect to standard normals G, Fy, F», G1,Go ~ N(0,1), with (Fy, F3)
independent of (G1,G2). Moreover, (F1, Fy) are jointly Gaussian, (G1,G2) are jointly Gaussian,
and covariance E{F} F»} = cos a, E{G1G2} = cos f.

In order to minimize R(p), it is sufficient to restrict ourselves to distributions that are invariant
under product of rotations. Indeed, for any probability distribution p on R? we can define its
symmetrization by letting, for any Borel set Q1 C R*0, Qo C R4,

pu(Qux Q2) = [ p((B1Q1) X (R2Q2) s (AR i (AR2) (5.7)

where fiy,., is the Haar measure over the group of orthogonal rotations. Since p — R(p) is convex,

R(ps) < R(p).
We therefore restrict ourselves to p’s that are invariant under product of rotations. In other
words, under p, the vector w = (w1, wy) € R? is sampled as following: w; € R* is uniformly
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random conditional on [Jw1 ||z, and ws € R4 is uniformly random conditional on ||wz|2. We
denote by p € Z(Es) the probability distribution of (||w1]|2, |wz||2) when w ~ p and we let Ry(p)
denote the corresponding risk. We then have

Ra(p) =1+ 2/U(T17T2)ﬁ(dr) + /ud(alaQQ,blabZ)ﬁ(da) p(db), (5.8)
and

uq(ai, az, by, b2) = Eg, o,[uo(al, bi,aibs cos ©1, az, by, asbs cos ©2)], (5.9)
where ©1 ~ (1/Zs,)sin*"26 - 1{0 € [0,7]}df and Oy ~ (1/Z4_s,)sin?=0726 - 1{0 € [0, 7]}d0 are

independent.
As d — oo, we have limg_,o uq(a1, as, b1, b2) = us(a, az, by, by), with

Uso (a1, az,b1,b2) = %[Q(T-i-(al?a?))Q(r-&-(bl,b2)) + Q(T—(aha2))t1(7"—(b1,b2))]7 (5.10)

and the risk function converges to (for a = (a1, a2))

Rap) =2 (1= [atret@pptaa) + 1 (14 [atr-(@)ptaa)) (511)
We also define
Yalaip) = v(a) + [ wa(a.b)p(db). (5.12)
For sy =~ -d with 0 < v < 1 and d — 0o, we have the simpler expression
Yoel@ip) =X+ (7) - g1+ (@) + A_(7) - a(r_(a)) (5.13)
A (@) =5l o)~ 1] (5.14)
A7) =5llaor.7) +1]. (5.15)

The following theorem provides a characterization of the global minimizers of Ru(p).

Theorem 5.1. Consider d = 0o. Recall P = P(Es) where Ey = [0,+00)? U {co}. Then there
exists Axo € (0,1), such that

1. For A < Ay, inf; > Roo(p) > 0 and the unique global minimizer of risk function Roo(p) is
a point mass located at (r«,0) for some r. = ry(A) € (0,00).

2. For A > A, all global minimizers of risk function R (p) have risk zero, and there exists a
global minimizer that has finite support.

Proof. Throughout the proof, we will denote ES) : Z([0,00]) — R as the risk function defined as
in Eq. , and R()i) : P(F2) — R as the risk function defined as in Eq. . Recall the
definition 7 = 1+ A, 7— =1 - A, ¢4 (r) = q(147), ¢—(r) = q(7-7), r1(a) = (124} + a3)"/?, and
r_(a) = (1243 + a3)V/? for a = (a1, as) € Es.
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Suppose p;5 € arg minﬁﬁy%)ﬁﬁ) (p2). Then we must have (gory,ps) < 1and (gor_,ps) > —1.
Indeed, if either (gor4,ps) > 1 or (gor_,p5) < —1, since g(+00) > 1 and ¢(0) < —1, the distribution
Ph = apdo + Goodoo + (1 — ag — ano)ps with appropriate choice of ag and an, will give a lower risk.

This p5 € P (FE2) induces a p; € Z([0,0]) as follows: for any Borel set B C [0, 00|, p;(B) =
ps({r € Ey : ||r|l2 € B}). For this 5, it is easy to see that (¢_,p;) < (¢or_,p5) and (g¢+,p;) >
(q o ry,ps), and the equalities hold if and only if p5(F1) = 1, where F; = ([0,+00) x {0}) U
{o0}. Since ¢(4+00) > 1 and ¢(0) < —1, we can take pj = apdy + Goodoo + (1 — ap — aoo)p; With
appropriate choice of ag and as, so that (gory,p3) < (¢+,p;) < 1land (gor_,p5) > (q—,p7) > —1.
Therefore, we always have inf; ¢ y([opo])ﬁg) (p1) < infs e E2)R(>i) (p3), and p5(E1) = 1 for any
ps € arg min%egz(EQ)Eg) (p9). Note that R(j)) (py X 0p) = E&) (p,) for any p; € Z(]0,00]). Hence,

. —(1),_ . —(2),_
we must have inf; c 5 ((0,00)) oo (P1) = Inf5,e 2(,) Boo (P2)-
Due to the above argument, we reduced our analysis to the centered isotropic Gaussians case.
All the conclusions can be proved using the same argument as in the proof of Theorem
O

5.2 Dynamics: Fixed points

We specialize the general evolution (3.1)) to the present case. Assuming py to be invariant with
respect to products of orthogonal transformations, the same happens for p;,. We let p, € Z(E>)
denote the distribution of (||w1||2, |[w2l|2) when w ~ p;. Then p, satisfies the following PDE:

0ipy(r) = 26(1)V - [p(r)Va(r:,)] (5.16)

We will view this as an evolution in the space of probability distribution on & = 2 (Es).
In analogy with Proposition [2] we can prove the following characterization of fixed points.

Proposition 5.2. A distribution p € 2 is a fived point of the PDE if and only if

supp(p) C {r € Ey: V,¢q(r;p) = 0}. (5.17)

Notice, in particular, global minimizers of Ry(p) are fixed points of this evolution, but not
vice-versa. The next result classifies fixed points.

Theorem 5.3. Consider d = oo, and recall the definition of A1 (p) and A_(p) given by Eq.
and (5.14). Then the fized points of the PDE (i.e. the probability measures p € & satisfying
45.1’7:) must be of one of the following types

(a) A fixed point with zero risk.
b) A point mass p,, = &, o) at some location (r«,0) with r. & {0,+oc}, but not of type (a).
)

(
(¢) A mixture of the type p = apdo + Aooloo + 10y, 0) + a2py with supp(py) € {0} x (0,00), but
not of type (b) and (a).

For A < A, the PDE has a unique fized point of type (b), with \+(p,) < 0 and A_(p,) > 0;
it has no type-(a) fixed points; it has possibly fized points of type (c).

For A > A, the PDE has some fized points of type (b), with A+ (p,) > 0 and A_(p,) < 0; it
also has some type-(a) fized points; it has possibly fixed points of type (c).

For A = Ay, the PDE has a unique fized point of type (a) which is also a delta function at
some location (r41,0), and no type (b) fized points; it has possibly fized points of type (c).
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Proof. We use the characterization of fixed points in Proposition Recall that ¥ (r;p,) is
defined as in Eq. (5.13). The gradient Vi (r;p) is given by

Ory Yoo (13 0) =M1 (D)4 (14 () 7371 /7 (1) + A= (p)d (r—(r)) 201 1 (),

o L, ., (5.18)
Ory Yoo (159) =A4 (D)4 (r4(r))r2/r4(1) + A (P)q (r—(7))r2/r—(r).

If a fixed point p, gives Ay (p,) = A\_(p,) = 0, then Ry (p,) = 0. This is type-(a) fixed point.
Consider then the case (Ay(p,), A\-(p,)) # (0,0).

Suppose 7,((0,4+00)?) > 0. Since ¢’(r) > 0 and 7 > 1 > 7_, in order for Vi)oo(r;5,) = O
for some r € (0, +00)2, we must have (A4 (p,), \_(p,)) = (0,0). Therefore, as p, is a fixed point
with (A4+(p,), A= (p,)) # (0,0), we must have p,((0,+00)?) = 0. That is, we can write p, =
000 + Goodoo + a1y + azpy, with supp(p;) € (0,00) x {0}, and supp(p,) € {0} x (0, 00).

The solutions of Voo ((71,72); p5) = 0 with 7o = 0 are of the form 0, (r,1,0), and co. Therefore,
P1 = O(r,,,0) for some r,q € (0,00). Hence, as p, is not a type-(a) stationary point, it must be a
type-(b) or type-(c) stationary point.

This proves that all fixed points are of type (a), (b), or (¢). The remaining claims follows the
same argument as the proof of Theorem [4.4]

O
5.3 Dynamics: Convergence to global minimum for d = co
In this section, denote Z,,.q4 to be
Pyooa = {Po € P((0,00)%) : Roo(pg) < 1}. (5.19)

We then prove that the d = oo dynamics converges to a global minimizer from any initialization
P0 € Pyood-

Theorem 5.4. Consider the PDE for d = oo, with initialization py € Peea- It has a unique
solution (py)t>0, such that

lim Roo(p;) = inf Roo(p).
Jdm  Roo(pr) ﬁlél@R (»)

Proof. Without loss of generality, we assume £(t) = 1/2. First we show the existence and uniqueness
of solution of the PDE.

Step 1. Existence and uniqueness of solution. Mass p,((0,00)?) = 1 for all t.
According to conditions S1 - S3, ¢(r), ¢'(r), and ¢”(r) are uniformly bounded on [0, oc]. Note

v(r) =1/2 - [q(r—(r)) — q(r+(7))],
Uoo(r1,72) =1/2 - [q(r4(r1))q(rs(r2)) + q(r—(r1))q(r—(r2))].

Then Vo(r), Vit (71, 72), V20(7), V31 too (71, 72), Voo (71, 72) are uniformly bounded. There-
fore, conditions Al and A3 are satisfied with D = 2, V = v, and U = u. Then, there is the existence
and uniqueness of solution of PDE for d = co. Denote this solution to be (5,)¢>0-

Recall the expression for Vi) (r;5) in Eq. . It is easy to see that the assumption of
Lemma is satisfied with d = 2 and ¥ = 1),. Hence, we have p,((0,00)?) = 1 for any fixed
t < oo.

Step 2. Classify the limiting set S..
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Recall the definition of (2 (Es),d) at the beginning of Section Since (P (Es),d) is a
compact metric space, and (p;)+>0 is a continuous curve in this space, then there exists a subsequence
(tk)k>1 of times, such that (p;, )x>1 converges in metric d» to a probability distribution p, € 2 (Es).

For any 7y € Pye0a, let Si = Si(pg) be the set of limiting points of the PDE,

S. ={p. € Z(B2) : Itr)kz1, lim by = 400,5.t., lim dw(p,, 7, ) = 0}.
k—o00 k—ro0

Analogous to the proof of Theorem [I.5] we have the following properties for S,:
1. S, is connected and compact.
2. For any p, € S;, p, is a fixed point of PDE.

3. For any p, € Sy, Roo(p,) = Ri < 1.

Recall the definition of A1 (p,) and A_(p,) given by Equation (5.14]) and (5.15)). Let p, be a fixed
point of PDE such that A4 (p,) > 0,A_(p,) > 0or Ay (p,) < 0,A\_(p,) < 0 but not both Ay (p,) and
A—(p,) equal 0. In this case, according to Eq. (.18)), both 0, Voo (7;p,) and 0p, e (r; p,) must be
strictly positive or strictly negative. Since supp(p,) C {r € Es : Vyoo(r;p,) = 0}, p, must be
a combination of two delta functions located at 0 and oo, i.e., p, = apdp + (1 — ag)doo. But for a
fixed point like this, it is easy to see that R..(p,) > 1. Such fixed points p, cannot be one of the
limiting points of the PDE since R (py) < 1.

Let L be a mapping L : Z(Fs) — R, p— (A+(p), \_(p)). The above argument concludes that
for any py € Pyo0a, We have

L(8:(P0)) N ({(Ar, A2) : Ay 2 0,A- >0, or Ay <0,A- <0}\{(0,0)}) = 0.

Since S, is a connected set, L(S,) should also be a connected set. Further notice that R (p,) =
1/2- M (7)? + 2_(p,)?], and Reo(py) = Roo(ps) for any py, py € Si. Therefore, we can only have
L(S:) CTPy={( A, 2) : Ay > 0,A- < 0}, or L(Sx) CP1 = {(A,A2) : Ap < 0,A\_ > 0}, or
L(S.) = {(0,0)}.

Step 3. Finish the proof using two claims.
We make the following two claims.

Claim (1). If L(S.) C P1, then for any p, € S., we have p,((0,00) x {0}) = 1.
Claim (2). We cannot have L(S.) C Ps.

Here we assume these two claims holds, and use it to prove our results. For A < A, we proved
in Theorem that, there is no fixed point such that L(p,) = (0,0). Therefore, we cannot have
L(S.) ={(0,0)}. Due to Claim (2), we cannot have L(S,) C Pa. Hence, we must have L(S,) C P;.
According to Theorem for A < A, the only fixed point of PDE with 7, ((0,00) x {0}) =1 is
a point mass at some location 7, = (r41,0). Furthermore, this delta function fixed point is unique
and is also the global minimizer of the risk. Therefore, we conclude that, for A < A, the PDE
will converge to this global minimizer.

For A > A, according to Claim (1), if p, is a limiting point such that L(p,) € P, then
7+((0,00) x {0}) = 1. According to Theorem a fixed point p, with p,((0,00) x {0}) =1 and
L(p,) # (0,0) must be a point mass at some location 7, = (r41,0), with L(p,) € Pa2. Therefore, we
cannot have L(S,) C P;. Claim (2) also tells us that we cannot have L(S,) C P,. Hence, we must
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have L(S,) = {(0,0)}. In this case, all the points in the set S, have risk 0. Therefore, we conclude
that, as A > A, the PDE will converge to some limiting set with risk 0.

Step 4. Proof of the two claims.
We are left with the task of proving the two claims above. Before that, we introduce some
useful notions used in the proof. Define Z(r) for r € Es,

Z(r) = [q (r—(r))r—(r)]/[d (r+(r))r(r)]. (5.20)
Define Z;(r) = Z((r,lr)) for r,l € [0,00]. Then we have
Zi(r) = [d (72 + ) 2r) (73 + P)P0)) - (72 + 2) 12 ) (72 + 12)12) (5.21)

According to condition S4, for any fixed [ € [0, 00|, Z;(r) is increasing in r.

Recall the formula of V,¢(r;p) given by Equation (5.18)). Define

Xum (73 9) =(Virtboo (15 9),7/[I7]l2), (5.22)
Xtg (T3 P) =(Vithoo(r;0), (=12, 71)/[I7[]2)- (5.23)
Then we have
Xom (139) =A4(P)q (r+(r))rs(r)/[[rll2 + A= (@)g' (r—(r))r—(r)/|[7||2, (5.24)
== (@) (r+(r)r(r)/lIrll2 - N+ () /A= (P) + Z (7)), '
and
xae(ri?) =LA () (1 = 72 (e (1) /4 1) 55

+A-(P) (L = 72)d (r—(r)) /r—(r)] x rira/ |2

Proof of Claim (1). If L(S,) C P, then for any p, € S., we have 5,((0,00) x {0}) = 1.
Assume L(S,) C P;. There must exist ¢y large enough, so that as ¢ > ¢y, we have A (p;) < 0,
and A_(p;) > 0. Therefore, we must have yg(r;p;) > 0 for any r € (0, 00)?. We denote

Ip={ref0,00)?: 7 <k-r}. (5.26)
Consider the ODE

7 (t) = = Vithoo (r(1); By), (5.27)

starting with 7(¢p) € I'y, for some k € (0,00), we claim 7(t) € 'y for any ¢t > ¢y. Indeed, for any
r € 0Ty N {r : ro = kry > 0}, its normal vector pointing outside T'y gives n(r) = (—ro,r1)/||7||2,
and hence (V9o (7;0),n(1)) = Xxtg(r; ;) > 0. Therefore, r(t) cannot leak outside I'y from this
boundary. Further note that r(¢) cannot reach the boundary ([0,00) x {0}) U {oo} for any finite
time ¢. This proves the claim that r(t) € 'y for any ¢ > t.

According to Lemma we have p(I'y) > py, (I'y) for any k € (0, 00). Furthermore, according
to Lemma D1, ((0,00)?) = 1, hence limy_,o0 By, (Ux) = 1. Therefore, for any p, € Si, we must
have

p.({0} x (0,00)) < lim 7,([0,00)* \Ty) < lim 7y, ([0,00)* \ T) = 0. (5.28)

Theorem implies that for any such fixed point 5,, we have supp(p,) C ([0, 00) x {0}) U {occ}.
In this case, we claim L(S.) € P1 N {(A4,A2) : Zp(0) < —A+/A_ < Zp(o0)}. Indeed, suppose
there exists p, € S, such that —A1(p,)/A-(p,) > Zo(c0) or =A_(p,)/A-(p,) < Zp(0), according
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to Equation (5.24), xnm((r,0);p,) must be strictly positive or strictly negative. However, we know
supp(p,) € {r : Viboo(r; p.) = 0}. Hence, p, should be a combination of two delta functions located
at 0 and oco. Such fixed point p, has risk Roo(p,) > 1, hence p, cannot be a limiting point of the
PDE. Hence the claim holds.

Since S, is a compact set, and L is a continuous map, then L(S,) is a compact set. Therefore,
there must exist eg > 0, so that for any p, € S, we have Zy(0) + 359 < —A1(p,)/A-(ps) <
Zp(00) — 3ep. For this g9 > 0, we take to large enough, so that for ¢t > ¢, we have Zy(0) + 2¢¢ <
= A4 (P)/A-(Pr) < Zo(00) — 2e0, and A1 (p;) <0, A—(p;) > 0.

According to the conditions SO - S4 on ¢(r), for any fixed I, Z;(r) is an increasing function
of r, and for any fixed r, Z;(r) is continuous in [. Therefore, for the fixed £y > 0, there exists
0 <79 <7rs <ooandb >0, such that

sup sup Zi(r) <Zo(0) + eo, (5.29)
r€[0,ro] 1€[0,b]
inf  inf Z;(r) >Zy(o0) — ep. (5.30)

7€[roo,00] 1€[0,b]

As a result, for any t > tg, we have

Xom (7;7;) <0, Vr € B(0;79) N T, (5.31)
Xom (7;7;) >0, Vr € B(0;7)° N Ty, '
where I'(y is defined as in Equation (5.26)).
According to Lemma P1,((0,00)?) = 1. Define
O =T, NB(0;k) NB(0;1/k)°. (5.32)

We have Oy, is increasing in k, and UpOy D (0,00)2. Hence limg_,o0 Pt (O) = 1. Now we fix a
parameter k.

Recall the formula for y,m and xiz given by Equation and . It is easy to see
that, there exists 0 < ug1, uge < 0o depending on (b, k, 74, 7—, Zp(0), Zy(0), €0), such that for any
r € (0,00)2 with b-r; <o < k-7, and t > tg, we have

Xtg (73 9) >ur1| A4 ()| (r4 () > 0, (5.33)
[Xom (75 90) | <upa| A4 () |q' (r4- (7)) < o0, (5.34)

and hence
[Xom (73 D)/ Xtg (75 71) < uga/up1 = up < oo. (5.35)

Consider the following spiral curve r°(s) = (rp3(s), rp5(s)), with

rii(s) =k - cos(arctan(k) — s) exp{2ugs},

5.36
ri9(s) =k - sin(arctan(k) — s) exp{2uss}, (5.36)
and another spiral curve r9(s) = (rd; (s), 705 (s)), with
0. (s) =1/k - cos(arctan(k) — s) exp{—2uys},
11(s) =1/ cos(arctan(k) — s) exp{~2ues) .

19 (s) =1/k - sin(arctan(k) — s) exp{—2us},

for s € [0, sg«] With sg. = arctan(k) — arctan(b).
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Because of inequality (5.35)), along the curve r3°(s), denoting n(r3°(s)) to be its normal vector
with [n(rg°(s))]2 > 0, we have for any ¢t > tg and s € [0, s3],

(Voo (ri” (5); Pe), m(r5° (5))) > 0. (5.38)

Along the curve 79 (s), denoting n(r(s)) to be its normal vector with [n(r?(s))]2 > 0, we have for

any t > to and s € [0, s/,
(Voo ()3 1), (i (5))) > 0, (5.39)
Define the set €2 to be

Qr =I'y N B(0; k - exp{2ugsk«}) N B(0;1/k - exp{ —2ugsk.})°
N{r:3s € [0, sk, s.t.,71 = 135(5), 12 > rig(s)}¢ (5.40)
N{r:3s € [0, 834, 5.t.,71 = 191 (5), 72 > 795 (5)}°.

Consider the ODE starting with r(tg) € Qi for any k > {r,1/ro}, we claim r(t) € Q
for any ¢ > to. Indeed, combining Eq. (5.31)), (5.33), (5.39), and (5.38), for any r € 9Q \
(([0,00) x {0}) U {oo}) and t > to, the gradient Vipoo(7;p,) pointing outside Q. Therefore, r(t)
cannot leak outside I'y from this boundary. Further note that 7(¢) cannot reach the boundary
([0,00) x {0}) U {oc} for any finite time ¢. This proves the claim that r(t) € Q for any ¢t > t.
According to Lemma Pe(Q) = Py, () for any k > {re,1/ro} and ¢ > to.

Recall the definition of Oy, given by Equation . Note that Oy C Qy, and limy_,o 7y, (Op) =
1, which implies limy o 7y, (€2x) = 1. Hence, for any p, € S,

ﬁ*(Ukﬁk) > lim p*(ﬁk) > lim ﬁto(ﬁk) =1. (541)
k—o0 k—o0

It is easy to see that Uil = (0,00) x [0,00). Combining with the fact that p,((0,00)%) = 0 for
any p, € Sy, claim (1) holds.
Proof of Claim (2). We cannot have L(S,) C Ps.

In the case L(Si) C P2, the argument is similar to the proof of Claim (1), and hence will
be presented in a synthetic form. First, there exists ¢y large enough, so that as ¢ > tg, we have
At (py) >0, and A_(p,) < 0. Then xig(r; p,) < 0 for any r € (0,00)2. Letting

I ={ref0,00)?:r <k-r}, (5.42)

According to the same argument as in the proof of Claim (1), we have p;(I'y) > py, (I'y) for any
k € (0,00) and t > tg. As a result, we have supp(p,) C ({0} x [0,00)) U {oo}.
However, the fixed point p, with support on ({0} x [0, 0c0))U{oco} has risk Roo(p,) > 1. Therefore,
we cannot have L(S,) C Py. This proves claim (2).
O

5.4 Dynamics: Proof of Theorem

We will prove that the dynamics for large but finite d is well approximated by the dynamics at
d = co. The key estimate is provided by the next lemma.

Lemma 5.5. Assume o satisfies condition S0, recall the definition of ug and us given by Equation
(5-9) and . Assuming k = - d for some v € (0,1), then we have

lim  sup |ug(a,b) — ux(a,b)| =0.

d—00 g be[0,00)2
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and
lim  sup |Vqud(a,b) — Vaus(a,b)|2 = 0.

d—00 g be([0,00)2
Proof. We rewrite ugq here as
ug(a,b) =1/2 - [ug(a,b) + ug2(a,b)],

ug1(a,b) =E[o(rra1F1 + a2G1)o(74:b1(F1 cos ©1 + Fosin ©1) + ba(G1 cos Og + G2 sin ©2))],
ud72(a, b) :E[U(T_alFl + a2G1)o(T-b1(F1 cos ©1 + Fysin ©1) + ba(G1 cos Oy + G sin @2))],

where
(F1, Fy,G1,Go) ~N(0, 1), (5.43)
01 ~(1/Zs,) sin(0)*°~21{6 € [0, ] }d6, (5.44)
Oy ~(1/Z4_,) sin(h)?0721{f € [0, 7] }db, (5.45)

are mutually independent.
Define F3 = Fj cos ©1 + F5sin ©1, G3 = G cos Oy + G5 sin O, then

|ug1(a,b) — uss 1(a, b)]

:|E{O'(T+a1F1 + agGl)[U(T+blF3 + b2G3) — O'(T+blF2 + b2G2)}}| (5.46)
<llolloc - E{lo(m4:01F5 + b2G3) — o (1401 F + baGa2) |},

and
’aal ud,l(a7 b) - 8alu0071(a7 b)|

:|E{T+F1 . U/(T+a1F1 + agGl)[O'(T+b1F3 + b2G3) — U(T+b1F2 =+ b2G2)]}|
<74 |0’ | E[F2)Y2E{ [0 (711 F5 + byGs) — 0 (74.b1 Fa + baGo)]? }1/?
<110’ loo 2l 0| 2£%) - E{ o (T4 b1 F3 + boG3) — o(74.b1F + baGo) [}1/2,

(5.47)

We have similar bounds for |0,u4,1(a,b) — 0gytso,1(a, b)|.
According to condition SO, ||0’||cc and ||o||ec are bounded, it is sufficient to bound the following
quantity uniformly for r € [0,00) and @ € S*,

T(r,a)=1/2-E{|o(rHy) — o(rHs)|} = E{[o(rH2) — o(rH3)| Li,>H, ) (5.48)

where
Hy = Hy(a) =[rya1Fy + asGa/[m2a? + a3)'/?, (5.49)
Hy = Hs(a) =[rra1F3 + asGs]/[r}a] + a3]"/%. (5.50)

We denote O3 = ©3(a) = arcsin{E[H2H3|0©1,02]}. It is easy to see that Hy, H3 ~ N(0,1) with
sin(03) = E[HyH3|01,O9] = [77a} sin O + a3 sin Os]/[77 a] + a3]. (5.51)
Using the same argument as in the proof of Theorem [.6] we have for any z € R,

P(Hs < z,Hy > 2) <P(H3 < 0,Hz > 0) = E[|7/2 — ©3]/(27)]. (5.52)

95



Hence, we have

T(r,a) =E { / - dt} — [ W) P{Hy > t/r > Hy}dt
R R

<supP(H3 < z,Hy > 2) / o' (t)dt < 2|0 - E[J7/2 — ©3]/(27)] .
z€R R

Note that cos(01) < V1/||[Y ||, for Y ~ N(0,T,,), and cos(92) £ Z1/||Z |2, for Z ~ N(0, T4_s,).
Hence, there exists a universal constant K, such that E{|©; — 7/2|} < K/\/s0, E{|02 — 7/2|} <

K/\/ d— S0-
Note the relationship of ©3 = O3(a) with (01, ©2) is given by Eq. (5.51)), which yields

sin(O3(a)) > min{sin O, sin O}, (5.53)
hence
[7/2 = ©3(a)| < max{[r/2 — 1], [7/2 — Os|}. (5.54)
As a result,
sup E{|©3(a) — m/2|} <K - max{1//50, 1/7/d = so}. (5.55)
ac
We therefore obtain
sup |T(r,a)| < K/7 - ||o]|o - max{1/y/50,1/V/d — so}. (5.56)
reR,acSt
The lemma holds by noting that as d — oo, we have sy — oo and d — sg — 0. O

Proof of Theorem [3. Recall the definition of Re, given by Eq. (5.11)), and R given by Eq. (2.2).
Recall the set of good initialization given by

P s = {0 € 2((0,00)) + lim R(px Unif(s*1) < 1},

Define 22! and 222 , to be

goo good
P pooa =06 € P((0,0)) : Roo(p) < 1, where pg ~ (v'/?u, (1 —4)"/?u) with u ~ g}, (5.57)
P s =175 € 2((0,00)%) : Reo(p5) < 1. (5.58)

With this definition, it is easy to see that 2} | = P,q04.

For any pj € P14, let u ~ pj, Y1 ~ x*(7-d), and Y5 ~ x*((1 =) -d) be independent. We take
ugr = u- Y1/ (Y1 +Y2)]Y2, wae = w- Yo/ (V1 +Y2)]Y/2, wa = (ugr, tan), toor = u-[s0/d]"/? = u-y"/2,
Usoz = u- [(d—50)/d]"? = u- (1 —)/2, and Uee = (Uso1, Use2). Denote ﬁ(z)’d to be the distribution
of ug, and p5'™ to be the distribution of s, Then we have pz™ € 22+ Further, if we sample
(r,m) ~ pg x Unif(ST1) and (r,n1,ng) ~ ﬁg’d x Unif(SF=1) x Unif(S¥*~1), then rn 4 (rimy, roma).

Here we bound dy;, (527, p2™°). Note the joint distribution of ug and u is a coupling of 7y

2
and py’™, hence

di (P, P5™°) <E[[|lua — uooll2 A 1]

=E[{u[(Y1/(Y1 + Y2)/? = 4'/2)? + ((Ya/ (V1 + Y2)) /% = (1 =)' /2)?] 2} A1),
(5.59)
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It is easy to see that limg o Y1/(Y1+Y2) = v almost surely. Bounded convergence theorem implies

that limg_soo dgr, (,03 dv ﬁ?) 00) =0.

Now we consider the PDE 1} for d = co. We fix its initialization ﬁg e g@%’od induced by
6 € 2L ... Denote the solution of PDE (5.16)) to be (p°)¢>0. Due to Theorem [5.4] for any n > 0,

good*

there exists T = T'(n, o, v, A) > 0, so that its solution (pf°);>0 satisfies

Reo(p°) < _inf  Reo(p) +1/5
pEP (E2)
forany t > T.
Then we consider the general PDE

Orpe(8) =26(1)V - [pe(0)VY(8; py)] . (5.60)

with initialization pg the distribution of rn, where (r,n) ~ 5§ x Unif(S%~!). Due to Lemma
and Remark we have the existence and uniqueness of the solution of PDE ([5.60). We denote
its solution to be (p¢);>0. Let p¢ be the distribution of (||wi]|2, |wal2) with w = (w1, ws) ~ p,
wi € R and wg € RI=%0. Tt is easy to see that (p{);>0 is the unique solution of with
initialization ﬁo .

Now, we would like to bound the distance of 5 and pP° using Lemma, Wetake D =2,V = v,
U=ug,V=0U=uyin Lemmau Let £¢(d) be as defined in Eq. 1-) Due to Lemma we

have limgy_,~ 9(d) = 0. We also showed that limg_, dBL(pg d,ﬁg °?) = 0. Therefore, according to

Lemma we have limg_, o Sup;<qor dBL(pt ,ﬁ? ) = 0. Further note R+ is uniformly continuous
with respect to p in bounded-Lipschitz distance. Therefore, there exists dy = do(n, 5,7, A) large

enough, so that for d > dy we have
for any t < 107
Then we would like to bound the difference of Ry, (p) and R4(p) for any p. Note
|Reo(P) — Ra(p)] < / ua(a, b) — ux(a, b)[p(da)p(db). (5.61)
By Lemma there exists dy = dp(n, A) large enough, so that for d > djy, we have

swp [Roe(?) — Bualp)| < /5. (5.62)
pEP(E2)

Finally, let (Hk)kzl be the trajectory of SGD, with step size s = e£(ke), and initialization
w? ~iq po for i < N. We apply Theorem [3[to bound the difference of the law of trajectory of SGD
and the solution of PDE (5.60)). The assumptions of Theorem (3| are verified by Lemma As a
consequence, there exists constant K (which depend uniquely on the constants in assumptions Al
A2 A3), such that

RN(HU/‘EJ) Rd( ) < KelOKT errNd( )

with probability 1 — e~ for any t < 107", where

erry a(z \/1/N\/€ [\/D—Hog (1/ev1))+ }
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As a consequence, for any § > 0, there exists Cy = Co(8,1, 08,7, A), so that as N,1/e > Cod

and € > 1/N'0 for t < 10T, we have
Ry (6Y=)) — Ry(p) < n/5

with probability at least 1 — 4.
Therefore, the trajectory 0L/%] of SGD as ¢ € [T, 10T satisfies

Ry (8= <Ry(B]) +1/5 < Roo(BY) + 20/5 < Roo(P5°) + 30/5

< inf Ry +45< f Ralp)+n = inf Rip)+
nf, (P) +4n/ in Ra(p) +n et (p)+n

< f Ry(0)+
ee}l‘gixN N() m

with probability at least 1 — §. This gives the desired result.

6 Finite temperature

We will states the lemma regarding statics properties of the finite temperature free energy in Section
and regarding dynamics properties in Section @ We will prove Proposition [3] Theorem [
and Theorem [5] in Section [6.3] Throughout Section [6.1] and [6.2] to distinguish the dimension of
parameters with the generalized differential operator, we will denote the dimension of parameters
by d instead of D. This should not be confused with the dimension of feature vectors, which never

appears throughout this section.
We introduce the set I of admissible probability densities,

K= {p : R = [0, +00) measurable : /Rd p(0)d0 =1, M(p) < oo}7

where

M(p)= [ | 16]3p(0)d0
Recall
R(p) =Ry +2 /R V(0)p(6)d0 + /R 1. U(8.6)9(0)0(8') 0046,
Ry =E{y’}, V() = -E{yo.(z;0)},
U(61,05) =E{o,(x;01)0.(x; 62)}
W(0: p) =V () + /]R U(0.0) p(0')de.
Let

Rx(p) =AM (p) + R(p),
A(0:9) =\/2- 013+ V(6) + | U(6.8)0(0')a0"

Ent(p / p(0)log p(8)de,
Fm( ) =1/2-[AM(p) + R(p)] — 1/ - Ent(p).
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6.1 Statics

Lemma 6.1. For any p € K, we have
Ent(p) < /d p(0) - |min(log p(6),0)| - d8 < 1+ M(p)/o* + d - log(2mo?) (6.11)
R

for any o% > 0.
Proof. Define Qy = {0 : 1/(v210)? - exp{—|0]3/(202)} < p(6)'/? < 1}. Then we have

Ent(p / () log p(6 d0</ 0(6) - | min(log p(8),0)| - 46
/ p(0) - | min(log p(6),0)| - d0—|—/ p(0) - | min(log p(0),0)| - d6.
The first term is bounded by
[ 9(0) |min(iog (6).0)] -0 < [ p(®)]|613/0* +d- og(2r0)]d0 = M (/e + d-og(2n0?).

Noting that |plogp| < /p for any p € [0,1], the second term is bounded by

p(6) - [min(log p(6),0)| - 46 < | p(6)'/*1{(6) < 1}d8
Q5 Q5

< [ 1/(/3mo)" - exp{-[6]3/(20%)}d6 = 1.
R
O

Lemma 6.2. Assume U and V are bounded-Lipschitz. Then for any A > 0 and 0 < § < oo,
FsA(p) has a unique minimizer p. € K. Moreover, we have

Fia(p) > 12+ R(p) + M4~ M(p) — 1/ [1+ - log(8/(53)]. (6.12)
Proof. First, by Lemma [6.1, we have

Fa(p) =1/2- R(p) + A/2- M(p) — 1/ - Ent(p)
>1/2- R(p) + A/2- M(p) = 1/8 - [L+ M(p)/o” + d - log(2m0?)].

Taking 0% = 4/(B\) gives Eq. .

The argument to show the existence and uniqueness of minimizer of Fj  is similar to the proof
of [JKO98, Proposition 4.1], and we will just give a sketch here. Since U, V' are bounded-Lipschitz,
it follows that p — R(p) is continuous with respect to the topology of weak convergence in L'(R%).
Fatou’s lemma implies that M is lower semi-continuous. [JKO98, Proposition 4.1] shows the upper
semi-continuity of Ent. Hence Fj y is lower semi-continuous. Note (as just shown) Fj  is lower
bounded, there exists a sequence (pi)r>1 C K such that limy_,oc Fg\(pr) = infpexc Fga(p) > —o0.
By the same argument as [JKO98 Proposition 4.1], we can see that {[ max{pylog pg,0)}d0}r>1
and {M (pg)}r>1 are uniformly upper bounded, and by de la Vallée-Poussin criterion, there exists
p« € K such that there is a subsequence of (pg)r>1 converges weakly to p, in L'(R%). The lower
semi-continuity of Fj ) implies that p, is the minimizer of Fj3 5. Uniqueness follows by noting that
U is positive semi-definite, Ent is strongly concave, and (V, p) and M are linear in p, so that Fj »
is a strongly convex functional.

O
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For any p € K, we call the following equation the Boltzmann fixed point condition

p(0) =1/Z(B, \; p) exp{—BYA(0;p)},

(6.13)
Z(B, X p) Z/exp{*ﬁ%(e;p)}dﬂ
Lemma 6.3. Under the assumption of Lemma the minimizer p, € IC of Fgx(p) satisfies the
Boltzmann fixed point condition.

Proof. We denote /i to be the Lebesgue measure on R?.

First, we show that p is positive almost everywhere. Let p, € K be a minimizer of F(p), and
assume by contradiction that there exists a measurable set Qy C R?, such that to(20) > 0, and
p«(20) = 0. Without loss of generality, we assume that the support of g is compact so that
1o(£2p) < oo, otherwise we can always consider the intersection of €y with a large ball. Define
pe = (L —&)pe +&/uo(Q) - Lo, € K. It is easy to see that there exists g > 0 and C < oo, such
that |Rx(ps) — Ra(pe)| < C - €, and

Ent(pe) =(1 — £)Ent(p.) — (1 — &) log(1 — &) + elog(10(£20) /)
>Ent(ps) — C - e + log(po(Qo) /¢)

for any € < g9. As € is sufficiently small, we have Fj (p:) < Fpa(ps«). This contradict with the
fact that p, € K is the minimizer of Fjz x(p).
Next we show that, for all @ € R?,

UA(0;ps) +1/8 - 1og p(8) = v(B, A; ps) (6.14)

for some constant (8, A; px).

Let p. € K be the minimizer of Fj,(p). Fix g > 0 and define I';;, = {8 € R? : p,(0) >
g0} N B(0;1/ep), and A, = {v € C®(R?) : ||v]loo < 1,s5upp(v) C I'cy, Jgav(0)dO = 0}. For any
v € Ag,, define p., = p+ ev. Note that, for —g¢g < € < g9, we have p., € K. Since p, is the
minimizer of Fg x(p), we must have lim. 01 [Fg x(pz,0) — Fa(p«)]/e > 0. It can be easily verified

that
bt Py (pe) = Fpa(p))/e = [ [0(85p.) + 1/8 -10g p. (6)]v(6)6.

e—0

which implies

L8 .) 18 Tog p. (6)](6)d6 = 0 (6.15)

for any v € A.,. This implies that Eq. holds for any 8 € T.,. But note that pg(R?\
(Uge>0I's,)) = 0. This implies that Eq. holds almost surely.
Note we have [ p,(0)d@ = 1. Therefore, we must have v(83, \; p«) = —1/8 -log Z(B, A; p«). This
proves that p, satisfies the Boltzmann fixed point condition.
O

Lemma 6.4. Under the assumption of Lemma the Boltzmann fized point condition has a
unique solution in K.
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Proof. The last two lemmas already imply that the Boltzmann fixed point condition has at least
one solution. Assume p1, p2 € K to be two such solutions. Then p; is positive, and

Therefore
0 :/Rd[log Z(,B; A7p1) — lOgZ(ﬂj)\’ p2)] . [p1(9) _ p2(0)]d9

= = B(U. (o1 = 2)°%) = [ 108(01(6)/p2(6)) 91(6) — pa(6))d0.

Note the right hand side does not equal 0 unless p; = ps.
O

Lemma 6.5. Under the assumption of Lemma and further assume condition A3 holds. Let
pf’/\ be the minimizer of Fzx(p). Then there is a constant K depending on the parameter Kz in
condition A3, such that for any 8 > 1, we have

R(p2M < inf  Ria(p) + K(1+ \)[dlog(2+1/N)]/B. (6.16)
pEP(RY)

Proof. Fixa p € 2(RY). Let g,(0) be the density for N(0, 721 ). Denote pg, to be the convolution
of p and g;. Now we derive the formula for Fg \(p * g-).
Let G,G1,G2 ~ N(0, I,;) be independent, we have

Rip g:) =R(p) +2 [ {E[V (6 +7G)]  V(6)}o(do)
+ /{E[U(Ol +7G1,05 + TGQ)] — U(01, 02)}p(d91)p(d02).

Using the intermediate value theorem and Cauchy-Schwarz inequality, and noting that V2V is
K3-bounded by condition A3, we have

[1v(6) B (6 + ~G)}p(d6)

—r [EUTV(0).Gota0) + T [EITV0), GP)pa8) < T K
We have similar bound for the U term. Therefore,
R(p*gr) < R(p) + 27°K3d. (6.17)
For the term M (p  g;), we have
M(pg:) = [ E[I6 +7GIBlp(do) = M(p) + 7 (6.18)
Next we give a lower bound for Ent(p * g;):
Ent(p * g,) > Ent(g;) = (d/2) log(2mer?). (6.19)

As a result, taking 7 = 1/, we have
Faa(p2) < (1/2)Ra(p) + (2K3 + A\)d/(28%) + d - log(2me8?) /(28). (6.20)
Combining with Eq. , we have
2K3+MN)d 2  d-log(2meB?)  2d-log(AB/(8T))
RPN < Ry(p) 4 BRaTNd 2, -
(") < Ra(p) 72 5 5 5
for any p € Z(R?). Hence, the theorem holds by taking infimum over p € Z(R%). O

(6.21)
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6.2 Dynamics

Recall that the finite-temperature distributional dynamics reads:
Dupn(8) = 2£(1)Vo - (VoUr(8; p)pu(6)) + 2£(1)/5 - Dapi(6). (6.22)

We say (p¢)i>0 € Z(R?) is a weak solution of (6.22), if for any ¢ € C§°(R x R?) (the space of
smooth functions, decaying to 0 at infinity), we have

L po(®)o(0)a6
]Rd

(6.23)
/(0 pal00G(8) 2K} (VU (65 p1), Volu()) + 26 (1) Aoi(6))pe(d6)

Notice that this notion of weak solution is equivalent to the one introduced earlier in Eq. (3.3]), see
for instance [Sanlb, Proposition 4.2].

Lemma 6.6. Assume conditions Al, A2 and A3 hold. Let initialization py € K so that Fz z(po) <
00. Then, the weak solution (p)i>0 € P (RY) of PDE (6.25) exists and is unique. Moreover, for
any fixed t, py € K is absolutely continuous with respect to the Lebesque measure, and Ent(p;) and
M(pt) are uniformly bounded in t.

Proof. Without loss of generality, we assume &(t) = 1/2.

We use the JKO scheme of [JKO98, Theorem 5.1] to show the existence, uniqueness, and
absolute continuousness of solution of PDE . Since the proof is basically the same as the
proof of [JKO98, Theorem 5.1], we will skip several details.

First, we consider the following discrete scheme. Let ﬁf} = po, and define {ﬁ’,;}keN recursively
by

Pli1 € arg min{hF(p) + (1/2)W3(p, p1)}, (6.24)
where Wo(u, v) is the Wasserstein distance between p, v € Z(R%), with definition
W2(p,v) = inf {/ 101 — 2]/37(dBy,dBs) : v is a coupling of s, 1/}.
Rd xR

For any ﬁzfp the optimization problem has a unique minimizer ﬁz € K, where the proof
is basically the same as Lemma by additionally noting that W;(p,ﬁz_l) as a function of p is
lower bounded, lower semi-continuous, and convex over p € .

Hence, we have a sequence of probability densities (ﬁZ) k>0 With each ﬁz € K. Now we define
its interpolation p” : (0,00) x R? — [0, 00) by

P, ) =pr for telkh,(k+1)h) and keN.

In the following, we will show that this p" approximately satisfies PDE (6.23) in the weak form.
Let & € C§° (R4, RY) be a smooth vector field with bounded support, and define the correspond-

ing flux {®;},cr by

0;P, =€o0®, forallTe R and &y=id. (6.25)

62



For any 7 € R, let the measure v, to be the push forward of ﬁg under ®,. This means that

/R 1 (0)¢(6)d0 = /R PL(O)(2(6))d6, forall € C(RY). (6.26)
Since ﬁz is the minimizer of optimization problem , we have for each 7 > 0,

(%Wﬁ(ﬁﬁ_p ve) + hF(vr)) — (%Wﬁ(ﬁﬁ_m@ +hF(p})) > 0. (6.27)

Using the result in the proof of [JKO98, Theorem 5.1], and noting VV is bounded Lipschitz,
we have

Vvl = [ (VV(0).€(0) 7(0) 0. (6.28)
T Rd

L Entn )l = [ 7(6) - div(e(6))a0, (6.29)

lim sup (M) — M(al)] < [ 2(0,€(0) p(0)00, (6.30)
70+ T R4

lim sup (W2l vr) — WG, 7)) < / 2((61 — 62),£(01)) p(d61,d6), (6.31)
T—0+ T R4

where p is an optimal coupling of pZ and p}k?_l in Wasserstein metric. Further we have for any
¢ € Cg°(RY),

1
[0k~ phcdo = [ (6162, V(00| < 5 sup VO WEGL L) (632
R? 2 gerd

RxR
We need to further calculate the derivative of (U, v2) with respect to 7. Note U is symmetric, we
have

%[(U vE%) — (U, (p1)¥?)] — 2 RdedwelU(eb92)75(91»?2(91)?2(92)(1916192

1

RdxRd T

[U(2:(61), 2-(82)) — U(D-(01),02)] — (Vo,U(P-(81), 02),£(62)) } 7} (61)7].(62)d0:1d6,
+ [ U(®:(61),05) — U(61,62)] — (Vo,U (81, 02), £(61)) }7(61)7:(82)46, 46

RdxRd T

+ Rded[W"ZU@T(Gl)’02)’5(02» — (Vg,U(61,02),£(62))]p;(01)7} (02)d6:1d0.

According to condition A3, Vg, U(61,802) is Lipschitz in (81,02), and note £(8) € C§°(R?) is uni-
formly bounded, hence 1/7-[U(®,(81), 82)—U (61, 82)] — (Vo, U (61, 82), (1)), 1/7[U(®,(81), 8)
U(61,02)] — (Vo,U(61,02),£(61)), and [(Ve,U(P+(61),02),£(02)) — (Vg,U(61,02),£(62))] con-
verges to 0 for 7 — 0+, uniformly over (61, 603) € R? x R?. Therefore, we have

d%KUv ve))r—o =2 ot V01U (01,02),£(61)) Pk (01)7k(02)d01d65. (6.33)

Combining Eq. (6.28)) to (6.33)), choosing &€ = V( and & = —V(, we have for any ¢ € C§°(R),

1 1 1
‘/R {5 @k =70+ (Vo ua(0:7)), VC) - AC)pZ}dO’ < 55 IV Cllon - 5 W3 (01, 70)-
(6.34)
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According to the estimates in [JKO98, Theorem 5.1], for any 7" < oo, there exists a constant
C < oo such that for all N € N and all h € (0,1] with Nh < T, there holds

1 N
max {M(gh). [ max(ph log(p). 040, R(gh), P Wik )} <C (635)

As in [JKO98, Theorem 5.1], by de la Vallée-Poussin criterion, the second condition in Eq.
implies that there exists a measurable function (¢,0) — p(t,0) and a sequence (hs)s>1 with
limg ,o0 hs = 0, such that (t,0) — p"s(t,0) converges to p weakly in L'((0,T) x RY) for all
T < . Eq. also guarantees that p(t, -) € K for almost every ¢ € (0,00), and M(p), R(p) €
L>((0,T)) for all T' < oo. By Eq. and (6.3F)), we have that p satisfies Eq. (6.23). Since this
equation is not affected by changing p(¢, - ) for a set of values of ¢ with measure 0, we can ensure
that the p(t, -) € K for all ¢t. Therefore, p is a solution of the weak form of PDE ([6.23).

The uniqueness of solution of Eq. can be proved using standard method from theory of
elliptic-parabolic equations (see, for instance, [JKO98, Theorem 5.1]). In the proof of uniqueness
we need the smoothness property of the solution, which is proved by Lemma [6.7]

O

Lemma 6.7. Assume conditions Al - A4 hold. Let initialization py € K with Fg x(po) < 0o. Denote
the solution of PDE to be (p¢)i>0. Then py(0) as a function of (t,0) is in C12((0,00) x RY),
where C12((0,00) x R?) is the function space of continuous function with continuous derivative in
time, and second order continuous derivative in space.

Before proving this lemma, we give some notations in the following.
For any open set  C RY and 1 < p < oo, define LP(f2) to be the Banach space consisting of
all measurable functions on {2 with a finite norm

/p
lull o / [u(8) o) (6.36)

We say u € L, () if for any compact subset Q' C Q, we have u € LP(€). We denote | - || ,p(ra)
simply by || - || zr.

For any nonnegative integer [ and 1 < p < oo, we denote Wé(Q) to be the Banach space (Sobolev
space) consisting of the elements of LP(S) having generalized derivatives of all forms up to order [
included, that are p’th power integrable on 2. The norm in Wé(Q) is defined by the equality

l
l | | )
D) = DNy (NP = D I1D§ul 1oy, (6.37)
j=0 |a|=j
where o = (v, ..., ay) is a multi-index with |a| = % oy, and D§u = 8!%lu/00" - 965°.

Let (t1,t2) C (0 T) be an open interval and Q C R? be an open set, in these three paragraphs
we temporarily denote S = (t1,t2) x Q. For any 1 < r,p < oo, define L™P(S) to be the Banach
space consisting of all measurable functions on S with a finite norm

ull ros) = / /|u (,0) |pd0) ar) . v (6.38)

We say u € L (S) if for any compact subset [t],t5] C (t1,t2) and compact subset Q' C Q, we have
uw € L™P([th,th] x ). We will denote LP(S) by LP(S), and LIP(S) by LV (S).

loc
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For nonnegative integer [ and 1 < p < oo, we denote Wg“(S ) to be the Banach space consisting
of the elements of LP(S) having generalized derivatives of the form D} Dg with r and a satisfying
the inequality 2r + || < 2I. The corresponding norm is defined by

21
l j j r o
lulBlgy = S (uh) Pisy (s = S 1D} DgullLns)- (6.39)
7=0 |ad+2r=j

We denote C"™"™(S) to be the function space of continuous function with m continuous deriva-
tive in time, and n continuous derivatives in space. For example, u € CY%(S) if and only if
u, Opu, Vou, Vau € CO0(S) = C(S). We say u € C™™(S) if u € C™"(S) and the support of u is
compact. We will denote C™"™(S) by C™(S), and C"(S) by CZ(S).

For any measurable functions f, g defined on R%, we denote f % g to be their space convolution,
which is a measurable function on R%, with

(F+9)®)= [ 16)9(0 630" (6.40)

For any measurable function u,v defined on R x R?, we denote u % v to be their space and time
convolution, which is a measurable function on R x R?, with

(%2 0)(L,6) = /R dt’ /R Cu(t' 0t — 1.6~ 8')d6. (6.41)

If u, v are defined on a subset of R x R, we define u 9 v using their zero extensions.
We denote GG to be the heat kernel, where for £ > 0, we have

G(t,0) =t~ "2g(t71/%6), g(8) = (2m) " exp{~1/2-(|63}. (6.42)

Proof. The proof is similar to the one of [JKO98, Theorem 5.1], so we will skip some details.
Without loss of generality we can set § = 1, and £(¢) = 1/2 (different choices can be obtained by
rescaling W(0; p) and reparametrizing time).
Let E = (0,00) x R%. With a slight abuse of notations, we denote W(t,0) = W, (0;p;). Since
V € C*(RY), and VXU are uniformly bounded for 0 < k < 4, we have VEU € L (E) for 0 < k < 4.
In the following, we will write p(t,0) = p;(0) for clarity. When we write p(t), we regard it as a
function in L'(RY) at any fixed t. For other functions, we also use this convention.
Step 1. Show that p € L;>F(E).

loc

Taking G to be the heat kernel, it is easy to see that

d+1

2 [Vl

d_
2

1_1y4d 1
IGH) | r = t% V2 gl o, |VG(E)|r = to

Then for any n € C>°(R%), Duhamel’s principle gives

pltyn = [ [p(s) A0 — (T(s), V)] Gt — )ds
: (6.43)

+ [ 1)@~ n9 U]« TGt - s + (pe)) » G (1)

for almost every 0 < e < t < oo, where % denotes convolution in the @-variables, and G.(t,60) =
G(t —¢€,0). By Young’s convolution inequality, we have || f x g||.- < C||f|zrllgllz, for 1/p+1/q =
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1/r + 1 and p,q,r > 1. For fixed ¢, we estimate the LP(R?) norm of p(t)n, which gives
t
lp()nll e S/ lp(s)(An — (V¥ (s), V)l 1 |G(t = )| Lrds
3
t
+ / () 2V = VU @) | VG (E = 8)l[Leds + [l p(e)nll 1 [|G(E = &)l e
3

t—e 1 \d
<ess sup ||p(s)(An — (VU(s), V)| 1 lg]| o /0 s V3ds

s€le,t]
t=¢ 14_
+ess sup [p(s)(2Vn ~ V) | Valr [ 573 Fds
s€e,t] 0

(3-14
+ llp(e)nllLrllgllze (¢ — €)'

for almost every 0 < e < ¢t < 0o. For p < d/(d — 1), the s-integrals are finite. Therefore, we have
pn € L®P((5,T) xR%) for any 6, T such that e < § < T < 0o. Hence we have p € Li>P((0,00) x RY).
Step 2. Show that p € L ((0,00) x R%) using bootstrap.

loc

In what follows, we let E = (0,00) x R

We can iteratively use the strategy in step 1 to show that p € LS (E). We will summarize our
key estimates in Step 1 as follows. For any measurable function u defined on S = (5, T) x R? for
some 0 < § <T < oo, we have

|u*2 Gl Loowo(s) <Cllullpoeori(s), (6.44)
[u*2 VG| poowo 5y <C|lul| oo (s), (6.45)

provided that the p,, p; satisfy the relations
1<pi<po, d- (l/pi - l/po) <L (6'46)

Here, C' is a constant depends only on T, and on p;, p,.
Define p1 = p(An — (VU, Vn))1{t > e}, p2 = p(2Vn — nV¥)1{t > £}, and 1) = p(e)n. Then
Eq. (6.43) reads

pn = @1 %9 G+ o x9 VG + ¢ * G-e. (647)

Since ¢ = p(e)n € L*(R?), the behavior of ¢ * G- on S = (6,T) x R? for ¢ < § < T < oo will be
extremely nice: for any generalized gradient D} D*[¢ * G¢],

1D D [th # Gell| oo (s) <9l p1(ray [ Df D Gel[ oo (s) < o0 (6.48)

Hence D} D%[tp * G| € L>(S). From now on, we fix 0 < ¢ < § < T < oo and take S = (6, T) x R
According to Eq. (6.47)) we have
oml oo wpo(5) <[lp1 *2 G| Loowo(s) + |92 *2 VG| poowwo(s) + 1% * Gell pooro (s)

(6.49)
<C{lle1llpeori(s) + ll2llpoeri sy + 11 L1 ey}

Now we assume p € L5:"(E) for some p;. Note VU € LY (E) so that max{||¢1 || ocwi (s, |2l Loowi ()} <

loc loc =
Collpll Loori ((5,7)x022)» Where Qo D supp(n) is a compact set. As a result, for any n € C2°(RY), we
have

1l Looro (5,7 x 1) < CnlllpllLoer ((5,7)x02) + 1), (6.50)
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where 1 C supp(n) C Q. Therefore, p € L5P°(E), where p;, p, satisfy Eq. (6.46).
Note there exists a sequence p;;,p,; for 1 <1 < k and k < 00, so that p; ;11 = poi, pi1 =p <

d/(d , Dik = 00, and p; 1, o for fixed [ satisfies Eq. - Since we have p € L>’(E), using
Eq. 0) iteratively, we have ,0 € Lloc’p"l( ) for any 1 <1 < k. As a result, we have p € LY° (E).
Step 3 Derivatives, Dp, D?p, and D3p.

By [LSUS8S, Chapter IV, section 3, (3.1)], for any function u defined on E = (0,00) x R?, we
have

(G2 u) By <CLu) ) (6.51)

where 1 < p < oo and m is a nonnegative integer.

First, we show the regularity of Dp. Note that p € LIOC(E) n € CX(RY), VU € L (E), we have
©1,p2 € L°(E). Due to Eq. (6.51} -, we have D?{p1%2G}, D*{pax9G} € L°°(E), which also implies
D{p1 x93 G} € L2 (E). Hence we have D(pn) = D{p1 *2 G} + D*{p2 %2 G} + D[tp * G<] € L>(S),
which gives Dp € L{¥ (E).

Then we show the regularity of D?p. Note that V2W € L{° (E), we have Dy, Doy € L°(E).
Due to Eq. (6.51)), we have D3{p1 %2 G}, D3{p2 %2 G} € L*®(E), which also implies D?{(p1 2 G} €
L (E). Hence we have D%(pn) = D?{¢1 %2 G} + D3{pa 2 G} + D?[¢ * G.] € L>(S), which gives
D2p € Lloc( )

Next we show the regularity of D3p. Note that V3 € L (E), we have D%pq, D?py € L™ (E).
Due to Eq. (6.51)), we have D*{p1 %2 G}, D*{(p2 %2 G} € L*®(E), which also implies D3{(p1 2 G} €
L2 (E). Hence we have D3(pn) = D3{¢1 %2 G} + D*{p2 x2 G} + D3[p x G] € L>=(S), which gives
Dgp € LlOC(E)

Step 4. Derivatives, D;p, D;Dp, and D;D?p.

Now we study the regularity of Dyp, D;Dp, D;D?p. Note we have D;(pn) = Di{p1 2 G} —
D{Dy1 *9 G} + Di{v * G.}. Due to Eq. , o1, Doy € L®°(E) implies that Di{p1 *2
G}, Di{Dp1 x2 G} € L*°(E) and hence Dy[pn] € L>(S), Dip € LiS.(E).

Note we have D;D(pn) = Di{Dp1 xo2 G} + Di{D?*p1 2 G} + Di{D3 * G.}. The fact that
Dy1, D*py € L*®(E) implies that D;{Dy1 *o G}, Di{D?*p1 %3 G} € L*(E) and hence D;Dp €

=.(B).

Note we have D;D?(pn) = Di{D?*p1 %2 G} — D{D3p1 %2 G} + Di{D? * G.}. Note that
VW € L2 (E), hence D3py € L*®(E). Combining with the fact that D?p; € L*®°(E), we have
Di{D?py %9 G}, Di{D3p1 9 G} € L*®(E) and hence D;D?p € L (E).

Step 5. Derivatives, D?p.

Finally we show the regularity of D?p. We have D?(pn) = Di{D;[p1 *2 G] — Di[Dip1 %2 G| +

Dy x Ge]}, and

Dy[ip1 %2 G| =[Ap1] 2 G + ¢1(e) * G, (6.52)
D, [D(pg *9 G] Z[DA(pQ] x9 G + [D()OQ (6)] * Gg. (653)

Note that V4W € LIOC(E), we have A1, DApy € LS. (E), and ¢1(g), Dpa(e) € LY(RY). Hence
according to Eq. (6.51)), we have Di{[A¢p1] %2 G}, Dt{[DAch] k9 G}. In addition Di{pi(e) *
Ge}, Di{[Dya(e)] * GE} € L>®(S). As a result, we have D?p € L°.(E).

Step 6. Finish the proof.

As a result, we have p, Dp, D2p, D3p, Dip, D:Dp, D:D*p, D?p € L5S.(E). Sobolev embedding
theorem implies that p, 0;p, Vop, V3 ap € CYO(R%). In other words, p € CY2(E), which is the desired
result.

]
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Lemma 6.8. Assume conditions Al - A4 hold. Let initialization py € K with Fg(po) < o0.
Denote the solution of PDE to be (p)e>0. Then py(0) > 0 for any (t,0) € (0,00) x R

Proof. Note that p; € C12((0,00) x R?). By the Harnack’s inequality [Eva09], we immediately
have p;(0) > 0 for any (¢,0) € (0,00) x R%.
O

We say p. is a fixed point of PDE (6.22]), if its solution (pt)+>0 starting from p, satisfies p; = p.
for any t > 0.

Lemma 6.9. Assume conditions Al - A3 hold. Then any fized point p. of PDE with p, € K
must satisfy the Boltzmann fized point condition .

Proof. Suppose p. € K is a fixed point of PDE (/6.22)), taking W (0) = Wy (0; ps), then p, € L is a
fixed point of the Fokker-Planck equation (6.54)).

Oypi(0) = 26(t)V - (VW (0)pi(0)) + 2£()/B - Aopi(8). (6.54)

Since \/2 - [|0]]3 — 2K3 < W, (0;p.) < A\/2 - |0]]3 + 2K3, the Fokker-Planck equation has a unique
fixed point [MV00], which solves

p8)= 5 ep(-BWO)), 75 = [ exp{-pW(O)}d6.

This is exactly the Boltzmann fixed point condition.

O]

Lemma 6.10. Assume conditions Al - A4 hold. Let (pt)i>0 be the solution of PDE for an
inttialization py € IC. Then the free energy Fz x(pt) is differentiable with respect to t, with

OiF A\ (pt) = — 26(2) /Rd Vo (UA(0; p1) +1/8 - log pi(0))]|30:(6)d6. (6.55)

Therefore, Fz \(pt) is non-increasing in t.

Proof. Calculate the differential of the free energy along the curve p;, we have
OrFp A (pt) :/Rd WA (65 p)0rpe(6)dO + 1/ - /log(pt(B))(?tpt(G)dG
== &(0) [ INo(WA(8: 1) +1/5 - 1og p(0))[3p1(6) .

O]

Lemma 6.11. Assume K||0||3 — K1 < ®(0) < Ko||0||3 + K1 for some positive constant K, K7.
Define

11.(40) = — exp{—®(0)}d0, Z, = / exp{—®(6)}d0 (6.56)
Z* R4
Let D= {f € L*(R% ) N CY(RY) : |V £|l2 € L2(RY, puy)}. For any f € D, define
1(5)= [ IVFO)] - 1.(d6) < . (6:57)

Assume (fn)n>1 C D, with lim, 00 I(fn) = 0, and f, converges weakly to f. in L*(R%, uy). Then
f«(0) = Fy for some constant F.
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Proof. First we show that the measure p, satisfies the Poincare inequality: for any f € D,

pe((f = m(£)?) < K- 1(f), (6.58)

for some constant K.
Let 4 be the Gaussian distribution N(0,1/(2Kg) - I;). Then for any 8 € R?,

pu(8) - exp{—2K1} < 11.(0) < p(0) - exp{2K,1 }. (6.59)

Therefore, for any nonnegative measurable function f : R? — [0,00) and g : R? x R? — [0, c0),
letting (G,G") ~ p x pand (X, X') ~ s X i, we have
E[f(G)] - exp{-2K1} <E[f(X)] <E[f(G)] - exp{2K1},
Elg(G,G")] - exp{—4K1} <E[g(X, X")] < E[g(G, G")] - exp{4 K }.

Note we have the Poincare inequality for the Gaussian distribution g,
Var[f(G)] < 1/(2Ko) - E[|Vf(G)|3] (6.60)

for any differentiable f. Therefore, we have

Varlf(X)] = E[(F(X) ~ F(X))] < g exp{4F1} - E[(F(C) — F(C))]
= exp{4K1} - Varlf(G)] < 1/(2K0) - exp{4Ka} - E[| VS ()3
<1/(2K0) - exp {651} - B[ VF(X) 3]

This proves the Poincare inequality (6.58)) for fi.
Since lim,, 00 I(fn) = 0, due to (6.58)), we immediately have f, — p.(fn) converges to 0 in
L?*(R%, 11,). Note we assumed f, converges weakly to f, in L*(R?, ), and 1 € L*(R?, ), we have

nh_{go/ﬁ*(fn) = p(f).

Therefore, f, — ps(fn) converges weakly to fi — ps(f) in L2(R?, ). Hence f.(0) = pa(fs).
O

Lemma 6.12. Assume conditions Al - A4 hold. Then the solution (pt)t>0 of PDE for any
initialization py € K converges weakly to p, € K as t — 0o, where p, is the unique solution of the
Boltzmann fized point condition, which is the global minimizer of Fg y.

Proof. According to Lemma @ Fjg ) is non-increasing along the solution path. According to
Lemma F3 A(pt) is lower bounded. Therefore, we have

lim [ 190(¥A(0: p0) + 1/8 - 1og (6)) [36:(6)d6 = 0. (6.61)

Since M(p;) is uniformly bounded, by Lemma , (pt)t>0 as a sequence of probability distri-
bution in #(RY) is uniformly tight. Hence there exists p. € Z(R?) and a subsequence (py, )r>1
with limy_, oty = oo such that (py, )p>1 converges weakly to p.. By Lemma and Lemma
{[ max{pt, log pt,,0)}dO}>1 is uniformly bounded. Using de la Vallée-Poussin’s criteria, we can
show that (p¢, )k>1 is uniformly integrable, and hence p, is absolute continuous with respect to
Lebesgue measure, which means p, has a density.
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Note we have
VoWUx(0;p1) — Voli(0;p.) = /Rd VoU(0,0)(p(8") — p«(6))d0'".
According to condition A3, VU is Ks-bounded-Lipschitz with respect to (0,8’). Therefore,

sup VoWA(0; pt) — VoW¥a(0; pi)ll2 < K3 - dpi(pt, px) — 0, (6.62)
eR

as dgp(pt, p«) — 0. Accordingly, we have

lim | [ Vo(Ux(0;pr,.) — WA (6; p:))lI301,, (0)d0 < K3 - lim dysy (., p)* = 0. (6.63)

k—oo JRd

Combining Eq. (6.63)) with Eq. (6.61)), we have

lim | ||Ve(Ur(6;p.) +1/5 - log pr, (6))[I3p, (8)d6 = 0. (6.64)

k—oo JRd

Note we have

/Rd Ve (P (85 p.) + 1/ - log pr, (6))l[3pe, (8)dO

i |, 190000, 6) exp(BUAB: ) DB 51 (6) exp(-25Ws(85p)}d0 (6.65)
= [ 1900 0) exp 50 8390 113 - exp{ 50 05} c0.
Define
11+(d0) = 1/Z, - exp{—=LYA(6; ps) }10(dO), Z. = /Rd exp{—BV(6; ps) }1i0(d6), (6.66)

J(8) = [exp(BUA(B; p))pr, (O)]1/2 € D = {f € L2(R%, ) N C'RY) : |Vfl> € L2(RY, p,)}
(fr € CH(RY) because p;(6) > 0 for any 8 € R? and p(8) € C*(R?) for fixed t), and f.(0) =
[exp(BUA(O; ps))p«(0)]/? € L2(RY, 11). Since we have p;, converges to p. weakly in L'(R%, uo),
then fi, converges weakly to f, in L?(R%, 1,). Define I(f) = [pa [|Vf(0)||3 - 11.(d8). Eq. and
give limy_,oo I(fx) = 0. Now we apply Lemmal[6.11] with ®(6) = S¥,(0; p.). This P satisfies
BA/2-0]13 — 28Ks < ®(0) < BA/2 - ||0]|3 + 2BK3, where Kj is the constant in Assumption A2.
Lemma implies f.(0) = F for some constant F.
This proves that p,(0) = Fy-exp{—FY¥(0; p.)}. Combining with the fact that [p. p«(0)d0 =1,
p« satisfies the Boltzmann fixed point condition. According to Lemma [6.4] the Boltzmann fixed
point condition has a unique solution p*”\. Therefore, all the converging weak limit of subsequence
of p; converges to the same point p*”\. As a result, p; converges to pk A weakly in L'(R%).
O

6.3 Proof of Proposition [3, Theorem 4, and Theorem

Proposition [3is given by Lemma [6.0] [6.4, and Lemma[6.9] Theorem [4]is given by Lemma [6.2] [6.4]
and
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Now we prove Theorem [f] First, according to Lemma [6.5] for any 1 > 0, there exists constant
K depending on 7, Ko, K1, Ko, K3, such that as we take 5 > KD, we have

Rp?) < inf | Ra(p) +n/3. (6.67)

According to Lemma we have p; converges to pk A weakly. Therefore, there exists T =
T(n,V,U{K;},D,\, ) < 0o, so that dBL(pt,pf’)‘) <n/(3Z) for any t > T, where Z = Z({K;}) is
the bounded-Lipschitz constant of R with respect to p. Hence, we have

R(pt) < R(p2™) +n/3 (6.68)

for any ¢t > T.
Finally, according to Theorem |3, there exists K’ depending on K;’s, so that for all k¥ < 107 /¢,
we have

[RN(6%) = Ry, | < K'eK'T\[1I/N Ve [\/D+log(N(1/e v 1)) + 2],

with probability at least 1 — e~*". Hence there exists Cy = Co(n,{K;},9), so that as N,1/e >
Coexp{CoT}D and £ > 1/N'9 we have

|Rn(6%) — R(pre)| < /3, (6.69)

with probability at least 1 —

Combining Eq. -, -, and - we get the desired result.

6.4 Dependence of convergence time on D and 7

Theorem [5| does not provide any estimate for the dependence of the convergence time on the
problem dimensions D and on the accuracy 1. However the proof suggests the following heuristic.
When p; is sufficiently close to the minimizer p,, we heuristically can approximate the free energy

dissipation formula (6.2)) as
OFs(p) = = [ IVo(¥r(8:p.) + 1/8 - 1og p(0))]301(6)d6 . (6.70)

This is the same as the free energy dissipation for the Fokker-Planck equation with potential
U, (0;ps). This suggests that, close to p., convergence should be dominated by the speed of
convergence in this Fokker-Plank equation, which is controlled by the log-Sobolev constant of the
potential Wy(0; p.), to be denote by ¢, [MV00]:

Faa(pr) S Fpalprg) e 7100 (6.71)

Note that the log-Sobolev constant can be exponentially small in D. We expect this heuristic
to capture the rough dependence of the convergence time T on 1 and D, hence suggesting T =

eOP) 10g(1 /).

7 Numerical Experiments

In this section, we discuss numerical experiments whose results were presented in the main text,
as well as some additional ones. Some technical details of the figures in the main text are also
presented here; in particular, Section [7.1.1] for Figure [T} Section [7.1.2] for Figure [2], Section [7.2] for
Figure [} and Section [7.3| for Figure [4
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Figure 7.1: The activation functions o(¢) used in Section (left plot) and Section (right plot).

7.1 Isotropic Gaussians

In this section, we present details of the numerical experiments pertaining to the example of centered
isotropic Gaussians:

With probability 1/2: y = +1,  ~ N(0, (1 + A)?1,).
With probability 1/2: y = —1,  ~ N(0, (1 + A)?1,).

In all numerical examples in this section, we use the activation o.(x;0;) = o({(w;,x)), where
o(t) =s1if t <ty, o(t) = sg if t > t9, and o(t) interpolated linearly for ¢ € (¢1,t2). In simulations
we use t1 = 0.5, t9 = 1.5, s = —2.5, s9 = 7.5. This is also used for examples with centered
Gaussians in the main text, cf. Figures[I] and [2| and Section [4 in the supplemental information.
This activation is plotted in Figure[7.1

7.1.1 Empirical validation of distributional dynamics

Here we discuss empirical validation for the dynamics in the isotropic Gaussian example.

PDE simulation. Simulating the PDE (Eq. of the main text) for general d is computationally
intensive. In order to simplify the problem, we only consider d = co. In that case, we recall that
the risk is given by Eq. , which we copy here for ease of reference:

)= 2 (1= [acmpan) + 1 (14 [e0)pan) (71)

where ¢4 (t) = E{o((1 £ A)tG)}, G ~ N(0,1). In addition, from Eq. (4.12)),

Vol = gl 7) () + gLl 7) -+ (1) (72)

The PDE is then 0yp, = 2£(t)0r[p10r oo (15 0,)]-
The solution to the PDE is approximated, at all time ¢, by the following multiple-deltas ansatz:

1 J
pr= j Z 57“,-(15) ) (73)
=1
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where J € N is a pre-chosen parameter. Note that for a fixed J, if the PDE is initialized at p,
taking the above form, then for any ¢ > 0, p, remains in the above form. Then for any smooth test
function f: R — R with compact support,

J
53 SO0 = 0F,70) = —26O" P73 71) (7.4)
i=1
J
= 26(1) 3 5 i)t i1 7). (75)

i=1
Under this ansatz, let us write Reo(p;) = Roo,s(r(t)), where r(t) = (r1(t),...,r;(t)) T, and

2

_ 1 1 ° 1
ROO7J(I') = B <1 7 E q+(7’i)> + 3 <1 + Wi E q_(ri)> . (7.6)
i=1 =1

Notice that 9,100 (ri(t); 5;) = (J/2)(VRoo.s(x(t)));. Therefore we obtain

d _
Cr(t) = —JE(1)VRoe, s (x(0). (7.7)
Hence under the multiple-deltas ansatz, one can simulate numerically the PDE via the above
evolution equation of r(t). In particular, given r(¢), one approximates r(t + dt) for some small

displacement &t by
r(t + 6t) ~ r(t) — JE(t)V Roo s (x(t))dt. (7.8)

In general, one would want to take a large J to obtain a more accurate approximation. There are
certain cases where one can take small J (even J = 1). An example of such case is given in the
following.

Details of Figure [1| of the main text. For the data generation, we set A = 0.8. For the SGD
simulation, we take d = 40, N = 800, with ¢ = 107% and &£(¢) = 1. The weights are initialized as
(w;)i<n ~iia N(0,0.82/d-1). We take a single SGD run. At iteration 103, 4 x 10°, 107, we plot the
histogram of (||w;||2)i<n. This produces the results of the SGD in Figure 1] of the main text.

To obtain results from the PDE, we take J = 400, and generate r;(0) = || Z;||2, where (Z;)i<J ~iid
N(0,0.8%/d - I;). We obtain r(t) from ¢ = 0 until ¢ = 107¢, by discretizing this interval with 10°
points equally spaced on the log;, scale and sequentially computing r(¢) at each point using Eq.
(7.8). Note that the SGD result at iteration k corresponds to r(ek). We re-simulate the PDE for
100 times, each with an independently generated initialization. The obtained histogram for the
PDE, as shown in the figure, is the aggregation of these 100 runs.

Further numerical simulations. Figure plots the evolution of p, for A = 0.2. The setting is
identical to the one in Figure [1| of the main text, described in the previous paragraphs.

In Figure we plot the evolution of the population risk for the SGD and its PDE prediction
counterpart, for A = 0.2 and A = 0.8. The setting for the SGD plots is the same as described
in the previous paragraphs. We compute the risk attained by the SGD by Monte Carlo averaging
over 10* samples. The setting for the PDE plots tagged “J = 4007 is almost the same as in the
previous paragraphs, except that we take only 1 run. For the PDE plot tagged “J = 17, we take
J =1 and r(0) = 0.8 instead. In the inset plot, we also show the evolution of (1/N) X, [lw;|2 of
the SGD, and (1/.J) Y7, r4(t) of the PDE.
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Figure 7.2: Evolution of the reduced distribution p, for A = 0.2, in the isotropic Gaussians example

of Section

In Figure [7.4) we plot the function R((il)('r), for d = 40 and A = 0.2. (Recall Egll)(r) from Eq.

of the main text, and see also Section ) On this landscape, we also plot the evolution of
the corresponding SGD and PDE, as described in the last paragraph.
Comments. We observe in Figure [7.3] a good match between the SGD and the PDE, even when
J =1, for A = 0.2. This can be explained with our theory, which predicts that at A = 0.2, the
minimum risk is achieved by the uniform distribution over a sphere of radius ||w|2 = r. (see also
Section . This corresponds to p;, as t — 0o, being a delta function and placing probability 1
at r,. Furthermore due to the way we initialize the SGD, p, is well concentrated. One can then
expect that p, is also well concentrated at all time ¢, in which case J =1 is sufficient. This claim
is reflected in our numerical experiments, shown in Figure

We also observe in Figure that the case A = 0.2 has a rapid transition from a high risk to
a lower risk, unlike the case A = 0.8. This is also expected from our theory. As said above, p,
is approximately a delta function at all time ¢, and the position r(t) evolves by gradient flow in

the landscape of R((il)(r). This latter claim is well supported by Figure As observed in Figure

RS)(T) is rather benign, and hence the transition of the population risk should be smooth.
However the case for A = 0.8 is different: p, is not concentrating at large ¢, as evident in Figure

of the main text, even though Eg)(r) is generally benign for a vast variety of values of d and A

(see Figure and Section [7.1.3)).

Note that the computation of the PDE assumes d = co. Furthermore it also requires N = oo
(recalling Theorem [3| of the main text). The discrepancy to the SGD is due to the fact that d and
N are finite in the SGD simulations. Nevertheless in our numerical examples, such discrepancy is
insignificant.

7.1.2 Empirical validation of the statics

Here we discuss numerical verification for the statics in the isotropic Gaussian example.
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Figure 7.3: The evolution of the population risk and the parameter r of the reduced distribution
7, in the isotropic Gaussians example of Section @
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Figure 7.4: The function Rfil)(r) vs r, as well as the evolution of the SGD and the PDE on this
landscape, for A = 0.2 and d = 40, in the isotropic Gaussians example of Section [7.1] Here the
SGD and the PDE evolve from the leftmost point to the rightmost point.
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Optimizing R4(p). For the chosen activation, we have from Eq. (4.8)) that

Rd( ) =1+ 2/ d?“ + /ud 7“1,7‘2) (d?“l)ﬁ(drg), (7.9)

o(r) = 3900, (1+ A)r) + 590, (1= A)r), (7.10)
'(d/2) T -

ug(ry,re) = TA/2T((d—1)/2) /9:0 a(ry,ro,0) sin?=2 040 , (7.11)

(r1, 79, 0) = %f((l b A, (14 A)ra, 0) + %f((l =AY, (1 A)ra, 6), (7.12)

flri,re,0) = /x:oooo o(riz)g(raz cos @, rosinf)o(z)dx , (7.13)

t1 — to —
g(a, b) = So + (51 — Oitc — Usla)q) ( ! b a> + (Usla+aitc - 52)q) < 2 b a)

+ ogb [d) <t1b_a) —¢><t2;a)]. (7.14)

where og = (s2 — s1)/(t2 — t1), Oite = s1 — og1t1, (b(x) = exp(—z?/2)/V/2m, ®(x) = [*__ ¢(t)dt, and
I is the Gamma function. To numerically optimize R4(p), we perform the following approximation:

K

inf Ry(p) ~ inf Ry <Z pi50i> : (7.15)
P pi>0, 3 pi=1 =1

Here 0; € R, i = 1,..,K, are K pre-chosen points. Let v = (v(01),...,v(0x))" and U =

(uq(0i,0j))1<ij<i- Then the approximation becomes

inf Ry(7) ~ inf  {1+2v'p+p Up}, (7.16)
P pi>0,>1  pi=1

which is a quadratic programming problem and can be solved numerically. Here v can be computed

easily with the explicit formula, and the computation of U amounts to numerically evaluating double

integrals. In the case d = oo, the computation of U is much easier, since

uoo(r1;7”2> - %g(ov (1 + A)Tl)g(oﬂ (1 + A)T2> + %g(ov (1 - A)Tl)g(o, (1 - A>T2)' (7'17)

Details of Figure [2| of the main text. For the SGD simulation, we take N = 800, with
e =3 x107% and &£(t) = t~ /% The weights are initialized as (w;)i<n ~iia N(0,0.4%/d - 1;). We
compute the risk attained by the SGD by Monte Carlo averaging over 10* samples. We take a
single SGD run per A, per d, and report the risk at iteration 107.

For the approximate optimization of Ry4(p), we choose K = 100, and o;, i = 1,..., K, being
equally spaced on the interval [0.01, 10].

For the optimization of E&l)(r) (recalling Eq. in the main text), we approximate it with

min;—1, g Eg)(oi), for the above chosen o; and K.
We find that in general, one needs higher max;—1 . i 0; to produce accurate results for higher
A. For the chosen set of 0;’s, we choose to plot up until A = 0.8.
Further numerical simulations. In Figure we extend Figure [2| of the main text to include
results for additional values of d. The setting remains the same.
This figure provides further support to the respective discussion in the main text. For the
unif

threshold values of A for which the minimum risk is achieved by a uniform dlstrlbutlon prtt over
a sphere of radius ||w||2 = 7, (see the main text around Eq. [14], and Section [7.1.3).
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A — — Prediction - single
— Prediction - full

Risk

Figure 7.5: The population risk as a function of A for different values of d, in the isotropic Gaussians
example of Section Here “Prediction - single” refers to min,>q F&l) (r), “Prediction - full” refers

to the optimized R(p) as described in Section and “SGD” refers to the risk attained by the
SGD.

77



Figure 7.6: The function El(il) (r) for different values of d and A, in the isotropic Gaussians example

of Section @

[ d [ Ay [ AF ]
5 | N/AN/A
10 | N/A | N/A
20 | 0.08 | 0.38
40 | 0.03 | 0.42
80 | 0.02 | 0.45
160 | 0.0 | 0.46
| 0 | 047

Table 1: Ab and Ag for different values of d, in the isotropic Gaussians example of Section
Here “N/A” refers to that no values of A are found to satisfy the condition of Lemma [1|in the main
text. Note that for d = oo, the value AL = 0 is exact, according to Theorem

7.1.3 Checking the condition of Lemma [1| in the main text

We check of the condition of Lemma (1| in the main text. This has two steps: (1) we solve for the
minimizer 7, of R((il)(r) = 1+ 2v(r) + uq(r,r), where v(r) and uq(ri,r2) are given by Eq.
and ([7.11)) respectively, and (2) we check whether v(r) 4+ ug(r, r+) > v(rs) + uq(r«, 7s) for all r > 0.
Figu suggests that the behavior of R&l)(r) is rather benign and hence r, can be solved easily
by searching for a local minimum. For the second step, we check the condition on a grid of values
of r from 0.1 to 10 with a spacing of 0.1, for each value of A on a grid from 0.01 to 0.99 with
a spacing of 0.01. In general, we find that the conditioned is satisfied for A € [Al,] AR, Table
reports A}i and Ag for a number of values of d for the isotropic Gaussians example with the given
activation function.

7.2 Centered anisotropic Gaussians with ReLU Activation

In this section, we present details of the numerical experiments pertaining to the example of
anisotropic Gaussians with ReLU activation. In particular, we use the activation o.(x;60) =
amax((w,z) + b,0), with 8 = (w,a,b) € R¥2. We consider the centered anisotropic Gaussian
case:
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With probability 1/2: y = +1, @ ~ N(0,X).
With probability 1/2: y = —1,  ~ N(0,X_).

More specifically, we opt for

S, =Diag((1+A)%...,(1+A)%1,...,1), (7.18)
N——
S0 d—sg
S =Diag((1-A)% ..., (1-A)?1,...,1). (7.19)
d
S0 —S0

This setting is used in Figure [3|in the main text.

We consider sy = ~yd for some v € (0,1). For simplicity, we consider the limit d — oco. For
0 ~ p, let p be the joint distribution of four parameters r = (a,b,71 = [[w1.5ll2; 72 = [|[W(s41):all2);
w;, ) Using a similar argument to Section 4|, we have, in the limit d — oo,
R ( )for

where w;.; = (w
the risk R(p) =

Rou(7) = é (1 _ / aq+(r1,r2,b)p(dr)>2 +% (1 + / aq(rl,rz,b)p(dr)>2 , (7.20)

b b
,72,0) =b® +4/(1 £ A2 + 120 , 7.21
q+(r1,72,b) (\/(1:|:A)27"%+7”§) \/( )?ri + s <\/(1:I:A)2r%+r%> ( )

where ¢(z) = exp(—2?/2)/v2m and ®(z) = [*_ ¢(t)dt. Furthermore, letting p, denote the corre-
sponding distribution at time ¢, the PDE . in the main text can be reduced to the following PDE
of p;:

8tpt 25 ) ( rwoo( )) ) (7'22)
djoo(r; P

(t
[ a'qp(ry,rh, bdp(a’ V', r, ry) — 1] agy (r1,72,b)
1
+§ {/aq (ry,rh, b )dp(a’, b’ rl,rz)—i—l} aq—(r1,r2,b). (7.23)

PDE simulation. As in Section we posit that the solution to the PDE can be approximated,
at all time ¢, by the multiple-deltas ansatz:

1 J
Pt = j z; 51'1-(15) > (724)

where J € N is a pre-chosen parameter, and r;(t) = (a;(t), bi(t), r1,i(t),r2.(t)). Following the same
argument as in Section we obtain the following evolution equation:

%ri(t) = —JE)ViRoo s (r1(t), ... T 5(1), (7.25)

for i = 1,..,J, where Re j(r1(t),...,15(t)) = Reo(p,) under the ansatz, and V; denotes the
gradient of Ry j(r1,...,ry) w.r.t. r;. More explicitly,

2 2
- 1 J 1 1<
Rooy(r1,... 1)) = 3 ( Z%% 1, 2,6 bz)) +3 (1 +5 > aiq—(r1, 2., bz)) . (7.26)
i=1

=1
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Again, given r;(t), one approximates r;(t + dt) for some small displacement §t by
I'Z'(t + 5t) ~ I'Z'(t) - Jf(t)ViROO,J(rl, ce ,PJ)5t. (727)

Detalils of Figure [3| of the main text. For the SGD simulation, we take d = 320, sy = 60, N =
800, with ¢ = 2x10~% and &(t) = t~'/4. The weights are initialized as (w;)i<n ~iia N(0,0.8%/d-1,),
(ai)icy = 1 and (b;)i<ny = 1. We take a single SGD run. We compute the risk attained by the
SGD by Monte Carlo averaging over 10* samples.

To obtain results from the PDE, we take J = 400. We initialize 1 ;(0) = || Z1,]|2 and ry;(0) =
| Za.ill2, where (Z1:)i<n ~iia N(0,0.8%/d-1,) and (Z2;)i<n ~iia N(0,0.8%/d-14_s,) independently,
along with a;(0) = 1, b;(0) = 1. We obtain r;(¢) from ¢ = 0 until t+ = 107, by discretizing this
interval with 10° points equally spaced on the log;, scale and sequentially computing r;(t) at each
point using Eq. . Note that the SGD result at iteration ¢ corresponds to ri(e4/ 3¢). We take
a single run of the PDE.

To produce the inset plot in Figure 3| of the main text, for the “a (mean)” axis, we compute

+ SN | a; for the SGD and 1 >/, ai(t) for the PDE. Similarly, for the “b (mean)” axis, we compute
% SN, b; for the SGD and %257:1 bi(t) for the PDE, and for the “r; (mean)” axis, we compute
A SN lwi s ||2 for the SGD and L 527, 7 4(¢) for the PDE.
Further numerical simulations. In Figure we plot the evolution of the four parameters, for
the same setting as Figure [3| of the main text. Here “a (mean)”, “b (mean)” and “r; (mean)” hold
the same meanings, and “ro (mean)” refers to & S~ W (so+1):dll2 for the SGD and %Z‘i]:l r2,i(t)
for the PDE.

In Figure [7.8] we plot the population risk’s evolution for the same setting as Figure [3| of the

main text, apart from that A = 0.6 and s varies.
Comments. We observe a good match between the SGD and the PDE in Figure [3| of the main
text as well as Figure , up until iteration 10%. In general there is less discrepancy with larger s,
d and N, recalling that the PDE is computed assuming infinite sg, d and N. This is evident from
Figure [7.§

As a note, in Figure the PDE evolves differently for different sg. This is because the ratio
s0/d is used to determine the initialization of the PDE.

”

7.3 Isotropic Gaussians: Predictable Failure of SGD

In this section, we consider the isotropic Gaussians example (see Section for the setting and
notations), with the following activation function: o.(x;0;) = o({(w;, x)), where o(t) = —2.5 for
t <0,0(t)=75fort > 1.5, and o(t) linearly interpolates from the knot (0, —2.5) to (0.5, —4), and
from (0.5, —4) to (1.5,7.5). This activation is plotted in Figure [7.1] This corresponds to Section
“Predicting failure” and Figure [ in the main text. The simulation of the PDE can be done in the
same way as in Section [7.1.1]

Rationale of the activation choice. We give an explanation for the choice of the above activation
based on our theory. We aim to find an activation o,(x;0;) = o({w;, x)) in which there exists a
local minimum that does not generalize well. To simplify the task, we wish for such minimum to
be attained at p, = dg. This minimum does not generalize well, since it implies all the weights are
zero and the neuron outputs are constant, rendering the network unable to perform classification.
Theorem |§| of the main text suggests taking o(¢) such that

V2V (0) 4+ V1,U(0,0) > 0. (7.28)
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Figure 7.8: The evolution of the population risk for A = 0.6, d = 320, N = 800 in the anisotropic
Gaussians example of Section

In the isotropic Gaussians case, this becomes
() {(1= A = 1+ AP +0(0)[(1 - A+ (1+A)2} >0. (7.29)

(Note that the condition VV(0)+V1U(0,0) = 0 in Theorem 6|of the main text is trivially satisfied.)
Another requirement is that there should still be a minimum whose risk is nearly zero. Hence we
do not wish for a dramatic change in the choice of the activation function, as compared to the one
used in Section That is, we leave ¢(0) < 0 unchanged. Hence we would want ¢”(0) < 0, which
is accomplished by our aforementioned choice.

Note that Theorem [f] of the main text also suggests that if the SGD is initialized sufficiently

close to this local minimum, the SGD trajectory should converge to it.
Details of Figure [4] of the main text. For the data generation, we set A = 0.5. For the SGD
simulation, we take d = 320, N = 800, with e = 10~° and £(¢) = t~'/4. We take a single SGD run
each for two different initializations: the weights are initialized as (w;)i<n ~iig N(0,x%/d - 1) for
either k = 0.1 or kK = 0.4. We compute the risk attained by the SGD by Monte Carlo averaging
over 10% samples.

To obtain results from the PDE, we take J = 400, and generate r;(0) = || Z;||2, where (Z;)i<n ~iid
N(0,x2/d - I5). We obtain r(t) from ¢t = 0 until ¢ = 107¢, by discretizing this interval with 10°
points equally spaced on the log;, scale and sequentially computing r(¢) at each point using Eq.
. Note that the SGD result at iteration k corresponds to r(%/3k). We take a single run of the
PDE.

To produce the inset plot, we compute + SN lwsl|2 for the SGD, and %Z;-le ri(t) for the
PDE.

As observed from Figure [4] of the main text, the SGD trajectory with x = 0.1 converges to a
point where ||w;||2 is nearly zero and the risk is very high, in stark contrast to the SGD trajectory
with k = 0.4, as expected.
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Figure 7.9: The error rate attained by the SGD in the example of Figure |4| of the main text.

Error plot. In Figure we plot the empirical error rate attained by the SGD in the above
example for the two initializations. Here the error rate is defined as the misclassification probability
P{sign(j(x; 0)) # y}, and is computed with Monte Carlo averaging over 10* samples. This validates
the claim that, in this example, there exists a local minimum which the SGD can converge to, yet
has bad generalization (i.e. attains the trivial misclassification rate of 0.5), whereas there is a global
minimum which the SGD can also find and yet generalizes well.

A Concentration inequalities

Lemma A.1 (Azuma-Héeffding bound). Let (X)x>0, be a martingale taking values in RY with
respect to the filtration (Fi)g>0, with Xo = 0. Assume that the following holds almost surely for
all k> 1:

E{e()\,Xk—Xk—1>|]:k_1} < ELQH/\”Q/2 . (Al)
Then we have

P(I}g | Xkl > 2Ly/n(Vd +1)) < e (A.2)

Proof. Let Z), = X, — X1 be the martingale differences. By the subgaussian condition (A.1]),
we get,

E{eO\,Xn)} < E{E{6<A’Z">|fn71} 6<A7Xn71>} (A.3)
< LA/ E{€<A,Xn71>} < enL?INIE/2 (A.4)
Letting G ~ N(0, I;) a standard Gaussian vector and £ > 0,
E{cSIXn13/2) = EGR{eVEG-Xn)) < EgentsIGI3/2 (A.5)
= (1—nL%) " (A.6)
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By Markov inequality, setting & = 1/(2nL?), we get, for all ¢ > 0,

P([|Xnllo > 2Ly/n(Vd+ 1)) < e/2 VD < o=, (A7)

Finally, to upper bound maxy<y, || X||2, we define the stopping time 7 = min{k : || X2 >
2L\/n(v/d + t)}, and the martingale X; = Xpgar. Since {maxg<, || Xnl2 > 2Lvn(vVd + 1)} =
{IIXnll2 > 2Ly/n(V/d +t)}, the claim follows by applying the previous inequality to X,,. O

B On the generalization to other loss functions

The objective of this section is to show that the framework of this paper can be formally extended
to other loss functions £ : R x R — R. All arguments here will be heuristic, and we defer a rigorous
study of this problem to future work.

First of all, we note that the population risk reads

1 N
RN (0) :IE{E <y,NZU*(m;0i)>} , (B.1)
i=1

which naturally leads to the following mean field risk R : Z(R”) — R:

R(e) =E{ (5. [ o.(a:6)pla6) )} (B.2)

The corresponding distributional dynamics is formally identical to the one for quadratic loss, cf.
Eq. (3.1). The only change is in the definition of W(8;p):

Orp(0) =

2%(1)V - [pu(6)VU(6: )] (B.3)
w(i) =) =E{0t (. [ 0.(2:6) p(08) ) . (@:0)} (B.4)

where 0of denotes the derivative of ¢ with respect to its second argument. It is immediate to see
that, for the quadratic loss £(y, ) = (y — §)2, we recover the expressions used in the rest of the
paper.
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