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Abstract

This document contains the Supplementary Information for the manuscript ‘A mean field
view of the landscape of two-layer neural networks’. In particular, we present here proofs and
additional technical details for our mathematical results, as well as additional information con-
cerning the numerical experiments.
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1 Notations

We use lowercase bold for vectors (e.g. u,v, . . . ), uppercase bold for matrices (e.g. A,B, . . . ), and
lowercase plain for scalar (x, y, . . . ).

• Given a measurable space Ω, we denote by P(Ω) the set of probability measures on Ω.

• Bd(x; r) denotes the Euclidean ball with center x and radius r in Rd. We will drop the
dimension superscript whenever clear from the context.

• Given a measurable function f , and a measure µ, we denote by 〈f, µ〉 = 〈µ, f〉 =
∫
f dµ the

corresponding integral.

• For a univariate function f : R→ R, we denote by f ′(x) its derivative at x. If the argument
is time, we will also use ḟ(t).

• ‖f‖Lip ≡ supx 6=y |f(x)− f(y)|/‖x− y‖2 denotes the Lipshitz constant of a function f .

• dBL( · , · ) is the bounded Lipschitz distance between probability measures

dBL(µ, ν) = sup
{∣∣∣∣∫ f(x)µ(dx)−

∫
f(x) ν(dx)

∣∣∣∣ : ‖f‖∞ ≤ 1, ‖f‖Lip ≤ 1
}

(1.1)

≤ 2 inf
γ∈C(µ,ν)

∫ (
‖x− y

∥∥
2 ∧ 1

)
γ(dx,dy) ≤ 4 dBL(µ, ν) . (1.2)
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Here C(µ, ν) is the set of couplings of µ and ν.

• Wp( · , · ) is the Wasserstein distance between probability measures

Wp(µ, ν) =
(

inf
γ∈C(µ,ν)

∫
‖x− y

∥∥p
2γ(dx,dy)

)1/p
. (1.3)

For p = 1, the Kantorovich-Rubinstein duality gives

W1(µ, ν) = sup
{∣∣∣∣∫ f(x)µ(dx)−

∫
f(x) ν(dx)

∣∣∣∣ : ‖f‖Lip ≤ 1
}
. (1.4)

• K is a generic constant depending on K0,K1,K2,K3, where Ki’s are constants which will be
specified from the context.

• N = {0, 1, 2, . . .} denote the set of natural numbers.

2 General results: Statics

In this section, we discuss some properties of the population risk, RN (θ), and its continuum coun-
terpart R(ρ). For future reference, we copy the key definitions from the main text:

RN (θ) ≡ R# + 2
N

N∑
i=1

V (θi) + 1
N2

N∑
i,j=1

U(θi,θj) , (2.1)

R(ρ) ≡ R# + 2
∫
V (θ) ρ(dθ) +

∫
U(θ1,θ2) ρ(dθ1) ρ(dθ2) , (2.2)

R# = E{y2} , V (θ) = −E
{
y σ∗(x;θ)

}
, (2.3)

U(θ1,θ2) = E
{
σ∗(x;θ1)σ∗(x;θ2)

}
. (2.4)

We further recall the notation

Ψ(θ; ρ) = V (θ) +
∫
U(θ,θ′) ρ(dθ′) . (2.5)

We will always assume that the expectations defining V (θ), U(θ1,θ2) exist finite for all θ,θ1,θ2 ∈
RD. A necessary and sufficient condition for this is that E{σ∗(x;θ)2} <∞ for all θ. Since in most
cases of interest |σ∗(x;θ)| ≤M(θ)‖x‖2, for this to happen, it is sufficient that x has a finite second
moment.

Note that this ρ 7→ R(ρ) is a convex function on the set of probability measures on RD. We will
denote by PV,U the subset of probability measures ρ such that the expectations on the right-hand
side are finite. We define R(ρ) =∞ if ρ ∈P(RD) \PV,U .

2.1 Proof of Proposition 1

The proof is divided in two parts:

1. We show that minimizing the population risk RN (θ) yields similar results to minimizing its
continuum counterpart R(ρ): ∣∣∣ inf

θ
RN (θ)− inf

ρ
R(ρ)

∣∣∣ ≤ K

N
. (2.6)
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2. We establish the condition for ρ∗ to be a minimizer:

supp(ρ∗) ⊆ arg min
θ∈RD

Ψ(θ; ρ∗) . (2.7)

First notice that, for any θ = (θi)i≤N , we have

RN (θ) ≥ inf
ρ
R(ρ) . (2.8)

Indeed, RN (θ) = R(ρ) for ρ = (1/N)
∑N
i=1 δθi

.
In order to prove Eq. (2.6), let ρ∗ ∈P(RD) be such that R(ρ∗) = R∗ under assumption (a), or

R(ρ∗) ≤ R∗ + ε under assumption (b). Let (θi)i≤N ∼iid ρ∗. A simple calculation shows that

Eθ[RN (θ)]−R(ρ∗) = 1
N

{∫
U(θ,θ) ρ∗(dθ)−

∫
U(θ1,θ2) ρ∗(dθ1) ρ∗(dθ2)

}
(2.9)

≤ 1
N

∫
U(θ,θ) ρ∗(dθ) ≤ K

N
, (2.10)

where the first inequality follows since
∫
U(θ1,θ2) ρ∗(dθ1) ρ∗(dθ2) = E{y(x)2} ≥ 0 for y(x) =∫

σ∗(x;θ) ρ∗(dθ), and the second inequality follows by assumption. It follows that

inf
θ
RN (θ) ≤ R∗ + K

N
+ ε , (2.11)

whence the claim (2.6) follows since ε is arbitrary.
We next establish the minimum condition (2.7). Notice that since V ( · ) is continuous, and

U( · , · ) is bounded below, it follows from Fatou’s lemma that, for any ρ, the function θ 7→ Ψ(θ; ρ)
is lower semicontinous and takes values in (−∞,∞]. In particular the set S0(ρ) ≡ arg minθ Ψ(θ; ρ)
must be closed.

We first prove that any minimizer must satisfy (2.7). Let ρ∗ be a minimizer and define Ψ∗ =
infθ Ψ(θ; ρ∗). By rearranging terms, for any probability measure ρ, we have

R(ρ)−R(ρ∗) = 2〈Ψ( · ; ρ∗), (ρ− ρ∗)〉+ 〈U, (ρ− ρ∗)⊗2〉 . (2.12)

First we will assume Ψ∗ > −∞ (whence, by lower semicontinuity, S0(ρ∗) must be a non-empty closed
set). Let θ1 ∈ S0(ρ∗), and assume by contradiction that there exist θ0 ∈ supp(ρ∗), θ0 6∈ S0(ρ∗).
Let B(θ0; ε) be a ball of radius ε around θ0. By lower semicontinuity, we can find ε0,∆ > 0 such
that infθ∈B(θ0;ε0) Ψ(θ; ρ∗) = Ψ∗ + ∆ > Ψ∗. Further t0 ≡ ρ∗(B(θ0; ε0)) > 0 because θ0 ∈ supp(ρ∗).

Let ν ≡ 1B(θ0;ε0)ρ∗/t0 (i.e. ν is the conditional distribution given θ ∈ B(θ0; ε0)). Define, for
t ∈ [0, t0], the probability measure

ρt = ρ∗ − tν + tδθ1 . (2.13)

Using Eq. (2.12), we get

R(ρt)−R(ρ∗) = 2〈Ψ( · ; ρ∗), (δθ1 − ν)〉 t+ 〈U, (δθ1 − ν)⊗2〉t2 (2.14)
≤ 2(Ψ∗ −Ψ∗ −∆) t+ C0 t

2 = −2∆ t+ C0 t
2 , (2.15)

where the second inequality follows from the fact that U is continuous and δθ1 , ν have bounded
support. By taking t small enough, we get R(ρ) < R(ρ∗) hence reaching a contradiction.
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Next consider the case in which Ψ∗ ≡ infθ Ψ(θ; ρ∗) = −∞. For M ∈ N, M ≥ 1, let θM ∈ RD
be such that Ψ(θM ; ρ∗) ≤ −M . For θ0 ∈ supp(θ∗), construct ν as before. Note that, and call
infθ∈B(θ0;ε0) Ψ(θ; ρ∗) = Ψ0. Define, for t ∈ [0, t0]

ρM,t = ρ∗ − tν + tδθM
. (2.16)

By applying again Eq. (2.12), we get

R(ρM,t)−R(ρ∗) = 2〈Ψ( · ; ρ∗), (δθM
− ν)〉 t+ 〈U, (δθM

− ν)⊗2〉t2 (2.17)
≤ −2(M + Ψ0) t+ C0(M) t2 . (2.18)

By selecting t = tM = min(t0, (M + Ψ0)/C0(M)) (which is positive for all M large enough), we
obtain R(ρM,t)−R(ρ∗) < 0 for all M large and hence reach a contradiction.

We finally prove that condition (2.7) is sufficient for ρ∗ to be a minimizer. Indeed, for any
non-negative measurable function µ : RD → R, letting Ψ∗ = minθ Ψ(θ; ρ∗),

R(ρ) ≥ R# + 2〈V, ρ〉+ 〈U, ρ⊗2〉 − 〈µ, ρ〉 (2.19)
= R(ρ∗) + 2〈Ψ( · ; ρ∗), ρ− ρ∗〉+ 〈U, (ρ− ρ∗)⊗2〉 − 〈µ, ρ〉 (2.20)
= R(ρ∗) + 2〈Ψ( · ; ρ∗)−Ψ∗, ρ− ρ∗〉+ 〈U, (ρ− ρ∗)⊗2〉 − 〈µ, ρ〉 . (2.21)

Setting µ = 2[Ψ( · ; ρ∗)−Ψ∗], and noticing that condition (2.7) implies 〈Ψ( · ; ρ∗)−Ψ∗, ρ∗〉 = 0, we
get R(ρ) ≥ R(ρ∗) + 〈U, (ρ− ρ∗)⊗2〉 ≥ R(ρ∗).

2.2 Some additional results

We often find empirically that the optimal density ρ∗ is supported on a set of Lebesgue measure 0
(sometimes on a finite set of points). The following consequence of the previous results partially
explains these findings.
Corollary 2.1. Assume θ 7→ V (θ) to be an analytic function and (θ1,θ2) 7→ U(θ1,θ2) to be
analytic with respect to θ1, uniformly in θ2. Namely there exists a locally bounded function θ 7→
B(θ) such that ‖∇kθ1

U(θ1,θ2)‖2 ≤ k!B(θ1)k for all k, θ1, θ2. If ρ∗ is a minimizer of R(ρ), then
one of the following holds

(a) Ψ(θ; ρ∗) = Ψ∗ for some constant Ψ∗ and all θ ∈ RD.

(b) The support of ρ∗ has zero Lebesgue measure.
If D = 1, then (b) can be replaced by: (b′) ρ∗ is a convex combination of countably many point
masses with no accumulation point (finitely many if Ψ(θ; ρ∗)→∞ as |θ| → ∞).
Proof. Note that, under the stated conditions f(θ) ≡

∫
U(θ,θ′) ρ∗(dθ′) is analytic. Indeed,

by a standard dominated convergence argument, we have that ∇kf is given by the integral of∫
∇kU(θ1,θ2) ρ∗(dθ2) for any k ≥ 0. Further, by an application of the intermediate value theorem

there exists tθ1,θ2,δ ∈ [0, 1] such that∣∣∣∣∣f(θ1 + δ)−
k−1∑
`=0

1
`! 〈∇

`f(θ1), δ⊗`〉
∣∣∣∣∣ ≤ 1

k!

∣∣∣∣∫ 〈∇kθ1U(θ1 + tθ1,θ2,δδ,θ2), δ⊗k〉 ρ∗(dθ2)
∣∣∣∣ (2.22)

≤
∫
B(θ1 + tθ1,θ2,δδ)k‖δ‖k2 ρ∗(dθ2) (2.23)

≤ sup
θ∈B(θ1;‖δ‖2)

B(θ)k ‖δ‖k2 , (2.24)
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which vanishes as k →∞ for uniformly over ‖δ‖2 ≤ δ0 for δ0 small enough.
Let Ψ∗ = minθ∈RD Ψ(θ; ρ∗). We thus have that θ 7→ Ψ(θ; ρ∗) is also analytic and so is θ 7→

Ψ(θ; ρ∗) − Ψ∗. Since supp(ρ∗) ⊆ {θ : Ψ(θ; ρ∗) = Ψ∗}, the claim follows from the fact that the
set of zeros of a non-trivial analytic function has vanishing Lebesgue measure [Mit15]. In the case
D = 1, the set of zeros of an analytic function cannot have any accumulation point [Lan13], which
therefore allows to replace (b) with (b′).

3 General results: Dynamics

In this section we consider the SGD dynamics with step size sk = εξ(kε), under the assumptions
A1,A2,A3 stated in the main text. For the readers convenience, we reproduce here the form of the
limiting PDE

∂tρt(θ) =2ξ(t)∇ ·
[
ρt(θ)∇Ψ(θ; ρt)

]
, (3.1)

Ψ(θ; ρ) =V (θ) +
∫
U(θ,θ′) ρ(dθ′) . (3.2)

Recall that this is an evolution in the space of probability measures in RD, and is to be interpreted
in weak sense. Namely ρt is a solution of Eq. (3.1), if, for any bounded differentiable function
ϕ : RD → R with bounded gradient:

d
dt〈ρt, ϕ〉 = −2ξ(t)

∫
〈∇ϕ(θ),∇Ψ(θ; ρt)〉 ρt(dθ) . (3.3)

For background on this and similar PDEs (and the analogous ones at finite temperature, cf. Section
6), we refer to [MV00, CMV+03, CMV06, AGS08, CDF+11]. Our treatment will be mostly self-
contained because of some differences between our setting and the one in these papers.

Remark 3.1. Recall assumptions A1, A2, A3 in the main text. By [Szn91, Theorem 1.1], assump-
tions A1 and A3 are sufficient for the existence and uniqueness of solution of PDE (3.1).

A very useful tool for the analysis of the PDE (3.1) is provided by the following nonlinear
dynamics. We introduce trajectories (θti)1≤i≤N, t∈R≥0 by letting θ0

i = θ0
i to be the same initialization

as for SGD and, for t ≥ 0 (here PX denotes the law of the random variable X):

θ
t
i = θ0

i − 2
∫ t

0
ξ(s)∇Ψ(θsi ; ρs) ds , (3.4)

ρs = Pθs
i
. (3.5)

This should be regarded as an equation for the law of the trajectory (θti)t∈R≥0 , with boundary
condition determined by θ0

i ∼ ρ0. As implied by [Szn91, Theorem 1.1], under the same assumptions
A1 and A3, the nonlinear dynamics has a unique solution, with ρt satisfying Eq. (3.1).

Lemma 3.1. Assume conditions A1 and A3 hold. Let (ρt)t≥0 be the solution of the PDE (3.1). Let
(θti)t≥0 be the solution of nonlinear dynamics (3.4). Then t 7→ θ

t
i is K1K3-Lipschitz continuous,

and t 7→ ρt is K1K3-Lipschitz continuous in W2 Wasserstein distance, with K1 and K3 as per
conditions A1 and A3. In particular, t 7→ ρt is continuous in the topology of weak convergence.
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Proof. Since ξ and ∇Ψ are K1 and K3 bounded respectively, t 7→ θ
t
i is K1K3-Lipschitz continuous.

Further, Eq. (1.2) implies that t 7→ ρt is Lipschitz continuous in W2 Wasserstein distance, namely

dBL(ρt, ρs) ≤W2(ρt, ρs) ≤ (E[‖θti − θ
s
i‖22])1/2 ≤ K1K3|t− s|. (3.6)

We notice that, under the nonlinear dynamics, the trajectories (θt1)t∈R≥0 , . . . , (θtN )t∈R≥0 are
independent and identically distributed. In particular, this implies that, almost surely,

1
N

N∑
i=1

δ
θ

t
i

d⇒ ρt . (3.7)

3.1 Proof of Theorem 3: Convergence to the PDE

The proof follows a ‘propagation of chaos’ argument [Szn91]. Throughout this proof, we will use
K to denote generic constant depending on the constants K1,K2,K3 in conditions A1, A2, A3.

It is convenient to introduce the notations zk = (xk, yk) to denote the k-th example and define

F i(θ; zk) =
(
yk − ŷ(xk;θ)

)
∇θi

σ∗(xk;θi) , θ = (θi)i≤N ∈ RD×N , (3.8)

G(θ; ρ) = −∇Ψ(θ; ρ) = −∇V (θ)−
∫
∇θU(θ,θ′) ρ(dθ′) , θ ∈ RD. (3.9)

Note that the assumption of bounded Lipschitz ∇V , ∇1U (here and below ∇1U(θ1,θ2) denotes
the gradient of U with respect to its first argument) implies ‖G(θ; ρ)‖2 ≤ K and ‖G(θ1; ρ) −
G(θ2; ρ)‖2 ≤ K‖θ1 − θ2‖2. Further

‖G(θ; ρ1)−G(θ; ρ2)‖2 =
∥∥∥ ∫ ∇θU(θ;θ′)(ρ1 − ρ2)(dθ′)

∥∥∥
2
≤ K dBL(ρ1, ρ2) . (3.10)

With these notations, we can rewrite the SGD dynamics [3] in the main text as

θk+1
i = θki + 2ε ξ(kε)F i(θki ; zk+1) , (3.11)

which yields

θki = θ0
i + 2ε

k−1∑
`=0

ξ(`ε)F i(θ`i ; z`+1) . (3.12)

Recall (θ0
i )i≤N ∼ ρ0 independently.

For t ∈ R≥0 we will define [t] = εbt/εc. Eq. (3.12) should be compared with the nonlinear
dynamics (3.4), which reads

θ
t
i = θ0

i + 2
∫ t

0
ξ(s)G(θsi ; ρs) ds . (3.13)

We next state and prove the key estimate controlling the difference between the original dy-
namics and the nonlinear dynamics.
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Lemma 3.2. Under the assumptions of Theorem 3, there exists a constant K depending uniquely
on K1,K2,K3 in conditions A1, A2, and A3, such that for any T ≥ 0, we have

max
i≤N

sup
k∈[0,T/ε]∩N

∥∥θki − θkεi ∥∥2 ≤ Ke
KT ·

√
1/N ∨ ε ·

[√
D + log(N(T/ε ∨ 1)) + z

]
(3.14)

with probability at least 1− e−z2.

Proof. Consider for simplicity of notation t ∈ Nε ∩ [0, T ]. Taking the difference of Eqs. (3.12) and
(3.13), we get

∥∥θt/εi − θti∥∥2 =2
∥∥∥ ∫ t

0
ξ(s)G(θsi ; ρs) ds− ε

t/ε−1∑
k=0

ξ(kε)F i(θk; zk+1) ds
∥∥∥

2

≤2
∫ t

0

∥∥∥ξ(s)G(θsi ; ρs)− ξ([s])G(θ[s]
i ; ρ[s])

∥∥∥
2

ds

+ 2
∫ t

0

∥∥∥ξ([s])G(θ[s]
i ; ρ[s])− ξ([s])G(θbs/εci ; ρ[s])

∥∥∥
2

ds

+ 2
∥∥∥ε t/ε−1∑

k=0
ξ(kε)

{
F i(θk; zk+1)−G(θki ; ρkε)

}∥∥∥
2

≡2Ei1(t) + 2Ei2(t) + 2Ei3(t) .

(3.15)

We next consider the three terms above. Using the Lipschitz continuity of G(θ; ρ) with respect to
θ and ρ (see Eq. (3.10)), and due to condition A1 and Lemma 3.1 (implying that ξ, θti, and ρs are
Lipschitz continuous), we get

Ei1(t) ≤ t sup
s∈[0,t]

{∥∥ξ(s)G(θsi ; ρs)− ξ([s])G(θsi ; ρs)
∥∥

2 +
∥∥ξ([s])G(θsi ; ρs)− ξ([s])G(θ[s]

i ; ρs)
∥∥

2

+
∥∥ξ([s])G(θ[s]

i ; ρs)− ξ([s])G(θ[s]
i ; ρ[s])

∥∥
2

}
≤ K t ε . (3.16)

Bounding the second term yields (by using the Lipschitz continuity of G with respect to its first
argument):

Ei2(t) ≤ K
∫ t

0

∥∥G(θ[s]
i ; ρ[s])−G(θbs/εci ; ρ[s])

∥∥
2ds ≤ K2

∫ t

0

∥∥θ[s]
i − θ

bs/εc
i

∥∥
2ds . (3.17)

In order to bound the last term we denote by Fk, for k ∈ N, the sigma-algebra generated by (θ0
i )i≤N

and z1,. . . ,zk. Note that

E
{
F i(θk; zk+1)

∣∣Fk} = −∇V (θki )−
1
N

N∑
j=1
∇1U(θki ,θkj ) = G(θki ; ρ̂

(N)
k ) , (3.18)

where ρ̂(N)
k ≡ (1/N)

∑
i≤N δθk

i
. Hence

Ei3(t) ≤
∥∥∥∥∥ε

t/ε−1∑
k=0

ξ(kε)
{
G(θki ; ρ̂

(N)
k )−G(θki ; ρkε)

}∥∥∥∥∥
2

+
∥∥∥∥∥ε

t/ε−1∑
k=0

ξ(kε)Zi
k

∥∥∥∥∥
2

(3.19)

≡ Ei3,0(t) +Qi1(t) , (3.20)
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where we introduced the martingale differences Zi
k ≡ F i(θk; zk+1)− E

{
F i(θk; zk+1)

∣∣Fk}. We can
apply Azuma-Hoeffding inequality, cf. Lemma A.1. Indeed, condition (A.1) follows from the fact
that σ∗(x;θ) is bounded and ∇θσ∗(x;θ) is sub-Gaussian (the product of a sub-Gaussian random
vector and a bounded random variable is sub-Gaussian, cf. for instance Lemma 1.(d) in [MBM16]),
hence each ξ(kε)Zi

k are K2-sub-Gaussian. We therefore get

P
(

max
k∈[0,t/ε]∩N

Qi1(kε) ≥ K
√
tε(
√
D + u)

)
≤ e−u2

, (3.21)

and taking union bound over i ≤ N , we get

P
(

max
i≤N

max
k∈[0,t/ε]∩N

Qi1(kε) ≤ K
√
tε (
√
D + logN + z)

)
≥ 1− e−z2

. (3.22)

For the term Ei3,0(t), we use the Lipschitz continuity property (3.10), whence

∥∥G(θki ; ρ̂
(N)
k )−G(θki ; ρkε)

∥∥
2

≤
∥∥∥ 1
N

N∑
j=1

[
∇1U(θki ,θkj )−∇1U(θki ,θ

kε
j )
]∥∥∥

2
+
∥∥∥ 1
N

N∑
j=1

[
∇1U(θki ,θ

kε
j )− Eθ∇1U(θki ,θ

kε
j )
]∥∥∥

2

≤K
N

N∑
j=1
‖θkj − θ

kε
j ‖2 +Qi2(kε) + K

N
.

(3.23)

Here Qi2(kε) for k ∈ N is defined as

Qi2(kε) =
∥∥∥ 1
N

∑
j≤N,j 6=i

[
∇1U(θki ,θ

kε
j )− Eθ∇1U(θki ,θ

kε
j )
]∥∥∥

2
.

Since for any fixed k, (θkεj )j≤N,j 6=i are i.i.d. and independent of θki , and ∇1U is bounded, we get
by another application of Azuma-Hoeffding inequality, cf. Lemma A.1,

P
(
Qi2(kε) ≥ K

√
1/N(

√
D + u)

)
≤ e−u

2
. (3.24)

Therefore, the union bound for k ∈ [0, t/ε] ∩ N, and i ≤ N gives

P
(

max
i≤N

max
k∈[0,t/ε]∩N

Qi2(kε) ≤ K
√

1/N ·
(√

D + log(N(t/ε ∨ 1)) + z
))
≥ 1− e−z2

. (3.25)

Conditional on the good events in Eq. (3.22) and (3.25), Eq. (3.20) thus yields

Ei3(t) ≤ K

N

N∑
j=1

∫ t

0
‖θbs/εcj − θ[s]

j ‖2 ds+Q(t) + Kt

N
, (3.26)

where
Q(t) ≡max

i≤N
Qi1(t) + t ·max

i≤N
max

k∈[0,t/ε]∩N
Qi2(kε)

≤K
√
tε
(
z +

√
D + logN

)
+ tK

√
1/N

(√
D + log(N(t/ε ∨ 1)) + z

)
≤K(

√
t ∨ t) ·

√
1/N ∨ ε ·

[√
D + log(N(t/ε ∨ 1)) + z

]
.

(3.27)
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with probability at least 1− e−z2 .
We finally define the random variable

∆(t;N, ε) ≡ max
i≤N

sup
k∈[0,t/ε]∩N

‖θki − θ
kε
i ‖2 . (3.28)

Using the bounds (3.16), (3.17), (3.26) in Eq. (3.15), we get

∆(t;N, ε) ≤ K
∫ t

0
∆(s;N, ε)ds+K tε+ Kt

N
+Q(t) . (3.29)

By Gronwall’s inequality, we have

∆(t;N, ε) ≤ K eKt
{
ε+ 1

N
+Q(t)

}
. (3.30)

Using the bound (3.27), the claim follows.

Lemma 3.3. Under the assumptions of Theorem 3, we have

max
k∈[0,T/ε]∩N

∣∣∣RN (θkε)−RN (θk)
∣∣∣ ≤ K ·max

i≤N
max

k∈[0,T/ε]∩N

∥∥θki − θkεi ∥∥2. (3.31)

Proof. Let θ = (θ1, . . . ,θi, . . . ,θn) and θ′ = (θ1, . . . ,θ
′
i, . . . ,θn) be two configurations that differ

only in position i. Then∣∣RN (θ)−RN (θ′)
∣∣

≤ 1
N
|V (θi)− V (θ′i)|+

1
N2 |U(θi,θi)− U(θ′i,θ′i)|+

2
N2

∑
j≤N,j 6=i

|U(θi,θj)− U(θ′i,θj)|

≤K
N

(‖θi − θ′i‖2 ∧ 1).

(3.32)

Then, Eq. (3.31) follows immediately.

Lemma 3.4. Under the assumptions of Theorem 3, we have,

max
k∈[0,T/ε]∩N

∣∣∣RN (θkε)−R(ρkε)
∣∣∣ ≤ K√1/N ·

(√
D + log(N(T/ε ∨ 1)) + z

)
(3.33)

with probability at least 1− e−z2.

Proof. By Eq. (3.32) and by Azuma-Höeffding inequality and union bound, we get

max
k∈[0,T/ε]∩N

∣∣∣RN (θkε)− ERN (θkε)
∣∣∣ ≤ K√1/N ·

(√
D + log(N(T/ε ∨ 1)) + z

)
(3.34)

with probability at least 1− e−z2 . The claim follows since∣∣∣ERN (θt)−R(ρt)
∣∣∣ = 1

N

∣∣∣ ∫ U(θ,θ) ρt(dθ)−
∫
U(θ1,θ2) ρt(dθ1) ρt(dθ2)

∣∣∣ ≤ K

N
. (3.35)

The proof of the theorem follows from a straightforward application of Lemma 3.2, 3.3, 3.4.
The proof for any bounded Lipschitz function f follows the same argument as Lemma 3.3, 3.4. As a
result, for any sequence (N, ε = εN ) with N/ log(1/εN )→∞ and εN → 0, we have ρ̂(N)

k converges
weakly to ρkε almost surely immediately.
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3.2 Proof of Theorem 3: Generalization to β <∞

Here we generalize the proof given in the previous section to noisy SGD at finite temperature
β <∞. Since the proof follows the same scheme as in the noiseless case, we will limit ourselves to
describing the differences.

Throughout this section we assume that conditions A1, A2, A3 hold. We also let

Ψλ(θ; ρ) =λ

2 ‖θ‖
2
2 + V (θ) +

∫
U(θ,θ′)ρ(θ′)dθ′ (3.36)

for some λ ≤ 1. Further we assume ρ0 is K2
0 -sub-Gaussian. Finally, we assume 1 ≤ β <∞.

For the reader’s convenience, we reproduce here the form of the limiting PDE

∂tρt(θ) =2ξ(t)∇θ ·
[
ρt(θ)∇θΨλ(θ; ρt)

]
+ 2ξ(t)/β · ∆θρt(θ) , (3.37)

which again should be interpreted in weak sense.

Remark 3.2. Recall conditionss A1, A2, A3 in the main text. By a modified argument of [Szn91,
Theorem 1.1], conditions A1 and A3 are sufficient for the existence and uniqueness of solution of
PDE (3.37) in weak sense. Section 6 provides further information of this PDE, including a proof
of existence and uniqueness.

As in the noiseless case, there is an equivalent formulation of this PDE as a fixed point distribu-
tion for the following nonlinear dynamics, which is an integration form of a stochastic differential
equation,

θ
t
i = θ0

i + 2
∫ t

0
ξ(s)G(θsi ; ρs) ds+

∫ t

0

√
2ξ(s)/β dW i(s) , (3.38)

ρs = Pθs
i
, (3.39)

where {W i(s)}s≥0 for i ≤ N are independent D-dimensional Brownian motions, and G(θ; ρ) ≡
−∇Ψλ(θ; ρ). The assumptions on U , V , λ, and ξ ensures that this nonlinear dynamics has a unique
continuous solution.

This nonlinear dynamics should be compared with the noisy SGD dynamics [11] in the main
text that can be written as follows for k ∈ N:

θki = θ0
i + 2ε

k−1∑
`=0

ξ(`ε)F i(θ`; z`) +
∫ kε

0

√
2ξ([s])/β dW i(s) , (3.40)

where

F i(θ; zk) = −λθi +
(
yk − ŷ(xk;θ)

)
∇θi

σ∗(xk;θi), θ = (θi)i≤N ∈ RD×N . (3.41)

It is convenient to collect some standard estimates about the solution of the stochastic differ-
ential equation (3.38).

Lemma 3.5. Assume ρ0 is K2
0 -sub-Gaussian, ξ(s) and G(0; ρs) are K0-bounded, G(θ; ρs) is K0-

Lipschitz in θ, and β ≥ 1. Let (θti)t≥0 for i ≤ N be the solution of (3.38) with independent
initialization (θ0

i )i≤N ∼ ρ0. Let (ρt)t≥0 be the solution of PDE (3.37). Then there exists a constant
K depending uniquely on K0, such that

P
(

sup
i≤N

sup
t∈[0,T ]

‖θti‖2 ≤ KeKT [
√
D + logN + z]

)
≥ 1− e−z2

, (3.42)
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and

P
(

sup
i≤N

sup
k∈[0,T/ε]∩N

sup
u∈[0,ε]

‖θkε+ui −θkεi ‖2 ≤ KeKT
[√

D + log(N(T/ε ∨ 1))+z
]√
ε
)
≥ 1−e−z2

, (3.43)

and for any t, h ≥ 0, t+ h ≤ T ,

dBL(ρt, ρt+h) ≤W2(ρt, ρt+h) ≤ KeKT
√
Dh . (3.44)

Proof. We decompose the proof into three parts.
Part (a). First, note that for any D-dimensional K2

0 -sub-Gaussian random vector X, we have

EX [exp{τ‖X‖22/2}] =EX,G[exp{τ〈G,X〉}] ≤ EG[exp{τK2
0‖G‖22}/2] = (1− τK2

0 )−D/2. (3.45)

Note that (θ0
i )i≤N ∼ ρ0 independently, and ρ0 is K2

0 -sub-Gaussian. Therefore

P(‖θ0
i ‖2 ≥ u) ≤ E[exp(τ‖θi‖22/2)]/ exp{τz2/2} ≤ (1− τK2

0 )−D/2 exp{−τu2/2}.

Taking union bound over i ≤ N gives

P
(

max
i≤N
‖θ0

i ‖2 ≥ u
)
≤ (1− τK2

0 )−D/2 exp{−τu2/2 + logN}.

Taking τ = 1/(2K2
0 ) and u = 2K0(

√
D + logN + z), we get

P
(

max
i≤N
‖θ0

i ‖2 ≥ 2K0(
√
D + logN + z)

)
≤ exp{−z2}. (3.46)

Then we define W ξ,i(t) ≡
∫ t
0
√

2ξ(s) dW i(s). We have Var(W j
ξ,i(t)) =

∫ t
0 2ξ(s)ds ≤ 2K0t for

j ≤ D. Note exp{τ‖W ξ,i(t)‖22} is a submartingale, due to Doob’s martingale inequality, we have

P
(

sup
t≤T
‖W ξ,i(t)‖2 ≥ u

)
≤ E[exp{τ‖W ξ,i(T )‖22/2}] · exp{−τu2/2} ≤ (1− 2K0Tτ)−D/2 exp{−τu2/2}.

Taking union bound over i ≤ N gives

P
(

max
i≤N

sup
t≤T
‖W ξ,i(t)‖2 ≥ u

)
≤ (1− 2K0Tτ)−D/2 exp{−τu2 + logN}.

Taking τ = 1/(4K0T ) and u = 4
√
K0T (

√
D + logN + z), we get

P
(

max
i≤N

sup
t≤T
‖W ξ,i(t)‖2 ≥ 4

√
K0T (

√
D + logN + z)

)
≤ exp{−z2}. (3.47)

By noting that ξ(s), G(0; ρs) are K0-bounded, and G(θ; ρs) is K0-Lipschitz in θ, according to
Eq. (3.38), there exists some constant K depending on K0, such that

∆i(t) ≤ K
∫ t

0
∆i(s)ds+K[W/

√
β + Θ],

where ∆i(t) ≡ sups≤t ‖θ
s
i‖2, W ≡ maxi≤N supt≤T ‖W ξ,i(t)‖2, and Θ ≡ maxi≤N ‖θ0

i ‖2. Due to
Gronwall’s inequality, we have

∆i(T ) ≤ K exp(KT )[W/
√
β + Θ].
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The high probability bound (3.42) holds by noting the high probability bound for Θ and W in Eq.
(3.46) and (3.47).
Part (b). Define ∆i(h; k, ε) = sup0≤u≤h ‖θ

kε+u
i − θkεi ‖2. By noting that ξ(s), G(0; ρs) are K0-

bounded, and G(θ; ρs) is K0-Lipschitz in θ, according to Eq. (3.38), we have

∆i(h; k, ε) ≤K
[

sup
s≤T
‖θsi‖2 + 1

]
h+ 1√

β
sup

0≤u≤h

∥∥W ξ,i,k(u)
∥∥

2, (3.48)

where W ξ,i,k(u) ≡
∫ kε+u
kε

√
2ξ(s) dW i(s). Similar to the bound Eq. (3.47), we have

P
(

max
i≤N

sup
k∈[0,T/ε]∩N

sup
0≤u≤h

‖W ξ,i,k(u)‖2 ≤ 4
√
K0h

(√
D + log(N(T/ε ∨ 1)) + z

))
≥ 1− e−z2

.

(3.49)
Plugging the bound Eq. (3.42) and Eq. (3.49) into Eq. (3.48), we have

max
i≤N

sup
k∈[0,T/ε]∩N

∆i(h; k, ε) ≤KeKT [
√
D + logN + z]h+K

(√
D + log(N(T/ε ∨ 1)) + z

)√
h

≤KeKT
[√

D + log(N(T/ε ∨ 1)) + z
]√
h

with probability at least 1− e−z2 .
Part (c). Equation (3.44) holds directly by noting that

W2(ρt, ρt+h)2 ≤E
{
‖θt − θt+h

∥∥2
2
}

and applying a integration over z in a modified version of Eq. (3.43) without union bound over
i ≤ N and k ∈ [0, T/ε] ∩ N.

As in the noiseless case, the key step consists in bounding the difference between the nonlinear
dynamics and the SGD dynamics.

Lemma 3.6. Under the assumptions of Theorem 3, there exists a constant K depending uniquely
on K0,K1,K2,K3, such that for any T ≥ 0, we have

max
i≤N

sup
k∈[0,T/ε]∩N

‖θki − θ
kε
i ‖2 ≤ KeKT ·

√
1/N ∨ ε ·

[√
D + log(N(T/ε ∨ 1)) + z

]
(3.50)

with probability at least 1− e−z
2.

Proof. We take the difference of Eqs. (3.40) and (3.38), for t ∈ Nε ∩ [0, T ]:
∥∥θt/εi − θti∥∥2 ≤2

∥∥∥ ∫ t

0

[
ξ(s)G(θsi ; ρs)− ξ([s])G(θ[s]

i ; ρ[s])
]
ds
∥∥∥

2

+ 2
∫ t

0

∥∥∥ξ([s])G(θ[s]
i ; ρ[s])− ξ([s])G(θbs/εci ; ρ[s])

∥∥∥
2

ds

+ 2
∥∥∥ε t/ε−1∑

k=0
ξ(kε)

{
F i(θk; zk+1)−G(θki ; ρkε)

}∥∥∥
2

+
∥∥∥ ∫ t

0

(√
2ξ(s)/β −

√
2ξ([s])/β

)
dW i(s)

∥∥∥
2

≡2Ei1(t) + 2Ei2(t) + 2Ei3(t) + Ei4(t) .

(3.51)
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Terms Ei2(t), Ei3(t) can be bounded the same as in Lemma 3.2, i.e., Eq. (3.17) and (3.26), by noting
that the replacement of Ψ by Ψλ does not affect these estimates.

To bound Ei4(t), notice that W ξ,i ≡
∫ T

0
(√

2ξ(s) −
√

2ξ([s])
)

dW i(s) is a Gaussian random
vector, W ξ,i ∼ N(0, τ2ID), where, using the Lipschitz continuity of ξ,

τ2 =
∫ T

0

(√
2ξ(s)−

√
2ξ([s])

)2
ds ≤ K Tε .

By Gaussian concentration

P
(
‖W ξ,i‖2 ≥ (

√
D + z)τ

)
≤ e−z2/2 ,

and therefore by applying Doob’s inequality to the submartingale t 7→ Ei4(t), we get

P
(

max
s≤T

Ei4(s) ≥ K(
√
D + z)

√
Tε
)
≤ e−z2/2,

and hence

P
(

max
i≤N

max
s≤T

Ei4(s) ≤ K(
√
D + logN + z)

√
Tε
)
≥ 1− e−z2/2. (3.52)

We need to modify the proof of Lemma 3.2 to bound terms Ei1(t).

Ei1(t) ≤
∥∥∥ ∫ t

0

[
ξ(s)− ξ([s])

]
G(θsi ; ρs)ds

∥∥∥
2

+
∥∥∥ ∫ t

0
ξ([s])

[
G(θsi ; ρs)−G(θsi ; ρ[s])

]
ds
∥∥∥

2

+
∥∥∥ ∫ t

0
ξ([s])

[
G(θsi ; ρ[s])−G(θ[s]

i ; ρ[s])
]
ds
∥∥∥

2

≡Ei1,A(t) + Ei1,B(t) + Ei1,C(t).

(3.53)

To bound the first term Ei1,A(t), due to the Lipschitz property of G(θ; ρ) and the boundedness
of G(0; ρ), with probability at least 1− e−z2 , we have for all i ≤ N and t ≤ T ,

Ei1,A(t) ≤TKε · sup
s∈[0,T ]

‖G(θsi ; ρs)‖2 ≤ TKε ·
[
K sup

s∈[0,T ]
‖θsi‖2 +K

]
≤KeKT [

√
D + logN + z]ε.

(3.54)

Here the last inequality is due to Eq. (3.42) in Lemma 3.5.
To bound the second term Ei1,B(t), using the fact that ∇1U is bounded Lipschitz, we have for

all i ≤ N and t ≤ T ,

Ei1,B(t) ≤TK · sup
θ∈RD

‖∇1U(θ; ρs)−∇1U(θ; ρ[s])‖2 ≤ TK2 · dBL(ρs, ρ[s]) ≤ KeKT
√
Dε. (3.55)

Here the last inequality is due to Eq. (3.44) in Lemma 3.5.
To bound the third term Ei1,C(t), with probability at least 1− e−z2 , we have for all i ≤ N and

t ≤ T ,

Ei1,C(t) ≤TK · sup
s∈[0,T ]

∥∥G(θsi ; ρ[s])−G(θ[s]
i ; ρ[s])

∥∥
2

≤TK2 · sup
s∈[0,T ]

∥∥θsi − θ[s]
i

∥∥
2 ≤ Ke

KT
[√

D + log(N(T/ε ∨ 1)) + z
]√
ε.

(3.56)
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Here the last inequality is due to Eq. (3.43) in Lemma 3.5.
As a result, combining Eq. (3.17), (3.26), (3.27), (3.51), (3.52), (3.54), (3.55), and (3.56),

defining

∆(t;N, ε) ≡ max
i≤N

sup
k∈[0,T/ε]∩N

‖θki − θ
kε
i ‖2 , (3.57)

we get
∆(t;N, ε) ≤ K

∫ t

0
∆(s;N, ε)ds+ Kt

N
+ E(T ), (3.58)

where
E(T ) = KeKT ·

√
1/N ∨ ε ·

[√
D + log(N(T/ε ∨ 1)) + z

]
. (3.59)

Applying Gronwall’s inequality gives the desired result.

The generalization of Theorem 3 to β <∞ follows from this lemma exactly as in the previous
section.

3.3 Proof of Proposition 2: Monotonicity of the risk

By simple algebra, we have

R(ρt+h)−R(ρt) = 2
∫

Ψ(θ; ρt)(ρt+h − ρt)(dθ) + 〈U, (ρt+h − ρt)⊗2〉 . (3.60)

By Lemma 3.1, t 7→ ρt is Lipschitz continuous in Wasserstein distance W2(ρt1 , ρt2) ≤ K|t1 − t2|.
Hence, we get

R(ρt+h)−R(ρt) = 2
∫

Ψ(θ; ρt)(ρt+h − ρt)(dθ) +O(h2) (3.61)

= −4ξ(t)
∫ ∥∥∇Ψ(θ; ρt)

∥∥2
2 ρt(dθ)h+ o(h) , (3.62)

where in the second step we used Eq. (3.3). This immediately implies that R(ρt) is non-increasing
in t.

Let ρ be a fixed point of Eq. (3.1). Since ∂tR(ρt)|ρ0=ρ = 0, the above formula implies∫ ∥∥∇Ψ(θ; ρ)
∥∥2

2 ρ(dθ) = 0 , (3.63)

and therefore ρ is supported in the set of θ’s such that ∇Ψ(θ; ρ) = 0.
Vice versa, if this is the case, setting ρ0 = ρ, Eq. (3.3) implies ∂t〈ϕ, ρt〉 = 0, then ρt ≡ ρ0 is a

fixed point.

3.4 A general continuity result

It is useful to notice that the solution (ρt)t≥0 of the PDE (3.1) is continuous with respect to changes
in V ( · ), U( · , · ). Namely, we consider the following two PDEs:

∂tρt(θ) = 2ξ(t)∇ ·
[
ρt(θ)∇Ψ(θ; ρt)

]
, (3.64)

∂tρ̃t(θ) = 2ξ(t)∇ ·
[
ρ̃t(θ)∇Ψ̃(θ; ρ̃t)

]
, (3.65)
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where

Ψ(θ; ρ) = V (θ) +
∫
U(θ,θ′) ρ(dθ′) , (3.66)

Ψ̃(θ; ρ̃) = Ṽ (θ) +
∫
Ũ(θ,θ′) ρ̃(dθ′) . (3.67)

Lemma 3.7. Let assumptions A1, A3 hold both for V,U and Ṽ , Ũ , and consider the solutions of
Eqs. (3.64) and (3.65) with initial conditions ρ0, ρ̃0. Then there exists K <∞ depending only on
the constants K1, K3 in the assumptions (independent of D), such that

sup
t∈[0,T ]

dBL(ρt, ρ̃t) ≤ K eKT · [dBL(ρ0, ρ̃0) + ε0] , (3.68)

where

ε0 ≡ sup
θ,θ′∈RD

[
‖∇V (θ)−∇Ṽ (θ)‖2 + ‖∇1U(θ,θ′)−∇1Ũ(θ,θ′)‖2

]
. (3.69)

Proof. The proof adapts the argument used to establish uniqueness in [Szn91]. Without loss of
generality, we fix ξ(t) ≡ 1/2. We further denote by K generic constants depending on K1, K3.

The assumption of bounded Lipschitz ∇V and ∇U implies that ∇Ψ(θ; ρ) is K-bounded Lips-
chitz with respect to argument (θ, ρ), that is,∥∥∥∇Ψ(θ1; ρ1)−∇Ψ(θ2; ρ2)

∥∥∥
2
≤ K

[
‖θ1 − θ2‖2 ∧ 1 + dBL(ρ1, ρ2)

]
. (3.70)

The assumption of bounded Lipschitz ∇Ṽ and ∇Ũ implies that ∇Ψ̃(θ; ρ) is K-bounded Lipschitz.
Under these conditions, according to [Szn91, Theorem 1.1], there is existence and uniqueness of
PDE (3.64) and (3.65). We denote their solutions at time t to be ρt, ρ̃t ∈P(RD) respectively.

Let γ0 ∈P(RD ×RD) be a coupling of ρ0 and ρ̃0 that achieves 2dBL(ρ0, ρ̃0). Given these fixed
(ρt)t≥0 and (ρ̃t)t≥0, consider the nonlinear dynamics

θt =θ0 −
∫ t

0
∇Ψ(θs; ρs)ds, (3.71)

θ̃
t =θ̃0 −

∫ t

0
∇Ψ̃(θ̃s; ρ̃s)ds, (3.72)

with initialization (θ0, θ̃
0) ∼ γ0. As implied by [Szn91, Theorem 1.1], since we have θ0 ∼ ρ0,

θ̃
0 ∼ ρ̃0, it follows that θt ∼ ρt, θ̃t ∼ ρ̃t, and therefore

dBL(ρt, ρ̃t) ≤ 2
∫ (
‖θt − θ̃t‖2 ∧ 1

)
γ0(dθ0, dθ̃0) . (3.73)

Taking the difference of Eqs. (3.71) and (3.72), for any (θ0, θ̃
0) ∈ supp(γ0),

‖θt − θ̃t‖2 ≤
∫ t

0

∥∥∥∇Ψ(θs; ρs)−∇Ψ̃(θ̃s; ρ̃s)
∥∥∥

2
ds+ ‖θ0 − θ̃0‖2

≤
∫ t

0

∥∥∥∇Ψ(θs; ρs)−∇Ψ(θ̃s; ρ̃s)
∥∥∥

2
ds+

∫ t

0

∥∥∥∇Ψ(θ̃s; ρ̃s)−∇Ψ̃(θ̃s; ρ̃s)
∥∥∥

2
ds+ ‖θ0 − θ̃0‖2

≡E1(t) + E2(t) + ‖θ0 − θ̃0‖2.

(3.74)
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Using bound (3.70), the first term E1(t) is simply bounded by

E1(t) ≤ K
∫ t

0

[
‖θs − θ̃s‖2 ∧ 1 + dBL(ρs, ρ̃s)

]
· ds. (3.75)

To bound the second term E2(t), we have

E2(t) ≤t× sup
θ∈RD,ρ∈P(RD)

‖∇Ψ(θ; ρ)−∇Ψ̃(θ; ρ)‖2

≤t× sup
θ,θ′∈RD

[
‖∇V (θ)−∇Ṽ (θ)‖2 + ‖∇1U(θ,θ′)−∇1Ũ(θ,θ′)‖2

]
= t · ε0, (3.76)

with the definition of ε0 given by Equation (3.69).
Combining Equation (3.74), (3.75), and (3.76), we have

‖θt − θ̃t‖2 ∧ 1 ≤ K
∫ t

0

[
‖θs − θ̃s‖2 ∧ 1 + dBL(ρs, ρ̃s)

]
· ds+ t · ε0 + ‖θ0 − θ̃0‖2 ∧ 1. (3.77)

Averaging the above inequality over (θ0, θ̃
0) ∼ γ0, and using inequality (3.73), we have∫

‖θt − θ̃t‖2 ∧ 1 · dγ0 ≤ 2dBL(ρ0, ρ̃0) + 3K
∫ t

0

[ ∫
‖θs − θ̃s‖2 ∧ 1 · dγ0

]
· ds+ t · ε0. (3.78)

Using Gronwall’s inequality, for any t ∈ R, we have∫
‖θt − θ̃t‖2 ∧ 1 · γ0(dθ0,dθ̃0) ≤ K exp(Kt) · [dBL(ρ0, ρ̃0) + ε0].

Applying Equation (3.73), the result follows.

3.5 Some properties of the solution of the PDE (3.1)

In this section we prove four lemmas on the properties of the solution of the PDE (3.1), under
conditions A1 and A3. All of these facts are quite standard, but we provide complete proofs for
them for reader’s convenience.

We will use several times the following notations. Let ρt be a solution of the PDE (3.1) with
initialization ρ0. Let (θt)t≥0 be the solution of the ordinary differential equation (ODE)

θ̇t = −2ξ(t)∇Ψ(θt; ρt) , (3.79)

with initial condition θ0. Without loss of generality, we will assume ξ(t) = 1/2 throughout this
section. If θ0 ∼ ρ0, then for any t ≥ 0, we have θt ∼ ρt. We will denote by ϕt : RD 7→ RD the map
between initial conditions of this ODE, and its state at time t (i.e. ϕt(θ0) = θt). Since ∇Ψ( · ; ρt) is
bounded and Lipschitz continuous, it follows that ϕt is a homeomorphism on its image by Picard’s
theorem.

With these notations, ρt is the push forward of ρ0 under ϕt: ρt = ϕt∗ρ0. In other words, for
any Borel set B, ρt(ϕt(B)) = ρ0(B).

Lemma 3.8. Assume conditions A1, A3 hold. Let (ρt)t≥0 be the solution of the PDE (3.1) with
initialization ρ0. Let Ω ⊆ RD be a Borel set. Suppose ϕt(Ω) ⊆ Ω, then we have ρt(Ω) ≥ ρ0(Ω).
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Proof. The lemma holds immediately by noting that ρt(Ω) ≥ ρt(ϕt(Ω)) = ρ0(Ω).

Lemma 3.9. Assume conditions A1, A3 hold. Further assume there exists a constant K <∞ such
that

|∂iΨ(θ; ρ)| ≤K · θi, (3.80)

for any θ ∈ (0,∞)D and ρ ∈ P([0,∞]D). Let (ρt)t≥0 be the solution of the PDE (3.1) with initial
condition ρ0 with ρ0((0,∞)D) = 1. Then for any t <∞, ρt((0,∞)D) = 1.

Proof. According to Eqs. (3.80) and (3.79), we have for i ∈ [d],

θ0
i · exp{−Kt} ≤ θti ≤ θ0

i · exp{Kt}. (3.81)

Denote
Ωk(t) = [1/k · exp{−Kt}, k · exp{Kt}]D. (3.82)

Then according to (3.81), we have ϕt(Ωk(0)) ⊆ Ωk(t). Note Ωk(t) is increasing in k for fixed t, and
∪kΩk(t) = ∪kΩk(0) = (0,∞)D. Hence,

ρt((0,∞)D) = lim
k→∞

ρt(Ωk(t)) ≥ lim
k→∞

ρt(ϕt(Ωk(0))) = lim
k→∞

ρ0(Ωk(0)) = ρ0((0,∞)D) = 1. (3.83)

Lemma 3.10. Let (ρt)t≥0 be a continuous curve in a compact metric space (Ω, d). Denoting

S∗ ≡ {ρ∗ ∈ Ω : ∃(tk)k≥1, lim
k→∞

tk =∞, s.t., lim
k→∞

d(ρtk , ρ∗) = 0}

to be the set of all limiting points of (ρt)t≥0. Then S∗ is a connected compact set.

Proof. First, it is easy to see that S∗ should be closed. Note that Ω is a compact space, then S∗
should be a compact set. If S∗ = {ρ∗} is a singleton, this lemma holds automatically. Therefore,
we would like to consider the case when S∗ is not a singleton.

For any ρ1, ρ2 ∈ S∗, and d(ρ1, ρ2) > 0. We would like to show ρ1 and ρ2 are connected in S∗.
We use proof by contradiction. Now suppose ρ1 and ρ2 are not connected. Define A ⊆ S∗ to be

the maximal connected subset of S∗ containing ρ1. It is easy to see that A is compact. It is also
easy to see that its complement B ≡ S∗ \A is also a compact set, and ρ2 ∈ B. As a result, we have
A ∪ B = S∗, A ∩ B = ∅, and ρ1 ∈ A, ρ2 ∈ B.

Note that Ω is a metric space, so it satisfies T4 separation axiom. Since A and B are closed
sets and A ∩ B = ∅, there exists an open set O, such that A ⊆ O, O ∩ B = ∅. Hence, ∂O ⊆ Sc∗.

Note that ρ1 and ρ2 are limiting points of (ρt)t≥0 which is a continuous curve in Ω. Therefore,
it must cross the boundary ∂O infinite times. That is, there is a sequence (tk)k≥1 of time with
limk→∞ tk = ∞, such that ρtk ∈ ∂O. But since ∂O is compact, there exists a limiting point
ρ∗ ∈ ∂O, so that a subsequence of sequence ρtk converges to ρ∗. Therefore, ρ∗ should be a limiting
point of (ρt)t≥0. But this contradict with ∂O ⊆ Sc∗.

Lemma 3.11. Under the assumptions of A1 and A3, further assume that U, V are twice continuous
differentiable, and that ρ0 has density with respect to the Lebesgue measure, bounded by M0. Then
ρt also has a density, bounded by Mt = KM0 exp{KDt} (where K depends on the constants in the
assumptions).
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Proof. Let J(θ; t) for the Jacobian of ϕt( · ) at θ0 = θ. Then Eq. (3.79) implies that J(θ; t) satisfies

d
dt J(θ; t) = −∇2Ψ(ϕt(θ); ρt)J(θ; t) , (3.84)

with initial condition J(θ; 0) = ID. This implies

d
dtλmin

(
J(θ; t)

)
≥ −‖∇2Ψ(ϕt(θ); ρt)‖op λmin

(
J(θ; t)

)
. (3.85)

Therefore, using the fact that ‖∇2Ψ(θ; ρt)‖op is K-bounded, we obtain λmin
(
J(θ; t)

)
≥ exp(−Kt).

Finally, since ϕt is a diffeomorphism, we have

ρt(θ) = ρ0
(
(ϕt)−1(θ)

) ∣∣∣ det(J((ϕt)−1(θ); t)
)∣∣∣−1

(3.86)

≤ ρ0
(
(ϕt)−1(θ)

)
exp(KDt) . (3.87)

This completes the proof.

3.6 Proof of Theorems 6: Stability conditions

In this section, we will prove the stability result in Theorem 6. Throughout the proof we can
assume, without loss of generality, ξ(t) = 1/2. Indeed ξ(t) amounts just of a change of time.
Further we introduce the matrix H1 = H1(δθ∗) ∈ RD×D by

H1(δθ∗) = ∇2V (θ∗) +∇2
1,1U(θ∗,θ∗) +∇2

1,2U(θ∗,θ∗) , (3.88)
= H0(δθ∗) +∇2

1,2U(θ∗,θ∗) , (3.89)

where H0 ≡H0(δθ∗) = ∇2V (θ∗) +∇2
1,1U(θ∗,θ∗). Notice that

〈u,∇2
1,2U(θ∗,θ∗)u〉 = E{〈u,∇θσ∗(x;θ∗)〉2} , (3.90)

and therefore ∇2
1,2U(θ∗,θ∗) � 0, whence H1 �H0.

We first establish the condition for ρ∗ = δθ∗ to be a fixed point. Note that Ψ(θ; ρ∗) = V (θ) +
U(θ,θ∗) and supp(ρ∗) = {θ∗}. Hence the condition [20] in the main text is satisfied if and only if
∇θΨ(θ; ρ∗)|θ=θ∗ = 0, i.e. ∇V (θ∗) +∇1U(θ∗,θ∗) = 0.

To establish the stability result of Theorem 6, the following lemma provides a key estimate.

Lemma 3.12. Under the assumptions of Theorem 6, let λ ≡ λmin(H0) > 0. Then there exists
r1, ε1, γ > 0 such that the following hold

(i) If supp(ρ) ⊆ B(θ∗; r1) ≡ {θ : ‖θ − θ∗‖2 ≤ r1}, then,∫
〈(θ − θ∗),∇Ψ(θ; ρ)〉 ρ(dθ) ≥ λ

2

∫
‖θ − θ∗‖22 ρ(dθ) . (3.91)

(ii) If
∫
‖θ − θ∗‖22 ρ(dθ) ≤ ε2

1 and supp(ρ) ⊆ B(θ∗; r1), then for any θ ∈ B(θ∗; r1) \ B(θ∗; r1/2),

〈(θ − θ∗),∇Ψ(θ; ρ)〉 ≥ γ > 0 . (3.92)
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Proof. Note that

∇2Ψ(θ; ρ) = ∇2V (θ) +
∫
∇2

1U(θ,θ′) ρ(dθ′) . (3.93)

Since ∇2V (θ) is continuous and ∇2
1U(θ,θ′) is bounded continuous, it follows that θ 7→ ∇2Ψ(θ; ρ) is

continuous, and ρ 7→ ∇2Ψ(θ; ρ) is continuous in the weak topology, and in fact (θ, ρ) 7→ ∇2Ψ(θ; ρ)
is continuous in the product topology.

Further, we have

∇2Ψ(θ∗; ρ∗) = ∇2V (θ∗) +∇2
11U(θ∗,θ∗) = H0 . (3.94)

Since H0 � 0 strictly, for any δ > 0 we can choose r1 = r1(δ) > 0 such that

∇2Ψ(θ; ρ) � (1− δ)H0 , (3.95)
‖∇2

12U(θ∗,θ)−∇2
12U(θ∗,θ∗)‖op ≤ δ , (3.96)

for all θ ∈ B(θ∗; r1), and ρ such that supp(ρ) ⊆ B(θ∗; r1). If these conditions hold

〈(θ − θ∗),∇Ψ(θ; ρ)〉 = 〈(θ − θ∗),∇Ψ(θ; ρ)−∇Ψ(θ∗; ρ)〉+ 〈(θ − θ∗),∇Ψ(θ∗; ρ)〉 (3.97)
= 〈(θ − θ∗),∇2Ψ(θ̃; ρ) (θ − θ∗)〉+ 〈(θ − θ∗),∇Ψ(θ∗; ρ)〉 (3.98)
≥ (1− δ) 〈(θ − θ∗),H0 (θ − θ∗)〉+ 〈(θ − θ∗),∇Ψ(θ∗; ρ)〉 . (3.99)

In order to bound the second term, note that, since ∇Ψ(θ∗; ρ∗) = 0,

∇Ψ(θ∗; ρ) =
∫ [
∇1U(θ∗,θ′)−∇1U(θ∗,θ∗)

]
ρ(dθ′) = ∇2

12U(θ∗,θ∗)µ+ ξ , (3.100)

µ =
∫

(θ − θ∗) ρ(dθ) , (3.101)

ξ =
∫ [
∇1U(θ∗,θ′)−∇1U(θ∗,θ∗)−∇2

12U(θ∗,θ∗)(θ′ − θ∗)
]
ρ(dθ′) . (3.102)

Substituting in Eq. (3.99), we obtain

〈(θ − θ∗),∇Ψ(θ; ρ)〉 ≥ (1− δ)〈(θ − θ∗),H0(θ − θ∗)〉+ 〈(θ − θ∗), (H1 −H0)µ〉+ 〈(θ − θ∗), ξ〉 .
(3.103)

By the intermediate value theorem, for any v ∈ RD, there exists θ̃ = θ̃(v,θ) ∈ [θ∗,θ] such that

〈v, ξ〉 =
∫
〈v, [∇2

12U(θ̃,θ∗)−∇2
12U(θ∗,θ∗)](θ − θ∗)〉 ρ(dθ) (3.104)

≥ −
∫
‖v‖2

∥∥∇2
12U(θ̃,θ∗)−∇2

12U(θ∗,θ∗)
∥∥

op
‖θ − θ∗‖2 ρ(dθ) (3.105)

≥ −δ‖v‖2
∫
‖θ − θ∗‖2 ρ(dθ) (3.106)

≥ −δ‖v‖2
√

Tr(Q) + ‖µ‖22 (3.107)

≥ −δ‖v‖2
√

Tr(Q)− δ‖v‖2‖µ‖2 , (3.108)

where Q =
∫

(θ − µ)(θ − µ)T ρ(dθ) is the covariance of (θ − θ∗).
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Let now consider the claim at point (i). Integrating Eq. (3.103) with respect to ρ(dθ), we get∫
〈(θ − θ∗),∇Ψ(θ; ρ)〉 ρ(dθ) ≥ (1− δ)〈H0,Q+ µµT〉+ 〈µ, (H1 −H0)µ〉+ 〈µ, ξ〉 (3.109)

≥ (1− δ)〈H0,Q〉+ 〈µ, (H1 − δH0)µ〉 − δ‖µ‖2
√

Tr(Q)− δ‖µ‖22 (3.110)

≥ (1− δ)〈H0,Q〉+ 〈µ, (H1 − δH0)µ〉 − 3δ
2 ‖µ‖

2
2 −

δ

2 Tr(Q) (3.111)

= 〈(1− δ)H0 −
δ

2I,Q〉+ 〈µ, (H1 − δH0 −
3δ
2 I)µ〉 . (3.112)

By choosing δ sufficiently small, we can ensure that (1 − δ)H0 − (δ/2)I � λmin(H0)I/2, H1 −
δH0 − (3δ/2)I � λmin(H1)I/2, and therefore∫

〈(θ − θ∗),∇Ψ(θ; ρ)〉 ρ(dθ) ≥ 1
2λmin(H0) Tr(Q) + 1

2λmin(H1) ‖µ‖22 , (3.113)

which yields the claim (3.91).
Next consider point (ii). In this case, Eq. (3.107) implies

〈(θ − θ∗), ξ〉 ≥ −δε1‖θ − θ∗‖2 . (3.114)

Substituting in Eq. (3.103), and using ‖µ‖2 ≤ ε1, we get

〈(θ − θ∗),∇Ψ(θ; ρ)〉 ≥ (1− δ)〈H0, (θ − θ∗)⊗2〉 − ε1(λmax(H1) + λmax(H0) + δ)‖θ − θ∗‖2

≥ (1− δ)λ
(
r1
2

)2
− ε1(λmax(H1) + λmax(H0) + δ)r1 . (3.115)

This is strictly positive for all ε1 small enough, hence implying the claim (3.92).

We are now in position of proving Theorem 6.

Proof of Theorem 6. Let r0 = min(r1/2, ε1/2) and assume, without loss of generality t0 = 0, so
that supp(ρ0) ⊆ B(θ∗; r0). We also define

T1 ≡ inf
{
t :

∫
‖θ − θ∗‖22 ρt(dθ) > ε2

1

}
, (3.116)

T2 ≡ inf
{
t : supp(ρt) 6⊆ B(θ∗; r1)

}
, (3.117)

T∗ ≡ min(T1, T2) . (3.118)

As usual, we adopt the convention that the infimum of an empty set is equal to +∞.
Define ϕ1(θ) = h(‖θ − θ∗‖2), with h to be an non-decreasing function with

h(r) =



0 if r < r1/2,
smooth intropolation if r1/2 ≤ r < 5r1/8,
2r/r1 − 1 if 5r1/8 ≤ r < 7r1/8,
smooth intropolation if 7r1/8 ≤ r < r1,
1 if r ≥ r1.

(3.119)
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For any t < T∗, the PDE (3.1) implies

∂t〈ϕ1, ρt〉 = −
∫
〈∇ϕ1(θ),∇Ψ(θ; ρt)〉 ρt(dθ) (3.120)

= − 2
r1

∫
h′(‖θ − θ∗‖2)〈 (θ − θ∗)

‖θ − θ∗‖2
,∇Ψ(θ; ρt)〉 ρt(dθ) (3.121)

≤ −4γ
r2

1
ρt
(
B(θ∗; 7r1/8) \ B(θ∗; 5r1/8)

)
, (3.122)

where, in the last inequality, we used Lemma 3.12.(ii). Next, define

ϕ2(θ) = 1
2‖θ − θ∗‖

2
2 . (3.123)

Applying again Eq. (3.1), we get, for t ≤ T∗,

∂t〈ϕ2, ρt〉 = −
∫
〈∇ϕ2(θ),∇Ψ(θ; ρt)〉 ρt(dθ) (3.124)

= −
∫
〈(θ − θ∗),∇Ψ(θ; ρt)〉 ρt(dθ) (3.125)

≤ −λ 〈ϕ2, ρt〉 . (3.126)

Together the last two bounds imply T∗ =∞. Indeed assume by contradiction T∗ <∞. Then either
T1 ≤ T2, T1 <∞, or T2 < T1, T2 <∞.

Consider the first case: T1 ≤ T2, T1 < ∞. Since 〈ρT1 , ϕ2〉 ≥ ε2
1 but 〈ρ0, ϕ2〉 ≤ r2

0 ≤ ε2
1/4, there

exists t < T∗ such that ∂t〈ρ0, ϕ2〉 > 0. However this contradicts Eq. (3.126). Consider then the
second case: T2 < T1, T2 < ∞. This implies 〈ρT2 , ϕ1〉 > 0, but on the other hand 〈ρ0, ϕ1〉 = 0.
Hence, there exists t < T∗ such that ∂t〈ρ0, ϕ1〉 > 0. However this contradicts Eq. (3.122).

We conclude that T∗ = ∞ and hence we can apply Eq. (3.126) for any t, thus obtaining
∂t〈ϕ2, ρt〉 ≤ −λ 〈ϕ2, ρt〉 and hence 〈ϕ2, ρt〉 ≤ (r2

0/2)e−λt, which concludes the proof.

3.7 Proof of Theorem 7: Instability conditions

In this section we will prove the instability result of Theorem 7. Throughout the section, we assume
ξ(t) ≡ 1/2. We will use several times the nonlinear dynamics, defined for ρt a solution of Eq. (3.1)
with initial condition ρ0:

θ̇t = −∇Ψ(θt; ρt) . (3.127)

Lemma 3.13. Let ν be a probability measure on Rd, absolutely continuous with respect to the
Lebesgue measure, with density bounded by M , and let u ∈ Rd be a unit vector. Further assume
that, for some x0 ∈ Rd, r > 0, we have ν(B(x0; r)) ≥ 1 − ε, with 0 < ε < 1/20. Then there
exists a coupling γ of ν with itself (i.e. a probability distribution on Rd × Rd with marginals∫
γ( · , dx) =

∫
γ(dx, · ) = ν( · )) and a constant L = L(d, r,M) such that the following holds. If

(x1,x2) ∼ γ, then

γ

(
〈u,x1 − x2〉 ≥

1
L

; P⊥u (x1 − x2) = 0
)
≥ 9

10 , (3.128)

where P⊥u = I − uuT is the projector orthogonal to vector u.
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Proof. First consider the case d = 1: in this case, the assumption ν(B(x0; r)) ≥ 1−ε is not required.
Denote by F the distribution function associated to ν (i.e. F (x) ≡ ν((−∞, x])). By assumption
F is differentiable with F ′(x) ≤M . In order to construct the desired coupling, let Z be a random
variable uniformly distributed in [0, 1]. For a small constant ξ0 > 0, define the random variables
(X1, X2) by letting

X1 = F−1(Z) , (3.129)

X2 =
{
F−1(Z − ξ0) if Z > ξ0,
F−1(Z + 1− ξ0) if Z < ξ0.

(3.130)

(Note that X2 is not defined for Z = ξ0 but this is a zero-probability event.) On the event {Z > ξ0}
(which has probability 1− ξ0), we have, for some W ∈ [X1, X2],

ξ0 = F ′(W ) (X1 −X2) ≤M(X1 −X2) . (3.131)

By choosing ξ0 small enough, this proves the claim for d = 1.
Consider next d > 1 and assume without loss of generality u = e1.
Let ν( · ) = ν( · |X ∈ B(x0; r)), Xb

a ≡ (Xa, . . . , Xb), and denote by f1|[2,d] the density of ν(X1 ∈
· |Xn

2 ), and by f[a,b] the density of ν(Xb
a ∈ · ). We then have

f1|[2,d](x1|xd2) =
f[1,d](xd1)
f[2,d](xd2)

≤ M

f[2,d](xd2)
. (3.132)

Further, we have

ν({x : f[2,d](xd2) ≤ ∆}) =
∫

1f[2,d](xd
2)≤∆ f[2,d](xd2) dxd2 (3.133)

≤ ∆
∫

B((x0)d
2;r)

dxd2 ≤ Cd∆ rd−1 . (3.134)

In order to construct the coupling, we sample Z ∼ ν. If Z 6∈ B(x0; r), then we take X1 = X2 = Z.
If Z ∈ B(x0; r) and maxx1 f1|[2,d](x1|Zd

2) > M/∆, we also take X1 = X2 = Z. Otherwise we
have Z ∈ B(x0; r) and maxx1 f1|[2,d](x1|Zd

2) ≤M/∆, then we sample (X1,1, X2,1) from the coupling
developed in the case d = 1 applied to f1|[2,d]( · |Zd

2), and set X1 = (X1,1,Z
d
2), X2 = (X2,1,Z

d
2).

Now define γ to be the joint distribution of X1,X2. Then γ is a coupling of ν with itself.
The above analyisis yields

γ

(
〈u,X1 −X2〉 ≥

ξ0∆
M

; P⊥u (X1 −X2) = 0
)
≥ 1− ξ0 − Cd∆ rd−1 − ε . (3.135)

Hence, we can choose ∆, ξ0 small enough so that the claim (3.128) holds.

For any u ∈ R, define the level set L̃(u),

L̃(u) ≡ {θ ∈ RD : Ψ(θ; ρ∗) ≤ u} . (3.136)

According to the notation of Theorem 7, we have L(η) = L̃(Ψ(θ∗; ρ∗)− η) for any η ∈ R.
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Lemma 3.14. For any u ∈ R, ∆ > 0 such that ∂L̃(u0) is compact for all u0 ∈ (u − ∆, u),
there exists ε0,# > 0 such that the following holds. Let (ρt)t≥t0 be a solution of the PDE (3.1)
such that dBL(ρt, ρ∗) ≤ ε0,# for all t ≥ t0. Let (θt)t≥t0 be a solution of the ODE (3.127) with
Ψ(θt0 ; ρ∗) ≤ u−∆. Then Ψ(θt; ρ∗) ≤ u for all t ≥ t0.

Proof. By Sard’s theorem [GP10], there exists u0 ∈ (u − ∆, u) such that the boundary ∂L̃(u0)
contains no critical points of Ψ( · ; ρ∗). If we define g0 = minθ∈∂L̃(u0) ‖∇Ψ(θ; ρ∗)‖2, the minimum is
achieved by compactness, and therefore we have g0 > 0 strictly. Notice that by the differentiability
assumptions on V and U , ∂L̃(u0) is a C1 submanifold of RD, with ∇Ψ(θ; ρ∗) orthogonal to ∂L̃0(u0)
and directed toward the exterior. Further, as observed already above,

‖∇Ψ(θ; ρt)−∇Ψ(θ; ρ∗)‖2 =
∥∥∥∥∫ ∇θU(θ;θ′)(ρt − ρ∗)(dθ′)

∥∥∥∥
2

(3.137)

≤ K dBL(ρt, ρ∗) ≤ K ε0,# . (3.138)

By choosing ε0,# small enough, we can ensure ‖∇Ψ(θ; ρt) − ∇Ψ(θ; ρ∗)‖2 ≤ g0/3 for all θ and all
t ≥ t0.

Assume by contradiction that Ψ(θt1 ; ρ∗) > u for some t1 ≥ t0, and let t∗ = sup{t ≤ t1 :
Ψ(θt; ρ∗) ≤ u0}. Note that, by continuity of the trajectory, θt∗ ∈ ∂L̃(u0). We then must have

0 ≤ d
dtΨ(θt∗ ; ρ∗) = −〈∇Ψ(θt∗ ; ρt∗),∇Ψ(θt∗ ; ρ∗)〉 (3.139)

≤ −‖∇Ψ(θt∗ ; ρ∗)‖22 + ‖∇Ψ(θt∗ ; ρ∗)‖2‖∇Ψ(θt∗ ; ρt∗)−∇Ψ(θt∗ ; ρ∗)‖2 (3.140)

≤ −2
3g0 ‖∇Ψ(θt∗ ; ρ∗)‖2 , (3.141)

which leads to a contradiction since θt∗ ∈ ∂L̃(u0) and hence ‖∇Ψ(θt∗ ; ρ∗)‖2 > 0.

To prove Theorem 7, let now assume by contradiction that ρt ⇒ ρ∗ = p∗δθ∗+(1−p∗)ρ̃∗ weakly.
Then for any ε0, r0 > 0 (to be chosen below), we can find t0 = t0(ε0, r0) such that

dBL(ρt, ρ∗) ≤ ε0, |ρt(B(θ∗; r0))− p∗| ≤ ε0 (3.142)

for all t ≥ t0. Let ρt0 be the conditional probability measure of ρt0 given θ ∈ B(θ∗; r0). By
Lemma 3.11, ρt0 has a density upper bounded by a constant M = M(ε0, t0) (note that ρt0(S) ≤
ρt0(S)/(p∗ − ε0)).

Set H0 = H0(ρ∗) = ∇2Ψ(θ∗; ρ∗). Since θ∗ is a critical point of θ 7→ Ψ(θ; ρ∗), for any δ > 0,
we can find r1(δ) > 0 such that

θ ∈ B(θ∗; r1) ⇒
∥∥∇2Ψ(θ; ρ∗)−H0

∥∥
op
≤ δ

2 , ‖∇Ψ(θ∗; ρ∗)‖2 = 0 . (3.143)

As shown in the proof of Theorem 6, the function (θ, ρ) 7→ ∇2Ψ(θ; ρ) is continuous when the space
of probability distributions ρ is endowed with the weak topology. Analogously ρ 7→ ∇Ψ(θ∗; ρ) is
continuous in the weak topology. Hence for this δ > 0 and r1(δ) > 0, there exists ε0,∗(δ, r1) > 0
small enough such that, the following inequalities hold

θ ∈ B(θ∗; r1), dBL(ρ, ρ∗) ≤ ε0,∗ ⇒
∥∥∇2Ψ(θ; ρ)−H0

∥∥
op
≤ δ , ‖∇Ψ(θ∗; ρ)‖2 ≤ δ2 r1/2 .

(3.144)
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Let us emphasize that r1 depends on δ but can be taken to be independent of ε0. Further, by an
application of the intermediate value theorem, for all θ ∈ B(θ∗; r1),∣∣∣∣Ψ(θ; ρ∗)−Ψ(θ∗; ρ∗)−

1
2〈(θ − θ∗),H0(θ − θ∗)〉

∣∣∣∣ ≤ 1
2δ‖θ − θ∗‖

2
2 . (3.145)

For r0 < r1, θt0 ∈ B(θ∗; r0), we let (θt)t≥t0 be the solution of Eq. (3.127) with this initial
condition. We then define

texit(θt0 , r1) = inf
{
t ≥ t0 : θt 6∈ B(θ∗; r1)

}
, (3.146)

treturn(θt0 , r0, r1) = inf
{
t > texit(θt0 , r1) : θt ∈ B(θ∗; r0)

}
. (3.147)

Lemma 3.15. Under the conditions of Theorem 7, there exists r1 > 0 and ε0,∗ > 0 such that, for all
r0 ≤ r1, ε0 ≤ ε0,∗, there exists TUB(ε0, r0, r1, t0) such that the following happens. If dBL(ρt, ρ∗) ≤ ε0
and |ρt(B(θ∗; r0))− p∗| ≤ ε0 for all t ≥ t0 for some t0, then

ρt0

({
θt0 ∈ B(θ∗; r0) : texit(θt0 , r1) ≤ TUB(ε0, r0, r1, t0)

})
≥ 1

3 p∗ . (3.148)

Proof. Let u be an eigenvector of H0 corresponding to the eigenvalue λmin(H0) = −λ1. By
condition B1 of Theorem 7, we have λ1 > 0. Let −λ2 denote the second smallest eigenvalue (which
can be positive). We further denote by P ∈ RD×D the orthogonal projector onto the eigenspace
corresponding to λmin(H0) and by P⊥ = I − P the projector onto the orthogonal subspace.

We fix a δ ≤ (λ1 − λ2)/10. Then we choose r1 > 0 and ε0,∗ > 0 such that Eq. (3.144) holds,
with an additional requirement that ε0,∗ < p∗/10. We will prove this lemma with this choice of r1
and ε0,∗.

We always denote (θti)t≥t0 to be the solution of Eq. (3.127) with initial condition θt0i , for i = 1, 2.
First we claim that, for 0 < δ ≤ (λ1 − λ2)/10, assuming∥∥∇2Ψ(θ; ρt)−H0

∥∥
op
≤ δ , ∀t ≥ t0, ∀θ ∈ B(θ∗; r1), (3.149)

then for any θt01 ,θ
t0
2 ∈ B(θ∗; r1) with P⊥(θt01 − θ

t0
2 ) = 0, we have

‖θt1 − θt2‖2 ≥ ‖θ
t0
1 − θ

t0
2 ‖2 e

λ1(t−t0)/2 (3.150)

for all t ∈ [t0, texit(θt01 , r1) ∧ texit(θt02 , r1)].
For now we assume this claim holds. Fix r0 ≤ r1 and ε0 ≤ ε0,∗. Define γ to be the coupling

of Lemma 3.13 corresponding to u which is the eigenvector corresponding to the least eigenvalue
of H0, and ν = ρt0 which is the conditional measure of ρt0 given θt0 ∈ B(θ∗; r0). Note ρt0 has a
density upper bounded by a constant M = M(ε0, t0). By Lemma 3.13, we have γ(E) ≥ 9/10, where

E ≡
{

(θt01 ,θ
t0
2 ) ∈ B(θ∗; r0)× B(θ∗; r0) : 〈u,θt01 − θ

t0
2 〉 ≥

1
Z

; P⊥u (θt01 − θ
t0
2 ) = 0

}
(3.151)

for some Z = Z(ε0, r0, t0) > 0. Now we take (θt01 ,θ
t0
2 ) ∈ E . Note the assumption of this lemma

gives dBL(ρt, ρ∗) ≤ ε0 ≤ ε0,∗ for all t ≥ t0. According to Eq. (3.144), we have Eq. (3.149) holds, and
due to this claim, we have ‖θt1 − θt2‖2 ≥ (1/Z)eλ1(t−t0)/2 for all t ∈ [t0, texit(θt01 , r1) ∧ texit(θt02 , r1)].

Define TUB(ε0, r0, r1, t0) = (2/λ1) log(2Z r1). Then for t > TUB, we have ‖θt1− θt2‖2 ≥ 2r1. This
is impossible if θt1,θt2 ∈ B(θ∗; r1) and hence we deduce (texit(θt01 , r1) ∧ texit(θt02 , r1)) ≤ TUB for all
(θt01 ,θ

t0
2 ) ∈ E .
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Therefore, we get

9
10 ≤ γ(E) ≤ γ

({
(θt01 ,θ

t0
2 ) ∈ B(θ∗; r0)× B(θ∗; r0) : texit(θt01 , r1) ∧ texit(θt02 , r1) ≤ TUB

})
≤ γ

({
θt01 ∈ B(θ∗; r0) : texit(θt01 , r1) ≤ TUB

})
+ γ

({
θt02 ∈ B(θ∗; r0) : texit(θt02 , r1) ≤ TUB

})
= 2 ρt0

({
θt0 ∈ B(θ∗; r0) : texit(θt0 , r1) ≤ TUB

})
.

Denoting by S the event in the last expression, we obtain ρt0(S) ≥ (p∗ − ε0)ρt0(S) ≥ (9/20)(p∗ −
ε0) ≥ p∗/3 by noting that ε0 < p∗/10.
Proof of the claim. Define the quantities

x‖(t) =‖P (θt1 − θt2)‖22 , (3.152)
x⊥(t) =‖P⊥(θt1 − θt2)‖22 . (3.153)

We then have, for t ∈ [t0, texit(θt01 , r1) ∧ texit(θt02 , r1)],

ẋ‖(t) = 2〈P (θt1 − θt2),−∇Ψ(θt1; ρt) +∇Ψ(θt2; ρt)〉
(a)= 2〈P (θt1 − θt2),−∇2Ψ(θ̃t; ρt)(θt1 − θt2)〉

= −2〈(θt1 − θt2),P∇2Ψ(θ̃t; ρt)P (θt1 − θt2)〉 − 2〈(θt1 − θt2),P∇2Ψ(θ̃t; ρt)P⊥(θt1 − θt2)〉
(b)
≥ 2(λ1 − δ)‖P (θt1 − θt2)‖22 − 2δ‖P (θt1 − θt2)‖2‖P⊥(θt1 − θt2)‖2
≥ 2(λ1 − δ)x‖(t)− δ(x‖(t) + x⊥(t)) ,

where in (a) we used the intermediate value theorem (with θ̃t a point between θt1 and θt2), and in
(b) we used Eq. (3.149).

Proceeding analogously for x⊥(t), we get (for a new choice of θ̃t)

ẋ⊥(t) = 2〈P⊥(θt1 − θt2),−∇Ψ(θt1; ρt) +∇Ψ(θt2; ρt)〉

= 2〈P⊥(θt1 − θt2),−∇2Ψ(θ̃t; ρt)(θt1 − θt2)〉

= −2〈(θt1 − θt2),P⊥∇2Ψ(θ̃t; ρt)P⊥(θt1 − θt2)〉 − 2〈(θt1 − θt2),P⊥∇2Ψ(θ̃t; ρt)P (θt1 − θt2)〉
≤ 2(λ2 + δ)‖P⊥(θt1 − θt2)‖22 + 2δ‖P (θt1 − θt2)‖2‖P⊥(θt1 − θt2)‖2
≤ 2(λ2 + δ)x‖(t) + δ(x‖(t) + x⊥(t)) .

Summarizing, we obtained the inequalities

ẋ‖(t) ≥ (2λ1 − 3δ)x‖(t)− δ x⊥(t) , (3.154)
ẋ⊥(t) ≤ δx‖(t) + (2λ2 + 3δ)x⊥(t) . (3.155)

The matrix of coefficients on the right-hand side is

A =
(

2λ1 − 3δ −δ
δ 2λ2 + 3δ

)
. (3.156)
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This has a (un-normalized) left eigenvectors (1,−v), (−v, 1) with eigenvalues ξ± given by:

v = 1
δ

[
λ1 − λ2 − 3δ −

√
(λ1 − λ2 − 3δ)2 − δ2

]
, (3.157)

ξ± = λ1 + λ2 ±
√

(λ1 − λ2 − 3δ)2 − δ2 . (3.158)

Note we took δ < (λ1 − λ2)/10, we have v > 0, and ξ+ ≥ λ1.
Multiplying the inequalities (3.154), (3.155) by (1,−v), we thus obtain

d
dt
(
x‖(t)− v x⊥(t)

)
≥ ξ+

(
x‖(t)− v x⊥(t)

)
. (3.159)

Since we assumed x⊥(t0) = 0, whence, for all t ∈ [t0, texit(θt01 , r1) ∧ texit(θt02 , r1)], we have

x‖(t) ≥ x‖(t)− v x⊥(t) ≥ x‖(t0) eξ+(t−t0) ≥ x‖(t0) eλ1(t−t0). (3.160)

We next strengthen the last lemma and prove that trajectories that exit B(θ∗; r1) do not re-enter
B(θ∗; r0).

Lemma 3.16. Under the conditions of Theorem 7, there exists r0,∗, r1 > 0 (with r0,∗ < r1) and
ε0,∗ > 0 such that, for all r0 ≤ r0,∗, ε0 ≤ ε0,∗, there exists TUB(ε0, r0, r1, t0) such that the following
happens. If dBL(ρt, ρ∗) ≤ ε0 and |ρt(B(θ∗; r0))− p∗| ≤ ε0 for all t ≥ t0 for some t0, then

ρt0

({
θt0 ∈ B(θ∗; r0) : texit(θt0 , r1) ≤ TUB(ε0, r0, r1, t0), treturn(θt0 , r0, r1) =∞

})
≥ 1

3 p∗ . (3.161)

Proof. Let P+ be the projector onto the eigenspace of −H0 corresponding to positive eigenvalues,
and P− the projector onto the subspace corresponding to negative eigenvalues, and let λ0 ≡
mini≤D |λi(H0)| to be the least absolute value of eigenvalue of H0. By condition B1 of Theorem
7, we have λ0 > 0. Let λmax denote the largest absolute value of eigenvalue of H0.

Fix a δ such that 0 < δ ≤ min{λ0/(1+λ0 +λmax),
√
λ0/λmax, λ1−λ2, 1}/10, where λ1, λ2 are as

defined in Lemma 3.15. Next we choose r1 as per Lemma 3.15, and we further require λ0r
2
1 ≤ η0,

where η0 is as per condition B3 in the statement of Theorem 7. We take ε0,∗ to be the minimum of
the parameter ε0,∗ as per Lemma 3.15 and the parameter ε0,# as per Lemma 3.14, where in Lemma
3.14, we choose u = Ψ(θ∗; ρ∗)− λ0r

2
1/8, and ∆ = λ0r

2
1/8. Then we will choose smaller r1 and ε0,∗

so that Eq. (3.144) holds. Finally, we take r0,∗ = δr1 < r1. We will prove this lemma with this
choice of r1, ε0,∗, and r0,∗, and with the same function TUB as per Lemma 3.15.

Define

t∗(θt0 ; r1, δ) ≡ sup
{
t ∈ (t0, texit(θt0 , r1)) : ‖θt1 − θ∗‖2 < δr1

}
, (3.162)

and define

z+(t) = ‖P+(θt − θ∗)‖22 , (3.163)
z−(t) = ‖P−(θt − θ∗)‖22 . (3.164)
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We bound the evolution of these quantities following the same argument used above for x‖(t),
x⊥(t). Namely

ż+(t) =2〈P+(θt − θ∗),−∇Ψ(θt; ρt) +∇Ψ(θ∗; ρt)〉 − 2〈P+(θt − θ∗),∇Ψ(θ∗; ρt)〉

=− 2〈P+(θt − θ∗),∇2Ψ(θ̃t; ρt)(θt − θ∗)〉 − 2〈P+(θt − θ∗),∇Ψ(θ∗; ρt)〉

=− 2〈(θt − θ∗),P+∇2Ψ(θ̃t; ρt)P+(θt − θ∗)〉

− 2〈(θt − θ∗),P+∇2Ψ(θ̃t; ρt)P−(θt − θ∗)〉 − 2〈P+(θt − θ∗),∇Ψ(θ∗; ρt)〉
≥2(λ0 − δ)‖P+(θt − θ∗)‖22 − 2δ‖P+(θt − θ∗)‖2‖P−(θt1 − θt2)‖2 − δ2r1‖P+(θt − θ∗)‖2

≥(2λ0 − 3δ)z+(t)− δz−(t)− δ2r1

√
z+(t) .

For t ∈ [t∗(θt0 ; r1, δ), texit(θt0 ; r1)], we have
√
z+(t) + z−(t) ≥ δr1. Using the inequality

√
a(a+ b) ≤

a+ b holding for non-negative a and b, we have

ż+(t) ≥ (2λ0 − 3δ)z+(t)− δz−(t)− δ2r1

√
z+(t) (3.165)

≥ (2λ0 − 3δ)z+(t)− δz−(t)− δ
√
z+(t)(z+(t) + z−(t)) (3.166)

≥ (2λ0 − 3δ)z+(t)− δz−(t)− δz+(t)− δz−(t) (3.167)
≥ (2λ0 − 4δ)z+(t)− 2δz−(t) . (3.168)

Proceeding analogously for z−, we arrive at the inequalities

ż+(t) ≥ (2λ0 − 4δ)z+(t)− 2δz−(t) , (3.169)
ż−(t) ≤ 2δz+(t)− (2λ0 − 4δ)z−(t) , (3.170)

for t ∈ [t∗(θt0 ; r1, δ), texit(θt0 ; r1)]. The matrix of coefficients on the right-hand side has a left
eigenvector of the form (−w, 1) with corresponding eigenvalue −ξ̃, whereby ξ̃ =

√
λ2

0 − 4δ2 and

w = (λ0 −
√
λ2

0 − 4δ2)/(2δ). In particular, since δ < λ0/10, we have ξ̃ ≥ λ0/2 > 0 and w > 0.
Multiplying the above inequalities by (−w, 1), we get

d
dt
(
− wz+(t) + z−(t)

)
≤ −ξ̃

(
− wz+(t) + z−(t)

)
, (3.171)

and therefore, for all t ∈ [t∗(θt0 ; r1, δ), texit(θt0 ; r1)], z−(t) ≤ w z+(t) + e−ξ̃t
(
− w z+(0) + z−(0)

)
≤

wz+(t) + δ2r2
1. In particular, for t = texit(θt0 ; r1), using z+(texit) + z−(texit) = r2

1, we finally obtain

∥∥P+(θtexit − θ∗)
∥∥2

2 ≥ r
2
1

(
1− δ2

1 + w

)
≥ r2

1(1− δ) , (3.172)
∥∥P−(θtexit − θ∗)

∥∥2
2 ≤ r

2
1δ . (3.173)

Using Eq. (3.145), we obtain

Ψ(θtexit ; ρ∗) ≤ Ψ(θ∗; ρ∗) + 1
2〈(θ − θ∗),H0(θ − θ∗)〉+ 1

2δr
2
1 (3.174)

≤ Ψ(θ∗; ρ∗)−
1
2λ0

∥∥P+(θtexit − θ∗)
∥∥2

2 + 1
2λmax

∥∥P−(θtexit − θ∗)
∥∥2

2 + 1
2δr

2
1 (3.175)

≤ Ψ(θ∗; ρ∗)−
1
2λ0r

2
1 + 1

2(1 + λ0 + λmax)δr2
1 . (3.176)
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Since δ ≤ λ0/(10(1+λ0 +λmax)), we can ensure that Ψ(θtexit ; ρ∗) ≤ Ψ(θ∗; ρ∗)−λ0r
2
1/4. By Lemma

3.14, since dBL(ρt, ρ∗) ≤ ε0,∗ ≤ ε0,# for all t ≥ t0, we have Ψ(θt; ρ∗) ≤ Ψ(θ∗; ρ∗) − λ0r
2
1/8 for all

t ≥ texit(θt0 ; r1). Note for all θ ∈ B(θ∗; δr1), we have Ψ(θ; ρ∗) ≥ Ψ(θ∗; ρ∗) − λmaxδ
2r2

1/2. Since
δ ≤

√
λ0/λmax/10, we have θt 6∈ B(θ∗; δr1) for all t ≥ texit(θt0 ; r1).

This implies that, for any θt0 ∈ B(θ∗; r0) for r0 ≤ r0,∗ with texit(θt0 , r1) ≤ TUB(ε0, r0, r1, t0) <∞,
it will never return to B(θ∗; r0). This gives the desired result.

Finally we upper bound the probability that θt ∈ B(θ∗; r0) for some t > t0, given that θt0 6∈
B(θ∗; r0). We define

tenter(θt0 , r0) = inf
{
t ≥ t0 : θt ∈ B(θ∗; r0)

}
. (3.177)

Lemma 3.17. Under the conditions of Theorem 7, for any η > 0, there exists r0,∗ > 0 and
ε0,∗ > 0 such that, for all r0 ≤ r0,∗, ε0 ≤ ε0,∗, the following happens. If dBL(ρt, ρ∗) ≤ ε0 and
|ρt(B(θ∗; r0))− p∗| ≤ ε0 for all t ≥ t0 for some t0, then

ρt0

({
θt0 6∈ B(θ∗; r0) : tenter(θt0 , r0) =∞

})
≥ 1− p∗ − η . (3.178)

Proof. Due to condition B2 of Theorem 7, we can choose u1 with Ψ(θ∗; ρ∗)− η0 < u1 < Ψ(θ∗; ρ∗)
(where η0 is as per condition B3 of Theorem 7) such that ρ∗(L̃(u1)) ≥ 1 − p∗ − η/2 (recall the
notation L̃ defined as Eq. (3.136)). By taking ε0,∗ small enough, and since θ 7→ Ψ(θ; ρ∗) is
Lipschitz continuous, we can also choose u2 ∈ (u1,Ψ(θ∗; ρ∗)) such that ρt0(L̃(u2)) ≥ 1−p∗−η. Fix
u3 ∈ (u2,Ψ(θ∗, ρ∗)). Applying Lemma 3.14, we can further reduce ε0,∗, so that for any initialization
θt0 ∈ L̃(u2), we have θt ∈ L̃(u3) for all t. Further, by continuity of Ψ( · ; ρ∗), we can choose r0,∗
small enough so that B(θ∗; r0,∗) ∩ L̃(u3) = ∅, whence

ρt0

({
θt0 6∈ B(θ∗; r0) : tenter(θt0 , r0) =∞

})
(3.179)

≥ρt0
({
θt0 : Ψ(θt0 ; ρ∗) < u2, tenter(θt0 , r0) =∞

})
(3.180)

=ρt0
({
θt0 : Ψ(θt0 ; ρ∗) < u2}) ≥ 1− p∗ − η . (3.181)

The proof of Theorem 7 follows immediately from Lemma 3.16 and Lemma 3.17. Indeed, let
η = p∗/10. Take ε0 ≤ min{ε0,∗, p∗/10} where ε0,∗ is the minimum of ε0,∗ as per Lemma 3.16 and
3.17. Take r1 as per Lemma 3.16. Take r0 ≤ min{r0,∗, r1} where r0,∗ is the minimum of r0,∗ as
per Lemma 3.16 and 3.17. With this choice of ε0 and r0, there exists t0 > 0 such that Eq. (3.142)
holds for all t ≥ t0. Setting t∗ = TUB(ε0, r0, r1, t0) ≥ t0 with TUB given in Lemma 3.16. Denoting
by Pt0,ρt0

be the probability distribution over trajectories of (3.127) with θt0 ∼ ρt0 , we have

ρt∗(B(θ∗; r0)) =Pt0,ρt0

(
θt∗ ∈ B(θ∗; r0)

)
=Pt0,ρt0

(
θt0 ∈ B(θ∗; r0); θt∗ ∈ B(θ∗; r0)

)
+ Pt0,ρt0

(
θt0 6∈ B(θ∗; r0); θt∗ ∈ B(θ∗; r0)

)
≤Pt0,ρt0

(
θt0 ∈ B(θ∗; r0)

)
− Pt0,ρt0

(
θt0 ∈ B(θ∗; r0) ; texit(θt0 ; r1) < t∗, treturn(θt0 ; r0) =∞

)
+ Pt0,ρt0

(
θt0 6∈ B(θ∗; r0)

)
− Pt0,ρt0

(
θt0 6∈ B(θ∗; r0); tenter(θt0 , r0) =∞

)
≤1− 1

3p∗ − (1− p∗ − η) = 2p∗/3 + η .

Since we also had ρt(B(θ∗; r0)) ≥ p∗−ε0 for all t ≥ t0, note η, ε0 ≤ p∗/10, we reached a contradiction.
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4 Centered isotropic Gaussians

In this section we consider the centered isotropic Gaussians example discussed in the main text.
That is, we assume the joint law of (y,x) to be as follows:

With probability 1/2: y = +1, x ∼ N(0, (1 + ∆)2Id).

With probability 1/2: y = −1, x ∼ N(0, (1−∆)2Id).

We assume 0 < ∆ < 1, and choose σ∗(x;θi) = σ(〈x,wi〉) for some activation function σ. Define
q(r) ≡ E{σ(rG)} for G ∼ N(0, 1). We assume σ( · ) satisfies the following conditions S0 - S4:

S0 x 7→ σ(x) is bounded, non-decreasing, Lipschitz continuous. Its weak derivative x 7→ σ′(x) is
Lipschitz in a neighborhood of 0.

S1 q is analytic on (0,∞) with supr∈[0,∞] q
′′(r) <∞.

S2 q′(r) > 0 for all r ∈ (0,∞), with supr∈[0,∞] q
′(r) <∞, and limr→0 q

′(r) = limr→∞ q
′(r) = 0.

S3 −∞ < q(0+) < −1, 1 < q(+∞) <∞, and −1 < (q(0+) + q(+∞))/2 < 1.

S4 Letting Z(r) ≡ q′(τ−r)/q′(τ+r) for some τ+ > τ− > 0 we have Z ′(r) > 0 for all r ∈ (0,∞).

Note that condition S1 and part of S2 are implied by S0, but we list them here for conveniency.
Some of these assumptions can be relaxed at the cost of extra technical work. In the interest of
simplicity, we prefer to avoid being overly general.

As our running example we will use

σ(t) =


s1 if t ≤ t1,
(s2(t− t1) + s1(t2 − t))/(t2 − t1) if t ∈ (t1, t2),
s2 if t ≥ t2.

(4.1)

In particular, we choose s1 = −2.5, s2 = 7.5, t1 = 0.5, t2 = 1.5 in our simulations. In section 4.5,
we check that this choice satisfies the above assumptions.

Throughout this section, we set τ± = (1 ± ∆) and q+(r) = q(τ+r), q−(r) = q(τ−r). Also, we
will assume ξ(t) = 1/2, since other choices of ξ( · ) merely amounts to a time reparametrization.

Before analyzing our model, we introduce the function space and space of probability measures
we will work on. We equip the set [0,∞] with a metric d̄, where d̄(x, y) = |1/(1 +x)−1/(1 +y)| for
any x, y ∈ [0,∞]. Then ([0,∞], d̄) is a compact metric space, and we will still denote it by [0,∞]
for simplicity in notations. We denote Cb([0,∞]) to be the set of bounded continuous functions
on [0,∞], where continuity is defined using the topology generated by d̄. More explicitly, we have
isomorphism

Cb([0,∞]) ' {f ∈ C([0,∞)) : ∃f(+∞) ≡ lim
r→+∞

f(r), sup
r∈[0,∞]

f(r) <∞}. (4.2)

Because of condition S2 and S3, we have q, q′ ∈ Cb([0,∞]).
Let P([0,∞]) be the set of probability measures on [0,∞]. Due to Prokhorov’s theorem, there

exists a complete metric d̄P on P([0,∞]) equivalent to the topology of weak convergence, so that
(P([0,∞]), d̄P) is a compact metric space. In this section, we will denote by P = P([0,∞]).
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4.1 Statics

Since the distribution of x is invariant under rotations for each of the two classes, so are the
functions

V (w) = v(‖w‖2) , U(w1,w2) = u0(‖w1‖2, ‖w2‖2, 〈w1,w2〉) . (4.3)

These take the form

v(r) = −1
2 q(τ+r) + 1

2 q(τ−r) , q(t) = E{σ(tG)} (4.4)

u0(r1, r2, r1r2 cosα) = 1
2E{σ(τ+r1G1)σ(τ+r2G2)}+ 1

2E{σ(τ−r1G1)σ(τ+r2G2)} , (4.5)

where expectations are with respect to standard normals G,G1, G2 ∼ N(0, 1), with (G1, G2) jointly
Gaussian and E{G1G2} = cosα.

In order to minimize R(ρ), it is sufficient to restrict ourselves to distributions that are invariant
under rotations. Indeed, for any probability distribution ρ on Rd, we can define its symmetrization
by letting, for any Borel set Q ⊆ Rd,

ρs(Q) ≡
∫
ρ(RQ) µHaar(dR) , (4.6)

where µHaar is the Haar measure over the group of orthogonal rotations. Since ρ 7→ R(ρ) is convex,
R(ρs) ≤ R(ρ).

We therefore restrict ourselves to ρ’s that are invariant under rotations. In other words, under ρ,
the vector w is uniformly random conditional on ‖w‖2. We denote by ρ the probability distribution
of ‖w‖2 when w ∼ ρ and we let Rd(ρ) denote the resulting risk. We then have

Rd(ρ) =1 + 2
∫
v(r) ρ(dr) +

∫
ud(r1, r2) ρ(dr1) ρ(dr2) , (4.7)

ud(r1, r2) =E[u0(r1, r2, r1r2 cos Θ)]. (4.8)

where Θ ∼ (1/Zd) sind−2 θ · 1{θ ∈ [0, π]}dθ.
As d→∞, we have limd→∞ ud(r1, r2) = u∞(r1, r2) (uniformly over compact sets), with

u∞(r1, r2) = 1
2
[
q(τ+r1)q(τ+r2) + q(τ−r1)q(τ+r2)

]
, (4.9)

and the risk function converges to

R∞(ρ) = 1
2

(
1−

∫
q(τ+r) ρ(dr)

)2
+ 1

2

(
1 +

∫
q(τ−r) ρ(dr)

)2
. (4.10)

We also define

ψd(r; ρ) = v(r) +
∫
ud(r, r′) ρ(dr′) . (4.11)

For d =∞, we have the simpler expression

ψ∞(r; ρ) = λ+(ρ) · q+(r) + λ−(ρ) · q−(r), (4.12)

λ+(ρ) =1
2[〈q+, ρ〉 − 1], (4.13)

λ−(ρ) =1
2[〈q−, ρ〉+ 1]. (4.14)

The following theorem provides a characterization of global minimizers of Rd(ρ).
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Proposition 4.1 (Lemma 1 in the main text). For any d ≤ ∞, define

ψd(r; ρ) ≡ v(r) +
∫
ud(r, r′) ρ(dr′) . (4.15)

Then

1. ρ∗ is a global minimizer of Rd(ρ) if and only if supp(ρ∗) ⊆ arg minr ψd(r; ρ∗).

2. In particular, ρ∗ = δr∗ is a global minimizer or Rd(ρ) if and only if v(r) + ud(r, r∗) ≥
v(r∗) + u(r∗, r∗) for all r.

Proof. Point 1 is essentially a special case of the second part of Proposition 1 in the main text (cf.
Eq. (2.7)) and follows by the same argument. Point 2 is follows by taking ρ∗ = δr∗ .

Given the last result, it is interesting to understand whether the optimal radial distribution ρ∗
is a single point mass or not. Under the ansatz ρ = δr (a single point mass at radius r) we obtain
an effective risk R

(1)
d (r) ≡ Rd(δr) defined by R

(1)
d (r) = 1 + 2v(r) + ud(r, r), which is plotted in

Figure 7.6 for the case of our running example (4.1), and ∆ = 0.4.
Let r∗ = r∗(∆, d) be the minimizer of R(1)

d (r), and define, for d ≤ ∞,

∆d = sup
{
∆ : v(r) + ud(r, r∗) ≥ v(r∗) + ud(r∗, r∗), ∀r ≥ 0

}
. (4.16)

In the case d =∞, the minimization problem simplifies further. Either the minimum risk is 0,
or it is achieved at a point mass ρ∗ = δr∗ .

Theorem 4.2. Consider d =∞. Recall P = P([0,∞]). In this case ∆∞ defined as per Eq. (4.16)
is such that ∆∞ ∈ (0, 1). Further

1. For ∆ < ∆∞, infρ∈P R∞(ρ) > 0 and the unique global minimizer of risk function R∞(ρ) is
a point mass located at some r∗(∆) ∈ (0,∞).

2. For ∆ ≥ ∆∞, all global minimizers of risk function R∞(ρ) have risk zero, and there exists a
global minimizer that has compact support bounded away from 0.

Proof of Theorem 4.2. Recall the definitions q+(r) = q(τ+r) and q−(r) = q(τ−r). Further, we
define the set Γ ⊆ [0, 1] by

Γ = {∆ : ∃r ∈ (0,+∞), s.t., q+(r) ≥ 1 and q−(r) ≤ −1}. (4.17)

According to condition S3, for ∆ = 1, we have q−(r) = q(0) < −1 and q+(+∞) = q(+∞) > +1.
Since q is continuous, it is easy to see that there exists an ε > 0, such that [1− ε, 1] ⊆ Γ. Further,
for ∆ = 0 we have q+(r) = q−(r). By continuity, there exists an ε > 0, such that [0, ε] ∈ [0, 1] \ Γ.

Since q is an increasing function, we have

Γ = [∆∞, 1] , ∆∞ = inf
∆∈Γ

∆. (4.18)

By the remarks above, we have 0 < ∆∞ < 1. Notice that this definition does not coincide with the
one in Eq. (4.16). However, the proof below (together with Proposition 4.1) implies that the two
definitions actually coincide.
Part (1): ∆ < ∆∞.
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Step 1. Prove that infρ∈P R∞(ρ) > 0 as ∆ < ∆∞.
First, we consider the optimization problem

f∗ ≡ sup
ρ∈P

{
〈q+, ρ〉 − 1 s.t. 〈q−, ρ〉 ≤ −1

}
. (4.19)

We claim that, for ∆ < ∆∞ we have f∗ < 0. Indeed, for any λ ∈ [0,+∞), we have the following
upper bound

f∗ ≤ sup
ρ∈P

{L(ρ, λ) ≡ 〈q+, ρ〉 − 1− λ(〈q−, ρ〉+ 1)}. (4.20)

Since q+−λ q− ∈ Cb([0,+∞]), then L( · , λ) is continuous in ρ in weak topology. By the compactness
of P, the supremum of L( · , λ) is attained by some ρλ ∈P. This ρλ should satisfy

supp(ρλ) ⊆ argmaxr∈[0,+∞]{q+(r)− λq−(r)}.

Let h(r) ≡ q+(r)− λq−(r). Note the supremum of h should either satisfy

h′(r) = q′+(r)− λq′−(r) = 0, (4.21)

for r ∈ (0,∞), or the supremum should be attained at the boundary 0 or +∞. According to
condition S4, [q′−(r)/q′+(r)]′ > 0 for r ∈ (0,∞), the equation (4.21) has at most one solution
r∗ ∈ (0,∞).

Assume that there exists r∗ ∈ (0,∞) such that h′(r∗) = 0. Then we have h′(r) > 0 for
0 < r < r∗, and h′(r) < 0 for r∗ < r < +∞, whence supp(ρλ) = {r∗}. If h′(r) = 0 does not
have a solution in (0,∞), the only supremum of h(r) could be achieved at 0 or +∞. Therefore,
supp(ρλ) = {0} or supp(ρλ) = {+∞}. This concludes that, for any λ ∈ [0,+∞), supρ∈P L(ρ, λ) is
achieved by a point mass. Therefore, we have

f∗ ≤ inf
λ∈[0,+∞)

sup
r∈[0,+∞]

{q+(r)− 1− λ(q−(r) + 1)} = q+(q−1
− (−1))− 1.

For ∆ < ∆∞, the right hand side of the above inequality is less than 0. Therefore, we cannot have
a probability distribution ρ such that 〈q+, ρ〉 = 1 and 〈q−, ρ〉 = −1. The infimum of the risk cannot
be 0.
Step 2. Show that the global minimizer should be a delta function for ∆ < ∆∞.

According to Proposition 1, the global minimizer ρ∗ ∈P should satisfy

supp(ρ∗) ⊆ arg min
r∈[0,+∞]

ψ∞(r; ρ∗) ,

with ψ∞ given in Eq. (4.12).
As proved in the last step, as ∆ < ∆∞, we cannot have both λ+(ρ∗) = 0 and λ−(ρ∗) = 0. The

argument given above also implies that ψ∞(r; ρ∗) is minimized at a unique point, and hence the
support of ρ∗ should be a single point. This proves the first part of the theorem.
Part (2): ∆ ≥ ∆∞.

For ∆ ≥ ∆∞, there exists r > 0, such that q(τ+r) ≥ 1, and q(τ−r) ≤ −1. Therefore, there
exists r∗ > 0 such that q(τ+r∗) − 1 = −1 − q(τ−r∗) = ε∗ ≥ 0. Consider the following probability
measure on [0,+∞],

ρ∗ = 1
1 + ε∗

δr∗ + ε∗
(1 + ε∗)(q(+∞)− q(0)) [q(+∞)δ0 − q(0)δ+∞].
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It can be checked that R∞(ρ∗) = 0.
We would like to show further that there exists a global minimizer that is compactly supported.

We construct this global minimizer as following. First, define

r0 = inf{r : q−(r) ≥ −1}.

Then we know that q−(r0) = −1 and q+(r0) ≥ 1. Now for any 0 ≤ r ≤ r0, define u(r) =
q−1
− (−2 − q−(r)). According to condition S3, we have −1 < [q(0) + q(+∞)]/2 < 1, then u(r) is

well defined on [0, r0]. It is easy to see that u(r0) = r0, and [q−(r) + q−(u(r))]/2 = −1 for any
0 ≤ r ≤ r0. Now we consider the function z(r) = [q+(r) + q+(u(r))]/2 − 1. Note that z(r0) > 0,
and z(0) ≤ [q(0) + q(∞)]/2 − 1 < 0. Therefore, there exists r∗ satisfying 0 < r∗ ≤ r0 such that
z(r∗) = 0. Consider the following probability measure on (0,+∞),

ρ∗ = 1
2[δr∗ + δu(r∗)].

It is easy to see that R∞(ρ∗) = 0.

4.2 Dynamics: Fixed points

We specialize the general evolution (3.1) to the present case. Assuming ρ0 to be spherically sym-
metric, then ρt is spherically symmetric for any t ≥ 0. We let ρt denote the distribution of ‖w‖2
when w ∼ ρt. This satisfies the following PDE:

∂tρt(r) = 2ξ(t)∂r
[
ρt(r)∂rψd(r; ρt)

]
. (4.22)

We will view this as an evolution in the space of probability distribution on the completed half-line
P([0,∞]).

In analogy with Proposition 2, we can prove the following characterization of fixed points.

Proposition 4.3. A distribution ρ ∈P([0,∞]) is a fixed point of the PDE (4.22) if and only if

supp(ρ) ⊆ {r ∈ [0,∞] : ∂rψd(r; ρ) = 0}. (4.23)

Notice, in particular, global minimizers of Rd(ρ) are fixed points of this evolution, but not
vice-versa. The next result classifies fixed points.

Theorem 4.4. Consider d =∞ and recall the definition of λ+(ρ) and λ−(ρ) given by Eqs. (4.13)
and (4.14). Then the fixed points of the PDE (4.22) (i.e. the probability measures ρ ∈ P([0,∞])
satisfying (4.23)) are of one of the following types

(a) A fixed point with zero risk.

(b) A point mass ρr∗ = δr∗ at some location r∗ 6∈ {0,+∞}, but not of type (a).

(c) A mixture of the type ρ = a0δ0 + a∞δ+∞ + aδr∗, but not of type (a) or (b).

For ∆ < ∆∞, the PDE has a unique fixed point of type (b), with λ+(ρ∗) < 0 and λ−(ρ∗) > 0;
it has no type-(a) fixed points; it has possibly fixed points of type (c).

For ∆ > ∆∞, the PDE has some fixed points of type (b), with λ+(ρ∗) > 0 and λ−(ρ∗) < 0; it
also has some type-(a) fixed points; it has possibly fixed points of type (c).

For ∆ = ∆∞, the PDE has a unique fixed point of type (a) which is also a delta function at
some location r∗, and no type (b) fixed points; it has possibly fixed points of type (c).
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Proof. We use the characterization of fixed points in Proposition 4.3. Recall that ψ∞(r; ρ∗) is
defined as in Equation (4.12). The derivative ∂rψ∞(r; ρ) gives

∂rψ∞(r; ρ) =λ+(ρ)q′+(r) + λ−(ρ)q′−(r). (4.24)

If a fixed point has λ+(ρ∗) = λ−(ρ∗) = 0, then R∞(ρ∗) = 0. This is type-(a) fixed point. Consider
then the case (λ+(ρ∗), λ−(ρ∗)) 6= (0, 0). For the same reason as in the proof of Theorem 4.2, we
conclude that ∂rψ∞(r; ρ∗) has at most three zeros, two of which are located at 0 and +∞. This
proves that all fixed points are of type (a), (b) or (c).

We already proved in Theorem 4.2 that, for ∆ < ∆∞, infρR∞(ρ) > 0. Therefore, for ∆ < ∆∞,
there is no type (a) fixed points.

We next prove that, as ∆ < ∆∞, fixed point of type (b) is always unique. The location of the
delta fixed point should satisfy

∂rψ∞(r∗; δr∗) = [q′+(r∗)(q+(r∗)− 1) + q′−(r∗)(q−(r∗) + 1)]/2 = 0. (4.25)

Note that ∂rψ∞(r∗; δr∗) < 0 for r > 0 small enough, and ∂rψ∞(r∗; δr∗) > 0 for r large enough,
whence this equation has at least one solution r∗ ∈ (0,∞). In order to prove that it has a unique
solution in (0,+∞), define r+ ≡ inf{r : q+(r) ≥ 1} and r− ≡ inf{r : q−(r) ≥ −1}. Note that
q′+(r∗), q′−(r∗) > 0 and that, in order to satisfy Eq. (4.25), the terms λ+(δr∗) = 1/2 · (q+(r∗) − 1)
and λ−(δr∗) = 1/2 · (q−(r∗) + 1) must have opposite signs. For ∆ < ∆∞, we must have λ+(δr∗) < 0
and λ−(δr∗) > 0, and all stationary points should be within [r−, r+]. Note that q′−(r)/q′+(r) is
strictly increasing, and [1− q+(r)]/[1 + q−(r)] is decreasing on [r−, r+]. Therefore, the fixed point
of type δr∗ with r∗ ∈ (0,∞) is unique.

For ∆ > ∆∞, we must have λ+(ρ∗) > 0 and λ−(ρ∗) < 0, and all solutions should be within
[r+, r−]. There could possibly be multiple fixed points of type δr∗ with r∗ ∈ [r+, r−].

If ∆ = ∆∞, it is easy to see that, ρ∗ = δr∗ at some r∗ ∈ (0,∞) is the unique fixed point with
zero risk, and the unique fixed point as a point mass.

4.3 Dynamics: Convergence to global minimum for d =∞
In this section, denote Pgood to be

Pgood = {ρ0 ∈P((0,∞)) : R∞(ρ0) < 1, ρ0 has bounded density on (0,∞)}. (4.26)

We then prove that the d =∞ dynamics converges to a global minimizer from any initialization
in Pgood.

Theorem 4.5. Consider the PDE (4.22) for d =∞, with initialization ρ0 ∈Pgood. It has a unique
solution (ρt)t≥0, such that

lim
t→+∞

R∞(ρt) = inf
ρ∈P

R∞(ρ) .

Proof. Without loss of generality, we assume ξ(t) = 1/2. First we show the existence and uniqueness
of solution of the PDE.

Step 1. Existence and uniqueness of solution. Mass ρt((0,∞)) = 1 for all t.
According to conditions S1 - S3, q(r), q′(r), and q′′(r) are uniformly bounded on [0,∞]. Recall

that
v(r) =1/2 · [q−(r)− q+(r)],

u∞(r1, r2) =1/2 · [q+(r1)q+(r2) + q−(r1)q−(r2)].
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Hence v′(r), ∂1u∞(r1, r2), v′′(r), ∂2
11u∞(r1, r2), ∂2

12u∞(r1, r2) are uniformly bounded. Recall we fur-
ther assumed ξ(t) ≡ 1/2. Therefore, conditions A1 and A3 are satisfied with D = 1, V = v, and
U = u. By Remark 3.1, there is the existence and uniqueness of solution of PDE (4.22) for d =∞.
Denote this solution to be (ρt)t≥0.

Recall the formula of ∂rψ∞(r; ρ) given in Equation (4.24), it is easy to see that the assumption
of Lemma 3.9 is satisfied with d = 1 and Ψ = ψ∞. Hence, we have ρt((0,∞)) = 1 for any t <∞.

Step 2. Classify the limiting set S∗.
Recall the definition of (P([0,+∞]), d̄P) at the beginning of Section 4. Since (P([0,+∞]), d̄P)

is a compact metric space, and (ρt)t≥0 is a continuous curve in this space, then there exists a
subsequence (tk)k≥1 of times, such that (ρtk)k≥1 converges in metric d̄P to a probability distribution
ρ∗ ∈P([0,+∞]).

Analogously to Proposition 2 (using Eq. (4.22)), we have

∂tR∞(ρt) = −
∫

[∂rψ∞(r; ρt)]2 ρt(dr) .

Since R∞(ρt) ≥ 0, we have
lim

t→+∞

∫
[∂rψ∞(r; ρt)]2 ρt(dr) = 0.

Recall the definition of λ+(ρ) and λ−(ρ) given by Eq. (4.13) and (4.14). Since q ∈ Cb([0,∞]),
we have

lim
k→∞

λ+(ρtk) = λ+(ρ∗), lim
k→∞

λ−(ρtk) = λ−(ρ∗). (4.27)

Note ∂rψ∞(r; ρ) is given by Eq. (4.24), and q′ ∈ Cb([0,+∞]), hence

lim
k→+∞

〈[∂rψ∞( · ; ρtk)]2, ρtk〉 = 〈[∂rψ∞( · ; ρ∗)]2, ρ∗〉,

which implies
〈[∂rψ∞( · ; ρ∗)]2, ρ∗〉 = 0.

In other words, any limiting point ρ∗ of the PDE is a fixed point of the PDE (4.22).
Note R∞(ρ) = 1/2 · [λ+(ρ)2 + λ−(ρ)2], we have

lim
k→+∞

R∞(ρtk) = R∞(ρ∗).

Note R∞(ρt) is decreasing with t, hence

lim
t→+∞

R∞(ρt) = R∞(ρ∗).

Let S∗ = S∗(ρ0) be the set of all limiting points of the (ρt)t≥0,

S∗ = {ρ∗ ∈P([0,∞]) : ∃(tk)k≥1, lim
k→∞

tk = +∞, s.t., lim
k→∞

d̄P(ρ∗, ρtk) = 0}.

Due to Lemma 3.10, S∗ is a connected compact set. Since R∞(ρt) is decreasing as t increases, we
have R∞(ρ∗) ≡ R∗ is a constant for all ρ∗ ∈ S∗. Since we assumed R∞(ρ0) < 1, and R∞(ρt) is
decreasing in t, we have R∗ < 1.
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Let ρ∗ be a fixed point of PDE such that λ+(ρ∗) ≥ 0, λ−(ρ∗) ≥ 0 or λ+(ρ∗) ≤ 0, λ−(ρ∗) ≤ 0
but not both λ+(ρ∗) and λ−(ρ∗) equal 0. In this case, according to Eq. (4.24), ∂rψ∞(r; ρ∗) must
be strictly increasing or strictly decreasing in r. Since supp(ρ∗) ⊆ {r ∈ [0,∞] : ∂rψ∞(r; ρ∗) = 0},
ρ∗ must be a combination of two delta functions located at 0 and +∞, i.e., ρ∗ = a0δ0 + (1− a0)δ∞.
But for a fixed point of this type, it is easy to see that R∞(ρ∗) ≥ 1. Such fixed points ρ∗ cannot
be one of the limiting points of the PDE since R∞(ρ0) < 1.

Let L be a mapping L : P([0,+∞]) → R2, ρ 7→ (λ+(ρ), λ−(ρ)). The above argument implies
that for any ρ0 ∈Pgood, we have

L(S∗(ρ0)) ∩ ({(λ+, λ−) : λ+ ≥ 0, λ− ≥ 0, or λ+ ≤ 0, λ− ≤ 0} \ {(0, 0)}) = ∅.

Since S∗ is a connected set, L(S∗) should also be a connected set. Further notice that R∞(ρ∗) =
1/2 · [λ+(ρ∗)2 + λ−(ρ∗)2], and R∞(ρ1) = R∞(ρ2) for any ρ1, ρ2 ∈ S∗. Therefore, we can only have
L(S∗) ⊆ P2 ≡ {(λ+, λ−) : λ+ > 0, λ− < 0}, or L(S∗) ⊆ P1 ≡ {(λ+, λ−) : λ+ < 0, λ− > 0}, or
L(S∗) = {(0, 0)}.

Step 3. Finish the proof using two claims.
We make the following two claims.

Claim (1). If L(S∗) ⊆ P1, then for any ρ∗ ∈ S∗, we have ρ∗((0,∞)) = 1.

Claim (2). We cannot have L(S∗) ⊆ P2.

Here we assume these two claims hold, and use them to prove our results. For ∆ < ∆∞, we
proved in Theorem 4.4 that, there is not a fixed point such that L(ρ∗) = (0, 0). Therefore, we
cannot have L(S∗) = {(0, 0)}. Due to Claim (2), we cannot have L(S∗) ⊆ P2. Hence, we must
have L(S∗) ⊆ P1. According to Theorem 4.4, for ∆ < ∆∞, the only fixed point of PDE with
ρ∗((0,∞)) = 1 is a point mass at some location r∗. Furthermore, this delta function fixed point is
unique and is also the global minimizer of the risk. Therefore, we conclude that, as ∆ < ∆∞, the
PDE will converge to this global minimizer.

For ∆ ≥ ∆∞, according to Claim (1), if ρ∗ is a limiting point such that L(ρ∗) ∈ P1, then
ρ∗((0,∞)) = 1. According to Theorem 4.4, a fixed point ρ∗ with ρ∗((0,∞)) = 1 and L(ρ∗) 6= (0, 0)
must be a point mass at some location r∗, with L(ρ∗) ∈ P2. Therefore, we cannot have L(S∗) ⊆ P1.
Claim (2) also tells us that we cannot have L(S∗) ⊆ P2. Hence, we must have L(S∗) = {(0, 0)}. In
this case, all the points in the set S∗ have risk 0. Therefore, we conclude that, as ∆ ≥ ∆∞, the
PDE will converge to some limiting set with risk 0.

Step 4. Proof of the two claims.
We are left with the task of proving the two claims above. Before that, we introduce some

useful notations. Recall Z(r) = q′−(r)/q′+(r) for r ∈ (0,+∞). According to condition S4, Z ′(r) > 0
for r ∈ (0,+∞). This implies that Z(0+) ≡ Z0 ≥ 0 and Z(+∞) ≡ Z∞ ≤ ∞ exist. We rewrite
∂rψ∞(r; ρ) as

∂rψ∞(r; ρ) = λ+(ρ)q′+(r) + λ−(ρ)q′−(r) = λ−(ρ)q′+(r)[λ+(ρ)/λ−(ρ) + Z(r)]. (4.28)

Proof of Claim (1). If L(S∗) ⊆ P1, then for any ρ∗ ∈ S∗, we have ρ∗({0,∞}) = 0.
Assume L(S∗) ⊆ P1. Then, we must have L(S∗) ⊆ P1 ∩ {(λ+, λ−) : Z0 < −λ+/λ− < Z∞}.

Otherwise suppose there exists ρ∗ ∈ S∗, such that −λ+(ρ∗)/λ−(ρ∗) ≥ Z∞ or −λ+(ρ∗)/λ−(ρ∗) ≤ Z0,
according to Eq. (4.28), ψ∞(r; ρ∗) must be strictly increasing or strictly decreasing in r. Since
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supp(ρ∗) ⊆ {r ∈ [0,∞] : ∂rψ∞(r; ρ∗) = 0}, then ρ∗ must be a combination of two delta functions
located at 0 and +∞. But such ρ∗ must have R∞(ρ∗) ≥ 1, and thus ρ∗ cannot be a limiting point
of the PDE. Hence the claim that L(S∗) ⊆ P1 ∩ {(λ+, λ−) : Z0 < −λ+/λ− < Z∞} holds.

Since S∗ is a compact set, and L is a continuous map, then L(S∗) is a compact set. Therefore,
there must exist ε0 > 0, so that for any ρ∗ ∈ S∗, we have Z0 + 3ε0 < −λ+(ρ∗)/λ−(ρ∗) < Z∞ − 3ε0.
For this ε0 > 0, since S∗ contains all the limiting points of PDE starting from ρ0, there exists t0
large enough, so that as t ≥ t0, we have Z0 + 2ε0 < −λ+(ρt)/λ−(ρt) < Z∞ − 2ε0, and λ+(ρt) < 0,
λ−(ρt) > 0. For the same ε0, since Z(r) is continuous at 0 and +∞, there exists 0 < r0 < r∞ <∞,
so that Z(r) < Z0 + ε0 for r ∈ (0, r0), and Z(r) > Z∞ − ε0 for r ∈ (r∞,∞). Therefore, for any
t ≥ t0, ∂rψ∞(r; ρt) < 0 for any r ∈ (0, r0), and ∂rψ∞(r; ρt) > 0 for any r ∈ (r∞,+∞).

As a result, according to the equation (4.28), we must have ∂rψ∞(r; ρt) < 0 for any r ∈ (0, r0)
and t ≥ t0, and ∂rψ∞(r; ρt) > 0 for any r ∈ (r∞,∞) and t ≥ t0.

Due to Lemma 3.9, ρt0((0,∞)) = 1. Denoting Ωk = [1/k, k], then limk→∞ ρt0(Ωk) = 1. With
this choice of Ωk, for any k ≥ {r∞, 1/r0}, and for any t ≥ t0, we have 〈∂rψ∞(r; ρt),n(r)〉 > 0 for
r ∈ ∂Ωk where n(r) is the normal vector point outside Ωk. Therefore, if we consider the ODE

ṙ(t) = −∂ψ∞(r(t); ρt). (4.29)

starting with r(t0) ∈ Ωk, r(t) cannot leak outside Ωk from either boundaries of Ωk, and we must
have r(t) ∈ Ωk for any t ≥ t0. Due to Lemma 3.8, ρt(Ωk) ≥ ρt0(Ωk) for any t ≥ t0. As a result, we
conclude that for any ρ∗ ∈ S∗,

ρ∗(∪kΩk) ≥ lim
k→∞

ρ∗(Ωk) ≥ lim
k→∞

ρt0(Ωk) = 1. (4.30)

Note ∪kΩk = (0,∞). This gives ρ∗({0,∞}) = 0, which proves Claim (1).

Proof of Claim (2), step (1). If L(S∗) ⊆ P2, then S∗ must be a singleton.
In the case L(S∗) ⊆ P2, the argument is similar to the proof of Claim (1), and hence will be

presented in a synthetic form. First, we must have L(S∗) ⊆ P2∩{(λ+, λ−) : Z0 < −λ+/λ− < Z∞}.
Therefore, there must exist ε0 > 0, so that for any ρ∗ ∈ S∗, we have Z0 + 3ε0 < −λ+(ρ∗)/λ−(ρ∗) <
Z∞ − 3ε0. For this ε0 > 0, there exists t0 large enough, so that as t ≥ t0, we have Z0 + 2ε0 <
−λ+(ρt)/λ−(ρt) < Z∞ − 2ε0, and λ+(ρt) > 0, λ−(ρt) < 0. Further, there exists 0 < r0 < r∞ <∞,
so that ∂rψ∞(r; ρt) > 0 for any r ∈ (0, r0) and t ≥ t0, and ∂rψ∞(r; ρt) < 0 for any r ∈ (r∞,∞) and
t ≥ t0.

Therefore, if we consider the ODE (4.29) starting with r(t0) ∈ [0, r0), we must have r(t) ∈
[0, r0) for any t ≥ t0; if we start with r(t0) ∈ (r∞,∞], we must have r(t) ∈ (r∞,∞] for any
t ≥ t0. Due to Lemma 3.8, {ρt([0, r))}t≥t0 for 0 < r ≤ r0 and {ρt((r,+∞])}t≥t0 for r ≥ r∞
must be non-decreasing in t. According to Theorem 4.4, we can express ρ∗ ∈ S∗ in the form
ρ∗ = a0(ρ∗)δ0 + a∞(ρ∗)δ∞ + a(ρ∗)δr∗ . By the stated monotonicity property, for any ρ1, ρ2 ∈ S∗, it
holds that a0(ρ1) = a0(ρ2), a∞(ρ1) = a∞(ρ2), and hence a(ρ1) = a(ρ2). We denote them in short
as a0, a∞, and a.

For any such fixed point ρ∗ ∈ S∗, since we must have supp(ρ∗) ⊆ {r : ∂rψ∞(r; ρ∗) = 0},
r∗ ∈ (0,+∞) should be a solution of φ(r) = 0 where

φ(r) = (a0q(0) + a∞q∞ + aq+(r)− 1)q′+(r) + (a0q(0) + a∞q∞ + aq−(r) + 1)q′−(r).

By condition S1, the function φ(r) is analytic, and it is not constant. Therefore, the set of all its
zeros {ri∗}i∈N ⊆ (0,+∞) is a countable set, and it does not have accumulation points in (0,+∞).
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Furthermore, according to Lemma 3.10, the limiting set S∗ should be a connected compact set
with respect to the metric d̄P . Therefore, the limiting set could only be a singleton. That is,
S∗ = {a0δ0 + a∞δ∞ + aδr∗} for some r∗.

Proof of Claim (2), step (2). If ρ∗ is a fixed point with L(ρ∗) ∈ P2, then ρ∗ is unstable.
We apply Theorem 7 to ρ∗ = a0δ0 + a∞δ∞ + aδr∗ . We will check the conditions of Theorem 7

to show that this type of fixed point is unstable.
First we check condition B1. Since [q′−(r)/q′+(r)]′ > 0 and q′+(r) > 0 for r ∈ (0,+∞), we have

q′′−(r∗)q′+(r∗)− q′′+(r∗)q′−(r∗) > 0. (4.31)

Note the stationary condition of the PDE implies

∂rψ(r∗; ρ∗) = λ+(ρ∗)q′+(r∗) + λ−(ρ∗)q′−(r∗) = 0, (4.32)

and λ+(ρ∗) > 0, λ−(ρ∗) < 0. Combined with the equation above, we have

∂2
rψ∞(r∗; ρ∗) =λ+(ρ∗)q′′+(r∗) + λ−(ρ∗)q′′−(r∗)

=[q′+(r∗)q′′−(r∗)− q′−(r∗)q′′+(r∗)] · λ−(ρ∗)/q′+(r∗) < 0.
(4.33)

This verifies condition B1 of Theorem 7.
Second, since λ+(ρ∗) > 0 and λ−(ρ∗) < 0, according to Equation (4.28), we must have

∂rψ∞(r; ρ∗) > 0 for r ∈ (0, r∗), and ∂rψ∞(r; ρ∗) < 0 for r ∈ (r∗,∞). Therefore, we have ψ∞(0; ρ∗) <
ψ∞(r∗; ρ∗) and ψ∞(+∞; ρ∗) < ψ∞(r∗; ρ∗). Note L(η) ≡ {r : ψ∞(r; ρ∗) ≤ ψ∞(r∗; ρ∗)− η}. For any
η > 0 small enough, ρ∗(L(η)) = 1 − a, which verifies condition B2. It is also easy to see that, for
any η > 0, ∂L(η) is a compact set, hence condition B3 holds. Note that we assumed further that
ρ0 has a bounded density with respect to Lebesgue measure, all the assumptions of Theorem 7 are
satisfied. Theorem 7 implies that the PDE cannot converge to ρ∗. As a result, we conclude that
we cannot have L(S∗(ρ0)) ⊆ P2 for ρ0 ∈Pgood. This proves Claim (2).

4.4 Proof of Theorem 1

The key step consists in proving that the dynamics for large but finite d is well approximated by
the dynamics at d =∞. The key estimate is provided by the next lemma.

Lemma 4.6. Assume σ satisfies condition S0, recall the definition of ud and u∞ given by Equation
(4.8) and (4.9). Then we have

lim
d→∞

sup
r1,r2∈[0,∞)

|ud(r1, r2)− u∞(r1, r2)| = 0,

and
lim
d→∞

sup
r1,r2∈[0,∞)

|∂1ud(r1, r2)− ∂1u∞(r1, r2)| = 0.

Proof. Recall that ud is given by

ud(r1, r2) =1/2 · [ud,1(r1, r2) + ud,2(r1, r2)],
ud,1(r1, r2) =E[σ(r1(1 + ∆)G1)σ(r2(1 + ∆)(G1 cos Θ +G2 sin Θ))],
ud,2(r1, r2) =E[σ(r1(1−∆)G1)σ(r2(1−∆)(G1 cos Θ +G2 sin Θ))],

39



where (G1, G2) ∼ N(0, I2), and Θ ∼ (1/Zd) sin(θ)d−2 · 1{θ ∈ [0, π]}dθ are mutually independent.
Define G3 = G1 cos Θ +G2 sin Θ, then

|ud,1(r1, r2)− u∞,1(r1, r2)|
=|E[σ(r1(1 + ∆)G1)[σ(r2(1 + ∆)G3)− σ(r2(1 + ∆)G2)]]|
≤‖σ‖∞E[|σ(r2(1 + ∆)G3)− σ(r2(1 + ∆)G2)|],

(4.34)

and
|∂1ud,1(r1, r2)− ∂1u∞,1(r1, r2)|

=|E[(1 + ∆)G1 · σ′(r1(1 + ∆)G1)[σ(r2(1 + ∆)G3)− σ(r2(1 + ∆)G2)]]|
≤(1 + ∆)‖σ′‖∞E[G2

1]1/2E[[σ(r2(1 + ∆)G3)− σ(r2(1 + ∆)G2)]2]1/2

≤(1 + ∆)‖σ′‖∞(2‖σ‖1/2∞ ) · E[|σ(r2(1 + ∆)G3)− σ(r2(1 + ∆)G2)|]1/2.

(4.35)

According to condition S0, ‖σ′‖∞ and ‖σ‖∞ are bounded, it is sufficient to bound the following
quantity uniformly for r ∈ [0,∞)

T (r) ≡ 1/2 · E
{
|σ(rG2)− σ(rG3)]|} = E

{
[σ(rG2)− σ(rG3)] 1G2>G3

}
. (4.36)

We claim that, for any a ∈ R,

P(G3 ≤ a,G2 ≥ a) ≤ P(G3 ≤ 0, G2 ≥ 0) = E[|π/2−Θ|/(2π)]. (4.37)

Assuming this claim holds, let us show that it implies the desired bound on T (r). We have

T (r) =E
{∫

R
σ′(t) 1rG2≥t≥rG3 dt

}
=
∫
R
σ′(t)P

{
G2 ≥ t/r ≥ G3

}
dt

≤ sup
a∈R

P(G3 ≤ a,G2 ≥ a)
∫
R
σ′(t) dt ≤ 2‖σ‖∞ · E[|π/2−Θ|/(2π)] .

Note that cos(Θ) d= Z1/‖Z‖2 for Z ∼ N(0, Id) and hence E{|Θ − π/2|} ≤ K/
√
d for a universal

constant K. We therefore obtain

sup
r
|T (r)| ≤ (K/π)‖σ‖∞/

√
d. (4.38)

We are left with the task of proving Eq. (4.37).
Denote X = G2 and Y = G3 for simplicity in notations. Note that (X,Y ) d= (Y,X) d=

(−X,−Y ). It follows that we can assume, without loss of generality, a > 0. We have

P(Y ≤ a,X ≥ a) =P(Y ≤ 0, X ≥ a) + P(0 ≤ Y ≤ a,X ≥ a),
P(Y ≤ 0, X ≥ 0) =P(Y ≤ 0, X ≥ a) + P(Y ≤ 0, 0 ≤ X ≤ a),

suffice to prove that
P(0 ≤ Y ≤ a,X ≥ a) ≤ P(Y ≤ 0, 0 ≤ X ≤ a).

Define U = (X−Y )/2, V = (X+Y )/2, and A1 = {0 ≤ Y ≤ a,X ≥ a}, A2 = {Y ≤ 0, 0 ≤ X ≤ a}.
It is easy to see that [U |Θ = θ] and [V |Θ = θ] are independent normal random variables. Therefore,
it is sufficient to show P(A1|U = u,Θ = θ) ≤ P(A2|U = u,Θ = θ) for u ≥ 0 and θ ∈ [0, π] (as
u < 0, both conditional probability equal 0).
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Fix an u ≥ 0 and θ ∈ [0, π]. Consider the closed interval Ii = Ii(u) ⊆ R for i = 1, 2,
with definition Ii(u) ≡ {v : {U = u, V = v,Θ = θ} ⊆ Ai}. Then P(Ai|U = u,Θ = θ) =∫
Ii(u) pV |Θ(v|θ)dv, where pV |Θ(v|θ) is the density of [V |Θ = θ] at v. It is not hard to see that

every element in I1 is greater or equal to a/2, and every element in I2 is less or equal to a/2; in
the meanwhile, I1 and I2 are symmetric with respect to a/2. Note that [V |Θ = θ] is a Gaussian
random variable with zero mean, therefore pV |Θ(a/2 + s|θ) ≤ pV |Θ(a/2 − s|θ) for any s ≥ 0 and
θ ∈ [0, π]. This implies that P(A1|U = u,Θ = θ) ≤ P(A2|U = u,Θ = θ), for any u ≥ 0 and
θ ∈ [0, π].

Lemma 4.7. Let y ∼ Unif({−1,+1}), [x|y = +1] ∼ N(0,Σ+), [x|y = −1] ∼ N(0,Σ−) with
τ2
−ID � Σ+,Σ− � τ2

+ID for some 0 < τ− < τ+ < ∞. Assume that the activation function σ
satisfies condition S0. Define

V (θ) =− E[y σ(〈x,θ〉)],
U(θ1,θ2) =E[σ(〈x,θ1〉)σ(〈x,θ2〉)].

(4.39)

Then assumptions A2 and A3 are satisfied.

Proof. Note that x is sub-Gaussian, and by condition S0 we have σ′ is bounded, then ∇θσ(〈x,θ〉) =
σ′(〈x,θ〉)x is also sub-Gaussian (with sub-Gaussian parameter independent of D). Condition S0
also gives that σ is bounded, therefore assumption A2 is satisfied.

To verify assumption A3, it is sufficient to check that ∇V , ∇1U , ∇2
12U , ∇2V , and ∇2

11U are
uniformly bounded in `2 norm (for the gradients) or operator norm (for the Hessians). For any
unit vector n, we have

〈∇V (θ),n〉 =− E[yσ′(〈x,θ〉)〈x,n〉], (4.40)
〈∇1U(θ1,θ2),n〉 =E[σ′(〈x,θ1〉)〈x,n〉σ(〈x,θ2〉)], (4.41)

〈∇2
12U(θ1,θ2),n⊗2〉 =E[σ′(〈x,θ1〉)〈x,n〉2σ′(〈x,θ2〉)]. (4.42)

Since ‖σ‖∞, ‖σ′‖∞ < ∞, applying Cauchy-Schwarz inequality, we have ∇V,∇1U,∇2
12U are uni-

formly bounded.
It is difficult to bound ∇2V and ∇2

1U directly because σ′ may not be differentiable. We will
use a longer argument to bound them.

First, for a bounded-Lipschitz function f , and for g ∈ {1, σ}, define

Wf,g(θ1,θ2) = EG[f(〈θ1,G〉)g(〈θ2,G〉)], (4.43)

where G ∼ N(0, Id). Since we have τ2
−ID � Σ+,Σ− � τ2

+ID for some 0 < τ− < τ+ <∞, in order
to bound ∇2V and ∇2

1U , it is sufficient to bound ∇2
1Wσ,1 and ∇2

1Wσ,σ.
Since σ′ is K0-Lipschitz on [−2δ0, 2δ0] for some δ0 > 0 and K0 <∞, then, there exists a function

σ0 : R → R, so that σ0 is non-decreasing and K-bounded-Lipschitz, σ′0 is K-bounded-Lipschitz,
and σ0(r) = σ(r) for r ∈ [−δ0, δ0]. For this σ0, a second weak derivative exists and |σ′′0 | ≤ K.
Hence

〈∇2
1Wσ0,g(θ1,θ2),n⊗2〉 = E[σ′′0(〈θ1,G〉)〈G,n〉2g(〈θ2,G〉)] (4.44)

is uniformly bounded for g = 1 or g = σ. Let h = σ − σ0, then h = 0 for r ∈ [−δ0, δ0], and h is
K-bounded-Lipschitz for some constant K. It is sufficient to bound ∇2

1Wh,g for g ∈ {1, σ}.
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Since G is Gaussian, using Stein’s formula, for any unit vector n, we have

〈∇1Wh,g(θ1,θ2),n〉 = E[h′(〈θ1,G〉)〈n,G〉g(〈θ2,G〉)]

= 1
‖θ1‖22

E[h(〈θ1,G〉)〈θ1,G〉〈n,G〉g(〈θ2,G〉)]︸ ︷︷ ︸
E1(θ1,θ2,n)

− 1
‖θ1‖22

E[h(〈θ1,G〉)〈θ1,n〉g(〈θ2,G〉)]︸ ︷︷ ︸
E2(θ1,θ2,n)

− 1
‖θ1‖22

E[h(〈θ1,G〉)〈n,G〉g′(〈θ2,G〉)〈θ2,θ1〉]︸ ︷︷ ︸
E3(θ1,θ2,n)

.

(4.45)

Taking directional derivatives of E1 and E2, we have

〈∇1E1(θ1,θ2,n),n〉 = 1
‖θ1‖22

E[h′(〈θ1,G〉)〈θ1,G〉〈n,G〉2g(〈θ2,G〉)]︸ ︷︷ ︸
E11

+ 1
‖θ1‖22

E[h(〈θ1,G〉)〈n,G〉2g(〈θ2,G〉)]︸ ︷︷ ︸
E12

− 2〈θ1,n〉
‖θ1‖42

E[h(〈θ1,G〉)〈θ1,G〉〈n,G〉g(〈θ2,G〉)]︸ ︷︷ ︸
E13

,

(4.46)

and
〈∇1E2(θ1,θ2,n),n〉 = 1

‖θ1‖22
E[h′(〈θ1,G〉)〈θ1,n〉〈G,n〉g(〈θ2,G〉)]︸ ︷︷ ︸

E21

+ 1
‖θ1‖22

E[h(〈θ1,G〉)g(〈θ2,G〉)]︸ ︷︷ ︸
E22

− 2〈θ1,n〉
‖θ1‖42

E[h(〈θ1,G〉)〈θ1,n〉g(〈θ2,G〉)]︸ ︷︷ ︸
E23

.

(4.47)

To bound E11, note h′(r) = 0 for r ∈ (−δ0, δ0), and |h′(r)| ≤ K for r ∈ R, we have

E11 ≤
K

‖θ1‖2
E
[
1{|〈θ1,G〉| ≥ δ0} · |〈θ1/‖θ1‖2,G〉| · 〈n,G〉2

∣∣g(〈θ2,G〉)
∣∣]

≤ K

‖θ1‖2
· P(|〈θ1,G〉| ≥ δ0)1/2 · {E[(〈θ1/‖θ1‖2,G〉2〈n,G〉4g(〈θ2,G〉))2]}1/2.

(4.48)

Take r = ‖θ1‖2, then

1/‖θ1‖2 · P(|〈θ1,G〉| ≥ δ0)1/2 ≤ 1/r · exp{−δ2
0/(4r2)} (4.49)

is uniformly bounded for r ∈ [0,∞]. Hence E11 is uniformly bounded. Using a similar argument,
we can show that each terms E12, E13, E21, E22, and E23 are uniformly bounded.

Now we look at ∇1E3(θ1,θ2,n). We have

〈∇1E3(θ1,θ2,n),n〉 = 1
‖θ1‖22

E[h′(〈θ1,G〉)〈n,G〉2g′(〈θ2,G〉)〈θ2,θ1〉]︸ ︷︷ ︸
E31

+ 1
‖θ1‖22

E[h(〈θ1,G〉)〈n,G〉g′(〈θ2,G〉)〈θ2,n〉]︸ ︷︷ ︸
E32

− 2〈θ1,n〉
‖θ1‖42

E[h(〈θ1,G〉)〈n,G〉g′(〈θ2,G〉)〈θ2,θ1〉]︸ ︷︷ ︸
E33

.

(4.50)
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In order to bound E32, we apply Stein’s formula to get

E32 = 〈θ2,n〉
‖θ1‖22‖θ2‖22

{
E[h(〈θ1,G〉)〈n,G〉g(〈θ2,G〉)〈θ2,G〉]

− E[h(〈θ1,G〉)〈n,θ2〉g(〈θ2,G〉)]− E[h′(〈θ1,G〉)〈θ1,θ2〉〈n,G〉g(〈θ2,G〉)]
}
.

(4.51)

For each terms above, we can bound them using the same argument as for bounding E11. Similarly,
we can bound E33. We cannot apply directly Stein’s formula to E31 similar to what we did for E32,
because h′ = σ′− σ′0 may not have weak derivative. However, recall that h′(r) = 0 for r ∈ [−δ0, δ0]
and h′ is K-bounded. Therefore, we can find a function h0 : R → R, such that |h′(r)| ≤ h0(r) for
r ∈ R, h0(r) = 0 for r ∈ [−δ0/2, δ0/2], and h0 is K-bounded-Lipschitz (for some larger constant
K). Hence, recalling that g′(r) ≥ 0, we get

E31 ≤
1
‖θ1‖2

E[h0(〈θ1,G〉)〈n,G〉2g′(〈θ2,G〉)‖θ2‖2]. (4.52)

We can apply Stein’s formula to the right hand side of the last equation. Using the same argument
as above, we obtain that E31 is uniformly bounded.

As a result, ∇2V and ∇2
1U are uniformly bounded. Therefore, assumption A3 is satisfied.

We are now in position to prove Theorem 1.

Proof of Theorem 1. First we consider PDE (4.22) for d = ∞. We fix an initial radial density
ρ0 ∈ Pgood. Due to Theorem 4.5, for any η > 0, there exists T = T (η, ρ0,∆) > 0, so that the
solution (ρ∞t )t≥0 of PDE (4.22) for d =∞ with initialization ρ0 satisfies

R∞(ρ∞t ) ≤ inf
ρ∈P

R∞(ρ) + η/5

for any t ≥ T .
Then we consider the general PDE

∂tρt(θ) =2ξ(t)∇ ·
[
ρt(θ)∇Ψ(θ; ρt)

]
, (4.53)

with initialization ρ0 the distribution of rn, where (r,n) ∼ ρ0×Unif(Sd−1). Due to Lemma 4.7, we
have the existence and uniqueness of the solution of PDE (4.53), and let (ρt)t≥0 be the solution.
Let ρdt be the radial marginal distribution of ρt. It is easy to see that (ρdt )t≥0 is the unique solution
of (4.22) for d finite.

Now, we would like to bound the distance of ρdt and ρ∞t using Lemma 3.7. We take D = 1,
V = v, U = ud, Ṽ = v, Ũ = u∞ in Lemma 3.7. Let ε0(d) be defined as in Eq. (3.69). Due
to Lemma 4.6, we have ε0(d) → 0 as d → ∞. Therefore, according to Lemma 3.7, we have
limd→∞ supt≤10T dBL(ρdt , ρ∞t ) = 0. Further note that R∞ is uniformly continuous with respect to ρ
in bounded-Lipschitz distance. Therefore, there exists d0 = d0(η, ρ0,∆) large enough, so that for
d ≥ d0 we have

|R∞(ρdt )−R∞(ρ∞t )| ≤ η/5.

for any t ≤ 10T .
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Next we would like to bound the difference of R∞(ρ) and Rd(ρ) for any ρ. Note

|R∞(ρ)−Rd(ρ)| ≤
∫
|ud(r1, r2)− u∞(r1, r2)| ρ(dr1)ρ(dr2). (4.54)

By Lemma 4.6, there exists d0 = d0(η,∆) large enough, so that for d ≥ d0, we have

sup
ρ∈P

|R∞(ρ)−Rd(ρ)| ≤ η/5. (4.55)

Finally, let (θk)k≥1 be the trajectory of SGD, with step size sk = εξ(kε), and initialization
w0
i ∼iid ρ0 for i ≤ N . We apply Theorem 3 to bound the difference of the law of trajectory of SGD

and the solution of PDE (4.53). The assumptions of Theorem 3 are verified by Lemma 4.7. As a
consequence, there exists constant K (which depend uniquely on the constants in assumptions A1
A2 A3), such that for any t ≤ 10T , we have

RN (θbt/εc)−Rd(ρdt ) ≤ Ke10KT · errN,d(z).

with probability 1− e−z2 , where

errN,d(z) =
√

1/N ∨ ε ·
[√

d+ log(N(1/ε ∨ 1)) + z
]
.

As a consequence, for any δ > 0, there exists C0 = C0(δ, η, ρ0,∆), so that as N, 1/ε ≥ C0d and
ε ≥ 1/N10, for any t ≤ 10T , we have

RN (θbt/εc)−Rd(ρdt ) ≤ η/5

with probability at least 1− δ.
Therefore, the trajectory θbt/εc of SGD as t ∈ [T, 10T ] satisfies

RN (θbt/εc) ≤Rd(ρdt ) + η/5 ≤ R∞(ρdt ) + 2η/5 ≤ R∞(ρ∞t ) + 3η/5
≤ inf
ρ∈P

R∞(ρ) + 4η/5 ≤ inf
ρ∈P

Rd(ρ) + η = inf
ρ∈P(Rd)

R(ρ) + η

≤ inf
θ∈Rd×N

RN (θ) + η

with probability at least 1− δ. This gives the desired result.

4.5 Checking conditions S0–S4 for the running example

Lemma 4.8. Consider the activation function σ with definition in Equation (4.1), with s1 < s2,
s1 < −1, (s1 + s2)/2 > 1, (3s1 + s2)/4 ∈ (−1, 1), 0 < t1 < t2. For r ∈ (0,+∞), define q(r) =
EG[σ(rG)] where G ∼ N(0, 1). Then conditions S0–S4 hold.

Remark 4.1. The requirements of Lemma 4.8 are not restrictive. An example of parameters that
satisfies all conditions gives s1 = −2.5, s2 = 7.5, t1 = 0.5, t2 = 1.5.
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Proof. It is straightforward to see that condition S0 holds. To show condition S1, denote by σ′(r)
the weak derivative of σ(r), we calculate the function q′(r) for r > 0 explicitly,

q′(r) =E[σ′(rG)G] = s2 − s1
t2 − t1

∫
R

1{rx ∈ [t1, t2]} · 1√
2π

exp
{
− x2

2
}
· x · dx

= s2 − s1√
2π(t2 − t1)

{
exp

[
− t21

2r2

]
− exp

[
− t22

2r2

]}
.

(4.56)

Since s1 < s2 and 0 < t1 < t2, it is easy to see that q′(r) is analytic on (0,∞), and hence q(r) is
analytic on (0,∞). Differentiating q′(r) in Eq. (4.56), it is easy to see that limr→∞ q

′′(r) = 0, and
q′′(0+) = 0. Hence, we have supr∈[0,+∞] q

′′(r) <∞. Then condition S1 holds.
Since s2 > s1, 0 < t1 < t2, we have q′(r) > 0 for r ∈ (0,+∞), limr→∞ q

′(r) = 0, and q′(0+) = 0.
Hence, we have supr∈[0,+∞] q

′(r) <∞. Then condition S2 holds. Note that q(0) = σ(0) = s1 < −1,
and q(+∞) = (s1 + s2)/2 > 1. In addition, [q(0) + q(+∞)]/2 = (3s1 + s2)/4 ∈ (−1, 1). Therefore,
condition S3 holds.

Finally, we show that condition S4 holds. Define p(r) = exp[−t21/(2r2)]− exp[−t22/(2r2)], which
is a positively scaled version of q′(r). To show that for r ∈ (0,∞),

[q′(τ−r)/q′(τ+r)]′ = [τ− · q′′(τ−r)q′(τ+r)− τ+ · q′(τ−r)q′′(τ+r)]/[q′(τ+r)]2 > 0,

we only need to show that for r ∈ (0,∞)

F1(r) ≡ τ− · p′(τ−r)p(τ+r)− τ+ · p′(τ+r)p(τ−r) > 0.

We have
F1(r) = + 1/(τ2

−r
3) · {t21 exp[−t21/(2τ2

−r
2)]− t22 exp[−t22/(2τ2

−r
2)]}

× {exp[−t21/(2τ2
+r

2)]− exp[−t22/(2τ2
+r

2)]}
− 1/(τ2

+r
3) · {t21 exp[−t21/(2τ2

+r
2)]− t22 exp[−t22/(2τ2

+r
2)]}

× {exp[−t21/(2τ2
−r

2)]− exp[−t22/(2τ2
−r

2)]}.

Define x ≡ t22/(2τ2
+r

2) > 0, s ≡ τ2
+/τ

2
− > 1, 0 < c ≡ t21/t22 < 1, we have

F1(r) = + t22/(τ2
+r

3) · {cs · exp[−xsc]− s exp[−xs]} · {exp[−xc]− exp[−x]}
− t22/(τ2

+r
3) · {c · exp[−xc]− exp[−x]} · {exp[−xsc]− exp[−xs]}

=t22/(τ2
+r

3){(cs− c) exp[−xc− xsc] + (c− s) exp[−xs− xc]
+ (1− cs) exp[−x− xsc] + (s− 1) exp[−x− xs]}

=t22/(τ2
+r

3) exp{−x− xsc}{(cs− c) exp[x− xc]
+ (c− s) exp[x− xs− xc+ xsc] + (1− cs) + (s− 1) exp[xsc− xs]}.

Define

F2(x; s, c) = (cs− c) exp[x− xc] + (c− s) exp[x− xs− xc+ xsc] + (1− cs) + (s− 1) exp[xsc− xs].

It is sufficient to show that F2(x; s, c) > 0 for x > 0, s > 1, and 0 < c < 1. Note that F2(0+; s, c) =
0. Hence it is sufficient to show that ∂xF2(x; s, c) > 0 for x > 0.
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We have

∂xF2(x; s, c) =c(s− 1)(1− c) exp[x− xc] + (s− c)(s− 1)(1− c) exp[x− xs− xc+ xsc]
+ (s− 1)s(c− 1) exp[xsc− xs]

=(s− 1)(1− c) exp[xsc− xs]{c · exp[x− xc− xsc+ xs] + (s− c) exp[x− xc]− s}.

Define
F3(x; s, c) = c · exp[x− xc− xsc+ xs] + (s− c) exp[x− xc]− s.

Note that s > 1 and 0 ≤ c < 1, F3(0+; s, c) = 0. It is therefore sufficient to show that ∂xF3(x; s, c) >
0 for x > 0.

We have

∂xF3(x; s, c) = c(1− c)(1 + s) exp[x− xc− xsc+ xs] + (s− c)(1− c) exp[x− xc].

Since 0 < c < 1, s > 1, and x > 0, we have ∂xF3(x; s, c) > 0, and hence condition S4 holds.

5 Centered anisotropic Gaussians

In this section we consider the centered anisotropic Gaussian example discussed in the main text.
That is, we assume the joint law of (y,x) to be as follows:

With probability 1/2: y = +1, x ∼ N(0,Σ+).

With probability 1/2: y = −1, x ∼ N(0,Σ−).

We will assume Σ+,Σ+ to be diagonalizable in the same orthonormal basis, and to differ only on
a subspace of dimension s0. We want to study whether and how the neural network will identify
this subspace of relevant features. Without loss of generality, we can assume that the eigenvalues
correspond to the standard basis. In order to focus on the simplest possible model of this type, we
will choose:

Σ+ = Diag
(

(1 + ∆)2, . . . , (1 + ∆)2︸ ︷︷ ︸
s0

, 1, . . . , 1︸ ︷︷ ︸
d−s0

)
, (5.1)

Σ− = Diag
(

(1−∆)2, . . . , (1−∆)2︸ ︷︷ ︸
s0

, 1, . . . , 1︸ ︷︷ ︸
d−s0

)
. (5.2)

We assume 0 < ∆ < 1. As in the previous section, we choose σ∗(x;θi) = σ(〈x,wi〉) for some
activation function σ. Define q(r) ≡ E{σ(rG)} for G ∼ N(0, 1). We assume σ( · ) satisfies conditions
S0 - S4 stated at the beginning of Section 4. We will still use the specific σ in Eq. (4.1) as our
running example.

Throughout this section, we assume s0 = γ · d for some fixed 0 < γ < 1. Therefore, as d→∞,
we have s0 = γ · d→∞ and d− s0 = (1− γ) · d→∞. For any w ∈ Rd, we denote w1 ∈ Rs0 and
w2 ∈ Rd−s0 by writing w = (w1,w2). We denote τ+ = 1 + ∆ and τ− = 1 − ∆. Then we have
0 < τ− < 1 < τ+ < 2. Denote q+(r) = q(τ+r) and q−(r) = q(τ−r). For any a = (a1, a2) ∈ R2,
denote

r+(a) = (τ2
+a

2
1 + a2

2)1/2, r−(a) = (τ2
−a

2
1 + a2

2)1/2. (5.3)
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Before analyzing our model, we introduce the function space and space of probability measures
we will work on. Let E2 ≡ [0,+∞)2 ∪ {∞}. Note there is a bijection ι between E2 and S2 ∩
{(x, y, x) ∈ R3 : x, y ≥ 0}. Indeed, for any r = (r1, r2) ∈ [0,+∞)2, consider the line crossing
(r1, r2, 0) and (0, 0, 1). This line intersects with S2 at two points. One intersection point is (0, 0, 1),
and we denote the other intersection point as ι(r). Moreover, let ι(∞) = (0, 0, 1). With this
bijection ι, we equip E2 with a metric d̄ induced by the usual round metric on S2. Then (E2, d̄)
is a compact metric space, and we will still denote it as E2 for simplicity in notations. We denote
Cb(E2) to be the set of bounded continuous functions on E2, where continuity is defined using the
topology generated by d̄. More explicitly, we have isomorphism

Cb(E2) ' {f ∈ C([0,∞)2) : ∃f(∞) ≡ lim
‖r‖2→∞

f(r), sup
r∈E2

f(r) <∞}. (5.4)

Because of condition S2 and S3, we have q ◦ r+, q ◦ r−, q′ ◦ r+, q
′ ◦ r− ∈ Cb(E2).

Let P(E2) be the set of probability measures on E2. Due to Prokhorov’s theorem, there exists a
complete metric d̄P on P(E2) equivalent to the topology of weak convergence, so that (P(E2), d̄P)
is a compact metric space. In this section, we will denote by P = P(E2).

5.1 Statics

Since the distribution of x is invariant under rotations in first s0 coordinates, and invariant under
rotations in last d− s0 coordinates, so are the functions

V (a) =v(‖a1‖2, ‖a2‖2), (5.5)
U(a, b) =u0(‖a1‖2, ‖b1‖2, 〈a1, b1〉, ‖a2‖2, ‖b2‖2, 〈a2, b2〉) . (5.6)

These take the form

v(a1, a2) = −1
2 q(r+(a1, a2)) + 1

2 q(r−(a1, a2)) , q(t) = E{σ(tG)}

and

u0(a1, b1, a1b1 cosα, a2, b2, a2b2 cosβ)

=1
2E{σ(τ+a1F1 + a2G1)σ(τ+b1F2 + b2G2)}+ 1

2E{σ(τ−a1F1 + a2G1)σ(τ−b1F2 + b2G2)} ,

where expectations are with respect to standard normals G,F1, F2, G1, G2 ∼ N(0, 1), with (F1, F2)
independent of (G1, G2). Moreover, (F1, F2) are jointly Gaussian, (G1, G2) are jointly Gaussian,
and covariance E{F1F2} = cosα, E{G1G2} = cosβ.

In order to minimize R(ρ), it is sufficient to restrict ourselves to distributions that are invariant
under product of rotations. Indeed, for any probability distribution ρ on Rd, we can define its
symmetrization by letting, for any Borel set Q1 ⊆ Rs0 , Q2 ⊆ Rd−s0 ,

ρs(Q1 ×Q2) ≡
∫
ρ((R1Q1)× (R2Q2)) µHaar(dR1)µHaar(dR2) , (5.7)

where µHaar is the Haar measure over the group of orthogonal rotations. Since ρ 7→ R(ρ) is convex,
R(ρs) ≤ R(ρ).

We therefore restrict ourselves to ρ’s that are invariant under product of rotations. In other
words, under ρ, the vector w = (w1,w2) ∈ Rd is sampled as following: w1 ∈ Rs0 is uniformly
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random conditional on ‖w1‖2, and w2 ∈ Rd−s0 is uniformly random conditional on ‖w2‖2. We
denote by ρ ∈P(E2) the probability distribution of (‖w1‖2, ‖w2‖2) when w ∼ ρ and we let Rd(ρ)
denote the corresponding risk. We then have

Rd(ρ) = 1 + 2
∫
v(r1, r2) ρ(dr) +

∫
ud(a1, a2, b1, b2) ρ(da) ρ(db) , (5.8)

and

ud(a1, a2, b1, b2) = EΘ1,Θ2 [u0(a1, b1, a1b1 cos Θ1, a2, b2, a2b2 cos Θ2)], (5.9)

where Θ1 ∼ (1/Zs0) sins0−2 θ · 1{θ ∈ [0, π]}dθ and Θ2 ∼ (1/Zd−s0) sind−s0−2 θ · 1{θ ∈ [0, π]}dθ are
independent.

As d→∞, we have limd→∞ ud(a1, a2, b1, b2) = u∞(a1, a2, b1, b2), with

u∞(a1, a2, b1, b2) = 1
2
[
q(r+(a1, a2))q(r+(b1, b2)) + q(r−(a1, a2))q(r−(b1, b2))

]
, (5.10)

and the risk function converges to (for a = (a1, a2))

R∞(ρ) = 1
2

(
1−

∫
q(r+(a)) ρ(da)

)2
+ 1

2

(
1 +

∫
q(r−(a)) ρ(da)

)2
. (5.11)

We also define

ψd(a; ρ) = v(a) +
∫
ud(a, b) ρ(db) . (5.12)

For s0 = γ · d with 0 < γ < 1 and d→∞, we have the simpler expression

ψ∞(a; ρ) =λ+(ρ) · q(r+(a)) + λ−(ρ) · q(r−(a)), (5.13)

λ+(ρ) =1
2[〈q ◦ r+, ρ〉 − 1], (5.14)

λ−(ρ) =1
2[〈q ◦ r−, ρ〉+ 1]. (5.15)

The following theorem provides a characterization of the global minimizers of R∞(ρ).

Theorem 5.1. Consider d = ∞. Recall P = P(E2) where E2 ≡ [0,+∞)2 ∪ {∞}. Then there
exists ∆∞ ∈ (0, 1), such that

1. For ∆ < ∆∞, infρ∈P R∞(ρ) > 0 and the unique global minimizer of risk function R∞(ρ) is
a point mass located at (r∗, 0) for some r∗ = r∗(∆) ∈ (0,∞).

2. For ∆ ≥ ∆∞, all global minimizers of risk function R∞(ρ) have risk zero, and there exists a
global minimizer that has finite support.

Proof. Throughout the proof, we will denote R(1)
∞ : P([0,∞]) → R as the risk function defined as

in Eq. (4.10), and R
(2)
∞ : P(E2) → R as the risk function defined as in Eq. (5.11). Recall the

definition τ+ = 1 + ∆, τ− = 1 −∆, q+(r) = q(τ+r), q−(r) = q(τ−r), r+(a) = (τ2
+a

2
1 + a2

2)1/2, and
r−(a) = (τ2

−a
2
1 + a2

2)1/2 for a = (a1, a2) ∈ E2.
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Suppose ρ∗2 ∈ arg minρ2∈P(E2)R
(2)
∞ (ρ2). Then we must have 〈q◦r+, ρ

∗
2〉 ≤ 1 and 〈q◦r−, ρ∗2〉 ≥ −1.

Indeed, if either 〈q◦r+, ρ
∗
2〉 > 1 or 〈q◦r−, ρ∗2〉 < −1, since q(+∞) > 1 and q(0) < −1, the distribution

ρ′2 = a0δ0 + a∞δ∞ + (1− a0 − a∞)ρ∗2 with appropriate choice of a0 and a∞ will give a lower risk.
This ρ∗2 ∈ P(E2) induces a ρ1 ∈ P([0,∞]) as follows: for any Borel set B ⊆ [0,∞], ρ1(B) =

ρ∗2({r ∈ E2 : ‖r‖2 ∈ B}). For this ρ1, it is easy to see that 〈q−, ρ1〉 ≤ 〈q ◦ r−, ρ∗2〉 and 〈q+, ρ1〉 ≥
〈q ◦ r+, ρ

∗
2〉, and the equalities hold if and only if ρ∗2(E1) = 1, where E1 ≡ ([0,+∞) × {0}) ∪

{∞}. Since q(+∞) > 1 and q(0) < −1, we can take ρ∗1 = a0δ0 + a∞δ∞ + (1 − a0 − a∞)ρ1 with
appropriate choice of a0 and a∞, so that 〈q ◦r+, ρ

∗
2〉 ≤ 〈q+, ρ

∗
1〉 ≤ 1 and 〈q ◦r−, ρ∗2〉 ≥ 〈q−, ρ∗1〉 ≥ −1.

Therefore, we always have infρ1∈P([0,∞])R
(1)
∞ (ρ1) ≤ infρ2∈P(E2)R

(2)
∞ (ρ2), and ρ∗2(E1) = 1 for any

ρ∗2 ∈ arg minρ2∈P(E2)R
(2)
∞ (ρ2). Note that R(2)

∞ (ρ1 × δ0) = R
(1)
∞ (ρ1) for any ρ1 ∈ P([0,∞]). Hence,

we must have infρ1∈P([0,∞])R
(1)
∞ (ρ1) = infρ2∈P(E2)R

(2)
∞ (ρ2).

Due to the above argument, we reduced our analysis to the centered isotropic Gaussians case.
All the conclusions can be proved using the same argument as in the proof of Theorem 4.2.

5.2 Dynamics: Fixed points

We specialize the general evolution (3.1) to the present case. Assuming ρ0 to be invariant with
respect to products of orthogonal transformations, the same happens for ρt. We let ρt ∈ P(E2)
denote the distribution of (‖w1‖2, ‖w2‖2) when w ∼ ρt. Then ρt satisfies the following PDE:

∂tρt(r) = 2ξ(t)∇ ·
[
ρt(r)∇ψd(r; ρt)

]
. (5.16)

We will view this as an evolution in the space of probability distribution on P = P(E2).
In analogy with Proposition 2, we can prove the following characterization of fixed points.

Proposition 5.2. A distribution ρ ∈P is a fixed point of the PDE (5.16) if and only if

supp(ρ) ⊆ {r ∈ E2 : ∇rψd(r; ρ) = 0}. (5.17)

Notice, in particular, global minimizers of Rd(ρ) are fixed points of this evolution, but not
vice-versa. The next result classifies fixed points.

Theorem 5.3. Consider d =∞, and recall the definition of λ+(ρ) and λ−(ρ) given by Eq. (5.15)
and (5.14). Then the fixed points of the PDE (5.16) (i.e. the probability measures ρ ∈P satisfying
(5.17)) must be of one of the following types

(a) A fixed point with zero risk.

(b) A point mass ρr∗ = δ(r∗,0) at some location (r∗, 0) with r∗ 6∈ {0,+∞}, but not of type (a).

(c) A mixture of the type ρ = a0δ0 + a∞δ∞ + a1δ(r∗1,0) + a2ρ2 with supp(ρ2) ⊆ {0} × (0,∞), but
not of type (b) and (a).

For ∆ < ∆∞, the PDE has a unique fixed point of type (b), with λ+(ρ∗) < 0 and λ−(ρ∗) > 0;
it has no type-(a) fixed points; it has possibly fixed points of type (c).

For ∆ > ∆∞, the PDE has some fixed points of type (b), with λ+(ρ∗) > 0 and λ−(ρ∗) < 0; it
also has some type-(a) fixed points; it has possibly fixed points of type (c).

For ∆ = ∆∞, the PDE has a unique fixed point of type (a) which is also a delta function at
some location (r∗1, 0), and no type (b) fixed points; it has possibly fixed points of type (c).
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Proof. We use the characterization of fixed points in Proposition 5.2. Recall that ψ∞(r; ρ∗) is
defined as in Eq. (5.13). The gradient ∇ψ∞(r; ρ) is given by

∂r1ψ∞(r; ρ) =λ+(ρ)q′(r+(r))τ2
+r1/r+(r) + λ−(ρ)q′(r−(r))τ2

−r1/r−(r),
∂r2ψ∞(r; ρ) =λ+(ρ)q′(r+(r))r2/r+(r) + λ−(ρ)q′(r−(r))r2/r−(r).

(5.18)

If a fixed point ρ∗ gives λ+(ρ∗) = λ−(ρ∗) = 0, then R∞(ρ∗) = 0. This is type-(a) fixed point.
Consider then the case (λ+(ρ∗), λ−(ρ∗)) 6= (0, 0).

Suppose ρ∗((0,+∞)2) > 0. Since q′(r) > 0 and τ+ > 1 > τ−, in order for ∇ψ∞(r; ρ∗) = 0
for some r ∈ (0,+∞)2, we must have (λ+(ρ∗), λ−(ρ∗)) = (0, 0). Therefore, as ρ∗ is a fixed point
with (λ+(ρ∗), λ−(ρ∗)) 6= (0, 0), we must have ρ∗((0,+∞)2) = 0. That is, we can write ρ∗ =
a0δ0 + a∞δ∞ + a1ρ1 + a2ρ2, with supp(ρ1) ∈ (0,∞)× {0}, and supp(ρ2) ∈ {0} × (0,∞).

The solutions of ∇ψ∞((r1, r2); ρ∗) = 0 with r2 = 0 are of the form 0, (r∗1, 0), and∞. Therefore,
ρ1 = δ(r∗1,0) for some r∗1 ∈ (0,∞). Hence, as ρ∗ is not a type-(a) stationary point, it must be a
type-(b) or type-(c) stationary point.

This proves that all fixed points are of type (a), (b), or (c). The remaining claims follows the
same argument as the proof of Theorem 4.4.

5.3 Dynamics: Convergence to global minimum for d =∞
In this section, denote Pgood to be

Pgood = {ρ0 ∈P((0,∞)2) : R∞(ρ0) < 1}. (5.19)

We then prove that the d =∞ dynamics converges to a global minimizer from any initialization
ρ0 ∈Pgood.

Theorem 5.4. Consider the PDE (5.16) for d =∞, with initialization ρ0 ∈Pgood. It has a unique
solution (ρt)t≥0, such that

lim
t→+∞

R∞(ρt) = inf
ρ∈P

R∞(ρ) .

Proof. Without loss of generality, we assume ξ(t) = 1/2. First we show the existence and uniqueness
of solution of the PDE.

Step 1. Existence and uniqueness of solution. Mass ρt((0,∞)2) = 1 for all t.
According to conditions S1 - S3, q(r), q′(r), and q′′(r) are uniformly bounded on [0,∞]. Note

v(r) =1/2 · [q(r−(r))− q(r+(r))],
u∞(r1, r2) =1/2 · [q(r+(r1))q(r+(r2)) + q(r−(r1))q(r−(r2))].

Then ∇v(r),∇1u∞(r1, r2),∇2v(r),∇2
11u∞(r1, r2),∇2

12u∞(r1, r2) are uniformly bounded. There-
fore, conditions A1 and A3 are satisfied with D = 2, V = v, and U = u. Then, there is the existence
and uniqueness of solution of PDE (5.16) for d =∞. Denote this solution to be (ρt)t≥0.

Recall the expression for ∇ψ∞(r; ρ) in Eq. (5.18). It is easy to see that the assumption of
Lemma 3.9 is satisfied with d = 2 and Ψ = ψ∞. Hence, we have ρt((0,∞)2) = 1 for any fixed
t <∞.

Step 2. Classify the limiting set S∗.
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Recall the definition of (P(E2), d̄P) at the beginning of Section 5. Since (P(E2), d̄P) is a
compact metric space, and (ρt)t≥0 is a continuous curve in this space, then there exists a subsequence
(tk)k≥1 of times, such that (ρtk)k≥1 converges in metric d̄P to a probability distribution ρ∗ ∈P(E2).

For any ρ0 ∈Pgood, let S∗ = S∗(ρ0) be the set of limiting points of the PDE,

S∗ = {ρ∗ ∈P(E2) : ∃(tk)k≥1, lim
k→∞

tk = +∞, s.t., lim
k→∞

d̄P(ρ∗, ρtk) = 0}.

Analogous to the proof of Theorem 4.5, we have the following properties for S∗:

1. S∗ is connected and compact.

2. For any ρ∗ ∈ S∗, ρ∗ is a fixed point of PDE.

3. For any ρ∗ ∈ S∗, R∞(ρ∗) = R∗ < 1.

Recall the definition of λ+(ρ∗) and λ−(ρ∗) given by Equation (5.14) and (5.15). Let ρ∗ be a fixed
point of PDE such that λ+(ρ∗) ≥ 0, λ−(ρ∗) ≥ 0 or λ+(ρ∗) ≤ 0, λ−(ρ∗) ≤ 0 but not both λ+(ρ∗) and
λ−(ρ∗) equal 0. In this case, according to Eq. (5.18), both ∂r1ψ∞(r; ρ∗) and ∂r2ψ∞(r; ρ∗) must be
strictly positive or strictly negative. Since supp(ρ∗) ⊆ {r ∈ E2 : ∇rψ∞(r; ρ∗) = 0}, ρ∗ must be
a combination of two delta functions located at 0 and ∞, i.e., ρ∗ = a0δ0 + (1 − a0)δ∞. But for a
fixed point like this, it is easy to see that R∞(ρ∗) ≥ 1. Such fixed points ρ∗ cannot be one of the
limiting points of the PDE since R∞(ρ0) < 1.

Let L be a mapping L : P(E2)→ R2, ρ 7→ (λ+(ρ), λ−(ρ)). The above argument concludes that
for any ρ0 ∈Pgood, we have

L(S∗(ρ0)) ∩ ({(λ+, λ−) : λ+ ≥ 0, λ− ≥ 0, or λ+ ≤ 0, λ− ≤ 0} \ {(0, 0)}) = ∅.

Since S∗ is a connected set, L(S∗) should also be a connected set. Further notice that R∞(ρ∗) =
1/2 · [λ+(ρ∗)2 + λ−(ρ∗)2], and R∞(ρ1) = R∞(ρ2) for any ρ1, ρ2 ∈ S∗. Therefore, we can only have
L(S∗) ⊆ P2 ≡ {(λ+, λ−) : λ+ > 0, λ− < 0}, or L(S∗) ⊆ P1 ≡ {(λ+, λ−) : λ+ < 0, λ− > 0}, or
L(S∗) = {(0, 0)}.

Step 3. Finish the proof using two claims.
We make the following two claims.

Claim (1). If L(S∗) ⊆ P1, then for any ρ∗ ∈ S∗, we have ρ∗((0,∞)× {0}) = 1.

Claim (2). We cannot have L(S∗) ⊆ P2.

Here we assume these two claims holds, and use it to prove our results. For ∆ < ∆∞, we proved
in Theorem 5.3 that, there is no fixed point such that L(ρ∗) = (0, 0). Therefore, we cannot have
L(S∗) = {(0, 0)}. Due to Claim (2), we cannot have L(S∗) ⊆ P2. Hence, we must have L(S∗) ⊆ P1.
According to Theorem 5.3, for ∆ < ∆∞, the only fixed point of PDE with ρ∗((0,∞)× {0}) = 1 is
a point mass at some location r∗ = (r∗1, 0). Furthermore, this delta function fixed point is unique
and is also the global minimizer of the risk. Therefore, we conclude that, for ∆ < ∆∞, the PDE
will converge to this global minimizer.

For ∆ ≥ ∆∞, according to Claim (1), if ρ∗ is a limiting point such that L(ρ∗) ∈ P1, then
ρ∗((0,∞) × {0}) = 1. According to Theorem 5.3, a fixed point ρ∗ with ρ∗((0,∞) × {0}) = 1 and
L(ρ∗) 6= (0, 0) must be a point mass at some location r∗ = (r∗1, 0), with L(ρ∗) ∈ P2. Therefore, we
cannot have L(S∗) ⊆ P1. Claim (2) also tells us that we cannot have L(S∗) ⊆ P2. Hence, we must
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have L(S∗) = {(0, 0)}. In this case, all the points in the set S∗ have risk 0. Therefore, we conclude
that, as ∆ ≥ ∆∞, the PDE will converge to some limiting set with risk 0.

Step 4. Proof of the two claims.
We are left with the task of proving the two claims above. Before that, we introduce some

useful notions used in the proof. Define Z(r) for r ∈ E2,

Z(r) ≡ [q′(r−(r))r−(r)]/[q′(r+(r))r+(r)]. (5.20)

Define Zl(r) ≡ Z((r, lr)) for r, l ∈ [0,∞]. Then we have

Zl(r) = [q′((τ2
− + l2)1/2r)/q′((τ2

+ + l2)1/2r)] · [(τ2
− + l2)1/2/(τ2

+ + l2)1/2]. (5.21)

According to condition S4, for any fixed l ∈ [0,∞], Zl(r) is increasing in r.
Recall the formula of ∇rψ∞(r; ρ) given by Equation (5.18). Define

χnm(r; ρ) ≡〈∇rψ∞(r; ρ), r/‖r‖2〉, (5.22)
χtg(r; ρ) ≡〈∇rψ∞(r; ρ), (−r2, r1)/‖r‖2〉. (5.23)

Then we have

χnm(r; ρ) =λ+(ρ)q′(r+(r))r+(r)/‖r‖2 + λ−(ρ)q′(r−(r))r−(r)/‖r‖2,
=λ−(ρ)q′(r+(r))r+(r)/‖r‖2 · [λ+(ρ)/λ−(ρ) + Z(r)],

(5.24)

and
χtg(r; ρ) =[+λ+(ρ)(1− τ2

+)q′(r+(r))/r+(r)
+ λ−(ρ)(1− τ2

−)q′(r−(r))/r−(r)]× r1r2/‖r‖2.
(5.25)

Proof of Claim (1). If L(S∗) ⊆ P1, then for any ρ∗ ∈ S∗, we have ρ∗((0,∞)× {0}) = 1.
Assume L(S∗) ⊆ P1. There must exist t0 large enough, so that as t ≥ t0, we have λ+(ρt) < 0,

and λ−(ρt) > 0. Therefore, we must have χtg(r; ρt) > 0 for any r ∈ (0,∞)2. We denote

Γk ≡ {r ∈ [0,∞)2 : r2 ≤ k · r1}. (5.26)

Consider the ODE

ṙ(t) = −∇rψ∞(r(t); ρt), (5.27)

starting with r(t0) ∈ Γk for some k ∈ (0,∞), we claim r(t) ∈ Γk for any t ≥ t0. Indeed, for any
r ∈ ∂Γk ∩ {r : r2 = kr1 > 0}, its normal vector pointing outside Γk gives n(r) = (−r2, r1)/‖r‖2,
and hence 〈∇rψ∞(r; ρ),n(r)〉 = χtg(r; ρt) > 0. Therefore, r(t) cannot leak outside Γk from this
boundary. Further note that r(t) cannot reach the boundary ([0,∞) × {0}) ∪ {∞} for any finite
time t. This proves the claim that r(t) ∈ Γk for any t ≥ t0.

According to Lemma 3.8, we have ρt(Γk) ≥ ρt0(Γk) for any k ∈ (0,∞). Furthermore, according
to Lemma 3.9, ρt0((0,∞)2) = 1, hence limk→∞ ρt0(Γk) = 1. Therefore, for any ρ∗ ∈ S∗, we must
have

ρ∗({0} × (0,∞)) ≤ lim
k→∞

ρ∗([0,∞)2 \ Γk) ≤ lim
k→∞

ρt0([0,∞)2 \ Γk) = 0. (5.28)

Theorem 5.3 implies that for any such fixed point ρ∗, we have supp(ρ∗) ⊆ ([0,∞)× {0}) ∪ {∞}.
In this case, we claim L(S∗) ⊆ P1 ∩ {(λ+, λ−) : Z0(0) < −λ+/λ− < Z0(∞)}. Indeed, suppose

there exists ρ∗ ∈ S∗, such that −λ+(ρ∗)/λ−(ρ∗) ≥ Z0(∞) or −λ−(ρ∗)/λ−(ρ∗) ≤ Z0(0), according
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to Equation (5.24), χnm((r, 0); ρ∗) must be strictly positive or strictly negative. However, we know
supp(ρ∗) ∈ {r : ∇ψ∞(r; ρ∗) = 0}. Hence, ρ∗ should be a combination of two delta functions located
at 0 and ∞. Such fixed point ρ∗ has risk R∞(ρ∗) ≥ 1, hence ρ∗ cannot be a limiting point of the
PDE. Hence the claim holds.

Since S∗ is a compact set, and L is a continuous map, then L(S∗) is a compact set. Therefore,
there must exist ε0 > 0, so that for any ρ∗ ∈ S∗, we have Z0(0) + 3ε0 < −λ+(ρ∗)/λ−(ρ∗) <
Z0(∞) − 3ε0. For this ε0 > 0, we take t0 large enough, so that for t ≥ t0, we have Z0(0) + 2ε0 <
−λ+(ρt)/λ−(ρt) < Z0(∞)− 2ε0, and λ+(ρt) < 0, λ−(ρt) > 0.

According to the conditions S0 - S4 on q(r), for any fixed l, Zl(r) is an increasing function
of r, and for any fixed r, Zl(r) is continuous in l. Therefore, for the fixed ε0 > 0, there exists
0 < r0 < r∞ <∞ and b > 0, such that

sup
r∈[0,r0]

sup
l∈[0,b]

Zl(r) <Z0(0) + ε0, (5.29)

inf
r∈[r∞,∞]

inf
l∈[0,b]

Zl(r) >Z0(∞)− ε0. (5.30)

As a result, for any t ≥ t0, we have

χnm(r; ρt) <0, ∀r ∈ B(0; r0) ∩ Γb,
χnm(r; ρt) >0, ∀r ∈ B(0; r∞)c ∩ Γb,

(5.31)

where Γ(·) is defined as in Equation (5.26).
According to Lemma 3.9, ρt0((0,∞)2) = 1. Define

Ok = Γk ∩ B(0; k) ∩ B(0; 1/k)c. (5.32)

We have Ok is increasing in k, and ∪kOk ⊃ (0,∞)2. Hence limk→∞ ρt0(Ok) = 1. Now we fix a
parameter k.

Recall the formula for χnm and χtg given by Equation (5.24) and (5.25). It is easy to see
that, there exists 0 < uk1, uk2 < ∞ depending on (b, k, τ+, τ−, Z0(0), Z0(∞), ε0), such that for any
r ∈ (0,∞)2 with b · r1 ≤ r2 ≤ k · r1, and t ≥ t0, we have

χtg(r; ρt) ≥uk1|λ+(ρt)|q′(r+(r)) > 0, (5.33)
|χnm(r; ρt)| ≤uk2|λ+(ρt)|q′(r+(r)) <∞, (5.34)

and hence
|χnm(r; ρt)|/χtg(r; ρt) ≤ uk2/uk1 ≡ uk <∞. (5.35)

Consider the following spiral curve r∞k (s) = (r∞k1(s), r∞k2(s)), with

r∞k1(s) =k · cos(arctan(k)− s) exp{2uks},
r∞k2(s) =k · sin(arctan(k)− s) exp{2uks},

(5.36)

and another spiral curve r0
k(s) = (r0

k1(s), r0
k2(s)), with

r0
k1(s) =1/k · cos(arctan(k)− s) exp{−2uks},
r0
k2(s) =1/k · sin(arctan(k)− s) exp{−2uks},

(5.37)

for s ∈ [0, sk∗] with sk∗ = arctan(k)− arctan(b).
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Because of inequality (5.35), along the curve r∞k (s), denoting n(r∞k (s)) to be its normal vector
with [n(r∞k (s))]2 > 0, we have for any t ≥ t0 and s ∈ [0, sk∗],

〈∇ψ∞(r∞k (s); ρt),n(r∞k (s))〉 > 0. (5.38)

Along the curve r0
k(s), denoting n(r0

k(s)) to be its normal vector with [n(r0
k(s))]2 > 0, we have for

any t ≥ t0 and s ∈ [0, sk∗],
〈∇ψ∞(r0

k(s); ρt),n(r0
k(s))〉 > 0, (5.39)

Define the set Ωk to be

Ωk =Γk ∩ B(0; k · exp{2uksk∗}) ∩ B(0; 1/k · exp{−2uksk∗})c

∩ {r : ∃s ∈ [0, sk∗], s.t., r1 = r∞k1(s), r2 ≥ r∞k2(s)}c

∩ {r : ∃s ∈ [0, sk∗], s.t., r1 = r0
k1(s), r2 ≥ r0

k2(s)}c.
(5.40)

Consider the ODE (5.27) starting with r(t0) ∈ Ωk for any k ≥ {r∞, 1/r0}, we claim r(t) ∈ Ωk

for any t ≥ t0. Indeed, combining Eq. (5.31), (5.33), (5.39), and (5.38), for any r ∈ ∂Ωk \
(([0,∞) × {0}) ∪ {∞}) and t ≥ t0, the gradient ∇ψ∞(r; ρt) pointing outside Ωk. Therefore, r(t)
cannot leak outside Γk from this boundary. Further note that r(t) cannot reach the boundary
([0,∞) × {0}) ∪ {∞} for any finite time t. This proves the claim that r(t) ∈ Ωk for any t ≥ t0.
According to Lemma 3.8, ρt(Ωk) ≥ ρt0(Ωk) for any k ≥ {r∞, 1/r0} and t ≥ t0.

Recall the definition of Ok given by Equation (5.32). Note that Ok ⊆ Ωk, and limk→∞ ρt0(Ok) =
1, which implies limk→∞ ρt0(Ωk) = 1. Hence, for any ρ∗ ∈ S∗,

ρ∗(∪kΩk) ≥ lim
k→∞

ρ∗(Ωk) ≥ lim
k→∞

ρt0(Ωk) = 1. (5.41)

It is easy to see that ∪kΩk = (0,∞) × [0,∞). Combining with the fact that ρ∗((0,∞)2) = 0 for
any ρ∗ ∈ S∗, claim (1) holds.

Proof of Claim (2). We cannot have L(S∗) ⊆ P2.
In the case L(S∗) ⊆ P2, the argument is similar to the proof of Claim (1), and hence will

be presented in a synthetic form. First, there exists t0 large enough, so that as t ≥ t0, we have
λ+(ρt) > 0, and λ−(ρt) < 0. Then χtg(r; ρt) < 0 for any r ∈ (0,∞)2. Letting

Γk ≡ {r ∈ [0,∞)2 : r1 ≤ k · r2}, (5.42)

According to the same argument as in the proof of Claim (1), we have ρt(Γk) ≥ ρt0(Γk) for any
k ∈ (0,∞) and t ≥ t0. As a result, we have supp(ρ∗) ⊆ ({0} × [0,∞)) ∪ {∞}.

However, the fixed point ρ∗ with support on ({0}×[0,∞))∪{∞} has risk R∞(ρ∗) ≥ 1. Therefore,
we cannot have L(S∗) ⊆ P2. This proves claim (2).

5.4 Dynamics: Proof of Theorem 2

We will prove that the dynamics for large but finite d is well approximated by the dynamics at
d =∞. The key estimate is provided by the next lemma.

Lemma 5.5. Assume σ satisfies condition S0, recall the definition of ud and u∞ given by Equation
(5.9) and (5.10). Assuming k = γ · d for some γ ∈ (0, 1), then we have

lim
d→∞

sup
a,b∈[0,∞)2

|ud(a, b)− u∞(a, b)| = 0.
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and
lim
d→∞

sup
a,b∈[0,∞)2

‖∇aud(a, b)−∇au∞(a, b)‖2 = 0.

Proof. We rewrite ud here as

ud(a, b) =1/2 · [ud,1(a, b) + ud,2(a, b)],
ud,1(a, b) =E[σ(τ+a1F1 + a2G1)σ(τ+b1(F1 cos Θ1 + F2 sin Θ1) + b2(G1 cos Θ2 +G2 sin Θ2))],
ud,2(a, b) =E[σ(τ−a1F1 + a2G1)σ(τ−b1(F1 cos Θ1 + F2 sin Θ1) + b2(G1 cos Θ2 +G2 sin Θ2))],

where

(F1, F2, G1, G2) ∼N(0, I4), (5.43)
Θ1 ∼(1/Zs0) sin(θ)s0−21{θ ∈ [0, π]}dθ, (5.44)
Θ2 ∼(1/Zd−s0) sin(θ)d−s0−21{θ ∈ [0, π]}dθ, (5.45)

are mutually independent.
Define F3 = F1 cos Θ1 + F2 sin Θ1, G3 = G1 cos Θ2 +G2 sin Θ2, then

|ud,1(a, b)− u∞,1(a, b)|
=|E{σ(τ+a1F1 + a2G1)[σ(τ+b1F3 + b2G3)− σ(τ+b1F2 + b2G2)]}|
≤‖σ‖∞ · E{|σ(τ+b1F3 + b2G3)− σ(τ+b1F2 + b2G2)|},

(5.46)

and
|∂a1ud,1(a, b)− ∂a1u∞,1(a, b)|

=|E{τ+F1 · σ′(τ+a1F1 + a2G1)[σ(τ+b1F3 + b2G3)− σ(τ+b1F2 + b2G2)]}|
≤τ+‖σ′‖∞E[F 2

1 ]1/2E{[σ(τ+b1F3 + b2G3)− σ(τ+b1F2 + b2G2)]2}1/2

≤τ+‖σ′‖∞(2‖σ‖1/2∞ ) · E{|σ(τ+b1F3 + b2G3)− σ(τ+b1F2 + b2G2)|}1/2.

(5.47)

We have similar bounds for |∂a2ud,1(a, b)− ∂a2u∞,1(a, b)|.
According to condition S0, ‖σ′‖∞ and ‖σ‖∞ are bounded, it is sufficient to bound the following

quantity uniformly for r ∈ [0,∞) and a ∈ S1,

T (r,a) ≡ 1/2 · E
{
|σ(rH2)− σ(rH3)|} = E

{
[σ(rH2)− σ(rH3)] 1H2>H3

}
, (5.48)

where

H2 = H2(a) =[τ+a1F2 + a2G2]/[τ2
+a

2
1 + a2

2]1/2, (5.49)
H3 = H3(a) =[τ+a1F3 + a2G3]/[τ2

+a
2
1 + a2

2]1/2. (5.50)

We denote Θ3 = Θ3(a) = arcsin{E[H2H3|Θ1,Θ2]}. It is easy to see that H2, H3 ∼ N(0, 1) with

sin(Θ3) = E[H2H3|Θ1,Θ2] = [τ2
+a

2
1 sin Θ1 + a2

2 sin Θ2]/[τ2
+a

2
1 + a2

2]. (5.51)

Using the same argument as in the proof of Theorem 4.6, we have for any z ∈ R,

P(H3 ≤ z,H2 ≥ z) ≤ P(H3 ≤ 0, H2 ≥ 0) = E[|π/2−Θ3|/(2π)]. (5.52)
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Hence, we have

T (r,a) =E
{∫

R
σ′(t) 1rH2≥t≥rH3 dt

}
=
∫
R
σ′(t)P

{
H2 ≥ t/r ≥ H3

}
dt

≤ sup
z∈R

P(H3 ≤ z,H2 ≥ z)
∫
R
σ′(t) dt ≤ 2‖σ‖∞ · E[|π/2−Θ3|/(2π)] .

Note that cos(Θ1) d= Y1/‖Y ‖2, for Y ∼ N(0, Is0), and cos(Θ2) d= Z1/‖Z‖2, for Z ∼ N(0, Id−s0).
Hence, there exists a universal constant K, such that E{|Θ1 − π/2|} ≤ K/

√
s0, E{|Θ2 − π/2|} ≤

K/
√
d− s0.

Note the relationship of Θ3 = Θ3(a) with (Θ1,Θ2) is given by Eq. (5.51), which yields

sin(Θ3(a)) ≥ min{sin Θ1, sin Θ2}, (5.53)

hence

|π/2−Θ3(a)| ≤ max{|π/2−Θ1|, |π/2−Θ2|}. (5.54)

As a result,

sup
a∈S1

E{|Θ3(a)− π/2|} ≤K ·max{1/
√
s0, 1/

√
d− s0}. (5.55)

We therefore obtain

sup
r∈R,a∈S1

|T (r,a)| ≤ K/π · ‖σ‖∞ ·max{1/
√
s0, 1/

√
d− s0}. (5.56)

The lemma holds by noting that as d→∞, we have s0 →∞ and d− s0 →∞.

Proof of Theorem 2. Recall the definition of R∞ given by Eq. (5.11), and R given by Eq. (2.2).
Recall the set of good initialization given by

Pgood = {ρ0 ∈P((0,∞)) : lim
d→∞

R(ρ×Unif(Sd−1)) < 1}.

Define P1
good and P2

good to be

P1
good ={ρ1

0 ∈P((0,∞)) : R∞(ρ2
0) < 1, where ρ2

0 ∼ (γ1/2u, (1− γ)1/2u) with u ∼ ρ1
0}, (5.57)

P2
good ={ρ2

0 ∈P((0,∞)2) : R∞(ρ2
0) < 1}. (5.58)

With this definition, it is easy to see that P1
good = Pgood.

For any ρ1
0 ∈P1

good, let u ∼ ρ1
0, Y1 ∼ χ2(γ ·d), and Y2 ∼ χ2((1−γ) ·d) be independent. We take

ud1 = u · [Y1/(Y1 +Y2)]1/2, ud2 = u · [Y2/(Y1 +Y2)]1/2, ud = (ud1, ud2), u∞1 = u · [s0/d]1/2 = u ·γ1/2,
u∞2 = u · [(d− s0)/d]1/2 = u · (1− γ)1/2, and u∞ = (u∞1, u∞2). Denote ρ2,d

0 to be the distribution
of ud, and ρ2,∞

0 to be the distribution of u∞. Then we have ρ2,∞
0 ∈ P2

good. Further, if we sample
(r,n) ∼ ρ1

0×Unif(Sd−1) and (r,n1,n2) ∼ ρ2,d
0 ×Unif(Sk−1)×Unif(Sd−k−1), then rn d= (r1n1, r2n2).

Here we bound dBL(ρ2,d
0 , ρ2,∞

0 ). Note the joint distribution of ud and u∞ is a coupling of ρ2,d
0

and ρ2,∞
0 , hence

dBL(ρ2,d
0 , ρ2,∞

0 ) ≤E[‖ud − u∞‖2 ∧ 1]
=E[{u[((Y1/(Y1 + Y2))1/2 − γ1/2)2 + ((Y2/(Y1 + Y2))1/2 − (1− γ)1/2)2]1/2} ∧ 1].

(5.59)
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It is easy to see that limd→∞ Y1/(Y1 +Y2) = γ almost surely. Bounded convergence theorem implies
that limd→∞ dBL(ρ2,d

0 , ρ2,∞
0 ) = 0.

Now we consider the PDE (5.16) for d = ∞. We fix its initialization ρ2,∞
0 ∈ P2

good induced by
ρ1

0 ∈P1
good. Denote the solution of PDE (5.16) to be (ρ∞t )t≥0. Due to Theorem 5.4, for any η > 0,

there exists T = T (η, ρ1
0, γ,∆) > 0, so that its solution (ρ∞t )t≥0 satisfies

R∞(ρ∞t ) ≤ inf
ρ∈P(E2)

R∞(ρ) + η/5

for any t ≥ T .
Then we consider the general PDE

∂tρt(θ) =2ξ(t)∇ ·
[
ρt(θ)∇Ψ(θ; ρt)

]
, (5.60)

with initialization ρ0 the distribution of rn, where (r,n) ∼ ρ1
0 × Unif(Sd−1). Due to Lemma 4.7

and Remark 3.1, we have the existence and uniqueness of the solution of PDE (5.60). We denote
its solution to be (ρt)t≥0. Let ρdt be the distribution of (‖w1‖2, ‖w2‖2) with w = (w1,w2) ∼ ρt,
w1 ∈ Rs0 and w2 ∈ Rd−s0 . It is easy to see that (ρdt )t≥0 is the unique solution of (5.16) with
initialization ρ2,d

0 .
Now, we would like to bound the distance of ρdt and ρ∞t using Lemma 3.7. We takeD = 2, V = v,

U = ud, Ṽ = v, Ũ = u∞ in Lemma 3.7. Let ε0(d) be as defined in Eq. (3.69). Due to Lemma 5.5, we
have limd→∞ ε0(d) = 0. We also showed that limd→∞ dBL(ρ2,d

0 , ρ2,∞
0 ) = 0. Therefore, according to

Lemma 3.7, we have limd→∞ supt≤10T dBL(ρ2,d
t , ρ2,∞

t ) = 0. Further note R∞ is uniformly continuous
with respect to ρ in bounded-Lipschitz distance. Therefore, there exists d0 = d0(η, ρ1

0, γ,∆) large
enough, so that for d ≥ d0 we have

|R∞(ρdt )−R∞(ρ∞t )| ≤ η/5.

for any t ≤ 10T .
Then we would like to bound the difference of R∞(ρ) and Rd(ρ) for any ρ. Note

|R∞(ρ)−Rd(ρ)| ≤
∫
|ud(a, b)− u∞(a, b)|ρ(da)ρ(db). (5.61)

By Lemma 5.5, there exists d0 = d0(η,∆) large enough, so that for d ≥ d0, we have

sup
ρ∈P(E2)

|R∞(ρ)−Rd(ρ)| ≤ η/5. (5.62)

Finally, let (θk)k≥1 be the trajectory of SGD, with step size sk = εξ(kε), and initialization
w0
i ∼iid ρ0 for i ≤ N . We apply Theorem 3 to bound the difference of the law of trajectory of SGD

and the solution of PDE (5.60). The assumptions of Theorem 3 are verified by Lemma 4.7. As a
consequence, there exists constant K (which depend uniquely on the constants in assumptions A1
A2 A3), such that

RN (θbt/εc)−Rd(ρdt ) ≤ Ke10KT · errN,d(z).

with probability 1− e−z2 for any t ≤ 10T , where

errN,d(z) =
√

1/N ∨ ε ·
[√

D + log(N(1/ε ∨ 1)) + z
]
.
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As a consequence, for any δ > 0, there exists C0 = C0(δ, η, ρ1
0, γ,∆), so that as N, 1/ε ≥ C0d

and ε ≥ 1/N10, for t ≤ 10T , we have

RN (θbt/εc)−Rd(ρdt ) ≤ η/5

with probability at least 1− δ.
Therefore, the trajectory θbt/εc of SGD as t ∈ [T, 10T ] satisfies

RN (θbt/εc) ≤Rd(ρdt ) + η/5 ≤ R∞(ρdt ) + 2η/5 ≤ R∞(ρ∞t ) + 3η/5
≤ inf
ρ∈P

R∞(ρ) + 4η/5 ≤ inf
ρ∈P

Rd(ρ) + η = inf
ρ∈P(Rd)

R(ρ) + η

≤ inf
θ∈Rd×N

RN (θ) + η

with probability at least 1− δ. This gives the desired result.

6 Finite temperature

We will states the lemma regarding statics properties of the finite temperature free energy in Section
6.1, and regarding dynamics properties in Section 6.2. We will prove Proposition 3, Theorem 4,
and Theorem 5 in Section 6.3. Throughout Section 6.1 and 6.2, to distinguish the dimension of
parameters with the generalized differential operator, we will denote the dimension of parameters
by d instead of D. This should not be confused with the dimension of feature vectors, which never
appears throughout this section.

We introduce the set K of admissible probability densities,

K =
{
ρ : Rd → [0,+∞) measurable :

∫
Rd
ρ(θ)dθ = 1,M(ρ) <∞

}
, (6.1)

where

M(ρ) ≡
∫
Rd
‖θ‖22ρ(θ)dθ. (6.2)

Recall

R(ρ) =R# + 2
∫
Rd
V (θ)ρ(θ)dθ +

∫
Rd×Rd

U(θ,θ′)ρ(θ)ρ(θ′)dθdθ′, (6.3)

R# =E{y2} , V (θ) = −E
{
y σ∗(x;θ)

}
, (6.4)

U(θ1,θ2) =E
{
σ∗(x;θ1)σ∗(x;θ2)

}
, (6.5)

Ψ(θ; ρ) =V (θ) +
∫
Rd
U(θ,θ′) ρ(θ′)dθ′ . (6.6)

Let

Rλ(ρ) =λM(ρ) +R(ρ), (6.7)

Ψλ(θ; ρ) =λ/2 · ‖θ‖22 + V (θ) +
∫
Rd
U(θ,θ′)ρ(θ′)dθ′, (6.8)

Ent(ρ) =−
∫
Rd
ρ(θ) log ρ(θ)dθ, (6.9)

Fβ,λ(ρ) =1/2 · [λM(ρ) +R(ρ)]− 1/β · Ent(ρ). (6.10)
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6.1 Statics

Lemma 6.1. For any ρ ∈ K, we have

Ent(ρ) ≤
∫
Rd
ρ(θ) · |min(log ρ(θ), 0)| · dθ ≤ 1 +M(ρ)/σ2 + d · log(2πσ2) (6.11)

for any σ2 > 0.

Proof. Define Ω0 = {θ : 1/(
√

2πσ)d · exp{−‖θ‖22/(2σ2)} ≤ ρ(θ)1/2 ≤ 1}. Then we have

Ent(ρ) =−
∫
Rd
ρ(θ) log ρ(θ)dθ ≤

∫
Rd
ρ(θ) · |min(log ρ(θ), 0)| · dθ

≤
∫

Ω0
ρ(θ) · |min(log ρ(θ), 0)| · dθ +

∫
Ωc

0

ρ(θ) · |min(log ρ(θ), 0)| · dθ.

The first term is bounded by∫
Ω0
ρ(θ) · |min(log ρ(θ), 0)| · dθ ≤

∫
Rd
ρ(θ)[‖θ‖22/σ2 + d · log(2πσ2)]dθ = M(ρ)/σ2 + d · log(2πσ2).

Noting that |ρ log ρ| ≤ √ρ for any ρ ∈ [0, 1], the second term is bounded by∫
Ωc

0

ρ(θ) · |min(log ρ(θ), 0)| · dθ ≤
∫

Ωc
0

ρ(θ)1/21{ρ(θ) ≤ 1}dθ

≤
∫
Rd

1/(
√

2πσ)d · exp{−‖θ‖22/(2σ2)}dθ = 1.

Lemma 6.2. Assume U and V are bounded-Lipschitz. Then for any λ > 0 and 0 < β < ∞,
Fβ,λ(ρ) has a unique minimizer ρ∗ ∈ K. Moreover, we have

Fβ,λ(ρ) ≥ 1/2 ·R(ρ) + λ/4 ·M(ρ)− 1/β · [1 + d · log(8π/(βλ))]. (6.12)

Proof. First, by Lemma 6.1, we have

Fβ,λ(ρ) =1/2 ·R(ρ) + λ/2 ·M(ρ)− 1/β · Ent(ρ)
≥1/2 ·R(ρ) + λ/2 ·M(ρ)− 1/β · [1 +M(ρ)/σ2 + d · log(2πσ2)].

Taking σ2 = 4/(βλ) gives Eq. (6.12) .
The argument to show the existence and uniqueness of minimizer of Fβ,λ is similar to the proof

of [JKO98, Proposition 4.1], and we will just give a sketch here. Since U , V are bounded-Lipschitz,
it follows that ρ 7→ R(ρ) is continuous with respect to the topology of weak convergence in L1(Rd).
Fatou’s lemma implies that M is lower semi-continuous. [JKO98, Proposition 4.1] shows the upper
semi-continuity of Ent. Hence Fβ,λ is lower semi-continuous. Note (as just shown) Fβ,λ is lower
bounded, there exists a sequence (ρk)k≥1 ⊂ K such that limk→∞ Fβ,λ(ρk) = infρ∈K Fβ,λ(ρ) > −∞.
By the same argument as [JKO98, Proposition 4.1], we can see that {

∫
max{ρk log ρk, 0)}dθ}k≥1

and {M(ρk)}k≥1 are uniformly upper bounded, and by de la Vallée-Poussin criterion, there exists
ρ∗ ∈ K such that there is a subsequence of (ρk)k≥1 converges weakly to ρ∗ in L1(Rd). The lower
semi-continuity of Fβ,λ implies that ρ∗ is the minimizer of Fβ,λ. Uniqueness follows by noting that
U is positive semi-definite, Ent is strongly concave, and 〈V, ρ〉 and M are linear in ρ, so that Fβ,λ
is a strongly convex functional.
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For any ρ ∈ K, we call the following equation the Boltzmann fixed point condition

ρ(θ) =1/Z(β, λ; ρ) exp{−βΨλ(θ; ρ)},

Z(β, λ; ρ) =
∫

exp{−βΨλ(θ; ρ)}dθ.
(6.13)

Lemma 6.3. Under the assumption of Lemma 6.2, the minimizer ρ∗ ∈ K of Fβ,λ(ρ) satisfies the
Boltzmann fixed point condition.

Proof. We denote µ0 to be the Lebesgue measure on Rd.
First, we show that ρ is positive almost everywhere. Let ρ∗ ∈ K be a minimizer of F (ρ), and

assume by contradiction that there exists a measurable set Ω0 ⊂ Rd, such that µ0(Ω0) > 0, and
ρ∗(Ω0) = 0. Without loss of generality, we assume that the support of Ω0 is compact so that
µ0(Ω0) < ∞, otherwise we can always consider the intersection of Ω0 with a large ball. Define
ρε = (1 − ε)ρ∗ + ε/µ0(Ω0) · 1Ω0 ∈ K. It is easy to see that there exists ε0 > 0 and C < ∞, such
that |Rλ(ρ∗)−Rλ(ρε)| ≤ C · ε, and

Ent(ρε) =(1− ε)Ent(ρ∗)− (1− ε) log(1− ε) + ε log(µ0(Ω0)/ε)
≥Ent(ρ∗)− C · ε+ ε log(µ0(Ω0)/ε)

for any ε < ε0. As ε is sufficiently small, we have Fβ,λ(ρε) < Fβ,λ(ρ∗). This contradict with the
fact that ρ∗ ∈ K is the minimizer of Fβ,λ(ρ).

Next we show that, for all θ ∈ Rd,

Ψλ(θ; ρ∗) + 1/β · log ρ∗(θ) ≡ γ(β, λ; ρ∗) (6.14)

for some constant γ(β, λ; ρ∗).
Let ρ∗ ∈ K be the minimizer of Fβ,λ(ρ). Fix ε0 > 0 and define Γε0 ≡ {θ ∈ Rd : ρ∗(θ) ≥

ε0} ∩ B(0; 1/ε0), and Aε0 ≡ {v ∈ C∞(Rd) : ‖v‖∞ ≤ 1, supp(v) ⊆ Γε0 ,
∫
Rd v(θ)dθ = 0}. For any

v ∈ Aε0 , define ρε,v = ρ + εv. Note that, for −ε0 < ε < ε0, we have ρε,v ∈ K. Since ρ∗ is the
minimizer of Fβ,λ(ρ), we must have limε→0+[Fβ,λ(ρε,v) − Fβ,λ(ρ∗)]/ε ≥ 0. It can be easily verified
that

lim
ε→0

[Fβ,λ(ρε,v)− Fβ,λ(ρ∗)]/ε =
∫
Rd

[Ψλ(θ; ρ∗) + 1/β · log ρ∗(θ)]v(θ)dθ,

which implies ∫
Rd

[Ψλ(θ; ρ∗) + 1/β · log ρ∗(θ)]v(θ)dθ = 0 (6.15)

for any v ∈ Aε0 . This implies that Eq. (6.14) holds for any θ ∈ Γε0 . But note that µ0(Rd \
(∪ε0>0Γε0)) = 0. This implies that Eq. (6.14) holds almost surely.

Note we have
∫
ρ∗(θ)dθ = 1. Therefore, we must have γ(β, λ; ρ∗) = −1/β · logZ(β, λ; ρ∗). This

proves that ρ∗ satisfies the Boltzmann fixed point condition.

Lemma 6.4. Under the assumption of Lemma 6.2, the Boltzmann fixed point condition has a
unique solution in K.
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Proof. The last two lemmas already imply that the Boltzmann fixed point condition has at least
one solution. Assume ρ1, ρ2 ∈ K to be two such solutions. Then ρi is positive, and

logZ(β, λ; ρi) = −βΨλ(θ; ρi)− log ρi(θ).

Therefore
0 =

∫
Rd

[logZ(β, λ; ρ1)− logZ(β, λ; ρ2)] · [ρ1(θ)− ρ2(θ)]dθ

=− β〈U, (ρ1 − ρ2)⊗2〉 −
∫
Rd

log(ρ1(θ)/ρ2(θ))[ρ1(θ)− ρ2(θ)]dθ.

Note the right hand side does not equal 0 unless ρ1 = ρ2.

Lemma 6.5. Under the assumption of Lemma 6.2, and further assume condition A3 holds. Let
ρβ,λ∗ be the minimizer of Fβ,λ(ρ). Then there is a constant K depending on the parameter K3 in
condition A3, such that for any β ≥ 1, we have

R(ρβ,λ∗ ) ≤ inf
ρ∈P(Rd)

Rλ(ρ) +K(1 + λ)[d log(2 + 1/λ)]/β. (6.16)

Proof. Fix a ρ ∈P(Rd). Let gτ (θ) be the density for N(0, τ2Id). Denote ρ∗gτ to be the convolution
of ρ and gτ . Now we derive the formula for Fβ,λ(ρ ∗ gτ ).

Let G,G1,G2 ∼ N(0, Id) be independent, we have

R(ρ ∗ gτ ) =R(ρ) + 2
∫
{E[V (θ + τG)]− V (θ)}ρ(dθ)

+
∫
{E[U(θ1 + τG1,θ2 + τG2)]− U(θ1,θ2)}ρ(dθ1)ρ(dθ2).

Using the intermediate value theorem and Cauchy-Schwarz inequality, and noting that ∇2V is
K3-bounded by condition A3, we have∫

{V (θ)− E[V (θ + τG)]}ρ(dθ)

=τ
∫

E[〈∇V (θ),G〉]ρ(dθ) + τ2

2

∫
E[〈∇2V (θ̃),G⊗2〉]ρ(dθ) ≤ τ2

2 K3d,

We have similar bound for the U term. Therefore,

R(ρ ∗ gτ ) ≤ R(ρ) + 2τ2K3d. (6.17)

For the term M(ρ ∗ gτ ), we have

M(ρ ∗ gτ ) =
∫

E[‖θ + τG‖22]ρ(dθ) = M(ρ) + τ2d. (6.18)

Next we give a lower bound for Ent(ρ ∗ gτ ):

Ent(ρ ∗ gτ ) ≥ Ent(gτ ) = (d/2) log(2πeτ2). (6.19)

As a result, taking τ = 1/β, we have

Fβ,λ(ρβ,λ∗ ) ≤ (1/2)Rλ(ρ) + (2K3 + λ)d/(2β2) + d · log(2πeβ2)/(2β). (6.20)

Combining with Eq. (6.12), we have

R(ρβ,λ∗ ) ≤ Rλ(ρ) + (2K3 + λ)d
β2 + 2

β
+ d · log(2πeβ2)

β
− 2d · log(λβ/(8π))

β
(6.21)

for any ρ ∈P(Rd). Hence, the theorem holds by taking infimum over ρ ∈P(Rd).
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6.2 Dynamics

Recall that the finite-temperature distributional dynamics reads:

∂tρt(θ) = 2ξ(t)∇θ · (∇θΨλ(θ; ρt)ρt(θ)) + 2ξ(t)/β ·∆θρt(θ). (6.22)

We say (ρt)t≥0 ⊆ P(Rd) is a weak solution of (6.22), if for any ζ ∈ C∞0 (R × Rd) (the space of
smooth functions, decaying to 0 at infinity), we have∫

Rd
ρ0(θ)ζ0(θ)dθ

=−
∫

(0,∞)×Rd
[∂tζt(θ)− 2ξ(t)〈∇θΨ(θ; ρt),∇θζt(θ)〉+ 2ξ(t)∆θζt(θ)]ρt(dθ) dt

(6.23)

Notice that this notion of weak solution is equivalent to the one introduced earlier in Eq. (3.3), see
for instance [San15, Proposition 4.2].

Lemma 6.6. Assume conditions A1, A2 and A3 hold. Let initialization ρ0 ∈ K so that Fβ,λ(ρ0) <
∞. Then, the weak solution (ρt)t≥0 ⊆ P(Rd) of PDE (6.23) exists and is unique. Moreover, for
any fixed t, ρt ∈ K is absolutely continuous with respect to the Lebesgue measure, and Ent(ρt) and
M(ρt) are uniformly bounded in t.

Proof. Without loss of generality, we assume ξ(t) ≡ 1/2.
We use the JKO scheme of [JKO98, Theorem 5.1] to show the existence, uniqueness, and

absolute continuousness of solution of PDE (6.22). Since the proof is basically the same as the
proof of [JKO98, Theorem 5.1], we will skip several details.

First, we consider the following discrete scheme. Let ρh0 = ρ0, and define {ρhk}k∈N recursively
by

ρhk+1 ∈ arg min
ρ∈K
{hF (ρ) + (1/2)W 2

2 (ρ, ρhk)}, (6.24)

where W2(µ, ν) is the Wasserstein distance between µ, ν ∈P(Rd), with definition

W 2
2 (µ, ν) = inf

{∫
Rd×Rd

‖θ1 − θ2‖22γ(dθ1, dθ2) : γ is a coupling of µ, ν
}
.

For any ρhk−1, the optimization problem (6.24) has a unique minimizer ρhk ∈ K, where the proof
is basically the same as Lemma 6.2, by additionally noting that W 2

2 (ρ, ρhk−1) as a function of ρ is
lower bounded, lower semi-continuous, and convex over ρ ∈ K.

Hence, we have a sequence of probability densities (ρhk)k≥0 with each ρhk ∈ K. Now we define
its interpolation ρh : (0,∞)× Rd → [0,∞) by

ρh(t, · ) = ρhk for t ∈ [kh, (k + 1)h) and k ∈ N.

In the following, we will show that this ρh approximately satisfies PDE (6.23) in the weak form.
Let ξ ∈ C∞0 (Rd,Rd) be a smooth vector field with bounded support, and define the correspond-

ing flux {Φτ}τ∈R by

∂τΦτ = ξ ◦ Φτ for all τ ∈ R and Φ0 = id. (6.25)
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For any τ ∈ R, let the measure ντ to be the push forward of ρhk under Φτ . This means that∫
Rd
ντ (θ)ζ(θ)dθ =

∫
Rd
ρhk(θ)ζ(Φτ (θ))dθ, for all ζ ∈ C(Rd). (6.26)

Since ρhk is the minimizer of optimization problem (6.24), we have for each τ > 0,(1
2W

2
2 (ρhk−1, ντ ) + hF (ντ )

)
−
(1

2W
2
2 (ρhk−1, ρ

h
k) + hF (ρhk)

)
≥ 0. (6.27)

Using the result in the proof of [JKO98, Theorem 5.1], and noting ∇V is bounded Lipschitz,
we have

d
dτ [〈V, ντ 〉]τ=0 =

∫
Rd
〈∇V (θ), ξ(θ)〉 ρhk(θ)dθ, (6.28)

d
dτ [Ent(ντ )]τ=0 =

∫
Rd
ρhk(θ) · div(ξ(θ))dθ, (6.29)

lim sup
τ→0+

1
τ

[M(ντ )−M(ρhk)] ≤
∫
Rd

2〈θ, ξ(θ)〉 ρhk(θ)dθ, (6.30)

lim sup
τ→0+

1
τ

[W 2
2 (ρhk−1, ντ )−W 2

2 (ρhk−1, ρ
h
k)] ≤

∫
Rd

2〈(θ1 − θ2), ξ(θ1)〉 p(dθ1, dθ2), (6.31)

where p is an optimal coupling of ρhk and ρhk−1 in Wasserstein metric. Further we have for any
ζ ∈ C∞0 (Rd),∣∣∣ ∫

Rd
(ρhk − ρhk−1)ζdθ −

∫
R×R
〈θ1 − θ2,∇ζ(θ1)〉dp

∣∣∣ ≤ 1
2 sup
θ∈Rd

‖∇2ζ(θ)‖opW
2
2 (ρhk , ρhk−1) . (6.32)

We need to further calculate the derivative of 〈U, ν⊗2
τ 〉 with respect to τ . Note U is symmetric, we

have
1
τ

[〈U, ν⊗2
τ 〉 − 〈U, (ρhk)⊗2〉]− 2

∫
Rd×Rd

〈∇θ1U(θ1,θ2), ξ(θ1)〉ρhk(θ1)ρhk(θ2)dθ1dθ2

=
∫
Rd×Rd

{1
τ

[U(Φτ (θ1),Φτ (θ2))− U(Φτ (θ1),θ2)]− 〈∇θ2U(Φτ (θ1),θ2), ξ(θ2)〉}ρhk(θ1)ρhk(θ2)dθ1dθ2

+
∫
Rd×Rd

{1
τ

[U(Φτ (θ1),θ2)− U(θ1,θ2)]− 〈∇θ1U(θ1,θ2), ξ(θ1)〉}ρhk(θ1)ρhk(θ2)dθ1dθ2

+
∫
Rd×Rd

[〈∇θ2U(Φτ (θ1),θ2), ξ(θ2)〉 − 〈∇θ2U(θ1,θ2), ξ(θ2)〉]ρhk(θ1)ρhk(θ2)dθ1dθ2.

According to condition A3, ∇θ1U(θ1,θ2) is Lipschitz in (θ1,θ2), and note ξ(θ) ∈ C∞0 (Rd) is uni-
formly bounded, hence 1/τ ·[U(Φτ (θ1),θ2)−U(θ1,θ2)]−〈∇θ1U(θ1,θ2), ξ(θ1)〉, 1/τ [U(Φτ (θ1),θ2)−
U(θ1,θ2)] − 〈∇θ1U(θ1,θ2), ξ(θ1)〉, and [〈∇θ2U(Φτ (θ1),θ2), ξ(θ2)〉 − 〈∇θ2U(θ1,θ2), ξ(θ2)〉] con-
verges to 0 for τ → 0+, uniformly over (θ1,θ2) ∈ Rd × Rd. Therefore, we have

d
dτ [〈U, ν⊗2

τ 〉]τ=0 =2
∫
Rd×Rd

〈∇θ1U(θ1,θ2), ξ(θ1)〉 · ρhk(θ1)ρhk(θ2)dθ1dθ2. (6.33)

Combining Eq. (6.28) to (6.33), choosing ξ = ∇ζ and ξ = −∇ζ, we have for any ζ ∈ C∞0 (R),∣∣∣∣∫
Rd

{1
h

(ρhk − ρhk−1)ζ + (〈∇θΨλ(θ; ρhk),∇ζ〉 −∆ζ)ρhk
}

dθ
∣∣∣∣ ≤ 1

2 sup
Rd

‖∇2ζ‖op ·
1
h
W 2

2 (ρhk−1, ρ
h
k).

(6.34)
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According to the estimates in [JKO98, Theorem 5.1], for any T < ∞, there exists a constant
C <∞ such that for all N ∈ N and all h ∈ (0, 1] with Nh ≤ T , there holds

max
{
M(ρhN ),

∫
Rd

max{ρhN log(ρhN ), 0}dθ, R(ρhN ), 1
h

N∑
k=1

W 2
2 (ρhk , ρhk−1)

}
≤ C. (6.35)

As in [JKO98, Theorem 5.1], by de la Vallée-Poussin criterion, the second condition in Eq. (6.35)
implies that there exists a measurable function (t,θ) 7→ ρ(t,θ) and a sequence (hs)s≥1 with
lims→∞ hs = 0, such that (t,θ) 7→ ρhs(t,θ) converges to ρ weakly in L1((0, T ) × Rd) for all
T <∞. Eq. (6.35) also guarantees that ρ(t, · ) ∈ K for almost every t ∈ (0,∞), and M(ρ), R(ρ) ∈
L∞((0, T )) for all T <∞. By Eq. (6.34) and (6.35), we have that ρ satisfies Eq. (6.23). Since this
equation is not affected by changing ρ(t, · ) for a set of values of t with measure 0, we can ensure
that the ρ(t, · ) ∈ K for all t. Therefore, ρ is a solution of the weak form of PDE (6.23).

The uniqueness of solution of Eq. (6.23) can be proved using standard method from theory of
elliptic-parabolic equations (see, for instance, [JKO98, Theorem 5.1]). In the proof of uniqueness
we need the smoothness property of the solution, which is proved by Lemma 6.7.

Lemma 6.7. Assume conditions A1 - A4 hold. Let initialization ρ0 ∈ K with Fβ,λ(ρ0) <∞. Denote
the solution of PDE (6.22) to be (ρt)t≥0. Then ρt(θ) as a function of (t,θ) is in C1,2((0,∞)×Rd),
where C1,2((0,∞)×Rd) is the function space of continuous function with continuous derivative in
time, and second order continuous derivative in space.

Before proving this lemma, we give some notations in the following.
For any open set Ω ⊆ Rd, and 1 ≤ p ≤ ∞, define Lp(Ω) to be the Banach space consisting of

all measurable functions on Ω with a finite norm

‖u‖Lp(Ω) ≡
( ∫

Ω
|u(θ)|pdθ

)1/p
. (6.36)

We say u ∈ Lploc(Ω) if for any compact subset Ω′ ⊂ Ω, we have u ∈ Lp(Ω′). We denote ‖ · ‖Lp(Rd)
simply by ‖ · ‖Lp .

For any nonnegative integer l and 1 ≤ p ≤ ∞, we denote W l
p(Ω) to be the Banach space (Sobolev

space) consisting of the elements of Lp(S) having generalized derivatives of all forms up to order l
included, that are p’th power integrable on Ω. The norm in W l

p(Ω) is defined by the equality

‖u‖(l)Lp(Ω) =
l∑

j=0
〈〈u〉〉(j)Lp(Ω), 〈〈u〉〉(j)Lp(Ω) =

∑
|α|=j

‖Dα
θ u‖Lp(Ω), (6.37)

where α = (α1, . . . , αd) is a multi-index with |α| =
∑d
i=1 αi, and Dα

θ u = ∂|α|u/∂θα1
1 · · · ∂θ

αd
d .

Let (t1, t2) ⊆ (0, T ) be an open interval and Ω ⊆ Rd be an open set, in these three paragraphs
we temporarily denote S = (t1, t2) × Ω. For any 1 ≤ r, p ≤ ∞, define Lr,p(S) to be the Banach
space consisting of all measurable functions on S with a finite norm

‖u‖Lr,p(S) ≡
( ∫ t2

t1

( ∫
Ω
|u(t,θ)|pdθ

)r/p
dt
)1/r

. (6.38)

We say u ∈ Lr,ploc(S) if for any compact subset [t′1, t′2] ⊂ (t1, t2) and compact subset Ω′ ⊂ Ω, we have
u ∈ Lr,p([t′1, t′2]× Ω′). We will denote Lp,p(S) by Lp(S), and Lp,ploc(S) by Lploc(S).
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For nonnegative integer l and 1 ≤ p ≤ ∞, we denote W 2l,l
p (S) to be the Banach space consisting

of the elements of Lp(S) having generalized derivatives of the form Dr
tD

α
θ with r and α satisfying

the inequality 2r + |α| ≤ 2l. The corresponding norm is defined by

‖u‖(2l)Lp(S) =
2l∑
j=0
〈〈u〉〉(j)Lp(S), 〈〈u〉〉(j)Lp(S) =

∑
|α|+2r=j

‖Dr
tD

α
θ u‖Lp(S). (6.39)

We denote Cm,n(S) to be the function space of continuous function with m continuous deriva-
tive in time, and n continuous derivatives in space. For example, u ∈ C1,2(S) if and only if
u, ∂tu,∇θu,∇2

θu ∈ C0,0(S) ≡ C(S). We say u ∈ Cm,nc (S) if u ∈ Cm,n(S) and the support of u is
compact. We will denote Cn,n(S) by Cn(S), and Cn,nc (S) by Cnc (S).

For any measurable functions f, g defined on Rd, we denote f ∗ g to be their space convolution,
which is a measurable function on Rd, with

(f ∗ g)(θ) =
∫
Rd
f(θ′)g(θ − θ′)dθ′. (6.40)

For any measurable function u, v defined on R × Rd, we denote u ∗2 v to be their space and time
convolution, which is a measurable function on R× Rd, with

(u ∗2 v)(t,θ) =
∫
R

dt′
∫
Rd
u(t′,θ′)v(t− t′,θ − θ′)dθ′. (6.41)

If u, v are defined on a subset of R× Rd, we define u ∗2 v using their zero extensions.
We denote G to be the heat kernel, where for t > 0, we have

G(t,θ) = t−d/2g(t−1/2θ), g(θ) = (2π)−d/2 exp{−1/2 · ‖θ‖22}. (6.42)

Proof. The proof is similar to the one of [JKO98, Theorem 5.1], so we will skip some details.
Without loss of generality we can set β = 1, and ξ(t) = 1/2 (different choices can be obtained by
rescaling Ψ(θ; ρ) and reparametrizing time).

Let E = (0,∞) × Rd. With a slight abuse of notations, we denote Ψ(t,θ) = Ψλ(θ; ρt). Since
V ∈ C4(Rd), and ∇k1U are uniformly bounded for 0 ≤ k ≤ 4, we have ∇kθΨ ∈ L∞loc(E) for 0 ≤ k ≤ 4.

In the following, we will write ρ(t,θ) = ρt(θ) for clarity. When we write ρ(t), we regard it as a
function in L1(Rd) at any fixed t. For other functions, we also use this convention.
Step 1. Show that ρ ∈ L∞,ploc (E).

Taking G to be the heat kernel, it is easy to see that

‖G(t)‖Lp = t
( 1

p
−1) d

2 ‖g‖Lp , ‖∇G(t)‖Lp = t
1
p

d
2−

d+1
2 ‖∇g‖Lp .

Then for any η ∈ C∞c (Rd), Duhamel’s principle gives

ρ(t)η =
∫ t

ε
[ρ(s)(∆η − 〈∇Ψ(s),∇η〉)] ∗G(t− s)ds

+
∫ t

ε
[ρ(s)(2∇η − η∇Ψ(s))] ∗ ∇G(t− s)ds+ (ρ(ε)η) ∗Gε(t)

(6.43)

for almost every 0 ≤ ε < t < ∞, where ∗ denotes convolution in the θ-variables, and Gε(t,θ) ≡
G(t− ε,θ). By Young’s convolution inequality, we have ‖f ∗ g‖Lr ≤ C‖f‖Lp‖g‖Lq for 1/p+ 1/q =
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1/r + 1 and p, q, r ≥ 1. For fixed t, we estimate the Lp(Rd) norm of ρ(t)η, which gives

‖ρ(t)η‖Lp ≤
∫ t

ε
‖ρ(s)(∆η − 〈∇Ψ(s),∇η〉)‖L1‖G(t− s)‖Lpds

+
∫ t

ε
‖ρ(t)(2∇η − η∇Ψ(t))‖L1‖∇G(t− s)‖Lpds+ ‖ρ(ε)η‖L1‖G(t− ε)‖Lp

≤ess sup
s∈[ε,t]

‖ρ(s)(∆η − 〈∇Ψ(s),∇η〉)‖L1‖g‖Lp

∫ t−ε

0
s

( 1
p
−1) d

2 ds

+ ess sup
s∈[ε,t]

‖ρ(s)(2∇η − η∇Ψ(s))‖L1‖∇g‖Lp

∫ t−ε

0
s

1
p

d
2−

d+1
2 ds

+ ‖ρ(ε)η‖L1‖g‖Lp(t− ε)( 1
p
−1) d

2

for almost every 0 ≤ ε < t < ∞. For p < d/(d − 1), the s-integrals are finite. Therefore, we have
ρη ∈ L∞,p((δ, T )×Rd) for any δ, T such that ε < δ < T <∞. Hence we have ρ ∈ L∞,ploc ((0,∞)×Rd).
Step 2. Show that ρ ∈ L∞loc((0,∞)× Rd) using bootstrap.

In what follows, we let E ≡ (0,∞)× Rd.
We can iteratively use the strategy in step 1 to show that ρ ∈ L∞loc(E). We will summarize our

key estimates in Step 1 as follows. For any measurable function u defined on S = (δ, T ) × Rd for
some 0 ≤ δ < T <∞, we have

‖u ∗2 G‖L∞,po (S) ≤C‖u‖L∞,pi (S), (6.44)
‖u ∗2 ∇G‖L∞,po (S) ≤C‖u‖L∞,pi (S), (6.45)

provided that the po, pi satisfy the relations

1 ≤ pi ≤ po, d · (1/pi − 1/po) < 1. (6.46)

Here, C is a constant depends only on T, δ and on pi, po.
Define ϕ1 ≡ ρ(∆η − 〈∇Ψ,∇η〉)1{t > ε}, ϕ2 ≡ ρ(2∇η − η∇Ψ)1{t > ε}, and ψ ≡ ρ(ε)η. Then

Eq. (6.43) reads

ρη = ϕ1 ∗2 G+ ϕ2 ∗2 ∇G+ ψ ∗Gε. (6.47)

Since ψ = ρ(ε)η ∈ L1(Rd), the behavior of ψ ∗ Gε on S = (δ, T ) × Rd for ε < δ < T < ∞ will be
extremely nice: for any generalized gradient Dr

tD
α[ψ ∗Gε],

‖Dr
tD

α[ψ ∗Gε]‖L∞(S) ≤‖ψ‖L1(Rd)‖Dr
tD

αGε‖L∞(S) <∞. (6.48)

Hence Dr
tD

α[ψ ∗Gε] ∈ L∞(S). From now on, we fix 0 < ε < δ < T <∞ and take S ≡ (δ, T )×Rd.
According to Eq. (6.47) we have

‖ρη‖L∞,po (S) ≤‖ϕ1 ∗2 G‖L∞,po (S) + ‖ϕ2 ∗2 ∇G‖L∞,po (S) + ‖ψ ∗Gε‖L∞,po (S)

≤C{‖ϕ1‖L∞,pi (S) + ‖ϕ2‖L∞,pi (S) + ‖ψ‖L1(Rd)}
(6.49)

Now we assume ρ ∈ L∞,pi
loc (E) for some pi. Note∇Ψ ∈ L∞loc(E) so that max{‖ϕ1‖L∞,pi (S), ‖ϕ2‖L∞,pi (S)} ≤

Cη‖ρ‖L∞,pi ((δ,T )×Ω2), where Ω2 ⊇ supp(η) is a compact set. As a result, for any η ∈ C∞c (Rd), we
have

‖ρ‖L∞,po ((δ,T )×Ω1) ≤ Cη(‖ρ‖L∞,pi ((δ,T )×Ω2) + 1), (6.50)
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where Ω1 ⊆ supp(η) ⊆ Ω2. Therefore, ρ ∈ L∞,po

loc (E), where pi, po satisfy Eq. (6.46).
Note there exists a sequence pi,l, po,l for 1 ≤ l ≤ k and k < ∞, so that pi,l+1 = po,l, pi,1 = p <

d/(d− 1), pi,k =∞, and pi,l, po,l for fixed l satisfies Eq. (6.46). Since we have ρ ∈ L∞,ploc (E), using
Eq. (6.50) iteratively, we have ρ ∈ L∞,po,l

loc (E) for any 1 ≤ l ≤ k. As a result, we have ρ ∈ L∞loc(E).
Step 3. Derivatives, Dρ, D2ρ, and D3ρ.

By [LSU88, Chapter IV, section 3, (3.1)], for any function u defined on E = (0,∞) × Rd, we
have

〈〈G ∗2 u〉〉(2m+2)
Lp(E) ≤C〈〈u〉〉

(2m)
Lp(E), (6.51)

where 1 < p ≤ ∞ and m is a nonnegative integer.
First, we show the regularity of Dρ. Note that ρ ∈ L∞loc(E), η ∈ C∞c (Rd), ∇Ψ ∈ L∞loc(E), we have

ϕ1, ϕ2 ∈ L∞(E). Due to Eq. (6.51), we have D2{ϕ1∗2G}, D2{ϕ2∗2G} ∈ L∞(E), which also implies
D{ϕ1 ∗2 G} ∈ L∞loc(E). Hence we have D(ρη) = D{ϕ1 ∗2 G}+D2{ϕ2 ∗2 G}+D[ψ ∗Gε] ∈ L∞(S),
which gives Dρ ∈ L∞loc(E).

Then we show the regularity of D2ρ. Note that ∇2Ψ ∈ L∞loc(E), we have Dϕ1, Dϕ2 ∈ L∞(E).
Due to Eq. (6.51), we have D3{ϕ1 ∗2 G}, D3{ϕ2 ∗2 G} ∈ L∞(E), which also implies D2{ϕ1 ∗2 G} ∈
L∞loc(E). Hence we have D2(ρη) = D2{ϕ1 ∗2 G}+D3{ϕ2 ∗2 G}+D2[ψ ∗Gε] ∈ L∞(S), which gives
D2ρ ∈ L∞loc(E).

Next we show the regularity of D3ρ. Note that ∇3Ψ ∈ L∞loc(E), we have D2ϕ1, D
2ϕ2 ∈ L∞(E).

Due to Eq. (6.51), we have D4{ϕ1 ∗2 G}, D4{ϕ2 ∗2 G} ∈ L∞(E), which also implies D3{ϕ1 ∗2 G} ∈
L∞loc(E). Hence we have D3(ρη) = D3{ϕ1 ∗2 G}+D4{ϕ2 ∗2 G}+D3[ψ ∗G] ∈ L∞(S), which gives
D3ρ ∈ L∞loc(E).
Step 4. Derivatives, Dtρ, DtDρ, and DtD

2ρ.
Now we study the regularity of Dtρ,DtDρ,DtD

2ρ. Note we have Dt(ρη) = Dt{ϕ1 ∗2 G} −
Dt{Dϕ1 ∗2 G} + Dt{ψ ∗ Gε}. Due to Eq. (6.51), ϕ1, Dϕ2 ∈ L∞(E) implies that Dt{ϕ1 ∗2
G}, Dt{Dϕ1 ∗2 G} ∈ L∞(E) and hence Dt[ρη] ∈ L∞(S), Dtρ ∈ L∞loc(E).

Note we have DtD(ρη) = Dt{Dϕ1 ∗2 G} + Dt{D2ϕ1 ∗2 G} + Dt{Dψ ∗ Gε}. The fact that
Dϕ1, D

2ϕ2 ∈ L∞(E) implies that Dt{Dϕ1 ∗2 G}, Dt{D2ϕ1 ∗2 G} ∈ L∞(E) and hence DtDρ ∈
L∞loc(E).

Note we have DtD
2(ρη) = Dt{D2ϕ1 ∗2 G} − Dt{D3ϕ1 ∗2 G} + Dt{D2ψ ∗ Gε}. Note that

∇4Ψ ∈ L∞loc(E), hence D3ϕ2 ∈ L∞(E). Combining with the fact that D2ϕ1 ∈ L∞(E), we have
Dt{D2ϕ1 ∗2 G}, Dt{D3ϕ1 ∗2 G} ∈ L∞(E) and hence DtD

2ρ ∈ L∞loc(E).
Step 5. Derivatives, D2

t ρ.
Finally we show the regularity of D2

t ρ. We have D2
t (ρη) = Dt{Dt[ϕ1 ∗2 G] − Dt[Dϕ1 ∗2 G] +

Dt[ψ ∗Gε]}, and

Dt[ϕ1 ∗2 G] =[∆ϕ1] ∗2 G+ ϕ1(ε) ∗Gε, (6.52)
Dt[Dϕ2 ∗2 G] =[D∆ϕ2] ∗2 G+ [Dϕ2(ε)] ∗Gε. (6.53)

Note that ∇4Ψ ∈ L∞loc(E), we have ∆ϕ1, D∆ϕ1 ∈ L∞loc(E), and ϕ1(ε), Dϕ2(ε) ∈ L1(Rd). Hence
according to Eq. (6.51), we have Dt{[∆ϕ1] ∗2 G}, Dt{[D∆ϕ2] ∗2 G}. In addition Dt{ϕ1(ε) ∗
Gε}, Dt{[Dϕ2(ε)] ∗Gε} ∈ L∞(S). As a result, we have D2

t ρ ∈ L∞loc(E).
Step 6. Finish the proof.

As a result, we have ρ,Dρ,D2ρ,D3ρ,Dtρ,DtDρ,DtD
2ρ,D2

t ρ ∈ L∞loc(E). Sobolev embedding
theorem implies that ρ, ∂tρ,∇θρ,∇2

θρ ∈ C0,0(Rd). In other words, ρ ∈ C1,2(E), which is the desired
result.
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Lemma 6.8. Assume conditions A1 - A4 hold. Let initialization ρ0 ∈ K with Fβ,λ(ρ0) < ∞.
Denote the solution of PDE (6.22) to be (ρt)t≥0. Then ρt(θ) > 0 for any (t,θ) ∈ (0,∞)× Rd.

Proof. Note that ρt ∈ C1,2((0,∞) × Rd). By the Harnack’s inequality [Eva09], we immediately
have ρt(θ) > 0 for any (t,θ) ∈ (0,∞)× Rd.

We say ρ∗ is a fixed point of PDE (6.22), if its solution (ρt)t≥0 starting from ρ∗ satisfies ρt ≡ ρ∗
for any t ≥ 0.

Lemma 6.9. Assume conditions A1 - A3 hold. Then any fixed point ρ∗ of PDE (6.22) with ρ∗ ∈ K
must satisfy the Boltzmann fixed point condition (6.13).

Proof. Suppose ρ∗ ∈ K is a fixed point of PDE (6.22), taking W (θ) ≡ Ψλ(θ; ρ∗), then ρ∗ ∈ K is a
fixed point of the Fokker-Planck equation (6.54).

∂tρt(θ) = 2ξ(t)∇ · (∇W (θ)ρt(θ)) + 2ξ(t)/β ·∆θρt(θ). (6.54)

Since λ/2 · ‖θ‖22 − 2K3 ≤ Ψλ(θ; ρ∗) ≤ λ/2 · ‖θ‖22 + 2K3, the Fokker-Planck equation has a unique
fixed point [MV00], which solves

ρ∗(θ) = 1
Zβ

exp{−βW (θ)}, Zβ =
∫
Rd

exp{−βW (θ)}dθ.

This is exactly the Boltzmann fixed point condition.

Lemma 6.10. Assume conditions A1 - A4 hold. Let (ρt)t≥0 be the solution of PDE (6.22) for an
initialization ρ0 ∈ K. Then the free energy Fβ,λ(ρt) is differentiable with respect to t, with

∂tFβ,λ(ρt) =− 2ξ(t)
∫
Rd
‖∇θ(Ψλ(θ; ρt) + 1/β · log ρt(θ))‖22ρt(θ)dθ. (6.55)

Therefore, Fβ,λ(ρt) is non-increasing in t.

Proof. Calculate the differential of the free energy along the curve ρt, we have

∂tFβ,λ(ρt) =
∫
Rd

Ψλ(θ; ρt)∂tρt(θ)dθ + 1/β ·
∫

log(ρt(θ))∂tρt(θ)dθ

=− ξ(t)
∫
Rd
‖∇θ(Ψλ(θ; ρt) + 1/β · log ρt(θ))‖22ρt(θ)dθ.

Lemma 6.11. Assume K0‖θ‖22 −K1 ≤ Φ(θ) ≤ K0‖θ‖22 + K1 for some positive constant K0,K1.
Define

µ∗(dθ) = 1
Z∗

exp{−Φ(θ)}dθ, Z∗ =
∫
Rd

exp{−Φ(θ)}dθ (6.56)

Let D ≡ {f ∈ L2(Rd, µ∗) ∩ C1(Rd) : ‖∇f‖2 ∈ L2(Rd, µ∗)}. For any f ∈ D, define

I(f) ≡
∫
Rd
‖∇f(θ)‖22 · µ∗(dθ) <∞. (6.57)

Assume (fn)n≥1 ⊆ D, with limn→∞ I(fn) = 0, and fn converges weakly to f∗ in L2(Rd, µ∗). Then
f∗(θ) ≡ F∗ for some constant F∗.
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Proof. First we show that the measure µ∗ satisfies the Poincare inequality: for any f ∈ D,

µ∗((f − µ∗(f))2) ≤ K · I(f), (6.58)

for some constant K.
Let µ be the Gaussian distribution N(0, 1/(2K0) · Id). Then for any θ ∈ Rd,

µ(θ) · exp{−2K1} ≤ µ∗(θ) ≤ µ(θ) · exp{2K1}. (6.59)

Therefore, for any nonnegative measurable function f : Rd → [0,∞) and g : Rd × Rd → [0,∞),
letting (G,G′) ∼ µ× µ and (X,X ′) ∼ µ∗ × µ∗, we have

E[f(G)] · exp{−2K1} ≤E[f(X)] ≤ E[f(G)] · exp{2K1},
E[g(G,G′)] · exp{−4K1} ≤E[g(X,X ′)] ≤ E[g(G,G′)] · exp{4K1}.

Note we have the Poincare inequality for the Gaussian distribution µ,

Var[f(G)] ≤ 1/(2K0) · E[‖∇f(G)‖22] (6.60)

for any differentiable f . Therefore, we have

Var[f(X)] =1
2E[(f(X)− f(X ′))2] ≤ 1

2 exp{4K1} · E[(f(G)− f(G′))2]

= exp{4K1} ·Var[f(G)] ≤ 1/(2K0) · exp{4K1} · E[‖∇f(G)‖22]
≤1/(2K0) · exp{6K1} · E[‖∇f(X)‖22].

This proves the Poincare inequality (6.58) for µ∗.
Since limn→∞ I(fn) = 0, due to (6.58), we immediately have fn − µ∗(fn) converges to 0 in

L2(Rd, µ∗). Note we assumed fn converges weakly to f∗ in L2(Rd, µ∗), and 1 ∈ L2(Rd, µ∗), we have

lim
n→∞

µ∗(fn) = µ∗(f).

Therefore, fn − µ∗(fn) converges weakly to f∗ − µ∗(f∗) in L2(Rd, µ∗). Hence f∗(θ) ≡ µ∗(f∗).

Lemma 6.12. Assume conditions A1 - A4 hold. Then the solution (ρt)t≥0 of PDE (6.22) for any
initialization ρ0 ∈ K converges weakly to ρ∗ ∈ K as t → ∞, where ρ∗ is the unique solution of the
Boltzmann fixed point condition, which is the global minimizer of Fβ,λ.

Proof. According to Lemma 6.10, Fβ,λ is non-increasing along the solution path. According to
Lemma 6.2, Fβ,λ(ρt) is lower bounded. Therefore, we have

lim
t→∞

∫
Rd
‖∇θ(Ψλ(θ; ρt) + 1/β · log ρt(θ))‖22ρt(θ)dθ = 0. (6.61)

Since M(ρt) is uniformly bounded, by Lemma 6.6, (ρt)t≥0 as a sequence of probability distri-
bution in P(Rd) is uniformly tight. Hence there exists ρ∗ ∈ P(Rd) and a subsequence (ρtk)k≥1
with limk→∞ tk = ∞ such that (ρtk)k≥1 converges weakly to ρ∗. By Lemma 6.6 and Lemma 6.1,
{
∫

max{ρtk log ρtk , 0)}dθ}k≥1 is uniformly bounded. Using de la Vallée-Poussin’s criteria, we can
show that (ρtk)k≥1 is uniformly integrable, and hence ρ∗ is absolute continuous with respect to
Lebesgue measure, which means ρ∗ has a density.
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Note we have

∇θΨλ(θ; ρt)−∇θΨλ(θ; ρ∗) =
∫
Rd
∇θU(θ,θ′)(ρt(θ′)− ρ∗(θ′))dθ′.

According to condition A3, ∇θU is K3-bounded-Lipschitz with respect to (θ,θ′). Therefore,

sup
θ∈Rd

‖∇θΨλ(θ; ρt)−∇θΨλ(θ; ρ∗)‖2 ≤ K3 · dBL(ρt, ρ∗)→ 0, (6.62)

as dBL(ρt, ρ∗)→ 0. Accordingly, we have

lim
k→∞

∫
Rd
‖∇θ(Ψλ(θ; ρtk)−Ψλ(θ; ρ∗))‖22ρtk(θ)dθ ≤ K2

3 · lim
k→∞

dBL(ρtk , ρ∗)
2 = 0. (6.63)

Combining Eq. (6.63) with Eq. (6.61), we have

lim
k→∞

∫
Rd
‖∇θ(Ψλ(θ; ρ∗) + 1/β · log ρtk(θ))‖22ρtk(θ)dθ = 0. (6.64)

Note we have∫
Rd
‖∇θ(Ψλ(θ; ρ∗) + 1/β · log ρtk(θ))‖22ρtk(θ)dθ

= 1
β2

∫
Rd
‖∇θ(ρtk(θ) exp{βΨλ(θ; ρ∗)})‖22 · ρtk(θ)−1 exp{−2βΨλ(θ; ρ∗)}dθ

= 1
β2

∫
Rd
‖∇θ[(ρtk(θ) exp{βΨλ(θ; ρ∗)})1/2]‖22 · exp{−βΨλ(θ; ρ∗)}dθ.

(6.65)

Define

µ∗(dθ) = 1/Z∗ · exp{−βΨλ(θ; ρ∗)}µ0(dθ), Z∗ =
∫
Rd

exp{−βΨλ(θ; ρ∗)}µ0(dθ), (6.66)

fk(θ) = [exp(βΨλ(θ; ρ∗))ρtk(θ)]1/2 ∈ D ≡ {f ∈ L2(Rd, µ∗) ∩ C1(Rd) : ‖∇f‖2 ∈ L2(Rd, µ∗)}
(fk ∈ C1(Rd) because ρt(θ) > 0 for any θ ∈ Rd and ρt(θ) ∈ C1(Rd) for fixed t), and f∗(θ) =
[exp(βΨλ(θ; ρ∗))ρ∗(θ)]1/2 ∈ L2(Rd, µ∗). Since we have ρtk converges to ρ∗ weakly in L1(Rd, µ0),
then fk converges weakly to f∗ in L2(Rd, µ∗). Define I(f) ≡

∫
Rd ‖∇f(θ)‖22 ·µ∗(dθ). Eq. (6.64) and

(6.65) give limk→∞ I(fk) = 0. Now we apply Lemma 6.11 with Φ(θ) = βΨλ(θ; ρ∗). This Φ satisfies
βλ/2 · ‖θ‖22 − 2βK2 ≤ Φ(θ) ≤ βλ/2 · ‖θ‖22 + 2βK2, where K2 is the constant in Assumption A2.
Lemma 6.11 implies f∗(θ) ≡ F∗ for some constant F∗.

This proves that ρ∗(θ) = F∗ ·exp{−βΨλ(θ; ρ∗)}. Combining with the fact that
∫
Rd ρ∗(θ)dθ = 1,

ρ∗ satisfies the Boltzmann fixed point condition. According to Lemma 6.4, the Boltzmann fixed
point condition has a unique solution ρβ,λ∗ . Therefore, all the converging weak limit of subsequence
of ρt converges to the same point ρβ,λ∗ . As a result, ρt converges to ρβ,λ∗ weakly in L1(Rd).

6.3 Proof of Proposition 3, Theorem 4, and Theorem 5

Proposition 3 is given by Lemma 6.6, 6.4, and Lemma 6.9. Theorem 4 is given by Lemma 6.2, 6.4,
6.5, and 6.12.
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Now we prove Theorem 5. First, according to Lemma 6.5, for any η > 0, there exists constant
K depending on η,K0,K1,K2,K3, such that as we take β ≥ KD, we have

R(ρβ,λ∗ ) ≤ inf
ρ∈P(RD)

Rλ(ρ) + η/3. (6.67)

According to Lemma 6.12, we have ρt converges to ρβ,λ∗ weakly. Therefore, there exists T =
T (η, V, U, {Ki}, D, λ, β) <∞, so that dBL(ρt, ρβ,λ∗ ) ≤ η/(3Z) for any t ≥ T , where Z = Z({Ki}) is
the bounded-Lipschitz constant of R with respect to ρ. Hence, we have

R(ρt) ≤ R(ρβ,λ∗ ) + η/3 (6.68)

for any t ≥ T .
Finally, according to Theorem 3, there exists K ′ depending on Ki’s, so that for all k ≤ 10T/ε,

we have
|RN (θk)−Rρkε

| ≤ K ′eK′T
√

1/N ∨ ε ·
[√

D + log(N(1/ε ∨ 1)) + z
]
,

with probability at least 1 − e−z2 . Hence there exists C0 = C0(η, {Ki}, δ), so that as N, 1/ε ≥
C0 exp{C0T}D and ε ≥ 1/N10, we have

|RN (θk)−R(ρkε)| ≤ η/3, (6.69)

with probability at least 1− δ.
Combining Eq. (6.67), (6.68), and (6.69) we get the desired result.

6.4 Dependence of convergence time on D and η

Theorem 5 does not provide any estimate for the dependence of the convergence time on the
problem dimensions D and on the accuracy η. However the proof suggests the following heuristic.
When ρt is sufficiently close to the minimizer ρ∗, we heuristically can approximate the free energy
dissipation formula (6.2) as

∂tFβ,λ(ρt) ≈−
∫
Rd
‖∇θ(Ψλ(θ; ρ∗) + 1/β · log ρt(θ))‖22ρt(θ)dθ . (6.70)

This is the same as the free energy dissipation for the Fokker-Planck equation with potential
Ψλ(θ; ρ∗). This suggests that, close to ρ∗, convergence should be dominated by the speed of
convergence in this Fokker-Plank equation, which is controlled by the log-Sobolev constant of the
potential Ψλ(θ; ρ∗), to be denote by c∗ [MV00]:

Fβ,λ(ρt) . Fβ,λ(ρt0) e−c∗(t−t0) . (6.71)

Note that the log-Sobolev constant can be exponentially small in D. We expect this heuristic
to capture the rough dependence of the convergence time T on η and D, hence suggesting T =
eO(D) log(1/η).

7 Numerical Experiments

In this section, we discuss numerical experiments whose results were presented in the main text,
as well as some additional ones. Some technical details of the figures in the main text are also
presented here; in particular, Section 7.1.1 for Figure 1, Section 7.1.2 for Figure 2, Section 7.2 for
Figure 3, and Section 7.3 for Figure 4.
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Figure 7.1: The activation functions σ(t) used in Section 7.1 (left plot) and Section 7.3 (right plot).

7.1 Isotropic Gaussians

In this section, we present details of the numerical experiments pertaining to the example of centered
isotropic Gaussians:

With probability 1/2: y = +1, x ∼ N(0, (1 + ∆)2Id).

With probability 1/2: y = −1, x ∼ N(0, (1 + ∆)2Id).

In all numerical examples in this section, we use the activation σ∗(x;θi) = σ(〈wi,x〉), where
σ(t) = s1 if t ≤ t1, σ(t) = s2 if t ≥ t2, and σ(t) interpolated linearly for t ∈ (t1, t2). In simulations
we use t1 = 0.5, t2 = 1.5, s1 = −2.5, s2 = 7.5. This is also used for examples with centered
Gaussians in the main text, cf. Figures 1 and 2, and Section 4 in the supplemental information.
This activation is plotted in Figure 7.1.

7.1.1 Empirical validation of distributional dynamics

Here we discuss empirical validation for the dynamics in the isotropic Gaussian example.
PDE simulation. Simulating the PDE (Eq. [13] of the main text) for general d is computationally
intensive. In order to simplify the problem, we only consider d = ∞. In that case, we recall that
the risk is given by Eq. (4.10), which we copy here for ease of reference:

R∞(ρ) = 1
2

(
1−

∫
q+(r) ρ(dr)

)2
+ 1

2

(
1 +

∫
q−(r) ρ(dr)

)2
, (7.1)

where q±(t) = E{σ((1±∆)tG)}, G ∼ N(0, 1). In addition, from Eq. (4.12),

ψ∞(r; ρ) = 1
2[〈q+, ρ〉 − 1]q+(r) + 1

2[〈q−, ρ〉+ 1]q−(r). (7.2)

The PDE is then ∂tρt = 2ξ(t)∂r[ρt∂rψ∞(r; ρt)].
The solution to the PDE is approximated, at all time t, by the following multiple-deltas ansatz:

ρt = 1
J

J∑
i=1

δri(t) , (7.3)
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where J ∈ N is a pre-chosen parameter. Note that for a fixed J , if the PDE is initialized at ρ0
taking the above form, then for any t ≥ 0, ρt remains in the above form. Then for any smooth test
function f : R 7→ R with compact support,

1
J

J∑
i=1

f ′(ri(t))r′i(t) = ∂t〈f, ρt〉 = −2ξ(t)〈f ′, ρt∂rψ∞(r; ρt)〉 (7.4)

= −2ξ(t) 1
J

J∑
i=1

f ′(ri(t))∂rψ∞(ri(t); ρt). (7.5)

Under this ansatz, let us write R∞(ρt) = R∞,J(r(t)), where r(t) = (r1(t), ..., rJ(t))>, and

R∞,J(r) = 1
2

(
1− 1

J

J∑
i=1

q+(ri)
)2

+ 1
2

(
1 + 1

J

J∑
i=1

q−(ri)
)2

. (7.6)

Notice that ∂rψ∞(ri(t); ρt) = (J/2)(∇R∞,J(r(t)))i. Therefore we obtain

d
dtr(t) = −Jξ(t)∇R∞,J(r(t)). (7.7)

Hence under the multiple-deltas ansatz, one can simulate numerically the PDE via the above
evolution equation of r(t). In particular, given r(t), one approximates r(t + δt) for some small
displacement δt by

r(t+ δt) ≈ r(t)− Jξ(t)∇R∞,J(r(t))δt. (7.8)

In general, one would want to take a large J to obtain a more accurate approximation. There are
certain cases where one can take small J (even J = 1). An example of such case is given in the
following.
Details of Figure 1 of the main text. For the data generation, we set ∆ = 0.8. For the SGD
simulation, we take d = 40, N = 800, with ε = 10−6 and ξ(t) = 1. The weights are initialized as
(wi)i≤N ∼iid N(0, 0.82/d · Id). We take a single SGD run. At iteration 103, 4× 106, 107, we plot the
histogram of (‖wi‖2)i≤N . This produces the results of the SGD in Figure 1 of the main text.

To obtain results from the PDE, we take J = 400, and generate ri(0) = ‖Zi‖2, where (Zi)i≤J ∼iid
N(0, 0.82/d · Id). We obtain r(t) from t = 0 until t = 107ε, by discretizing this interval with 105

points equally spaced on the log10 scale and sequentially computing r(t) at each point using Eq.
(7.8). Note that the SGD result at iteration k corresponds to r(εk). We re-simulate the PDE for
100 times, each with an independently generated initialization. The obtained histogram for the
PDE, as shown in the figure, is the aggregation of these 100 runs.
Further numerical simulations. Figure 7.2 plots the evolution of ρt for ∆ = 0.2. The setting is
identical to the one in Figure 1 of the main text, described in the previous paragraphs.

In Figure 7.3, we plot the evolution of the population risk for the SGD and its PDE prediction
counterpart, for ∆ = 0.2 and ∆ = 0.8. The setting for the SGD plots is the same as described
in the previous paragraphs. We compute the risk attained by the SGD by Monte Carlo averaging
over 104 samples. The setting for the PDE plots tagged “J = 400” is almost the same as in the
previous paragraphs, except that we take only 1 run. For the PDE plot tagged “J = 1”, we take
J = 1 and r(0) = 0.8 instead. In the inset plot, we also show the evolution of (1/N)

∑N
i=1 ‖wi‖2 of

the SGD, and (1/J)
∑J
i=1 ri(t) of the PDE.
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Figure 7.2: Evolution of the reduced distribution ρt for ∆ = 0.2, in the isotropic Gaussians example
of Section 7.1.

In Figure 7.4, we plot the function R
(1)
d (r), for d = 40 and ∆ = 0.2. (Recall R(1)

d (r) from Eq.
[14] of the main text, and see also Section 7.1.3.) On this landscape, we also plot the evolution of
the corresponding SGD and PDE, as described in the last paragraph.
Comments. We observe in Figure 7.3 a good match between the SGD and the PDE, even when
J = 1, for ∆ = 0.2. This can be explained with our theory, which predicts that at ∆ = 0.2, the
minimum risk is achieved by the uniform distribution over a sphere of radius ‖w‖2 = r∗ (see also
Section 7.1.3). This corresponds to ρt, as t→∞, being a delta function and placing probability 1
at r∗. Furthermore due to the way we initialize the SGD, ρ0 is well concentrated. One can then
expect that ρt is also well concentrated at all time t, in which case J = 1 is sufficient. This claim
is reflected in our numerical experiments, shown in Figure 7.2.

We also observe in Figure 7.3 that the case ∆ = 0.2 has a rapid transition from a high risk to
a lower risk, unlike the case ∆ = 0.8. This is also expected from our theory. As said above, ρt
is approximately a delta function at all time t, and the position r(t) evolves by gradient flow in
the landscape of R(1)

d (r). This latter claim is well supported by Figure 7.4. As observed in Figure
7.4, R(1)

d (r) is rather benign, and hence the transition of the population risk should be smooth.
However the case for ∆ = 0.8 is different: ρt is not concentrating at large t, as evident in Figure
1 of the main text, even though R

(1)
d (r) is generally benign for a vast variety of values of d and ∆

(see Figure 7.6 and Section 7.1.3).
Note that the computation of the PDE assumes d = ∞. Furthermore it also requires N = ∞

(recalling Theorem 3 of the main text). The discrepancy to the SGD is due to the fact that d and
N are finite in the SGD simulations. Nevertheless in our numerical examples, such discrepancy is
insignificant.

7.1.2 Empirical validation of the statics

Here we discuss numerical verification for the statics in the isotropic Gaussian example.
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Figure 7.3: The evolution of the population risk and the parameter r of the reduced distribution
ρt, in the isotropic Gaussians example of Section 7.1.
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Optimizing Rd(ρ). For the chosen activation, we have from Eq. (4.8) that

Rd(ρ) = 1 + 2
∫
v(r) ρ(dr) +

∫
ud(r1, r2) ρ(dr1) ρ(dr2) , (7.9)

v(r) = −1
2g(0, (1 + ∆)r) + 1

2g(0, (1−∆)r) , (7.10)

ud(r1, r2) = Γ(d/2)
Γ(1/2)Γ((d− 1)/2)

∫ π

θ=0
û(r1, r2, θ) sind−2 θdθ , (7.11)

û(r1, r2, θ) = 1
2f((1 + ∆)r1, (1 + ∆)r2, θ) + 1

2f((1−∆)r1, (1−∆)r2, θ) , (7.12)

f(r1, r2, θ) =
∫ +∞

x=−∞
σ(r1x)g(r2x cos θ, r2 sin θ)φ(x)dx , (7.13)

g(a, b) = s2 + (s1 − σitc − σsla)Φ
(
t1 − a
b

)
+ (σsla+ σitc − s2)Φ

(
t2 − a
b

)
+ σslb

[
φ

(
t1 − a
b

)
− φ

(
t2 − a
b

)]
. (7.14)

where σsl = (s2 − s1)/(t2 − t1), σitc = s1 − σslt1, φ(x) = exp(−x2/2)/
√

2π, Φ(x) =
∫ x
−∞ φ(t)dt, and

Γ is the Gamma function. To numerically optimize Rd(ρ), we perform the following approximation:

inf
ρ
Rd(ρ) ≈ inf

pi≥0,
∑K

i=1 pi=1
Rd

(
K∑
i=1

piδoi

)
. (7.15)

Here oi ∈ R, i = 1, ...,K, are K pre-chosen points. Let v = (v(o1), ..., v(oK))> and U =
(ud(oi, oj))1≤i,j≤K . Then the approximation becomes

inf
ρ
Rd(ρ) ≈ inf

pi≥0,
∑K

i=1 pi=1

{
1 + 2v>p + p>Up

}
, (7.16)

which is a quadratic programming problem and can be solved numerically. Here v can be computed
easily with the explicit formula, and the computation of U amounts to numerically evaluating double
integrals. In the case d =∞, the computation of U is much easier, since

u∞(r1, r2) = 1
2g(0, (1 + ∆)r1)g(0, (1 + ∆)r2) + 1

2g(0, (1−∆)r1)g(0, (1−∆)r2). (7.17)

Details of Figure 2 of the main text. For the SGD simulation, we take N = 800, with
ε = 3 × 10−3 and ξ(t) = t−1/4. The weights are initialized as (wi)i≤N ∼iid N(0, 0.42/d · Id). We
compute the risk attained by the SGD by Monte Carlo averaging over 104 samples. We take a
single SGD run per ∆, per d, and report the risk at iteration 107.

For the approximate optimization of Rd(ρ), we choose K = 100, and oi, i = 1, ...,K, being
equally spaced on the interval [0.01, 10].

For the optimization of R(1)
d (r) (recalling Eq. [14] in the main text), we approximate it with

mini=1,...,K R
(1)
d (oi), for the above chosen oi and K.

We find that in general, one needs higher maxi=1,...,K oi to produce accurate results for higher
∆. For the chosen set of oi’s, we choose to plot up until ∆ = 0.8.
Further numerical simulations. In Figure 7.5, we extend Figure 2 of the main text to include
results for additional values of d. The setting remains the same.

This figure provides further support to the respective discussion in the main text. For the
threshold values of ∆ for which the minimum risk is achieved by a uniform distribution ρunif

r∗ over
a sphere of radius ‖w‖2 = r∗ (see the main text around Eq. [14], and Section 7.1.3).
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d ∆l
d ∆h

d

5 N/A N/A
10 N/A N/A
20 0.08 0.38
40 0.03 0.42
80 0.02 0.45
160 0.0 0.46
∞ 0 0.47

Table 1: ∆l
d and ∆h

d for different values of d, in the isotropic Gaussians example of Section 7.1.
Here “N/A” refers to that no values of ∆ are found to satisfy the condition of Lemma 1 in the main
text. Note that for d =∞, the value ∆l

∞ = 0 is exact, according to Theorem 4.2.

7.1.3 Checking the condition of Lemma 1 in the main text

We check of the condition of Lemma 1 in the main text. This has two steps: (1) we solve for the
minimizer r∗ of R(1)

d (r) = 1 + 2v(r) + ud(r, r), where v(r) and ud(r1, r2) are given by Eq. (7.10)
and (7.11) respectively, and (2) we check whether v(r) + ud(r, r∗) ≥ v(r∗) + ud(r∗, r∗) for all r ≥ 0.
Figure 7.6 suggests that the behavior of R(1)

d (r) is rather benign and hence r∗ can be solved easily
by searching for a local minimum. For the second step, we check the condition on a grid of values
of r from 0.1 to 10 with a spacing of 0.1, for each value of ∆ on a grid from 0.01 to 0.99 with
a spacing of 0.01. In general, we find that the conditioned is satisfied for ∆ ∈ [∆l

d,∆h
d]. Table 1

reports ∆l
d and ∆h

d for a number of values of d for the isotropic Gaussians example with the given
activation function.

7.2 Centered anisotropic Gaussians with ReLU Activation

In this section, we present details of the numerical experiments pertaining to the example of
anisotropic Gaussians with ReLU activation. In particular, we use the activation σ∗(x;θ) =
amax(〈w,x〉 + b, 0), with θ = (w, a, b) ∈ Rd+2. We consider the centered anisotropic Gaussian
case:
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With probability 1/2: y = +1, x ∼ N(0,Σ+).

With probability 1/2: y = −1, x ∼ N(0,Σ−).

More specifically, we opt for

Σ+ = Diag
(

(1 + ∆)2, . . . , (1 + ∆)2︸ ︷︷ ︸
s0

, 1, . . . , 1︸ ︷︷ ︸
d−s0

)
, (7.18)

Σ− = Diag
(

(1−∆)2, . . . , (1−∆)2︸ ︷︷ ︸
s0

, 1, . . . , 1︸ ︷︷ ︸
d−s0

)
. (7.19)

This setting is used in Figure 3 in the main text.
We consider s0 = γd for some γ ∈ (0, 1). For simplicity, we consider the limit d → ∞. For

θ ∼ ρ, let ρ be the joint distribution of four parameters r = (a, b, r1 = ‖w1:s0‖2, r2 = ‖w(s0+1):d‖2),
where wi:j = (wi, ..., wj)>. Using a similar argument to Section 4, we have, in the limit d → ∞,
the risk R(ρ) = R∞(ρ) for

R∞(ρ) = 1
2

(
1−

∫
aq+(r1, r2, b)ρ(dr)

)2
+ 1

2

(
1 +

∫
aq−(r1, r2, b)ρ(dr)

)2
, (7.20)

q±(r1, r2, b) = bΦ

 b√
(1±∆)2r2

1 + r2
2

+
√

(1±∆)2r2
1 + r2

2φ

 b√
(1±∆)2r2

1 + r2
2

 , (7.21)

where φ(x) = exp(−x2/2)/
√

2π and Φ(x) =
∫ x
−∞ φ(t)dt. Furthermore, letting ρt denote the corre-

sponding distribution at time t, the PDE [7] in the main text can be reduced to the following PDE
of ρt:

∂tρt = 2ξ(t)∇r · (ρt∇rψ∞(r; ρt)) , (7.22)

ψ∞(r; ρ) = 1
2

[∫
a′q+(r′1, r′2, b′)dρ(a′, b′, r′1, r′2)− 1

]
aq+(r1, r2, b)

+ 1
2

[∫
a′q−(r′1, r′2, b′)dρ(a′, b′, r′1, r′2) + 1

]
aq−(r1, r2, b). (7.23)

PDE simulation. As in Section 7.1.1, we posit that the solution to the PDE can be approximated,
at all time t, by the multiple-deltas ansatz:

ρt = 1
J

J∑
i=1

δri(t) , (7.24)

where J ∈ N is a pre-chosen parameter, and ri(t) = (ai(t), bi(t), r1,i(t), r2,i(t)). Following the same
argument as in Section 7.1.1, we obtain the following evolution equation:

d
dtri(t) = −Jξ(t)∇iR∞,J(r1(t), ..., rJ(t)), (7.25)

for i = 1, ..., J , where R∞,J(r1(t), . . . , rJ(t)) = R∞(ρt) under the ansatz, and ∇i denotes the
gradient of R∞,J(r1, ..., rJ) w.r.t. ri. More explicitly,

R∞,J(r1, . . . , rJ) = 1
2

(
1− 1

J

J∑
i=1

aiq+(r1,i, r2,i, bi)
)2

+ 1
2

(
1 + 1

J

J∑
i=1

aiq−(r1,i, r2,i, bi)
)2

. (7.26)
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Again, given ri(t), one approximates ri(t+ δt) for some small displacement δt by

ri(t+ δt) ≈ ri(t)− Jξ(t)∇iR∞,J(r1, . . . , rJ)δt. (7.27)

Details of Figure 3 of the main text. For the SGD simulation, we take d = 320, s0 = 60, N =
800, with ε = 2×10−4 and ξ(t) = t−1/4. The weights are initialized as (wi)i≤N ∼iid N(0, 0.82/d·Id),
(ai)i≤N = 1 and (bi)i≤N = 1. We take a single SGD run. We compute the risk attained by the
SGD by Monte Carlo averaging over 104 samples.

To obtain results from the PDE, we take J = 400. We initialize r1,i(0) = ‖Z1,i‖2 and r2,i(0) =
‖Z2,i‖2, where (Z1,i)i≤N ∼iid N(0, 0.82/d · Is0) and (Z2,i)i≤N ∼iid N(0, 0.82/d · Id−s0) independently,
along with ai(0) = 1, bi(0) = 1. We obtain ri(t) from t = 0 until t = 107ε, by discretizing this
interval with 105 points equally spaced on the log10 scale and sequentially computing ri(t) at each
point using Eq. (7.27). Note that the SGD result at iteration ` corresponds to ri(ε4/3`). We take
a single run of the PDE.

To produce the inset plot in Figure 3 of the main text, for the “a (mean)” axis, we compute
1
N

∑N
i=1 ai for the SGD and 1

J

∑J
i=1 ai(t) for the PDE. Similarly, for the “b (mean)” axis, we compute

1
N

∑N
i=1 bi for the SGD and 1

J

∑J
i=1 bi(t) for the PDE, and for the “r1 (mean)” axis, we compute

1
N

∑N
i=1 ‖wi,1:s0‖2 for the SGD and 1

J

∑J
i=1 r1,i(t) for the PDE.

Further numerical simulations. In Figure 7.7, we plot the evolution of the four parameters, for
the same setting as Figure 3 of the main text. Here “a (mean)”, “b (mean)” and “r1 (mean)” hold
the same meanings, and “r2 (mean)” refers to 1

N

∑N
i=1 ‖wi,(s0+1):d‖2 for the SGD and 1

J

∑J
i=1 r2,i(t)

for the PDE.
In Figure 7.8, we plot the population risk’s evolution for the same setting as Figure 3 of the

main text, apart from that ∆ = 0.6 and s0 varies.
Comments. We observe a good match between the SGD and the PDE in Figure 3 of the main
text as well as Figure 7.7, up until iteration 106. In general there is less discrepancy with larger s0,
d and N , recalling that the PDE is computed assuming infinite s0, d and N . This is evident from
Figure 7.8.

As a note, in Figure 7.8, the PDE evolves differently for different s0. This is because the ratio
s0/d is used to determine the initialization of the PDE.

7.3 Isotropic Gaussians: Predictable Failure of SGD

In this section, we consider the isotropic Gaussians example (see Section 7.1 for the setting and
notations), with the following activation function: σ∗(x;θi) = σ(〈wi,x〉), where σ(t) = −2.5 for
t ≤ 0, σ(t) = 7.5 for t ≥ 1.5, and σ(t) linearly interpolates from the knot (0,−2.5) to (0.5,−4), and
from (0.5,−4) to (1.5, 7.5). This activation is plotted in Figure 7.1. This corresponds to Section
“Predicting failure” and Figure 4 in the main text. The simulation of the PDE can be done in the
same way as in Section 7.1.1.
Rationale of the activation choice. We give an explanation for the choice of the above activation
based on our theory. We aim to find an activation σ∗(x;θi) = σ(〈wi,x〉) in which there exists a
local minimum that does not generalize well. To simplify the task, we wish for such minimum to
be attained at ρ∗ = δ0. This minimum does not generalize well, since it implies all the weights are
zero and the neuron outputs are constant, rendering the network unable to perform classification.
Theorem 6 of the main text suggests taking σ(t) such that

∇2V (0) +∇2
1,1U(0,0) � 0 . (7.28)
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Figure 7.7: The evolution of the four parameters in the anisotropic Gaussians example of Section
7.2.
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Figure 7.8: The evolution of the population risk for ∆ = 0.6, d = 320, N = 800 in the anisotropic
Gaussians example of Section 7.2.

In the isotropic Gaussians case, this becomes

σ′′(0)
{

(1−∆)2 − (1 + ∆)2 + σ(0)[(1−∆)2 + (1 + ∆)2]
}
> 0 . (7.29)

(Note that the condition∇V (0)+∇1U(0,0) = 0 in Theorem 6 of the main text is trivially satisfied.)
Another requirement is that there should still be a minimum whose risk is nearly zero. Hence we
do not wish for a dramatic change in the choice of the activation function, as compared to the one
used in Section 7.1. That is, we leave σ(0) < 0 unchanged. Hence we would want σ′′(0) < 0, which
is accomplished by our aforementioned choice.

Note that Theorem 6 of the main text also suggests that if the SGD is initialized sufficiently
close to this local minimum, the SGD trajectory should converge to it.
Details of Figure 4 of the main text. For the data generation, we set ∆ = 0.5. For the SGD
simulation, we take d = 320, N = 800, with ε = 10−5 and ξ(t) = t−1/4. We take a single SGD run
each for two different initializations: the weights are initialized as (wi)i≤N ∼iid N(0, κ2/d · Id) for
either κ = 0.1 or κ = 0.4. We compute the risk attained by the SGD by Monte Carlo averaging
over 104 samples.

To obtain results from the PDE, we take J = 400, and generate ri(0) = ‖Zi‖2, where (Zi)i≤N ∼iid
N(0, κ2/d · Id). We obtain r(t) from t = 0 until t = 107ε, by discretizing this interval with 105

points equally spaced on the log10 scale and sequentially computing r(t) at each point using Eq.
(7.8). Note that the SGD result at iteration k corresponds to r(ε4/3k). We take a single run of the
PDE.

To produce the inset plot, we compute 1
N

∑N
i=1 ‖wi‖2 for the SGD, and 1

J

∑J
i=1 ri(t) for the

PDE.
As observed from Figure 4 of the main text, the SGD trajectory with κ = 0.1 converges to a

point where ‖wi‖2 is nearly zero and the risk is very high, in stark contrast to the SGD trajectory
with κ = 0.4, as expected.
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Figure 7.9: The error rate attained by the SGD in the example of Figure 4 of the main text.

Error plot. In Figure 7.9, we plot the empirical error rate attained by the SGD in the above
example for the two initializations. Here the error rate is defined as the misclassification probability
P{sign(ŷ(x;θ)) 6= y}, and is computed with Monte Carlo averaging over 104 samples. This validates
the claim that, in this example, there exists a local minimum which the SGD can converge to, yet
has bad generalization (i.e. attains the trivial misclassification rate of 0.5), whereas there is a global
minimum which the SGD can also find and yet generalizes well.

A Concentration inequalities

Lemma A.1 (Azuma-Höeffding bound). Let (Xk)k≥0, be a martingale taking values in Rd with
respect to the filtration (Fk)k≥0, with X0 = 0. Assume that the following holds almost surely for
all k ≥ 1:

E
{
e〈λ,Xk−Xk−1〉

∣∣Fk−1
}
≤ eL2‖λ‖2/2 . (A.1)

Then we have

P
(

max
k≤n
‖Xk‖2 ≥ 2L

√
n(
√
d+ t)

)
≤ e−t

2
. (A.2)

Proof. Let Zk = Xk −Xk−1 be the martingale differences. By the subgaussian condition (A.1),
we get

E
{
e〈λ,Xn〉} ≤ E

{
E{e〈λ,Zn〉|Fn−1} e〈λ,Xn−1〉

}
(A.3)

≤ eL2‖λ‖2/2 E
{
e〈λ,Xn−1〉} ≤ enL2‖λ‖2

2/2 . (A.4)

Letting G ∼ N(0, Id) a standard Gaussian vector and ξ ≥ 0,

E
{
eξ‖Xn‖2

2/2
}

= EGE
{
e
√
ξ〈G,Xn〉} ≤ EGenL

2ξ‖G‖2
2/2 (A.5)

=
(
1− nL2ξ

)−d/2
. (A.6)
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By Markov inequality, setting ξ = 1/(2nL2), we get, for all t ≥ 0,

P
(
‖Xn‖2 ≥ 2L

√
n(
√
d+ t)

)
≤ ed/2−(

√
d+t)2 ≤ e−t2 . (A.7)

Finally, to upper bound maxk≤n ‖Xk‖2, we define the stopping time τ ≡ min{k : ‖Xk‖2 ≥
2L
√
n(
√
d + t)}, and the martingale Xk = Xk∧τ . Since {maxk≤n ‖Xn‖2 ≥ 2L

√
n(
√
d + t)} =

{‖Xn‖2 ≥ 2L
√
n(
√
d+ t)}, the claim follows by applying the previous inequality to Xn.

B On the generalization to other loss functions

The objective of this section is to show that the framework of this paper can be formally extended
to other loss functions ` : R×R→ R. All arguments here will be heuristic, and we defer a rigorous
study of this problem to future work.

First of all, we note that the population risk reads

RN (θ) = E
{
`

(
y,

1
N

N∑
i=1

σ∗(x;θi)
)}

, (B.1)

which naturally leads to the following mean field risk R : P(RD)→ R:

R(ρ) = E
{
`

(
y,

∫
σ∗(x;θ) ρ(dθ)

)}
. (B.2)

The corresponding distributional dynamics is formally identical to the one for quadratic loss, cf.
Eq. (3.1). The only change is in the definition of Ψ(θ; ρ):

∂tρt(θ) =2ξ(t)∇ ·
[
ρt(θ)∇Ψ(θ; ρt)

]
, (B.3)

Ψ(θ; ρ) =δR(ρ)
δρ(θ) = E

{
∂2`

(
y,

∫
σ∗(x; θ̄) ρ(dθ̄)

)
σ∗(x;θ)

}
, (B.4)

where ∂2` denotes the derivative of ` with respect to its second argument. It is immediate to see
that, for the quadratic loss `(y, ŷ) = (y − ŷ)2, we recover the expressions used in the rest of the
paper.
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