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Supplementary	Figures	

 
Supplementary Figure 1 – Axl expression by pDCs vanishes early after stimulation with CpG-C and 

AS DCs produce no IFNα. PDCs were coated with capture reagent, encapsulated in picoliter droplets, 

and stimulated individually with 50 µg/mL CpG-C. A) After staining for viability, surface marker 

expression and cytokine secretion, AS DCs were detected via flow cytometry. B) Cytokine expression 

in AS DCs and traditional pDCs was analyzed. 

 



  

 
Supplementary Figure 2 – Expression of cell surface markers by individually stimulated pDCs is 

depending on CpG-C concentration. PDCs were coated with capture reagent, encapsulated in 

picoliter droplets, and stimulated individually with CpG-C for 12h. After staining for viability, surface 

marker expression and cytokine secretion, CCR7-, CD40- and CD86-expressing cells were detected via 

flow cytometry. Shown is the fraction of surface marker-expressing cells plotted against CpG-C 

concentration. Different concentrations were tested in different donors. Dots indicate mean, error 

bars indicate SEM. n>=3 



  

 
Supplementary Figure 3 – IFNα expression by pDCs stimulated with different CpG molecules. PDCs 

were coated with capture reagent, encapsulated in picoliter droplets, and stimulated individually 

with 50 μg/mL CpG-A, -B or -C for 12h. After staining for viability and cytokine secretion, IFNα-

secreting cells were detected via flow cytometry. Shown is the fraction of IFNα-secreting cells plotted 

against treatment condition. Bars indicate mean, error bars indicate SEM. n=2 

  



  

 
Supplementary Figure 4 – IFNα and TNFα expression by single or bulk activated pDCs from the 

same donor.  PDCs were encapsulated in picoliter droplets and stimulated individually with 50 μg/mL 

CpG-C for 14h (black bars). Alternatively, pDCs were stimulated with CpG-C in microtiter plates at a 

density of 25.000 cells/well. After incubation, cells were fixed, permeabilized, and stained for viability 

and cytokine expression. IFNα- and TNFα-expressing cells were detected using flow cytometry. 

Shown is the fraction of cytokine-expressing pDCs after 6 hours (light grey bars) or 8 hours (dark grey 

bars) of incubation. Bars indicate mean, error bars indicate SEM. n=6 
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Supplementary Figure 5 – A subset of cells analyzed by scRNA-seq expressed gene signatures from 

DC subsets other than pDCs. A) t-SNE map showing different DC clusters after initial quality control 



  

filtering, cell clustering using k-medoids, and raceID2 (n = 915, see Methods). B) Expression of 

different gene signatures by each analyzed cell. Gene signatures are derived from Villani et al.1 

CD141: CLEC9A, HLA-DPA1, CADM1, CAMK2D; CD1C_B: S100A9, S100A8, VCAN, LYZ, ANXA1; 

CD1C_A: CD1C, FCER1A, CLEC10A, ADAM8, CD1D; AS DC: AXL, SIGLEC6, PPP1R14A, CD22, DAB2. 



  

 
Supplementary Figure 6 – K-medoids clustering and raceID2 of unstimulated and early stimulated 

pDCs. A, B) Shown is the simulated within-cluster dispersion (A) or its change (B) for a range of seed 

cluster numbers in k-medoids clustering. N(bootstrapping) = 50. C) The bars indicate the Jaccard’s 

similarity for each cluster identified by k-medoids clustering. D) Heat map of the 774 cells that passed 

quality control filters representing transcriptome similarities as measured by Euclidean distance. K-

medoids clustering characterized 4 clusters based on input from A) - C). E) t-SNE map of different 

clusters. F) Histogram showing the –log10 probability that transcript levels in a particular cell are 

explained by a background model (G) accounting for the expected variability. The probability 

threshold for outlier identification (10-5) is included (black broken line). G) Background model for 

expected variability. Shown is the log2 variance plotted against the log2 mean. H) The number of the 

potential outlier cells plotted against the log10 probability threshold is indicated. 
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Supplementary Figure 7 – A subset of cells analyzed by scRNA-seq expressed gene signatures of the 

CD2hi pDC subset. t-SNE map showing different DC clusters after quality control filtering, cell 

clustering using k-medoids, and raceID2 (see Methods). Color scale indicates the expression values of 

several genes associated with the CD2hi pDC subset. 

 



  

 

Supplementary Figure 8 – Single cell RNA-sequencing of pDCs from additional healthy donors. PDCs 

from two additional donors were isolated from PBMCs, collected using fluorescence activated cell-

sorting (FACS), and their transcriptomes were sequenced using the SORT-Seq protocol. Single cell 

transcripts were pooled with Figure 3, and all cells were analyzed together using the previously 

established filtering pipeline. In total, 1,190 cells expressing 14,979 genes were then subjected to k-

medoids clustering and raceID2 analysis using the previously established clustering parameters. A) t-

SNE map with identified clusters. Different colors indicate clusters, different shapes indicate 

stimulation time. Cells in Cl7 show a differential gene expression profile that is similar to cells in Cl5 

in Figure 3 (data not shown). B-D) Same t-SNE map as in A). Blue color indicates location of 

unstimulated pDCs from a particular donor. 

 



  

 

Supplementary Figure 9 – Kinetics of IFNa and TNFa secretion by pDCs in microtiter plate cultures. 

A) PDCs were stimulated with CpG-C in microtiter plates at varying cell densities or varying CpG-C 

concentrations. After incubation, cells were fixed, permeabilized, and stained for viability and 

cytokine expression. B) IFNα- and TNFα-expressing cells were detected using flow cytometry. C) PDCs 

were stimulated at a density of 25.000 cells/well. Shown is the fraction of cytokine-expressing pDCs 

plotted against incubation time.  n>=5. At 50 µg/mL CpG-C less cells produce IFNa. Previous studies 

showed that an initial lag-phase before the onset of IFNα secretion is crucial to prime pDCs via 

autocrine or paracrine mechanisms.2 The early onset of IFNα production by pDCs stimulated with 50 

µg/mL CpG-C most-likely undercuts this threshold. In accordance with this, we observed robust IFNa 

responses when pre-treating pDCs for 2h with 500U/mL of IFNb (Supplementary Figure 10). D) 

Supernatant was analyzed using ELISA. Shown is the concentration of IFNα and TNFα plotted against 

the incubation time. n>=5. E) Cytokine concentration from D) was combined with the number of 

cytokine-expressing cells, as determined via flow cytometric analysis in duplicate cultures (C), to 

calculate the average secretion rate of a single cell. Shown is the number of molecules, added to the 



  

supernatant every two hours by a single cell, plotted against the incubation time. n>=5 F) PDCs were 

stimulated at different cell density and cytokine-expressing cells were detected using flow cytometry. 

n[5 µg/mL] = 3, n[50 µg/mL] = 1). B - F) Dots indicate mean, error bars indicate SEM. 

 

 

 



  

 
Supplementary Figure 10 – Cytokine capture-reagents can be exchanged between two cells 

encapsulated in the same droplet but not between two cells encapsulated in different droplets. 

PDCs were coated with capture reagent or left untreated and mixed at a 1:1 ratio. Subsequently, cells 

were encapsulated in picoliter droplets with either 0.1 or 7.6 cells per drop on average, and 

stimulated individually with 50 µg/mL CpG-C. A) Next to viability and surface marker expression, 

pDCs were also stained for cytokine capture reagent-coating using an antibody against mouse IgG1. 

B) Shown is the distribution of the fluorescence intensity of the capture reagent at each time point. 

 



  

 
Supplementary Figure 11 – Effect of priming with different cytokines on IFNα production by pDCs. 

A, B) PDCs were incubated with fresh medium, conditioned medium or different cytokines (0.01 

µg/ml IL-3, 60 μg/ml IL-4, 50 μg/ml IL-7, 20 μg/ml IL-15, 500 U/mL IFNb) for two hours or left 

untreated. In some cases, cells were pre-incubated with blocking antibodies against IFNAR2 and CM 

was supplemented with neutralizing serum against IFNa and IFNb (block). Subsequently, pDCs were 

stimulated with CpG-C in microtiter plates for 12h at varying cell densities, and cytokine 

concentration in supernatants was measured using ELISA. Shown is the log cytokine concentration 

relative to the number of seeded cells plotted against cell density and priming condition. A: n=1, B: 

n=3 C) PDCs were incubated with fresh medium, conditioned medium or 500 U/mL recombinant IFNb 

for 2h or left untreated. Subsequently, pDCs were stimulated with CpG-C for 6h in microtiter plates 

at varying cell densities. After incubation, cells were fixed, permeabilized, and stained for viability 

and cytokine expression. IFNα- and TNFα-expressing cells were detected using flow cytometry. 

Shown is the fraction of IFNα-expressing cells plotted against the number of seeded cells. Values 

were compared to non-primed pDCs using the Mann-Whitney test. * p < 0.05, ** p<0.01. n>=6 Dots 

indicate mean, error bars indicate SEM. 

  



  

 
Supplementary Figure 12 – IRF7 expression dynamics in primed and stimulated pDCs. PDCs were 

incubated with fresh medium or 500 U/mL recombinant IFNb for 2h or left untreated. Subsequently, 

pDCs were stimulated with CpG-C in microtiter plates at a density of 25.000. After incubation, cells 

were fixed, permeabilized, and stained for viability, cytokine expression and IRF7 expression. A, B) 

IFNα-, TNFα-, and IRF7-expressing cells were detected using flow cytometry. C) The fraction of 

cytokine producing cells or the fluorescence intensity of IRF7 was plotted against the incubation 

time. D) The 25% pDCs that had the lowest or highest expression of IRF7 were further selected and 

cytokine expression in those cells was analyzed separately. The fraction of cytokine producing cells 

for each group was plotted against the incubation time.  

 



  

 

Supplementary Figure 13 – Expression of interferon stimulated genes in individually activated, 

sorted pDCs. PDCs were incubated with 40% conditioned medium for 2h or left untreated. 

Subsequently, cells were coated with capture reagent, encapsulated in picoliter droplets, and 

stimulated individually with 50 µg/mL CpG-C for 12h. Control cells were stimulated with 5 µg/mL 

CpG-C for 12h in a microtiter plate at a density of 25.000 cells (bulk) or left at 4°C (0h). A) After 

staining for viability and cytokine secretion, IFNα+ and IFNα- cells were isolated using fluorescence 

activated cell sorting. Sorted cells were lysed, RNA was isolated, and the expression of the interferon 

stimulated genes OAS2, RIG1, MDA-5, and IRF7 as well as the house keeping gene GAPDH was 

determined via quantitative PCR. B) Shown are the expression levels relative to GAPDH plotted 

against treatment conditions. 
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Supplementary Figure 14 – Effect of blocking paracrine type I IFN signaling on IFNα production by 

bulk cultured pDCs. A) PDCs were incubated with fresh medium (- block) or pre-incubated with 

blocking antibodies against IFNAR2 and the medium was supplemented with neutralizing serum 

against IFNa and IFNb (+ block). Subsequently, pDCs were stimulated with CpG-C in microtiter plates 

for 6h or 8h at a density of 25.000 cells/well. After incubation, cells were fixed, permeabilized, and 

stained for viability and cytokine expression. IFNα-expressing cells were detected using flow 

cytometry. n=5 B) PDCs were coated with capture reagent, were pre-incubated with blocking 

antibodies against IFNAR2 and medium was supplemented with neutralizing serum against IFNa and 

IFNb (block) prior to activation with 5 μg/mL CpG-C in bulk (25.000 cells/well) for 14h. IFNα-secreting 

cells were detected via flow cytometry. Shown is the fraction of IFNα-secreting cells plotted against 

treatment condition. n=5 A – B) Bars indicate mean, error bars indicate SEM.  
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Supplementary Figure 15 – Effect of Cytokine Catch Reagents on cellular function and viability of 

bulk cultured pDCs. PDCs were coated with capture reagent or left untreated and subsequently 

activated with 5 μg/mL CpG-C in microtiter plates for 6h, 8h or 12h at a density of 25.000 cells/well. 

A) IFNα- and TNFα-secreting cells were detected via intracellular cytokine staining and flow 

cytometry after 8 hours and the result of 1 representative donor is shown. B, C) Shown is the fraction 

of IFNα- or TNFα-secreting cells plotted against treatment condition and stimulation for either 6 

hours or 8 hours. Circles indicate mean, error bars indicate SEM, n=5. D) The expression of CCR7, 

CD40 and CD86 by differently treated pDCs was assessed after 12 hours of activation using flow 

cytometry. One representative experiment is shown. E) Shown is the viability and the expression of 

CCR7, CD40 and CD86 plotted against treatment condition. Circles indicate mean, error bars indicate 

SD, n=3.  

 

 

 



  

Supplementary	Methods	
 

Supplementary Table 1 – Employed stimuli and cytokines 

Stimulus Comment Standard conc 
bulk [µg/ml] 

Standard conc 
drop [µg/ml] 

Manufacturer 

R848 Resiquimod 4 4 Enzo 
CpG-A ODN 2216 5 50 Enzo 
CpG-B ODN 2006 5 50 Enzo 
CpG-C ODN M362 5 50 Enzo 
PMA Phorbol 12-myristate 13-acetate  0.05 Calbiochem 
Iono Ionomycine  1 Sigma 
IL-3 Recombinant human interleukin-3 0.1 0.1 Cellgenix 
IFNβ Recombinant human IFN-β 500 U/mL  Peprotech 
IL-4 Human IL-4, premium grade 60  Miltenyi Biotec 
IL-7  50  R&D 
IL-15  20  Biolegend 

 

 

 

 

Supplementary Table 2 – Employed primers 

Gene Name Direction Sequence (5’ to 3’) 
GAPDH hGAPDH FW Forward GAAGGTGAAGGTCGGAGT 
GAPDH hGAPDH RV Reverse AGATGGTGATGGGATTTC 
IRF7 IRF-7.forw Forward GAGCCGTACCTGTCACCCT 
IRF7 IRF-7.rev Reverse GGGCCGTATAGGAACGTGC 
MDA5 MDA-5.forw Forward CAACATGGGCAGTGATTCAGG 
MDA5 MDA-5.rev Reverse TGGGCAACTTCCATTTGGTAAG 
OAS2 OAS2_fwd_1 Forward AAGCCCTACGAAGAATGT 
OAS2 OAS2_rev_1 Reverse TTGGCTTCTCTTCTGATCCTGG 
RIG-I RIG-I.forw Forward TGTGCTCCTACAGGTTGTGGA 
RIG-I RIG-I.rev Reverse CACTGGGATCTGATTCGCAAAA 

 



  

Supplementary Table 3 – Employed antibodies and cytokine detection kits 

Antigen Clone Label Dilution Manufacturer 
CD303 AC144 APC 1:10 Miltenyi Biotec 
Lineage Cocktail 1 
      CD3 
      CD14 
      CD16 
      CD19 
      CD20 
      CD56 

 
SK7 
MφP9 
3G8 
SJ25C1 
L27 
NCAM16.2 

FITC 1:10 BD 

CD304 AD5-17F6 PE 0.5 µL per 1M 
cells 

Miltenyi Biotec 

CD304 12C2 BV510 2 µL per 1M 
cells 

Biolegend 

HLA-DR AC122 VioBlue, PE-
Cy7 

0.5 µL / 0.3 µL 
per 1M cells 

Miltenyi Biotec 

PD-L1 MIH1 BV421 1/40 BD 
CD80 2D10.4 PerCp-

eFluor710 
1/20 eBioscience 

CD86 2331 BV510 1/20 BD 
CD40 5C3  PE-Cy7 1/90 BD 
CCR7 150503 FITC 1/10 R&D 
CD14 
CD14 

MφP9 
M5E2 

APC-H7 
PerCP-Cy5.5 

1/75 
1/100 

BD 
eBioscience 

CD19 
CD19 

SJ25C1 
SJ25C1 

APC-H7 
BV510 

1/20 
1/50 

BD 
BD 

IFNα LT27:295 PE 1/30 Miltenyi Biotec 
TNFα cA2 APC 1/30 Miltenyi Biotec 
IRF7 12G9A36 Alexa488 1/25 Biolegend 
Axl 108724 Alexa488 1/30 R&D 
Siglec6 767329 APC 1/10 R&D 
Mouse IgG1 Polyclonal Alexa647 1/400 Life Technologies 
IL-2 Cytokine capture reagent Not disclosed PE 1/10 Miltenyi Biotec 
IFNγ Cytokine capture reagent Not disclosed FITC 1/10 Miltenyi Biotec 
IFNα Cytokine capture reagent Not disclosed PE 1/10 Miltenyi Biotec 
TNFα Cytokine capture reagent Not disclosed APC 1/10 Miltenyi Biotec 
INFAR2 MMHAR-2  10 µg/mL PBL Assay Science 
IFNb Sheep serum  1000 NU/mL PBL Assay Science 
IFNa Sheep serum  1000 NU/mL PBL Assay Science 

 

Supplementary Table 4 – Flow rates and droplet sizes 

V (droplet) Channel height Flow rate continuous phase Flow rate stimuli Flow rate cells 
41 pL 25 µm 1200 µL/h 150 µL/h 150 µL/h 
75 pL 25 µm 900 µL/h 200 µL/h 200 µL/h 
243 pL 50 µm 900 µL/h 200 µL/h 200 µL/h 
1022 pL 80 µm 1000 µL/h 1000 µL/h 1000 µL/h 
3121 pL 80 µm 150 µL/h 225 µL/h 225 µL/h 

 

 



  

Supplementary	code	

	
Supplementary	code	1	–	RACE-ID2	Analysis	for	Figure	3	
	
#####################################################################
##################################	
###################	Generation	of	the	figure	for	scRNA	analysis	of	stimulated	pDCs	
####################	
#####################################################################
##################################	
#	Florian	Wimmers;	flowimmers@gmail.com;	22	April	2018	
	
	
####	Requires	the	following	packages:	
#	tsne	
#	pheatmap	
#	MASS	
#	cluster	
#	mclust	
#	flexmix	
#	lattice	
#	fpc	
#	RColorBrewer	
#	permute	
#	ampa	
#	locfit	
#	vegan	
	
	
#	run	script	"home	made	functions.R"	
##	load	class	definition	and	functions	
source("./scripts/genRaceidObjct/RaceID_class.R")	
	
	
#	determine	gene	signatures	for	DC	subsets	according	to	Villani,	Science,	2017	
pdc	<-	c("NRP1__chr10",	"CLEC4C__chr12",	"GZMB__chr14",	"SERPINF1__chr17",	"ITM2C__chr2");	
asdc	<-	c("AXL__chr19",	"SIGLEC6__chr19",	"PPP1R14A__chr19",	"CD22__chr19",	"DAB2__chr5");	
cd1cA	<-	c("CD1C__chr1",	"FCER1A__chr1",	"CLEC10A__chr17",	"ADAM8__chr10",	"CD1D__chr1");	
cd1cB	<-	c("S100A9__chr1",	"S100A8__chr1",	"VCAN__chr5",	"LYZ__chr12",	"ANXA1__chr9");	
cd141	<-	c("CLEC9A__chr12",	"HLA-DPA1__chr6",	"CADM1__chr11",	"CAMK2D__chr4");	#	not	found:	
C1ORF54	
dc4	<-	c("FCGR3A__chr1",	"FTL__chr19",	"SERPINA1__chr14",	"LST1__chr6",	"AIF1__chr6");	
	
	
	
#############################################################	
#####	Load	files	and	merge	them	into	one	data	frame	
#############################################################	
	
#	Here	you	load	in	the	files,	and	the	objects	I	give	the	name	(FW14	etc.)	
FW14<-	read.csv("./data/scRNA	data/raw/FW14_AHWTVGBGX2_S1_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW15<-	read.csv("./data/scRNA	data/raw/FW15_AHWTVGBGX2_S2_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW16<-	read.csv("./data/scRNA	data/raw/FW16_AHWTVGBGX2_S3_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
	
#Rename	cols	with	correct	plate	coordinates	
colnames(FW14)<-	paste("FW14_",	platenumbers_384,	sep="")	
colnames(FW15)<-	paste("FW15_",	platenumbers_384,	sep="")	
colnames(FW16)<-	paste("FW16_",	platenumbers_384,	sep="")	
	
#Merge	datasets	
prdata<-	intersectmatrix(FW14,		
																									intersectmatrix(FW15,FW16))	



  

	
#removal	of	noisy	genes	and	the	mitochondrial	genes	(chrM)	from	the	genelist	in	the	dataset,	as	well	
as	the	spike-ins	
prdata<-	prdata[-grep("ERCC|chrM|MALAT1|KCNQ1OT1",	rownames(prdata))	,	]	
	
	
	
#############################################################	
#####	Filter	data	
#############################################################	
	
#	initialize	SCseq	object	with	transcript	counts	
sc	<-	SCseq(prdata)	
	
#	gene	and	cell	count	info	before	any	filtering	
dim(sc@fdata)	#	total	genes	and	total	cells	
round(mean(colSums(sc@fdata)))	#average	no	of	transcripts	per	cell	
summary(colSums(sc@fdata))	
round(mean(colSums(sc@fdata	!=	0)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0))	
	
#################	Initial	filtering,	clustering,	outlier	detection	and	removal	of	non-pDC	DCs	
#	filtering	of	expression	data		
sc	<-	filterdata(sc,	mintotal=1700,	minexpr=1,	minnumber=2,	maxexpr=500,	downsample=TRUE,	
dsn=1,	rseed=19000);	
	
#	gene	and	cell	count	info	after	filtering	of	genes	expressed	in	only	one	cell,	after	
#	removal	of	cells	with	less	than	1700	transcripts,	and	after	downsampling	
dim(sc@fdata)	#	total	genes	and	total	cells	
tmpG	<-	sc@fdata	#	temporary	variable	to	revert	cells	to	real	0	
tmpG	<-	tmpG	-	0.1	
round(mean(colSums(tmpG)))	#average	no	of	transcripts	per	cell	
summary(colSums(tmpG))	
round(mean(colSums(sc@fdata	!=	0.1)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0.1))	
	
	
#	kmedoids	clustering	
sc	<-	clustexp(sc,	clustnr=20,	bootnr=50,	metric="pearson",	do.gap=FALSE,	sat=TRUE,	
SE.method="Tibs2001SEmax",	SE.factor=.25,	B.gap=50,	cln=0,	rseed=17000,	
FUNcluster="kmedoids")	
	
#	tsne		
sc	<-	comptsne(sc,rseed=15555)	
	
#	raceID	
sc	<-	findoutliers(sc,	outminc=15,outlg=2,probthr=1e-5,thr=2**-(1:40),outdistquant=.95)	
	
#	inspection	of	clustering	and	raceID	results	
plottsne(sc,final=TRUE)	#	highlight	final	clusters	in	t-SNE	map	
plotexptsne(sc,	dc4,	n="CD141-CD1C-	signature")	
plotexptsne(sc,	cd141,	n="CD141	signature")	
plotexptsne(sc,	asdc,	n="AS	DC	signature")	
plotexptsne(sc,	cd1cB,	n="CD1C_B	signature")	
plotexptsne(sc,	cd1cA,	n="CD1C_A	signature")	
plotexptsne(sc,	pdc,	n="pDC	signature")	
	
#	removal	of	non-pDC	cluster	from	data	set	
nonPdc_indexnames	<-	names(sc@cpart[which(sc@cpart	%in%	3)])	#	get	the	index	of	all	cells	of	a	
certain	cluster	
write.csv(nonPdc_indexnames,	"./data/scRNA	data/temp/nonPdc-indexnames.csv");	#	save	those	
indexes	in	a	file	
prdata	<-	prdata[	,	!names(prdata)	%in%	nonPdc_indexnames	];	#	remove	the	cells	with	those	
indexes	from	data	
sc	<-	SCseq(prdata)	
	
	
#################	Second	filtering,	clustering,	outlier	detection	and	removal	of	clean	dataset	
#	filtering	of	expression	data		



  

sc	<-	filterdata(sc,	mintotal=1700,	minexpr=1,	minnumber=2,	maxexpr=500,	downsample=TRUE,	
dsn=1,	rseed=19000);	
	
#	gene	and	cell	count	info	after	removing	non-pDCs,	after	filtering	of	genes	expressed	in	only	one	cell,	
after	
#	removal	of	cells	with	less	than	1700	transcripts,	and	after	downsampling	
dim(sc@fdata)	
tmpG	<-	sc@fdata	#	temporary	variable	to	revert	cells	to	real	0	
tmpG	<-	tmpG	-	0.1	
round(mean(colSums(tmpG)))	#average	no	of	transcripts	per	cell	
summary(colSums(tmpG))	
round(mean(colSums(sc@fdata	!=	0.1)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0.1))	
	
#	kmedoids	clustering	
sc	<-	clustexp(sc,	clustnr=20,	bootnr=50,	metric="pearson",	do.gap=FALSE,	sat=TRUE,	
SE.method="Tibs2001SEmax",	SE.factor=.25,	B.gap=50,	cln=0,	rseed=17000,	
FUNcluster="kmedoids")	
	
#	tsne		
sc	<-	comptsne(sc,rseed=15555)	
	
#	raceID	
sc	<-	findoutliers(sc,	outminc=15,outlg=2,probthr=1e-5,thr=2**-(1:40),outdistquant=.95)	
	
	
	
#############################################################	
#####	Quality	control	plots	
#############################################################	
	
###########	Clustering	
#	plot	within-cluster	dispersion	as	a	function	of	the	cluster	number:	only	if	sat	==	TRUE	
plotsaturation(sc,disp=TRUE)	
#	plot	change	of	the	within-cluster	dispersion	as	a	function	of	the	cluster	number:	only	if	sat	==	TRUE	
plotsaturation(sc)	
#	Jaccard's	similarity	of	k-medoids	clusters	
plotjaccard(sc)	
#	Identiy	heatmap	
clustheatmap(sc,final=FALSE,hmethod="single")	
#	tsne	plot	
plottsne(sc,final=FALSE)	#	highlight	k-medoids	clusters	in	t-SNE	map	
	
###########	Outlier	
#	barchart	of	outlier	probabilities	
plotoutlierprobs(sc)	
#	regression	of	background	model	
plotbackground(sc)	
#	dependence	of	outlier	number	on	probability	threshold	(probthr)	
plotsensitivity(sc)	
	
	
	
#############################################################	
#####	Detection	of	CD2	subset	
#############################################################	
hlgene_log("LYZ__chr12")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	and	from	2008	JI	
hlgene_log("ANXA1__chr9")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	
hlgene_log("COTL1__chr16")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	
hlgene_log("CD86__chr3")	#	expressed	by	CD2hiCD5+	in	steady	state	from	2013	PLOS	One	
	



  

Supplementary	code	2	-	Diff	Gene	expression	for	Figure	4	
	
#####################################################################
##################################	
###################	Compare	gene	expression	between	different	clusters	using	deSEQ	
####################	
#####################################################################
##################################	
#	Florian	Wimmers;	flowimmers@gmail.com;	22	April	2018;	adapted	from	Muraro	et	al,	Cell	
Systems,	2016	
	
source("./scripts/diffGeneExp/functions.R")	
	
	
####	differential	gene	expression	analysis	with	diffexpnb	####	
x	<-	c(2,3,4,5,6,7,8)	#	clusters	to	loop	through	
	
for	(i	in	1:length(x))	{	
			
		##	(2)	compare	two	or	more	clusters	with	one	another	
		cluster1<-c(1)	#	pick	cluster(s)	in	1st	group	
		cluster2<-c(x[i])	#	pick	cluster(s)	in	2nd	group	
		name1<-paste("resting	pDC	-	cl",paste(cluster1,	collapse	=	"	",	sep=""))	#	will	generate	a	name	for	
plotting	and	writing	files	
		name2<-paste("diverging	-	cl",paste(cluster2,collapse=	"	",	sep=""))	
		a<-diffexpnb(sc@fdata,names(sc@fdata)[sc@cpart	%in%	cluster1],names(sc@fdata)[sc@cpart	
%in%	cluster2],norm=FALSE,logrec=FALSE,	
															vfit=sc@background$vfit,method="pooled")	
			
		#	following	1	or	2,	plot	the	results,	order	them	in	a	ranked	list	(either	by	expression	or	p	val)	and	
write	to	file	
		pval<-	10**-8	#	choose	padjusted	value	cutoff	
			
		date	<-	format(Sys.time(),	"%y%m%d")	
		pdf(file=paste("./temp/",	"MICRO_volcano_",name1,"_vs_",name2,"_pval_",pval,".pdf",	sep=""))	#	
open	device	to	save	plot	
		plotdiffgenesnb(a,	xname=name1,	yname=name2,	pthr	=	pval	,lthr=1,	mthr=1,	show_names=F,	
padj=T)	#	plot	diff	genes	
		dev.off()	
			
		diffgen<-a$res[which(a$res$padj	<	pval),]	#select	significant	genes	
		#	diffgen.filter<-diffgen[order(diffgen$padj,decreasing=F),]	#	order	on	padjusted	value	
		#	diffgen.filter<-diffgen[order(diffgen$baseMean,decreasing=T),]	#	or	order	on	mean	expression	
		diffgen.filter<-diffgen[order(diffgen$foldChange,decreasing=T),]	#	or	order	on	fold	change	
expression	
			
		diffgen.up<-subset(diffgen.filter,diffgen.filter$log2FoldChange	>	1.5)	#	subset	only	upregulated	
		cat(paste(nrow(diffgen.up),	"genes	are	significant\n"))	
			
		#write	results	to	textfile	
		rownames(diffgen.up)<-sapply(rownames(diffgen.up),chop_chr)	#	remove	__chr	part	from	
rownames	
		write.table(diffgen.up,paste("./temp/",	"MICRO_diffGenUp_",name1,"_vs_",name2,"_pval_",pval,".txt",	
sep=""),sep="\t",	col.names=NA)	#	write	results	
	
			
			
		diffgen.down<-subset(diffgen.filter,diffgen.filter$log2FoldChange	<	-1.5)	#	subset	only	
downregulated	
		cat(paste(nrow(diffgen.down),	"genes	are	significant\n"))	
			
		#write	results	to	textfile	
		rownames(diffgen.down)<-sapply(rownames(diffgen.down),chop_chr)	#	remove	__chr	part	from	
rownames	
		write.table(diffgen.down,paste("./temp/",	
"MICRO_diffGenDown_",name1,"_vs_",name2,"_pval_",pval,".txt",	sep=""),sep="\t",	col.names=NA)	#	
write	results	
}	



  

	
Supplementary	code	3	-	RACE-ID2	Analysis	for	Supplementary	Figure	8	
	
#####################################################################
##################################	
###################	Generation	of	the	figure	for	scRNA	analysis	of	stimulated	pDCs	
####################	
#####################################################################
##################################	
#	Florian	Wimmers;	flowimmers@gmail.com;	22	April	2018	
	
####	Requires	the	following	packages:	
#	tsne	
#	pheatmap	
#	MASS	
#	cluster	
#	mclust	
#	flexmix	
#	lattice	
#	fpc	
#	RColorBrewer	
#	permute	
#	ampa	
#	locfit	
#	vegan	
	
	
#	run	script	"home	made	functions.R"	
##	load	class	definition	and	functions	
source("./scripts/genRaceidObjct/RaceID_class.R")	
	
	
#	determine	gene	signatures	for	DC	subsets	according	to	Villani,	Science,	2017	
pdc	<-	c("NRP1__chr10",	"CLEC4C__chr12",	"GZMB__chr14",	"SERPINF1__chr17",	"ITM2C__chr2");	
asdc	<-	c("AXL__chr19",	"SIGLEC6__chr19",	"PPP1R14A__chr19",	"CD22__chr19",	"DAB2__chr5");	
cd1cA	<-	c("CD1C__chr1",	"FCER1A__chr1",	"CLEC10A__chr17",	"ADAM8__chr10",	"CD1D__chr1");	
cd1cB	<-	c("S100A9__chr1",	"S100A8__chr1",	"VCAN__chr5",	"LYZ__chr12",	"ANXA1__chr9");	
cd141	<-	c("CLEC9A__chr12",	"HLA-DPA1__chr6",	"CADM1__chr11",	"CAMK2D__chr4");	#	not	found:	
C1ORF54	
dc4	<-	c("FCGR3A__chr1",	"FTL__chr19",	"SERPINA1__chr14",	"LST1__chr6",	"AIF1__chr6");	
	
	
	
#############################################################	
#####	Load	files	and	merge	them	into	one	data	frame	
#############################################################	
	
#	Here	you	load	in	the	files,	and	the	objects	I	give	the	name	(FW14	etc.)	
FW07<-	read.csv("./data/scRNA	data/raw/Fw7_AHNGTJBGX2_S3_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW09<-	read.csv("./data/scRNA	data/raw/Fw9_AHNGTJBGX2_S4_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW12<-	read.csv("./data/scRNA	data/raw/Fw12_AHNGTJBGX2_S5_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW13<-	read.csv("./data/scRNA	data/raw/Fw13_AHNGTJBGX2_S6_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW14<-	read.csv("./data/scRNA	data/raw/FW14_AHWTVGBGX2_S1_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW15<-	read.csv("./data/scRNA	data/raw/FW15_AHWTVGBGX2_S2_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
FW16<-	read.csv("./data/scRNA	data/raw/FW16_AHWTVGBGX2_S3_R2.TranscriptCounts.tsv",	
row.names=1,	sep="")	
	
#Rename	cols	with	correct	plate	coordinates	
colnames(FW07)<-	paste("FW07_",	platenumbers_384,	sep="")	
colnames(FW09)<-	paste("FW09_",	platenumbers_384,	sep="")	
colnames(FW12)<-	paste("FW12_",	platenumbers_384,	sep="")	
colnames(FW13)<-	paste("FW13_",	platenumbers_384,	sep="")	



  

colnames(FW14)<-	paste("FW14_",	platenumbers_384,	sep="")	
colnames(FW15)<-	paste("FW15_",	platenumbers_384,	sep="")	
colnames(FW16)<-	paste("FW16_",	platenumbers_384,	sep="")	
	
#Merge	datasets	
prdata<-	intersectmatrix(FW07,		
																									intersectmatrix(FW09,	
																																									intersectmatrix(FW12,	
																																																									intersectmatrix(FW13,	
																																																																									intersectmatrix(FW14,	
																																																																																									intersectmatrix(FW15,FW16))))))	
	
#removal	of	noisy	genes	and	the	mitochondrial	genes	(chrM)	from	the	genelist	in	the	dataset,	as	well	
as	the	spike-ins	
prdata<-	prdata[-grep("ERCC|chrM|MALAT1|KCNQ1OT1",	rownames(prdata))	,	]	
	
	
	
#############################################################	
#####	Filter	data	
#############################################################	
	
#	initialize	SCseq	object	with	transcript	counts	
sc	<-	SCseq(prdata)	
	
#	gene	and	cell	count	info	before	any	filtering	
dim(sc@fdata)	#	total	genes	and	total	cells	
round(mean(colSums(sc@fdata)))	#average	no	of	transcripts	per	cell	
summary(colSums(sc@fdata))	
round(mean(colSums(sc@fdata	!=	0)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0))	
	
#	removal	of	non-pDC	cluster	from	data	set	
nonPdc_indexnames	<-	read.csv("./data/scRNA	data/temp/nonPdc-indexnames.csv",	row.names=1,	
header	=	TRUE);	#	load	indexes	of	excluded	cells	
prdata	<-	prdata[	,	!names(prdata)	%in%	nonPdc_indexnames$x	];	#	remove	the	cells	with	those	
indexes	from	data	
sc	<-	SCseq(prdata)	
	
#	gene	and	cell	count	info	after	removal	of	non-pDC	cells	from	donor	174	
dim(sc@fdata)	#	total	genes	and	total	cells	
round(mean(colSums(sc@fdata)))	#average	no	of	transcripts	per	cell	
summary(colSums(sc@fdata))	
round(mean(colSums(sc@fdata	!=	0)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0))	
	
#################	Filtering,	clustering,	outlier	detection	and	removal	of	non-pDC	DCs	
#	filtering	of	expression	data		
sc	<-	filterdata(sc,	mintotal=1700,	minexpr=1,	minnumber=2,	maxexpr=500,	downsample=TRUE,	
dsn=1,	rseed=19000);	
	
#	gene	and	cell	count	info	after	filtering	of	genes	expressed	in	only	one	cell,	after	
#	removal	of	cells	with	less	than	1700	transcripts,	and	after	downsampling	
dim(sc@fdata)	#	total	genes	and	total	cells	
tmpG	<-	sc@fdata	#	temporary	variable	to	revert	cells	to	real	0	
tmpG	<-	tmpG	-	0.1	
round(mean(colSums(tmpG)))	#average	no	of	transcripts	per	cell	
summary(colSums(tmpG))	
round(mean(colSums(sc@fdata	!=	0.1)))	#average	no	of	genes	per	cell	
summary(colSums(sc@fdata	!=	0.1))	
	
#	kmedoids	clustering	
sc	<-	clustexp(sc,	clustnr=20,	bootnr=50,	metric="pearson",	do.gap=FALSE,	sat=TRUE,	
SE.method="Tibs2001SEmax",	SE.factor=.25,	B.gap=50,	cln=0,	rseed=17000,	
FUNcluster="kmedoids")	
	
#	tsne		
sc	<-	comptsne(sc,rseed=15555)	
	
#	raceID	



  

sc	<-	findoutliers(sc,	outminc=15,outlg=2,probthr=1e-5,thr=2**-(1:40),outdistquant=.95)	
	
#	inspection	of	clustering	and	raceID	results	
plottsne(sc,final=TRUE)	#	highlight	final	clusters	in	t-SNE	map	
plotexptsne(sc,	dc4,	n="CD141-CD1C-	signature")	
plotexptsne(sc,	cd141,	n="CD141	signature")	
plotexptsne(sc,	asdc,	n="AS	DC	signature")	
plotexptsne(sc,	cd1cB,	n="CD1C_B	signature")	
plotexptsne(sc,	cd1cA,	n="CD1C_A	signature")	
plotexptsne(sc,	pdc,	n="pDC	signature")	
	
	
	
#############################################################	
#####	Quality	control	plots	
#############################################################	
	
###########	Clustering	
#	plot	within-cluster	dispersion	as	a	function	of	the	cluster	number:	only	if	sat	==	TRUE	
plotsaturation(sc,disp=TRUE)	
#	plot	change	of	the	within-cluster	dispersion	as	a	function	of	the	cluster	number:	only	if	sat	==	TRUE	
plotsaturation(sc)	
#	Jaccard's	similarity	of	k-medoids	clusters	
plotjaccard(sc)	
#	Identiy	heatmap	
clustheatmap(sc,final=FALSE,hmethod="single")	
#	tsne	plot	
plottsne(sc,final=FALSE)	#	highlight	k-medoids	clusters	in	t-SNE	map	
	
###########	Outlier	
#	barchart	of	outlier	probabilities	
plotoutlierprobs(sc)	
#	regression	of	background	model	
plotbackground(sc)	
#	dependence	of	outlier	number	on	probability	threshold	(probthr)	
plotsensitivity(sc)	
	
	
	
#############################################################	
#####	Detection	of	CD2	subset	
#############################################################	
hlgene_log("LYZ__chr12")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	and	from	2008	JI	
hlgene_log("ANXA1__chr9")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	
hlgene_log("COTL1__chr16")	#	enriched	in	CD2hiCD5+CD81+	from	2017	PNAS	paper	
hlgene_log("CD86__chr3")	#	expressed	by	CD2hiCD5+	in	steady	state	from	2013	PLOS	One	
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