Noble Metal-Modified Faceted Anatase Titania Photocatalysts: Octahedron versus Decahedron

Zhishun Wei,^{a,b} Marcin Janczarek,^{b,c} Maya Endo,^b Kunlei Wang,^b Armandas Balčytis,^d Akio Nitta,^b

Maria G. Méndez-Medrano,^e Christophe Colbeau-Justin,^e Saulius Juodkazis,^d Bunsho Ohtani,^b

Ewa Kowalska^{b,*}

^a Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China

^b Institute for Catalysis, Hokkaido University, N21, W8, 001-0021 Sapporo, Japan

^c Department of Chemical Technology, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland

^d Center for Micro-Photonics, Swinburne University of Technology, John St., Hawthorn 3122 Vic, Australia

^e Laboratory of Physical Chemistry, UMR 8000, University of Paris-Saclay, 91405 Orsay, France

* Corresponding author, Tel.: 81-11-706-9130; fax: 81-11-706-9133.

E-mail address: kowalska@cat.hokudai.ac.jp

Figures and Tables

Figure S1. DRS spectra of bare and modified OAP (a) and DAP (b) samples taken with BaSO₄ as reference.

Figure S2. DRS spectra of facetted titania (OAP and DAP) modified with (a) gold, (b) silver and (c) copper taken with bare facetted titania as reference.

Figure S3. HR-TEM images of OAP for lower (a) and higher (b) resolution modes (0.35-nm lattice distance between fringes and 68.3° angle between {001} and {101} facets correspond to single anatase crystals).

Figure S4. STEM images of Au/DAP (All scale bars correspond to 20 nm).

Figure S5. Photocatalytic activity for methanol dehydrogenation on bare and metal-modified OAP (a) and DAP (b).

Figure S6. Photocatalytic activity for decomposition of acetic acid on bare and metal-modified OAP (a) and DAP (b).

Figure S7. Photocatalytic activity for oxidation of 2-propanol on bare and metal-modified OAP (a) and DAP (b).

Figure S8. Comparison of photocatalytic activity for methanol dehydrogenation on bare, Cu/OAP, Cu/DAP and physical mixtures of copper oxides (Cu₂O and CuO) and titania (Cu₂O-OAP, CuO-OAP, Cu₂O-DAP and CuO-DAP) under UV/vis irradiation.

Figure S9. Comparison of photocatalytic activity for oxidation of 2-propanol on bare, Cu/OAP, Cu/DAP and physical mixtures of copper oxides (Cu₂O and CuO) and titania (Cu₂O-OAP, CuO-OAP, Cu₂O-DAP and CuO-DAP) under vis irradiation.