SUPPLEMENTARY INFORMATION

Table S1: CHN, ICP and TGA analysis for the **RuCo** salt before and after the light-driven water oxidation experiments, as compared with possible stoichiometries.

The high disorder of the solvent molecules and counter-cations did not allow us to complete the data refinement. However, the large size of the $[Ru(bpy)_3]^{2+}$ allows us to confirm the $[Ru(bpy)_3]/[Co_9(H_2O)_6(OH)_3(HPO_4)_2(PW_9O_{34})_3]$ stoichiometry, since there is no available space for an additional $[Ru(bpy)_3]^{2+}$ in the unit cell (Figure S13). We assign a K_{12} stoichiometry because no other cations were used during synthesis.

Figure S1: FT-IR spectra of the **CsCo9** salt before (blue) and after (red) light-driven water oxidation experiments vs. commercial $[Ru(bpy)_3]Cl_2$ (black) as a reference.

Figure S2: Raman spectra of the CsCo₉ salt before (blue) and after (red) light-driven water oxidation experiments vs. commercial $[Ru(bpy)_3]Cl_2$ (black) as a reference.

Figure S3: Ru 3d (blue and red) and C 1s (green) XPS spectra of **CsCo9** as prepared (left) and collected after the light-driven water oxidation experiments (right).

Figure S4: Cs 3d_{5/2} XPS spectra of CsCo₉ as prepared (blue) and collected after the lightdriven water oxidation experiments (red).

Figure S5: Thermogravimetric analysis of the **RuCo**₉ salt before (top) and after (bottom) lightdriven water oxidation experiments.

Figure S6: Dynamic light scattering measurement of as-prepared **RuCo** salt in suspension in water.

Figure S7: Measured oxygen evolution during the pulse experiments employing 10 mg of **RuCo**₉ in a KP_i (40 mM) buffer at pH 7 with $S_2O_8^{2-}$ (5 mM) as sacrificial electron acceptor.

Figure S8: FT-IR spectra of the RuCo₉ salt before (blue) and after (red) light-driven water oxidation experiments.

Figure S9: Raman spectra of the RuCo₉ salt before (blue) and after (red) light-driven water oxidation experiments vs. commercial $[Ru(bpy)_3]Cl_2$ (black) as a reference.

Figure S10: Raman spectra of the collected **RuCo** salt (red) after light-driven water oxidation experiments compared to a pristine Co₃O₄ (black) reference.

Figure S11: Ru 3d (blue and red) and C 1s (green) XPS spectra of **RuCo** as prepared (left) and collected after light-driven water oxidation experiments (right).

Figure S12: Co 2p3/2 XPS spectra of **RuCo9** as prepared (blue) and collected after light-driven water oxidation experimens (red), compared to that obtained with pristine Co₃O₄ (black).

Figure S13: Representation of the unit cell for the single crystal of $[Ru(bpy)_3]_2K_{12}[Co_9(H_2O)_6(OH)_3(HPO_4)_2(PW_9O_{34})_3]$ •xH₂O (cf. Table S1).

LIGHT-DRIVEN WATER OXIDATION CATALYSIS TESTS

The number of mols of O_2 produced during the experiments were calculated from the $\%O_2$ given by the oxygen-sensing probe employing the Dalton's law of partial pressures:

$$
\%O_2 = \frac{P_{O_2}}{P_T} \times 100
$$

where P_{02} is the partial pressure of the O_2 in the gas-space, and P_T is the total pressure and equal to 1 atm. Therefore, by substituting P_{O2} into the ideal gas law we can calculate the number of mols of $O₂$ produced as:

$$
n_{O_2} = \frac{\frac{\%O_2}{100}V_{gs}}{RT}
$$

where n_{O2} = number of moles of O₂; %O₂ = percentage of O₂ present in the gas−space; V_{gs} = gas−space volume (in L); R (gas constant) = 0.082 atmL/molK; and T = 298K.

The turnover number (TON) was calculated as:

$$
TON = \frac{n_{O_2}}{n_{cat}}
$$

where n_{O2} = number of moles of O_2 , and n_{cat} = number of moles of catalyst.

The turnover frequency (TOF, h^{-1}) was calculated by plotting n_{O2}/n_{cat} vs. time. The slope at the beginning of the O_2 evolution follows a linear fit, and it is equal to the TOF, following the relationship:

$$
TOF = \frac{n_{O_2}}{n_{cat} \cdot t} = slope
$$

The chemical yield (CY, %) was calculated as:

$$
CY = \frac{2 \cdot n_{O_2}}{n_{S_2O_8^{2-}}} \times 100
$$

where n_{02} = number of moles of O_2 , and n_{S2O8} = number of moles of Na₂S₂O₈. The number two arises because the formation of O_2 requires the removal of four electrons, but the photochemical process using the $\left[\text{Ru(bpy)}_3\right]^{2^+/S_2O_8^{2^-}}$ assay accepts only two electrons.