Highly Effective Ammonia Removal in a Series of Brønsted Acidic Porous Polymers: Investigation of Chemical and Structural Variations

Gokhan Barin,^a Gregory W. Peterson,^b Valentina Crocellà,^c Jun Xu,^d Kristen A. Colwell,^d Aditya Nandy,^d Jeffrey A. Reimer,^{de} Silvia Bordiga,^c Jeffrey R. Long^{*ade}

^aDepartment of Chemistry and ^dDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA

^bEdgewood Chemical Biological Center, U.S. Army Research, Development, and Engineering Command, 5183 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, USA

^cDepartment of Chemistry, NIS and INSTM Centre of Reference, University of Turin, Via Quarello 15, I-10135 Torino, Italy

^eMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA *Email: jrlong@berkeley.edu

SUPPORTING INFORMATION

Table of Contents

1.	General Methods	S2
2.	Synthesis	S3
3.	Structural Characterization of Polymers	S11
	3.1. Elemental Analysis.	S11
	3.2. FTIR Spectroscopy	S12
	3.3. Solid-State NMR Spectroscopy	S13
	3.4. Scanning Electron Microscopy	S19
	3.5. Thermogravimetric Analysis.	S20
	3.6. Surface Area and Pore Size Distributions	S21
4.	NH ₃ Adsorption	S25
5.	Breakthrough Experiments	S27
6.	In situ Infrared Spectroscopy	S28
7.	Water Isotherm for P1-SO ₃ H.	S30
8.	List of Porous Materials and Their NH ₃ Uptake Capacities	S31
9.	References	S34

1. General Methods

Starting materials and reagents were purchased from Sigma-Aldrich and used as received without further purification. Tetrakis(4-bromophenyl)methane,¹ S1,² S2,³ PAF-1,⁴ PAF-1-CH₂Cl,⁵ P1-NH₃Cl,⁶ P1-SO₃H,⁷ P2-CO₂C₉H₁₉,⁶ and P2-CO₂H⁶ were prepared following the procedures reported in the literature. All reactions were performed under a nitrogen or argon atmosphere and in dry solvents, unless otherwise stated. Analytical thin-layer chromatography (TLC) was performed on aluminum sheets, precoated with silica gel 60-F₂₅₄ (Merck 5554). Flash column chromatography was carried out using silica gel 60 (Silicycle) as the stationary phase. Deuterated solvents were purchased from Cambridge Isotope Laboratories (Andover, MA) and used without further purification. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 and Bruker AMX 400 spectrometers (400.132 MHz for ¹H and 100.623 MHz for ¹³C) at ambient temperature.

¹H NMR data are reported as follows: chemical shift (multiplicity (br s = broad singlet, s = singlet, d = doublet, dd = doublet of doublets), coupling constants, and integration). Chemical shifts are reported in ppm relative to the signals corresponding to the residual non-deuterated solvents. Electrospray Ionization (ESI) mass spectra were obtained from QB3/Chemistry Mass Spectrometry Facility at the University of California, Berkeley.

Thermal gravimetric analysis (TGA) data was collected at ramp rates of 5 °C/min under flowing nitrogen using a TA Instruments TGA Q5000. Infrared spectra were obtained on a Perkin-Elmer Spectrum 100 Optica FTIR spectrometer furnished with an attenuated total reflectance accessory. Carbon, hydrogen, nitrogen, and sulfur elemental analyses were obtained from the Microanalytical Facility at the University of California, Berkeley. Elemental analyses for chlorine, phosphorus, and oxygen were performed at Galbraith Laboratories.

Scanning electron microscopy (SEM) samples of polymers were prepared by dispersing fine powders into methanol and drop casting onto a silicon chip. To dissipate charge, the samples were sputter coated with approximately 3 nm of Au (Denton Vacuum). Polymers were imaged at 5 keV and 12 μ A by field emission SEM (JEOL FSM6430).

Solid-state ${}^{1}H{-}{}^{13}C$ cross-polarization (CP) spectra were collected on a 7.05 Tesla magnet at ${}^{13}C$ frequency of 75.5 MHz under 10 kHz magic-angle spinning (MAS) condition. A Chemagnetics 4 mm H/X probe and a Tecmag Discovery spectrometer were used. The Hartmann-Hahn condition for CP experiments was obtained on solid adamantane, which is also a secondary reference of ${}^{13}C$ chemical shift (the methylene signal of adamantane was set to 38.48 ppm relative to TMS). Two pulse phase modulation (TPPM) proton decoupling scheme was used. The TPPM angle was 15 degrees and the decoupling field strength was ~60 kHz. A contact time of 10 ms and a pulse delay of 4 s were used in CP experiments. Solid-state ${}^{1}H$ NMR spectra were also collected using the same instrument under 13.5 kHz MAS condition. The ${}^{1}H$ chemical shift was calibrated on adamantine (1.74 ppm relative to TMS). A 90-degree pulse of 3.3 µs and a pulse delay of 4 s were used in ${}^{1}H$ MAS experiments. Experimental ${}^{1}H$ MAS NMR spectra were deconvoluted to show individual peaks.

Gas adsorption isotherms were measured using a Micromeritics ASAP 2020/2420 or 3Flex instruments. Samples were transferred to a pre-weighed glass analysis tube, which was capped with a Transeal, and were evacuated on the degas ports until the outgas rate was less than 3 μ bar/min. Ultrahigh-purity grade (99.999%) nitrogen and anhydrous ammonia (99.999%) was used for gas adsorption measurements. Ammonia and water isotherms were obtained at 25 °C and 20 °C, respectively, using a water circulator. Nitrogen isotherms were obtained using a 77 K liquid-N₂ bath and used to determine the surface areas and pore volumes using the Micromeritics software, assuming a value of 16.2 Å² for the molecular cross-sectional area of N₂. Pore-size distributions were calculated using the density functional theory method with a QSDFT adsorption branch model of N₂ at 77 K adsorbed in carbon with slit/cylindrical/spherical pores, as implemented in the Quantachrome *VersaWin* software. The activation temperatures for porous polymers, except those mentioned in the following Synthesis section, were: 150 °C for PAF-1, 120 °C for PAF-1-CH₂Cl, 110 °C for P1-NH₃Cl, 120 °C for P1-SO₃H, and 110 °C for P2-CO₂H.

2. Synthesis

Scheme S1 Synthesis of compound 1a

Synthesis of 1a: A 100-mL 3-neck round bottomed flask was charged with compound S1 (2 g, 5.7 mmol), bis(pinacolato)diboron (4.4 g, 17.3 mmol), KOAc (3.4 g, 34.6 mmol), and Pd(dppf)Cl₂·CH₂Cl₂ (450 mg, 0.55 mmol) and then equipped with a reflux condenser and rubber stoppers. The solid mixture was subjected to three cycles of brief vacuum/argon (degas/backfill) with no stirring. Anhydrous 1,4-dioxane (50 mL) was guickly transferred into the flask using a syringe under argon atmosphere and the suspension was stirred for 12 h at 90 °C. After confirming the completion of reaction by TLC (EtOAc/Hexanes 5:1), the reaction mixture was cooled down to room temperature and concentrated in vacuo. The residual solid was redissolved in CHCl₃ (50 mL), washed with H₂O (50 mL), dried over MgSO₄, and suspended over activated carbon for 1 h, after which was filtered through a pad of Celite. The solvent was removed under reduced pressure and remaining solid was briefly washed with EtOAc and MeOH to deliver compound **1a** as a pale yellow powder (1.5 g, 59%). ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta =$ 8.60 (br s, 1H), 8.51 (s, 1H), 7.70 (d, J = 7.4 Hz, 1H), 7.40 70 (d, J = 7.4 Hz, 1H), 1.53 (s, 9H), 1.36 (s, 12H), 1.33 (s, 12H); ¹³C NMR (CDCl₃, 101 MHz, 298 K): $\delta = 153.07$, 144.53, 135.33, 127.68, 123.58, 84.28, 83.85, 79.61, 28.41, 24.89; HRMS (ESI) m/z calcd 468.2699 for $C_{23}H_{37}O_6NB_2Na[M+Na]^+$, found 468.2701.

Fig. S1 ¹H NMR spectrum of 1a recorded in CDCl₃.

Fig. S2 ¹³C NMR spectrum of 1a recorded in CDCl₃.

Scheme S2 Synthesis of compound 1b

Synthesis of S3: The procedure was adopted from a literature report.⁸ Compound **S2** (5 g, 15.0 mmol) and neopentyl alcohol (1.58 g, 17.9 mmol) were dissolved in CH₂Cl₂ (25 mL) and cooled to 0 °C in an ice-water bath. Then, pyridine (2.5 mL, 30.0 mmol) was added dropwise over a period of 30 min. The reaction mixture was allowed to stir at room temperature for 12 h and diluted with Et₂O. The organic layer was washed with 0.1% HCl followed by brine and then dried over MgSO₄. After removing the solvent *in vacuo*, recrystallization of the crude product in EtOH provided **S3** as a colorless crystalline solid (3.7 g, 64%). ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.24$ (d, J = 2.3 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.59 (dd, J = 8.4, 2.3 Hz, 1H), 3.77 (s, 2H), 0.98 (s, 9H); ¹³C NMR (CDCl₃, 101 MHz, 298 K): $\delta = 137.51$, 136.96, 134.64, 121.42, 119.48, 81.01, 31.80, 26.13; HRMS (ESI) *m/z* calcd 312.8175 for C₆H₃O₃Br₂S [*M*-C₅H₁₁]⁻, found 312.8176.

Synthesis of 1b: A 100-mL 3-neck round bottomed flask were charged with compound S3 (1.5 g, 3.9 mmol), bis(pinacolato)diboron (2.96 g, 11.7 mmol), KOAc (2.25 g, 22.9 mmol), and Pd(dppf)Cl₂·CH₂Cl₂ (350 mg, 0.43 mmol) and then equipped with a reflux condenser and rubber stoppers. The solid mixture was subjected to three cycles of brief vacuum/argon (degas/backfill) with no stirring. Anhydrous 1,4-dioxane (40 mL) was quickly transferred into the flask using a syringe under argon atmosphere and the suspension was stirred for 48 h at 90 °C. After confirming the completion of reaction by TLC, the reaction mixture was cooled down to room temperature and concentrated in vacuo. The residual solid was redissolved in CHCl₃ (50 mL), washed with H₂O (50 mL), dried over MgSO₄, and suspended over activated carbon for 1 h, after which was filtered through a pad of Celite. The solvent was removed under reduced pressure, followed by the addition of MeOH and the flask was placed in a -30 °C freezer to induce precipitation. The product **1b** was collected by filtration as a yellow powder (0.8 g, 43%). ¹H NMR (CDCl₃, 400 MHz, 298 K): $\delta = 8.35$ (s, 1H), 7.97 (dd, J = 7.4, 0.8 Hz, 1H), 7.57 (d, J = 7.4Hz, 1H), 3.76 (s, 2H), 1.40 (s, 12H), 1.36 (s, 12H), 0.92 (s, 9H); ¹³C NMR (CDCl₃, 101 MHz, 298 K): δ = 138.40, 138.34, 134.16, 132.57, 84.74, 84.43, 79.56, 31.70, 26.08, 24.90; HRMS (ESI) m/z calcd 503.2417 for C₂₃H₃₈O₇B₂SNa $[M+Na]^+$, found 503.2419.

Fig. S3 ¹H NMR spectrum of S3 recorded in CDCl₃.

Fig. S4 ¹³C NMR spectrum of S3 recorded in CDCl₃.

Fig. S5 ¹H NMR spectrum of 1b recorded in CDCl₃.

Fig. S6 ¹³C NMR spectrum of 1b recorded in CDCl₃.

Scheme S3 Synthesis of polymers P1-PO₃Et₂ and P1-PO₃H₂

Synthesis of P1-PO₃Et₂: A 100-mL pressure tube was charged with PAF-1-CH₂Cl (200 mg) and subsequently neat triethyl phosphite (P(OEt)₃, 20 mL). The flask was sealed and heated at 160 °C for 3 days. The resulting solid was collected by filtration and washed extensively with CH₂Cl₂, H₂O, MeOH, and THF. After drying the solid *in vacuo*, P1-PO₃Et₂ was obtained as a pale yellow powder (300 mg).

Synthesis of P1-PO₃H₂: An oven-dried 100-mL round bottomed flask charged with P1-PO₃Et₂ (300 mg) was sealed with a rubber septum, purged with argon, and then filled with 15 mL of anhydrous CH₂Cl₂. Bromotrimethylsilane (Me₃SiBr, 3 mL, 20 equiv. of phosphonate esters based on elemental analysis data) was added dropwise over 10 min. The resulting suspension was stirred at 40 °C for 24 h, after which the mixture was filtered to remove solvent and unreacted Me₃SiBr, and then washed with CH₂Cl₂. The isolated solid was transferred into a 100-mL round bottomed flask again containing 50 mL of MeOH and was stirred for 6 h at room temperature. After removing solvent by filtration, the remaining solid, 10 mL of H₂O, and 10 mL of concentrated HCl was mixed in a flask and refluxed for 12 h in order to ensure the complete hydrolysis of phosphonate esters. The solid was collected by filtration, washed extensively with CH₂Cl₂, H₂O, MeOH, and THF, and then dried under reduced pressure to obtain P1-PO₃H₂ as a yellow powder (203 mg). Prior to gas adsorption measurements, the fully activated sample of P1-PO₃H₂ was obtained by heating at 110 °C under vacuum.

Scheme S4 Synthesis of polymers P2-NHBoc and P2-NH₃Cl

Synthesis of P2-NHBoc: Tetrakis(4-bromophenyl)methane (500 mg, 0.79 mmol), **1a** (770 mg, 1.73 mmol), and chloro(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (SPhos Pd G2) (45 mg, 0.062 mmol) were charged into a 100-mL 3-neck round bottomed flask, which was equipped with a reflux condenser and rubber stoppers. The solid mixture was subjected to three cycles of brief vacuum/argon (degas/backfill) with no stirring. Anhydrous THF (25 mL) and degassed aqueous K₂CO₃ (2 M, 2.5 mL) were transferred into the flask using a syringe under argon atmosphere and the solution was then stirred for 3 days at 70 °C. The reaction became an extremely viscous gel during polymerization. The reaction mixture was cooled down to room temperature and insoluble product was isolated by filtration. Gel-like product turned into powder upon drying and was washed with THF, hot H₂O, hot EtOH, and hot CHCl₃. The product was further purified by Soxhlet extraction with THF for 24 h. The isolated solid was activated at 100 °C under vacuum to yield P2-NHBoc as a beige powder (500 mg, 91%).

Synthesis of P2-NH₃Cl: P2-NHBoc (400 mg) was placed into a 100-mL round-bottomed flask containing 30 mL of HCl (4 N in 1,4-dioxane) solution. The suspension was stirred at room temperature for 18 h. The solid was isolated by filtration and washed extensively with 1,4,-dioxane and EtOH. The resulting powder was activated under vacuum at 100 °C for 24 h, resulting in P2-NH₃Cl as a yellow/pale brown solid (300 mg).

Scheme S5 Synthesis of polymers P2-SO₃Neo and P2-SO₃H

Synthesis of P2-SO₃Neo: Tetrakis(4-bromophenyl)methane (250 mg, 0.39 mmol), **1b** (400 mg, 0.83 mmol), and chloro(2-dicyclohexylphosphino-2',6'-dimethoxy-1,1'-biphenyl)[2-(2'-amino-1,1'-biphenyl)]palladium(II) (SPhos Pd G2) (45 mg, 0.062 mmol) were charged into a 100-mL 3-neck round bottomed flask, which was equipped with a reflux condenser and rubber stoppers. The solid mixture was subjected to three cycles of brief vacuum/argon (degas/backfill) with no stirring. Anhydrous THF (25 mL) and degassed aqueous K₂CO₃ (2 M, 1.5 mL) were transferred into the flask using a syringe under argon atmosphere and the solution was then stirred for 4 days at 70 °C. The reaction became an extremely viscous gel during polymerization. The reaction mixture was cooled down to room temperature and insoluble product was isolated by filtration. Gel-like product turned into powder upon drying and was washed with THF, hot H₂O, hot EtOH, and hot CHCl₃. The product was further purified by Soxhlet extraction with THF for 24 h. The isolated solid was activated at 80 °C under vacuum to yield P2-SO₃Neo as a beige powder (290 mg, 95%).

Synthesis of P2-SO₃H: A100-mL round-bottomed flask was charged with P2-SO₃Neo (290 mg) followed by NaN₃ (730 mg) and DMSO (25 mL). The mixture was left to stir at 100 °C for 16 h, after which the suspension was filtered. The isolated solid was subjected to same conditions with fresh NaN₃/DMSO for another 16 h. After filtering, the solid was washed with copious amount of H₂O and suspended in an HCl solution (3 M, 50 mL) at room temperature for 8 h. The solvent was decanted, replaced with 6 M HCl solution (50 mL), and stirred overnight at room temperature. The polymer was filtered and washed extensively with H₂O, MeOH, and THF. Finally, it was further purified by Soxhlet extraction with THF for 24 h, which yielded P2-SO₃H as a yellow powder (230 mg). Prior to gas adsorption measurements, the fully activated sample of P2-SO₃H was obtained by heating at 80 °C under vacuum.

3. Structural Characterization of Polymers

3.1. Elemental Analysis

	PAF-1		P1-N	H ₃ Cl	P1-SO ₃ H		PAF-1-CH ₂ Cl		P1-PO ₃ Et ₂		P1-PO ₃ H ₂	
%	Calcd.	Found	Calcd. ^a	Found	Calcd. ^a	Found	Calcd. ^a	Found	Calcd. ^b	Found	Calcd. ^c	Found
С	94.90	91.68	71.61	75.98	63.01	61.68	78.46	75.77	69.26	65.09	65.79	55.37
Н	5.10	5.26	4.81	4.89	3.38	3.46	4.39	4.53	6.14	6.77	4.40	4.98
N	0.00	0.59	6.68	8.33	0.00	0.39	0.00	0.35	0.00	0.25	0.00	0.26
s					13.46	11.99						
Cl			16.90	*			17.15	16.15	0.00	0.59		
Р									9.65	8.78	11.69	9.86
0					20.15	*			14.95	*	18.12	*

Table S1 Elemental analysis data of P1 polymers and their intermediates

*Not measured. ^{*a*} Assuming the installation of one functional group per biphenyl linker. ^{*b*} Assuming the complete conversion of -CH₂Cl to -CH₂PO₃Et₂ based on the experimentally determined chlorine content of PAF-1-CH₂Cl. ^{*c*} Assuming the complete hydrolysis of phosphonate esters of P1-PO₃Et₂ based on its calculated values.

	P2-NHBoc		P2-NH ₃ Cl		P2-SO ₃ Neo		P2-SO ₃ H		P2-CO ₂ C ₉ H ₁₉		P2-CO ₂ H	
%	Calcd. ^a	Found	Calcd. ^b	Found	Calcd. ^a	Found	Calcd. ^b	Found	Calcd. ^a	Found	Calcd. ^b	Found
С	80.78	75.08	77.76	79.70	73.41	69.40	70.69	61.92	80.45	76.58	76.39	66.07
Н	6.06	6.18	4.94	5.33	5.77	5.89	3.85	4.94	8.42	7.91	3.75	4.17
N	4.01	3.99	4.90	4.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S					8.34	8.00	10.20	8.95				
Cl			12.40	*								
0	9.15	*			12.48	*	15.26	*	11.13	11.75	19.86	*

Table S2 Elemental analysis data of P2 polymers

*Not measured. ^{*a*} Calculated for ideal polymerization. ^{*b*} Calculated for the complete removal of protection groups of corresponding ideal polymers.

3.2. FTIR Spectroscopy

Fig. S7 FTIR-ATR spectra of PAF-1-CH₂Cl, P1-PO₃Et₂, and P1-PO₃H₂.

Fig. S8 FTIR-ATR spectra of P2-NHBoc and P2-NH₃Cl.

Fig. S9 FTIR-ATR spectra of P2-SO₃Neo and P2-SO₃H.

3.3. Solid-State NMR Spectroscopy

Fig. S10 Solid-state MAS ¹H NMR spectrum of P1-NH₃Cl. The chemical shift assignment for aromatic protons is in agreement with the previously reported data in the literature.⁴

Fig. S11 Solid-state CP/MAS ¹³C NMR spectrum of P1-NH₃Cl. The chemical shift assignments are in agreement with the previously reported data in the literature.⁹⁻¹¹

Fig. S12 Solid-state MAS ¹H NMR spectra of PAF-1-CH₂Cl (green), P1-PO₃Et₂ (red) and P1-PO₃H₂ (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{4,12} Dotted lines (red) represent deconvoluted peaks for P1-PO₃Et₂, in which the chemical shifts at 0.8 and 3.4 ppm were assigned to H_3 and H_1 - H_2 , respectively. The peak associated with H_1 in P1-PO₃H₂ (blue) is suppressed by the H_{O-H} peak.

Fig. S13 Solid-state CP/MAS ¹³C NMR spectra of PAF-1-CH₂Cl (green), P1-PO₃Et₂ (red) and P1-PO₃H₂ (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{9-10,13} The vertical dashed lines represent the disappearance of related chemical shifts upon functionalization of the polymer.

Fig. S14 Solid-state MAS ¹H NMR spectra of P2-NHBoc (red) and P2-NH₃Cl (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{2,4} Dotted lines represent deconvoluted peaks. The peak at 0.8 ppm in P2-NHBoc (red) corresponds to the t-butyl protons, which disappears upon its conversion to P2-NH₃Cl. The chemical shift at 3.0 ppm in the deconvoluted spectrum P2-NH₃Cl (blue) is assigned to N–H protons.

Fig. S15 Solid-state CP/MAS ¹³C NMR spectra of P2-NHBoc (red) and P2-NH₃Cl (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{2,10-11} The vertical dashed lines represent the changes in the spectrum upon removal of Boc groups.

Fig. S16 Solid-state MAS ¹H NMR spectra of P2-SO₃Neo (red) and P2-SO₃H (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{4,8} Dotted lines represent deconvoluted peaks. The chemical shift corresponding to H_2 protons at 0.2 ppm in P2-SO₃Neo disappears upon hydrolysis to P2-SO₃H.

Fig. S17 Solid-state CP/MAS ¹³C NMR spectra of P2-SO₃Neo (red) and P2-SO₃H (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{8,11} The vertical dashed lines indicate the removal of carbon atoms associated with the neopentyl group.

Fig. S18 Solid-state MAS ¹H NMR spectra of P2-CO₂C₉H₁₉ (red) and P2-CO₂H (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.^{4,14} Dotted lines represent deconvoluted peaks, which revealed the presence of aromatic (7.2 ppm) and aliphatic (0.5 ppm) protons in the case of P2-CO₂C₉H₁₉ as well as the disappearance of aliphatic protons in P2-CO₂H.

Fig. S19 Solid-state CP/MAS ¹³C NMR spectra of P2-CO₂C₉H₁₉ (red) and P2-CO₂H (blue). The chemical shift assignments are in agreement with the previously reported data in the literature.¹⁴⁻¹⁵ The vertical dashed lines indicate the complete removal of aliphatic side chains upon hydrolysis.

3.4. Scanning Electron Microscopy

Fig. S20 SEM images of P1-NH₃Cl, P1-SO₃H, and P1-PO₃H₂.

Fig. S21 SEM images of P2-NH₃Cl, P2-SO₃H, and P2-CO₂H.

3.5. Thermogravimetric Analysis

Fig. S22 Thermogravimetric analysis of P1-NH₃Cl, P1-SO₃H, and P1-PO₃H₂.

Fig. S23 Thermogravimetric analysis of P2-NH₃Cl, P2-SO₃H, and P2-CO₂H.

3.6. Surface Area and Pore Size Distributions

Fig. S24 Nitrogen adsorption isotherms of PAF-1 and PAF-1-CH₂Cl used in the synthesis of P1 polymers. Closed and open symbols represent adsorption and desorption branches, respectively.

Fig. S25 Pore size distributions of PAF-1 and PAF-1-CH₂Cl.

Fig. S26 Nitrogen adsorption isotherms of P2-NHBoc (before deprotection) and P2-NH₃Cl (after deprotection). Closed and open symbols represent adsorption and desorption branches, respectively.

Fig. S27 Nitrogen adsorption isotherms of P2-SO₃Neo (before deprotection) and P2-SO₃H (after deprotection). Closed and open symbols represent adsorption and desorption branches, respectively.

Fig. S28 Nitrogen adsorption isotherms of P1-NH₃Cl, P1-SO₃H, and P1-PO₃H₂. Closed and open symbols represent adsorption and desorption branches, respectively.

Fig. S29 Nitrogen adsorption isotherms of P2-NH₃Cl, P2-SO₃H, and P2-CO₂H. Closed and open symbols represent adsorption and desorption branches, respectively.

Fig. S30 Pore size distributions of P1-NH₃Cl and P2-NH₃Cl.

Fig. S31 Pore size distributions of P1-SO₃H and P2-SO₃H.

Fig. S32 Pore size distributions of P1-PO₃H₂ and P2-CO₂H.

4. NH₃ Adsorption

Fig. S33 NH₃ isotherms of P1 polymers plotted with respect to the density of acidic sites. The intersection of dashed gray lines demonstrates pressure points where one ammonia per acid is achieved.

Fig. S34 NH₃ isotherms of P2 polymers plotted with respect to the density of acidic sites. The intersection of dashed gray lines demonstrates pressure points where one ammonia per acid is achieved.

Fig. S35 Cycling experiments were performed on $P2-CO_2H$ and NH_3 uptake capacity at 1 mbar was measured in each cycle. The sample was reactivated at 130 °C for 12 h between each cycles.

5. Breakthrough Experiments

Breakthrough testing was conducted on porous polymers using a microbreakthrough setup (Fig. S36) that has been described previously.¹⁶⁻¹⁸ Briefly, neat ammonia was injected into a steel canister, which was then pressurized to approximately 15 psig. A stream from this ballast was delivered via mass flow controller and mixed with humidity-controlled stream at a rate necessary to achieve 2000 mg/m³. The mixed stream was delivered at a total flow rate of 20 mL/min to a glass-fritted tube submerged in a temperature-controlled bath at 20 °C. Within the 4 mm ID tube, polymers were packed to a bed depth of approximately 4 mm, resulting in a residence time of approximately 0.15 s. Breakthrough was measured on the effluent side of the bed using HP5890 Series II gas chromatographs equipped with a photoionization detector. The effluent curve was integrated to calculate the loading of ammonia.

Fig. S36 Microbreakthrough system.

6. In Situ Infrared Spectroscopy

FTIR spectra were collected at 2 cm⁻¹ resolution on a Bruker Vertex 70 spectrophotometer, equipped with a MCT cryodetector, at "beam temperature"—i.e., the temperature reached by samples under the IR beam. The samples were examined in the form of self-supporting pellets mechanically protected with a pure gold frame (P1-SO₃H and P1-PO₃H₂) or in the form of thin layer depositions on Si wafers, starting from aqueous suspensions (PAF-1 and P2-CO₂H). Before NH₃ adsorption, all samples were activated in controlled atmosphere, at the corresponding activation temperature, using a home-made quartz IR cell equipped with KBr windows and characterized by a small optical path (2 mm). The cell was connected to a conventional high-vacuum glass line, equipped with mechanical and turbo molecular pumps (capable of a residual pressure $p < 10^{-4}$ mbar), which allows performing *in situ* adsorption/desorption experiments of molecular probes.

Fig. S37 Infrared spectra of PAF-1 collected at 298 K after its thermal activation under vacuum (red line) and equilibration with ammonia at an equilibrium pressure of 3 mbar (blue line).

Fig. S38 Infrared spectra of P1-SO₃H collected at 298 K after its thermal activation under vacuum (red line), equilibration with ammonia at an equilibrium pressure of 3 mbar (blue line), and evacuation under vacuum (green line).

Fig. S39 Infrared spectra of P1-PO₃H₂ collected at 298 K after its thermal activation under vacuum (red line), equilibration with ammonia at an equilibrium pressure of 3 mbar (blue line), and evacuation under vacuum (green line).

Fig. S40 Infrared spectra of P2-CO₂H collected at 298 K after its thermal activation under vacuum (red line), equilibration with ammonia at an equilibrium pressure of 3 mbar (blue line), and evacuation under vacuum (green line).

7. Water Isotherm for P1-SO₃H

Fig. S41 Water adsorption isotherm of P1-SO₃H at 20 °C ($P_0 = 23.393$ mbar). Closed and open symbols represent adsorption and desorption branches, respectively.

8. List of Porous Materials and Their NH₃ Uptake Capacities

	Pressure or	Temperature	Capacit	y (mmol/g)					
	concentration	(K)	Dry	Humid	Neierence				
Metal-Organic Frameworks									
MOF-5	9900 ppm	298	0.35	-	19				
IRMOF-3	9900 ppm	298	6.18	-	19				
MOF-177	9900 ppm	298	2.47	-	19				
IRMOF-62	9900 ppm	298	1.35	-	19				
MOF-199/HKUST-1	9900 ppm	298	5.12	-	19				
	1440 ppm	293	6.6	8.9	16				
	1000 ppm	298	6.76	10.12	20				
Zn-MOF-74	9900 ppm	298	5.47	-	19				
	1440 ppm	293	3.7	2.8	17				
Mg-MOF-74	1440 ppm	293	7.6	1.7	17				
Co-MOF-74	1440 ppm	293	6.7	4.3	17				
Ni-MOF-74	1440 ppm	293	2.3	1.9	17				
Cu-MOF-74	2880 ppm	293	3.4	7.6	21				
Fe-MIL-100	1000 ppm	298	4.34	2.34	22				
DUT-6/MOF-205	1 mbar	298	0.8	-	23				
DUT-6-(OH) ₂	1 mbar	298	4.7	-	23				
UiO-66-NH ₂	2880 ppm	293	3.3	2.9	24				
	1 mbar	298	1.26	-	6				
	1440 ppm	293	3.56	3.01	25				
	1440 ppm	293	4.04	3.43	26				
UiO-66-NH ₃ Cl	1 mbar	298	2.97	-	6				
Fe-MIL-101-SO ₃ H	1 mbar	298	3.87		6				
DMOF	1440 ppm	293	0.27	5.56	26				
DMOF-NH ₂	1440 ppm	293	1.23	1.29	26				
ZnMOF	1440 ppm	293	0.25	2.59	26				
CuMOF	1440 ppm	293	0.2	0.144	26				
Cu-BTB	1440 ppm	293	2.19	5.95	26				

Table S3 Low-pressure NH₃ uptake capacities of metal-organic frameworks and porous polymers

	Pressure or	Temperature	Capacity	y (mmol/g)	Defenseres
	concentration	(K)	Dry	Humid	Kelerence
UiO-66	2880 ppm	293	2.0	-	27
	1440 ppm	293	1.79	2.75	25
ZnBTTB	1440 ppm	293	4.59	20.26	25
DMOF-A	1440 ppm	293	0.48	1.18	25
DMOF-TM2	1440 ppm	293	0.15	4.57	25
UiO-66-NO ₂	1440 ppm	293	1.98	1.60	25
UiO-66-OH	2880 ppm	293	5.69	2.77	25
UiO-66-(OH) ₂	2880 ppm	293	2.29	2.16	25
UiO-66-SO ₃ H	2880 ppm	293	2.24	1.45	25
UiO-66-(COOH) ₂	2880 ppm	293	2.83	1.83	25
UiO-66-ox	2880 ppm	293	2.5	-	27
13X Zeolite	1440 ppm	293	2.86	0.62	17
	3 mbar	298	4.94	-	28
	Р	orous Polymers			
NU-POP-1	1440 ppm	293	5.56	6.17	29
Catechol polymer	1440 ppm	293	0.70	1.31	30
Zn-catecholate polymer	1440 ppm	293	1.36	3.32	30
Cu-catecholate polymer	1440 ppm	293	2.1	4.32	30
Amberlyst 15	1 mbar	298	4.7	-	28
P1-NH ₃ Cl (BPP-2)	2880 ppm	293	0.7	2.0	This work
P1-SO ₃ H (PPN-6-SO ₃ H)	2880 ppm	293	3.9	8.1	This work
P1-PO ₃ H ₂	2880 ppm	293	5.2	7.2	This work
P2-NH ₃ Cl	2880 ppm	293	1.0	1.5	This work
P2-SO ₃ H	2880 ppm	293	4.0	4.3	This work
P2-CO ₂ H (BPP-7)	2880 ppm	293	6.7	7.4	This work

Table S3 Continued

	D	Temperature	Capacity	(mmol/g)	
	Pressure	(K)	Dry	Humid	Reference
COF-10	1 bar	298	15	-	31
13X zeolite	1 bar	298	9	-	31
Amberlyst 15	1 bar	298	11	-	31
MCM-41	1 bar	298	7.9	-	31
DUT-6/MOF-205	1 bar	298	12	-	23
DUT-6-(OH) ₂	1 bar	298	16.4	-	23
UiO-66-NH ₂	1 bar	298	10.6	-	6
UiO-66-NH ₃ Cl	1 bar	298	12.1	-	6
Fe-MIL-101-SO ₃ H	1 bar	298	17.8	-	6
Prussian blue	1 bar	298	12.5	-	32^a
Co[Co(CN) ₆] _{0.60}	1 bar	298	21.9	-	32^a
$Cu[Fe(CN)_6]_{0.50}$	1 bar	298	20.2	-	32^a
Mn ₂ Cl ₂ (BTDD)	1 bar	298	15.47	-	33 ^{<i>a</i>}
Co ₂ Cl ₂ (BTDD)	1 bar	298	12.00	-	33 ^{<i>a</i>}
Ni ₂ Cl ₂ (BTDD)	1 bar	298	12.02	-	33 ^{<i>a</i>}
P1-NH ₃ Cl (BPP-2)	1 bar	298	11.2	-	6
P1-SO ₃ H (PPN-6-SO ₃ H)	1 bar	298	12.1	-	6
P1-PO ₃ H ₂	1 bar	298	18.7	-	This work
P2-NH ₃ Cl	1 bar	298	16.3	-	This work
P2-SO ₃ H	1 bar	298	13.1	-	This work
P2-CO ₂ H (BPP-7)	1 bar	298	16.1	-	6

Table S4 NH₃ uptake capacities of metal-organic frameworks and porous polymers at 1 bar

^{*a*} These reports have recently appeared in the literature during the preparation of this manuscript.

9. References

- 1 W. G. Lu, D. Q. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S. Brase, J. Guenther, J. Blumel, R. Krishna, Z. Li and H. C. Zhou, *Chem. Mater.*, 2010, **22**, 5964.
- 2 A. M. Fracaroli, H. Furukawa, M. Suzuki, M. Dodd, S. Okajima, F. Gandara, J. A. Reimer and O. M. Yaghi, *J. Am. Chem. Soc.*, 2014, **136**, 8863.
- 3 T. Nakamura, K. Yonesu, Y. Mizuno, C. Suzuki, Y. Sakata, Y. Takuwa, F. Nara and S. Satoh, *Bioorg. Med. Chem.*, 2007, **15**, 3548.
- 4 T. Ben, H. Ren, S. Q. Ma, D. P. Cao, J. H. Lan, X. F. Jing, W. C. Wang, J. Xu, F. Deng, J. M. Simmons, S. L. Qiu and G. S. Zhu, *Angew. Chem. Int. Ed.*, 2009, **48**, 9457.
- 5 W. G. Lu, J. P. Sculley, D. Q. Yuan, R. Krishna, Z. W. Wei and H. C. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 7480.
- 6 J. F. Van Humbeck, T. M. McDonald, X. F. Jing, B. M. Wiers, G. S. Zhu and J. R. Long, J. Am. Chem. Soc., 2014, 136, 2432.
- 7 W. G. Lu, D. Q. Yuan, J. L. Sculley, D. Zhao, R. Krishna and H. C. Zhou, J. Am. Chem. Soc., 2011, 133, 18126.
- 8 W. Qu, X. Q. Zhu, J. H. Chen, L. Niu, D. H. Liang, X. H. Fan, Z. H. Shen and Q. F. Zhou, *Macromolecules*, 2014, **47**, 2727.
- 9 O. Plietzsch, C. I. Schilling, M. Tolev, M. Nieger, C. Richert, T. Muller and S. Brase, *Org. Biomol. Chem.*, 2009, 7, 4734.
- 10 E. Stockel, X. F. Wu, A. Trewin, C. D. Wood, R. Clowes, N. L. Campbell, J. T. A. Jones, Y. Z. Khimyak, D. J. Adams and A. I. Cooper, *Chem. Commun.*, 2009, 212.
- 11 R. Dawson, A. Laybourn, R. Clowes, Y. Z. Khimyak, D. J. Adams and A. I. Cooper, *Macromolecules*, 2009, **42**, 8809.
- 12 Y. Yu, S. L. Jiang and F. Sun, Ind. Eng. Chem. Res., 2014, 53, 16135.
- 13 M. Porz, D. Maker, K. Brodner and U. H. F. Bunz, Macromol. Rapid Commun., 2013, 34, 873.
- 14 C. Behloul, D. Guijarro and M. Yus, Synthesis, 2006, 309.
- 15 H. P. Ma, H. Ren, X. Q. Zou, S. Meng, F. X. Sun and G. S. Zhu, Polym. Chem., 2014, 5, 144.
- 16 G. W. Peterson, G. W. Wagner, A. Balboa, J. Mahle, T. Sewell and C. J. Karwacki, J. Phys. Chem. C, 2009, 113, 13906.
- 17 T. G. Glover, G. W. Peterson, B. J. Schindler, D. Britt and O. Yaghi, Chem. Eng. Sci., 2011, 66, 163.
- 18 J. B. DeCoste and G. W. Peterson, J. Vis. Exp., 2013, e51175.
- 19 D. Britt, D. Tranchemontagne and O. M. Yaghi, Proc. Natl. Acad. Sci. U.S.A., 2008, 105, 11623.

- 20 C. Petit, B. Mendoza and T. J. Bandosz, Langmuir, 2010, 26, 15302.
- 21 M. J. Katz, A. J. Howarth, P. Z. Moghadam, J. B. DeCoste, R. Q. Snurr, J. T. Hupp and O. K. Farha, *Dalton Trans.*, 2016, 45, 4150.
- 22 C. Petit and T. J. Bandosz, Adv. Funct. Mater., 2011, 21, 2108.
- 23 I. Spanopoulos, P. Xydias, C. D. Malliakas and P. N. Trikalitis, Inorg. Chem., 2013, 52, 855.
- 24 G. W. Peterson, J. B. DeCoste, F. Fatollahi-Fard and D. K. Britt, Ind. Eng. Chem. Res., 2014, 53, 701.
- 25 H. Jasuja, G. W. Peterson, J. B. Decoste, M. A. Browe and K. S. Walton, *Chem. Eng. Sci.*, 2015, **124**, 118.
- 26 B. Mu, PhD thesis, Georgia Institute of Technology, 2011.
- 27 J. B. DeCoste, T. J. Demasky, M. J. Katz, O. K. Farha and J. T. Hupp, New J. Chem., 2015, 39, 2396.
- 28 J. Helminen, J. Helenius, E. Paatero and I. Turunen, J. Chem. Eng. Data, 2001, 46, 391.
- 29 G. W. Peterson, O. K. Farha, B. Schindler, P. Jones, J. Mahle and J. T. Hupp, J. Porous Mater., 2012, 19, 261.
- 30 M. H. Weston, G. W. Peterson, M. A. Browe, P. Jones, O. K. Farha, J. T. Hupp and S. T. Nguyen, *Chem. Commun.*, 2013, **49**, 2995.
- 31 C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and O. M. Yaghi, *Nat. Chem.*, 2010, 2, 235.
- 32 A. Takahashi, H. Tanaka, D. Parajuli, T. Nakamura, K. Minami, Y. Sugiyama, Y. Hakuta, S. Ohkoshi and T. Kawamoto, *J. Am. Chem. Soc.*, 2016, **138**, 6376.
- 33 A. J. Rieth, Y. Tulchinsky and M. Dincă, J. Am. Chem. Soc., 2016, 138, 9401.