

Analysis of Metabolites in White Flowers of *Magnolia Denudata* Desr. and Violet Flowers of *Magnolia Liliiflora* Desr.

Chang Ha Park¹, Soo-Yun Park², Sook Young Lee³, Jae Kwang Kim^{4,*} and Sang Un Park^{1,*}

- ¹ Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-gu, Daejeon 34134, Korea; parkch804@gmail.com
- ² National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, Jeonbuk 54875, Korea; psy22@korea.kr
- ³ Regional Innovation Center for Dental Science & Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, Korea; koreanseedbank@gmail.com
- ⁴ Division of Life Sciences and Bio-Resource and Environmental Center, Incheon National University, Incheon 406-772, Korea
- * Correspondence: kjkpj@inu.ac.kr (J.K.K.); supark@cnu.ac.kr (S.U.P.); Tel.: +82-32-835-8241 (J.K.K.); +82-42-821-6730 (S.U.P.); Fax: +82-32-835-0763 (J.K.K.); +82-42-822-2631 (S.U.P.)

Received: 27 May 2018; Accepted: 21 June 2018; Published: date

Figure S1. LC-MS spectrum of phenolic compounds identified in white flowers of *Magnolia denudate* Desr. 1, 4-hydroxybenzoic acid; 2, Chlorogenic acid; 3, Caffeic acid; 4, *p*-coumaric acid; 5, Rutin; 6, Quercetin; 7, Kaempferol.

Figure S2. Scores and loading plots of principal components 1 and 2 of the PCA results obtained from polar metabolite data of white flowers of *M. denudate* and violet flowers of *M. liliiflora.* 1–44, the compounds listed in Table S1.

Figure S3. Correlation matrix of 10 phenolics from white flowers of *M. denudata* and violet flowers of *M. liliiflora*. Each square indicates the Pearson's correlation coefficient of a pair of compounds, with the correlation coefficient indicated by the intensity of the red and blue colors.

Molecules 2018, 23, x FOR PEER REVIEW

Molecules 2018, 23, x FOR PEER REVIEW

Figure S4. Metabolite peak height differences of white flowers of *Magnolia denudate* and violet flowers of *Magnolia liliiflora* based on Duncan's Multiple Range Test (p < 0.05) using GC–TOFMS.

Figure S5. Effect of ethanol extracts from white and violet flowers, respectively, on the viability of RAW 264.7 cells. Cells were treated with different concentrations (1.953125 to 1,000 μ g/mL) of extracts of white and violet flowers. Cell viability was measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Figure S6. Selected ion chromatograms of hydrophilic metabolites extracted white flowers of *Magnolia denudate* as MO/TMS derivatives separated on a 30 m × 0.25 mm i.d. fused silica capillary column coated with 0.25 μ m CP-SIL 8 CB low bleed. The numbers represent the same compounds as for Table 1.

Table S1. Metabolites identified in GC-TOFMS of	chromatograms of white flowers	of Magnolia denudate.
---	--------------------------------	-----------------------

No.1)	Compound	PT 2)	DDT3)	Selected ion for
	Compound	K1-/		quantification ⁴⁾
1	Lactic acid	4.810	0.443	147
2	Alanine	5.310	0.489	146
3	Glycolic acid	6.413	0.590	147
4	Valine	6.530	0.601	146
5	Serine	6.973	0.641	116
6	Ethanolamine	7.053	0.649	174
7	Glycerol	7.072	0.651	147
8	Leucine	7.095	0.653	158
9	Isoleucine	7.308	0.672	158
10	Proline	7.392	0.680	142
11	Nicotinic acid	7.427	0.683	180
12	Glycine	7.452	0.686	174
13	Succinic acid	7.525	0.692	147
14	Glyceric acid	7.667	0.705	147
15	Fumaric acid	7.865	0.724	245
16	Threonine	8.147	0.749	219
17	β -Alanine	8.570	0.788	174
18	Malic acid	9.050	0.833	147
19	Aspartic acid	9.327	0.858	100
20	Pyroglutamic acid	9.423	0.867	156
21	4-Aminobutyric acid	9.450	0.869	174
22	Threonic acid	9.598	0.883	147
23	Arginine	10.097	0.929	142
24	Glutamic acid	10.132	0.932	246
25	Phenylalanine	10.262	0.944	218
26	Xylose	10.347	0.952	103
27	Asparagine	10.555	0.971	116
28	Ribitol (Internal Standard)	10.870	1.000	217
IS	Vanillic acid	11.290	1.039	297
29	Glutamine	11.322	1.042	156
30	Shikimic acid	11.455	1.054	227
31	Citric acid	11.592	1.066	273
32	Quinic acid	11.842	1.089	345
33	Fructose	11.920	1.097	103
34	Galactose	12.067	1.110	147
35	Glucose	12.102	1.113	147
36	Mannose	12.245	1.126	147
37	Mannitol	12.315	1.133	319
38	Inositol	13.393	1.232	305
39	Tryptophan	14.242	1.310	202
40	Sinapic acid	14.397	1.324	338
41	Sucrose	16.352	1.504	217
42	Maltose	16.860	1.551	147
43	Trehalose	16.913	1.556	191
44	Raffinose	20.032	1.843	217

¹Numbers represent the compound index for the chromatogram peaks shown in Figure S5. ²Retention time (min). ³Relative retention time (retention time of the analyte/retention time of the IS). ⁴Specific mass ion used for quantification.