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Appendix A. Philosophical Foundation for a Bayesian Synthesis 
The purpose of this appendix is to provide a foundation for our version of Bayesianism, 

which, in turn, both depends on distinguishing between four questions and subsequently providing 

accounts for each of them. We will begin with these four questions as they provide a niche for 

understanding the current debate among paradigms in the foundations of scientific inference. 

Scientific Inference and Four Questions 

Philosophy of science is, among other things, a careful reflection on the scientific methodology 

that informs both discovering and justifying theories. The tenability of scientific theories turns 

crucially on making inferences based on data, well-supported theories, and auxiliaries. A 

comprehensive understanding of scientific theories thus requires an understanding of scientific 

inference, broadly construed. However, several epistemological issues need to be distinguished in 

order to appreciate the proper relationship between the tenability of scientific theories and 

inference. We will discuss the significance of these issues/questions by borrowing an insight from 

Richard Royall (Royall 1997; Royall 2004). However, as it will become clearer, our work, in turn, 

provides a unified Bayesian response to four question including Royall. 

Consider two hypotheses: H, representing that a patient with partially resected glioblastoma 

multiforme experiences tumor progression after radio-chemotherapy, and ~H, its denial. Assume 

that an MRI scan, which is administered as a follow-up test 3 months after therapy, comes out 

positive for tumor progression. Based on this simple scenario, one could pose four types of 

question that underline the epistemological issues at stake: 

(i) Given the datum, what should we believe about H and to what degree?  

(ii) Does the datum provide strong evidence for H against its alternative ~H? 

(iii) What does the datum tell us about the predictive accuracy of the hypothesis? 

(iv) Given the datum, what should we do? 

 

We call the first question the belief or confirmation question, the second the evidence question, 

the third the prediction question, the fourth one the decision question. These four questions are 

pre-theoretical and statistical paradigm-neutral; yet they require some statistical/probabilistic tools 

for their articulation.  

Confirmation and Evidence 

We have developed two distinct accounts to answer the first two types of questions. The first is an 

account of belief/confirmation, the second of evidence. Many Bayesians interpret confirmation 

relations in various ways. For us, an account of confirmation explicates a relation, C(D,H,B) 

among data D, hypothesis H, and the agent’s background knowledge B.  For Bayesians, degrees 

of belief need to be fine-grained. A satisfactory Bayesian account of confirmation, according to 

us, should be able to capture this notion of degree of belief. In formal terms: D confirms H if and 

only if Pr(H|D) > Pr(H).  
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 The posterior/prior probability of H could vary between 0 and 1. Confirmation becomes 

strong or weak depending on how great the difference is between the posterior probability, 

Pr(H|D), and the prior probability of the hypothesis, Pr(H). Pr(H|D) represents an agent’s degree 

of belief in the hypothesis after the data are accumulated. Pr(H) stands for an agent’s degree of 

belief in the hypothesis before the data for the hypothesis have been acquired. The likelihood 

function, Pr(D|H), provides an answer to the question “how likely are the data given the 

hypothesis”? Pr(D) is the marginal probability of the data averaged over the hypothesis being true 

or false. The relationships between these terms, Pr(H|D), Pr(H), and Pr(D|H), and Pr(D) are 

succinctly captured in Bayes’ theorem: Pr(H|D) = [Pr(H) × Pr(D|H)]/Pr(D) > 0.  

 While this account of confirmation is concerned with belief in a single hypothesis, our 

account of evidence compares the merits of two simple statistical hypotheses, H1 and H2 (or ~H1) 

relative to the data D, auxiliaries A, and background information B. However, because evidence 

is not a belief relation, but a likelihood ratio, it need not satisfy the probability calculus. Bayesians 

use the Bayes factor (BF) to make this comparison, while others use the likelihood ratio (LR) or 

other functions designed to measure evidence. BF = [Pr(D|H1,A1&B)]/ [Pr(D|H2,A2&B)] is called 

the Bayes factor in favor of H1, given A1 and B. For hypothesis under which there are unknown 

parameters θ, the densities1 Pr(D|H,A&B) are obtained by integrating over the parameter space, so 

that Pr(D|H,A&B) = ∫Pr(D|θ,H,A&B)π(θ|H,A&B)dθ (Kass & Raftery 1995).  For simple statistical 

hypotheses with no free parameters, the Bayes factor and the likelihood ratio are identical, and 

capture the bare essentials of an account of evidence without any appeal to prior probability. The 

data D constitute E (evidence) for H1&A1& B against H2&A2&B if and only if their likelihood 

ratio is greater than one. An immediate corollary of the BF(LR) equation is that there is equal 

evidential support for both hypotheses only when BF(LR)=1. Note that in this equation if 1< 

BF(LR) < 8, then D is often said to provide weak evidence for H1 against H2, while when BF(LR) 

> 8, D provides strong evidence.  This cut-off point is otherwise determined contextually and may 

vary depending on the nature of the problem. As is well-known, some data may provide very strong 

evidence for a hypothesis over its negation without confirming it strongly enough to make it more 

probable than its prior probability. It is also possible that confirmation can be very strong, but the 

evidence is weak. 

We call our account a “robust Bayesian” account. We are subjective Bayesians insofar as, 

like most Bayesians, we allow and endorse an agent’s subjective degree of belief to capture her 

prior probability, which thus influences the entire posterior probability calculation with regard to 

the confirmation question. At the same time, the evidential relationship between two competing 

hypotheses, data, and background assumption is objective since the evidential relationship holds 

true independent of an agent’s subjective probabilities for competing hypotheses. According to 

our account, the data provide evidence for a hypothesis over its alternative independent of what 

the agent knows or believes. In this sense, we are subjective Bayesians regarding the 

belief/confirmation question, but objective Bayesians regarding the evidence question. This is one 

reason why our Bayesianism is unique. 

                                                           
1 These probabilities of the data are also known as marginal or integrated likelihoods; some authors also denote them 

as “evidence” (e.g., MacKay 2004; Bailer-Jones 2017), which must not be confused with our account of evidence 

that always implies a comparison between two competing simple statistical hypotheses. 
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Generalized Account and Prediction 

Having addressed the first two questions relating to scientific inference, we will address 

the third question, i.e., what does the datum tell us about the predictive accuracy of the hypothesis? 

We respond by considering hypotheses with adjustable parameters.2 In Bayes’ theorem, the 

marginal probability, Pr(D), is also called the predictive probability; it uses data to find the best 

function to predict a future data point. If one is interested in the predictive accuracy of a hypothesis, 

then Bayesians suggest that one should use the predictive distribution. In the maximum likelihood 

estimation (MLE) approach, in contrast, one uses data to find the best value for the parameter and 

predicts a future data by estimating the parameter. If, however, an investigator is interested in 

maximizing the predictive accuracy of a model, then she will be better off using the posterior 

predictive distribution instead of MLE approach crucial to some non-Bayesian approaches (e.g., 

Forster & Sober 2004) as the former is able to provide a better prediction. 

 

A Decision-Theoretic Account and Acceptance 

Finally, we address the fourth question posed: given the datum, what should we do? We accept 

hypotheses because of their ability to make true predictions or explain some phenomenon. Two 

questions arise in connection with acceptance of a hypothesis: i) what is acceptance of a hypothesis 

and ii) if we sometimes accept a hypothesis, then what justifies this acceptance? To answer these 

questions, we provide a Bayesian theory of acceptance. Building on Bas van Fraassen’s theory 

(van Fraassen 1980), we defend a double aspect theory of acceptance: a) the belief aspect that 

states my degrees of belief in a hypothesis and b) the pragmatic aspect that states my non-epistemic 

reasons for pursuing a hypothesis, such as thinking it is important that a patient takes self-

responsibility when fighting his or her cancer. In our account, we also have a justification for this 

double-aspect account of acceptance. A) Like Bayesians, in our view, an agent’s degrees of belief 

must obey the probability calculus and any change in her degrees of belief must be done in 

accordance with the rule of conditionalization. B) As Bayesians, we justify the agent’s pragmatic 

reasons for pursuing a hypothesis by invoking the principle of maximizing expected utility 

(hereafter, MEU) calculated on the basis of the probability of that action multiplied by its utility. 

According to MEU, in a given decision situation, the decision maker should choose the alternative 

with maximal expected utility. As Bayesians, we contend that in a decision situation one ought to 

accept the hypothesis which has a higher expected utility than any other. Sometimes, it may happen 

that we accept a hypothesis that has a lower probability than the other hypotheses in a domain, 

because it has a significantly higher utility. As a result, based on our expected utility calculation, 

we end up getting a higher expected utility if we accept the hypothesis. In contrast, we may 

                                                           
2 These are also referred to as “models”. By a “model” we mean a mathematical entity that specifies a probability 

distribution over a range of data which might be collected.  In principle, models need to be distinguished from 

hypotheses which, unlike models, are statements that do not necessarily contain a quantitative assertion about how 

probable data are under them, although both terms are sometimes used interchangably if the hypothesis can be 

formulated as a mathematical relation with adjustable parameters. As a didactic example, an economic model might 

say that the price of apples is linearly related (with specified intercept, slope and error variance) to the supply of 

apples, while an economic hypothesis might only state that the price of apples decreases with their supply.  
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embrace a hypothesis that has a lower utility, but which has an appreciably higher probability. In 

the end, we embrace it, because we obtain a higher expected utility if we embrace it. We are like 

subjective Bayesians (engaged in decision theory) in the matter of accepting a hypothesis or not, 

as the pragmatic dimension of hypothesis acceptance enters into our characterization of subjective 

Bayesianism. 

 

 

Unique Features of Our Research Program 

There are two distinctive features of this project. First, it is an exercise in “Hybrid Bayesianism.” 

This Bayesian framework is “hybrid” because it contains both subjective and objective elements 

of scientific theorizing. It is different from subjective Bayesianism because it has a part called 

“evidence” which is objective. It differs from objective Bayesianism because it contains the 

significance of belief or confirmation, which is subjective. Currently we are the only hybrid 

Bayesians around. So, there might be a natural interest among philosophers, statisticians, and 

methodologists in our novel stance. Second, our research critically questioning the stance of 

Evidence Based Medicine on ketogenic therapy, or what is called Alternative and Complementary 

Medicine in general, has been partly motivated by the debate between Karl Popper and Thomas 

Kuhn on the correct scientific methodology. They hold seemingly opposing accounts of science. 

Popper emphasizes the objective view of testing in terms of bold conjectures and their subsequent 

refutations, whereas Kuhn offers a subjective view based on a paradigm-centric hypothesis 

appraisal in which one paradigm is replaced by another dramatized by Kuhn himself as a “Duck-

Rabbit” transformation. According to Kuhn, when an old paradigm is replaced by a new paradigm, 

what looked like a duck before presently appears to be a rabbit from the perspective of this new 

paradigm. We feel the need to appreciate these objective and subjective elements in scientific 

methodology. However, no quantitative work has yet been done to address it. Our research 

program will serve to fill a gap in the literature while formulating a systematic account in which 

Popper’s and Kuhn’s insights are neatly incorporated in a hybrid Bayesian framework. 
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Appendix B. WinBUGS code for the enthusiastic prior model 

We here provide the WinBUGS code of our model using the enthusiastic prior (EP) which builds 

upon the code provided in Appendix A of Jones et al. (2009).  

model 

 { 
 for (i in 1:species){ 
  for (j in 1:intervention){ 
   tau[i,j] <- 1/pow(se.y[i,j],2) 
   y[i,j] ~ dnorm(theta[i,j],tau[i,j]) 
   tau[i,j] ~ dgamma(1.0E-3,1.0E-3) 
  
   mu[i,j] <- alpha[i] + gamma[j] 
   theta[i,j] ~ dnorm(mu[i,j],tau.btw) 
   mr[i,j] <- exp(mu[i,j]) 
   } 
  } 
 
 alpha[1:5] ~ dmnorm(mu.alpha[],T.alpha[,]) 
 gamma[1:4] ~ dmnorm(mu.gamma[],T.gamma[,]) 
 T.alpha[1:5,1:5] ~ dwish(Ralpha[,],5) 
 T.gamma[1:4,1:4] ~ dwish(Rgamma[,],4) 
 Sigma.alpha[1:5,1:5] <- inverse(T.alpha[ , ]) 
 Sigma.gamma[1:4,1:4] <- inverse(T.gamma[ , ]) 
 
  tau.btw <- 1/sigma2.btw 
  sigma2.btw <- pow(sigma.btw,2) 
  sigma.btw ~ dnorm(0.5,100) 
 } 
 
Data 

list(species = 5, intervention = 4, 
 
y = structure(.Data = c(0.3436, 0.2311, NA, 0.5596, 
            -0.0186 , 0.1345, 0.3563, NA, 
             0.2261, 0.5760514, 0.5415,NA, 
             0.6325 ,  NA, 0.3556, NA, 
             0.0117, NA, NA, NA), .Dim = c(5,4)), 
          
se.y = structure(.Data = c(0.2842, 0.19715, 0.000001, 0.1532, 
   0.3529, 0.0305, 0.03761, 0.000001, 
   0.0956, 0.0961, 0.3219, 0.000001, 
   0.5048, 0.000001, 0.05007, 0.000001, 
   0.3228, 0.000001, 0.000001, 0.000001), .Dim = c(5,4)), 
 
Ralpha = structure(.Data=c(0.142884,0,0,0,0, 
   0,0.0064,0.0063,0.0063,0, 
   0, 0.0063,0.0064,0.0063,0, 
   0, 0.0063,0.0063,0.0064,0, 
   0, 0,0,0,1), .Dim=c(5,5)), 
Rgamma = structure(.Data=c(1,0,0,0, 
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   0,1,0,0, 
   0,0,1,0, 
   0,0,0,1), .Dim=c(4,4)), 
 
mu.alpha = c(0.336,0.117,0.117,0.117,0), 
mu.gamma = c(0,0,0,0)) 
 

Inits:chain 1 list( 
 T.alpha =   structure(.Data = c(0,0,0,0,0, 
   0,0,0,0,0, 
   0,0,0,0,0, 
   0,0,0,0,0, 
   0,0,0,0,0), .Dim = c(5,5)), 
 T.gamma =   structure(.Data = c(0,0,0,0, 
   0,0,0,0, 
   0,0,0,0, 
   0,0,0,0), .Dim = c(4,4)), 
 alpha = c(0,0,0,0,0), 
 
 sigma.btw = 0.5 
 
 gamma = c(0,0,0,0), 
 
 theta = structure(.Data = c(0,0,0,0, 
   0,0,0,0, 
   0,0,0,0, 
   0,0,0,0, 
   0,0,0,0), .Dim = c(5,4)), 
  
 y = structure(.Data = c(NA, NA, 0, NA, 
            NA, NA, NA, 0, 
            NA, NA, NA, 0, 
     NA, 0, NA, 0, 
            NA, 0, 0, 0), .Dim = c(5,4))) 
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Appendix C. Supplementary Tables 

 

Prior 𝜎 (95% CrI) 𝐻(𝜃𝑖,𝑗|𝜎
2) DIC pD 

Skeptical prior SP1 0.44 (0.24-0.63) 0.57 −2.298 10.928 

Skeptical prior SP2 0.41 (0.22-0.60) 0.52 −3.099 10.476 

Fundamentalist skeptical FSP 0.42 (0.23-0.62) 0.55 −2.758 10.635 

Relational priors RP1 0.40 (0.21-0.60) 0.51 −3.085 10.426 

Relational priors RP2 0.40 (0.21-0.60) 0.50 −3.265 10.328 

Relational priors RP3 0.40 (0.21-0.60) 0.50 −3.265 10.327 

Mechanistic prior MP1 0.41 (0.22-0.60) 0.52 −3.119 10.471 

Mechanistic prior MP2 0.39 (0.21-0.59) 0.49 −3.714 10.168 

Enthusiastic prior EP 0.386 (0.205-0.582) 0.47 −3.634 10.086 

Enthusiastic prior EP+MP1 0.386 (0.205-0.580) 0.47 −3.648 10.086 

Enthusiastic prior EP+MP2 0.368 (0.193-0.566) 0.42 −4.156 9.778 

Table S1: Posterior estimates for 𝜎 and differential entropy 𝐻(𝜃𝑖,𝑗|𝜎
2) in relation to the different model 

priors, where 𝜎 denotes the posterior median. DIC values and effective number of parameters pD are also 

given. 

 

 

mean variance KD KD+ CR CR+ 

0.25 0.1 1.22 (0.80-1.89) 1.40 (0.95-2.07) 1.63 (0.96-2.52) 1.68 (1.06-2.54) 

0.25 0.01 1.24 (0.76-2.00) 1.39 (0.91-2.13) 1.58 (0.91-2.63) 1.65 (1.00-2.66) 

0.25 0.005 1.25 (0.78-2.03) 1.39 (0.90-2.16) 1.56 (0.89-2.66) 1.64 (0.99-2.69) 

0.5 0.1 1.22 (0.78-2.00) 1.40 (0.91-2.15) 1.61 (0.91-2.61) 1.66 (0.99-2.63) 

0.5 0.01 1.29 (0.68-2.45) 1.39 (0.73-2.59) 1.50 (0.70-3.21) 1.54 (0.73-3.29) 

0.5 0.005 1.30 (0.66-2.58) 1.38 (0.70-2.70) 1.50 (0.66-3.33) 1.52 (0.70-3.42) 

1 0.1 1.25 (0.70-2.36) 1.39 (0.75-2.49) 1.56 (0.73-3.05) 1.61 (0.76-3.10) 

1 0.01 1.28 (0.43-3.75) 1.32 (0.44-4.03) 1.40 (0.40-4.97) 1.35 (0.39-4.98) 

1 0.005 1.28 (0.42-3.83) 1.31 (0.43-4.16) 1.39 (0.38-5.14) 1.34 (0.38-5.17) 

Table S2: Posterior estimates for the MR depending on different choices of the prior for 𝜎, while the priors 

for 𝛼 and 𝛾 were fixed at SP2 in all cases. The bold numbers are those used in the main analysis. 
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 KD KD+ CR CR+ 

Original study estimates 1.41 (0.61-2.21) 1.26 (0.77-1.75) NA 1.75 (1.22-2.28) 

Skeptical prior SP1 1.32 (0.59-2.89) 1.37 (0.63-2.95) 1.51 (0.58-3.87) 1.69 (0.68-4.16) 

Skeptical prior SP2 1.32 (0.68-2.53) 1.37 (0.72-2.60) 1.53 (0.71-3.21) 1.55 (0.73-3.30) 

Fundamentalist skeptical 
FSP 

1.31 (0.65-2.58) 1.34 (0.68-2.65) 1.51 (0.67-3.35) 1.47 (0.63-3.33) 

Relational priors RP1 1.35 (0.63-2.86) 1.39 (0.71-2.78) 1.53 (0.64-3.59) 1.65 (0.75-3.64) 

Relational priors RP2 1.34 (0.63-2.83) 1.40 (0.71-2.77) 1.54 (0.65-3.60) 1.65 (0.75-3.65) 

Relational priors RP3 1.34 (0.62-2.82) 1.40 (0.71-2.79) 1.54 (0.65-3.58) 1.65 (0.75-3.66) 

Mechanistic prior MP1 1.26 (0.64-2.39) 1.38 (0.73-2.64) 1.45 (0.67-3.03) 1.67 (0.78-3.60) 

Mechanistic prior MP2 1.40 (0.75-2.52) 1.46 (0.86-2.50) 1.43 (0.75-2.60) 1.49 (0.86-2.60) 

Enthusiastic prior EP 1.44 (0.80-2.55) 1.51 (0.85-2.59) 1.75 (0.92-3.21) 1.59 (0.79-3.28) 

Enthusiastic prior EP+MP1 1.39 (0.76-2.49) 1.52 (0.85-2.67) 1.68 (0.87-3.08) 1.74 (0.85-3.61) 

Enthusiastic prior EP+MP2 1.57 (0.92-2.57) 1.56 (0.95-2.52) 1.61 (0.92-2.66) 1.58 (0.95-2.63) 

Table S3: Posterior estimates of the MR for humans with three replicate animal studies excluded. The 

numbers give the median and 95% credible interval obtained with different prior distributions. 

 

 

 

 KD KD+ CR CR+ 

Original study estimates NA 1.26 (0.77-1.75) NA 1.75 (1.22-2.28) 
Skeptical prior SP1 1.11 (0.35-3.74) 1.30 (0.52-3.19) 1.35 (0.41-4.39) 1.69 (0.66-4.26) 

Skeptical prior SP2 1.19 (0.51-2.85) 1.34 (0.65-2.69) 1.42 (0.59-3.39) 1.53 (0.69-3.21) 

Fundamentalist skeptical 
FSP 

1.17 (0.46-3.03) 1.30 (0.60-2.77) 1.40 (0.53-3.58) 1.45 (0.62-3.26) 

Relational priors RP1 1.21 (0.40-3.68) 1.34 (0.60-2.98) 1.39 (0.47-4.06) 1.63 (0.73-3.62) 

Relational priors RP2 1.19 (0.39-3.66) 1.34 (0.60-3.02) 1.38 (0.48-4.09) 1.64 (0.73-3.62) 

Relational priors RP3 1.19 (0.40-3.63) 1.34 (0.60-3.00) 1.38 (0.48-4.10) 1.64 (0.73-3.61) 

Mechanistic prior MP1 1.11 (0.48-2.63) 1.32 (0.64-2.69) 1.31 (0.55-3.13) 1.64 (0.74-3.53) 

Mechanistic prior MP2 1.30 (0.59-2.84) 1.46 (0.80-2.58) 1.33 (0.60-2.91) 1.48 (0.83-2.68) 

Enthusiastic prior EP 1.45 (0.69-2.90) 1.50 (0.81-2.70) 1.66 (0.82-3.26) 1.60 (0.77-3.25) 

Enthusiastic prior EP+MP1 1.37 (0.64-2.74) 1.50 (0.80-2.72) 1.58 (0.77-3.11) 1.73 (0.83-3.60) 

Enthusiastic prior EP+MP2 1.55 (0.82-2.86) 1.57 (0.95-2.59) 1.58 (0.84-2.92) 1.59 (0.94-2.67) 

Table S4: Same as Table 3 in the main manuscript, but without using the datum from Rieger et al. (2014). 
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