Clustering of Circular Consensus Sequences: Accurate Error Correction and Assembly of Single Molecule Real-Time Reads from Multiplexed Amplicon Libraries

Felix Francis, Michael D. Dumas, Scott B. Davis and Randall J. Wisser

Supplementary Tables

Amplicon library	
Single	Multiplex
136,008,130	210,038,102
3,697	4,094
98.54%	98.39%
9.39	9.00
	Amplicon Single 136,008,130 3,697 98.54% 9.39

 Table S1. PacBio reads of insert protocol output metrics.

Table S2. Padded and barcoded primer sequences used for amplification of six maize lines
--

Sample	Primer	Sequence
P39	11.4_f_1	GTTAGCTATACATGACTCTGCGCGGCTGTGAAGATGTCATGGACA
Tx303	11.4_f_2	GTTAGTGTGTATCAGTACATGGCGGCTGTGAAGATGTCATGGACA
Mo17	11.4_f_3	GTTAGTATGTGATCGTCTCTCGCGGCTGTGAAGATGTCATGGACA
Hp301	11.4_f_4	GTTAGTACGACTACATATCAGGCGGCTGTGAAGATGTCATGGACA
B73	11.4_f_5	GTTAGTATCTCTGTAGAGTCTGCGGCTGTGAAGATGTCATGGACA
CML277	11.4_f_6	GTTAGTCTATGTCTCAGTAGTGCGGCTGTGAAGATGTCATGGACA
P39	11.4_r_1	GTTAGGCAGAGTCATGTATAGTGGAACAAGAGCTGGCCTGTTCGA
Tx303	11.4_r_2	GTTAGCATGTACTGATACACATGGAACAAGAGCTGGCCTGTTCGA
Mo17	11.4_r_3	GTTAGGAGAGACGATCACATATGGAACAAGAGCTGGCCTGTTCGA
Hp301	11.4_r_4	GTTAGCTGATATGTAGTCGTATGGAACAAGAGCTGGCCTGTTCGA
B73	11.4_r_5	GTTAGAGACTCTACAGAGATATGGAACAAGAGCTGGCCTGTTCGA
CML277	11.4_r_6	GTTAGACTACTGAGACATAGATGGAACAAGAGCTGGCCTGTTCGA
P39	2.2_f_1	GTTAGCTATACATGACTCTGCGCGGCATACAACAGGCAAAGTTAGC
Tx303	2.2_f_2	GTTAGTGTGTATCAGTACATGGCGGCATACAACAGGCAAAGTTAGC
Mo17	2.2_f_3	GTTAGTATGTGATCGTCTCTCGCGGCATACAACAGGCAAAGTTAGC
Hp301	2.2_f_4	GTTAGTACGACTACATATCAGGCGGCATACAACAGGCAAAGTTAGC
B73	2.2_f_5	GTTAGTATCTCTGTAGAGTCTGCGGCATACAACAGGCAAAGTTAGC
CML277	2.2_f_6	GTTAGTCTATGTCTCAGTAGTGCGGCATACAACAGGCAAAGTTAGC
P39	2.2_r_1	GTTAGGCAGAGTCATGTATAGGGCTGCTATGGTCTGTATCGTCTCCAAC
Tx303	2.2_r_2	GTTAGCATGTACTGATACACAGGCTGCTATGGTCTGTATCGTCTCCAAC
Mo17	2.2_r_3	GTTAGGAGAGACGATCACATAGGCTGCTATGGTCTGTATCGTCTCCAAC
Hp301	2.2_r_4	GTTAGCTGATATGTAGTCGTAGGCTGCTATGGTCTGTATCGTCTCCAAC

B73	2.2_r_5	GTTAGAGACTCTACAGAGATAGGCTGCTATGGTCTGTATCGTCTCCAAC
CML277	2.2_r_6	GTTAGACTACTGAGACATAGAGGCTGCTATGGTCTGTATCGTCTCCAAC
P39	2.1_f_1	GTTAGCTATACATGACTCTGCTTGTGGCATCAGTAGGGTCTGAAAC
Tx303	2.1_f_2	GTTAGTGTGTATCAGTACATGTTGTGGCATCAGTAGGGTCTGAAAC
Mo17	2.1_f_3	GTTAGTATGTGATCGTCTCTCTTGTGGCATCAGTAGGGTCTGAAAC
Hp301	2.1_f_4	GTTAGTACGACTACATATCAGTTGTGGCATCAGTAGGGTCTGAAAC
B73	2.1_f_5	GTTAGTATCTCTGTAGAGTCTTTGTGGCATCAGTAGGGTCTGAAAC
CML277	2.1_f_6	GTTAGTCTATGTCTCAGTAGTTTGTGGCATCAGTAGGGTCTGAAAC
P39	2.1_r_1	GTTAGGCAGAGTCATGTATAGCCTTCCCTTAACCAAAGTTGAATAGCAG
Tx303	2.1_r_2	GTTAGCATGTACTGATACACACCTTCCCTTAACCAAAGTTGAATAGCAG
Mo17	2.1_r_3	GTTAGGAGAGACGATCACATACCTTCCCTTAACCAAAGTTGAATAGCAG
Hp301	2.1_r_4	GTTAGCTGATATGTAGTCGTACCTTCCCTTAACCAAAGTTGAATAGCAG
B73	2.1_r_5	GTTAGAGACTCTACAGAGATACCTTCCCTTAACCAAAGTTGAATAGCAG
CML277	2.1 r 6	GTTAGACTACTGAGACATAGACCTTCCCTTAACCAAAGTTGAATAGCAG
P39	13.4_f_1	GTTAGCTATACATGACTCTGCTCCTCATTCTCCTCTCGGAATCGCT
Tx303	13.4 f 2	GTTAGTGTGTATCAGTACATGTCCTCATTCTCCTCTCGGAATCGCT
Mo17	13.4 f 3	GTTAGTATGTGATCGTCTCTCTCCTCATTCTCCTCTCGGAATCGCT
Hp301	134f4	GTTAGTACGACTACATATCAGTCCTCATTCTCCTCTCGGAATCGCT
B73	13.4 f 5	GTTAGTATCTCTGTAGAGTCTTCCTCATTCTCCTCTCGGAATCGCT
CML277	134f6	GTTAGTCTATGTCTCAGTAGTTCCTCATTCTCCTCTCGGAATCGCT
P39	134 r 1	GTTAGGCAGAGTCATGTATAGATACCACCTCAAGAAAGCAGGCCTA
Tx303	13.4 r 2	GTTAGCATGTACTGATACACAATACCACCTCAAGAAAGCAGGCCTA
Mo17	13.1 ± 2 13.4 r 3	GTTAGGAGAGACGATCACATAATACCACCTCAAGAAAGCAGGCCTA
Hp301	13.1 ± 5 13.4 r 4	GTTAGCTGATATGTAGTCGTAATACCACCTCAAGAAAGCAGGCCTA
B73	13.4 ± 5	GTTAGAGACTCTACAGAGATA ATACCACCTCA AGA A AGCAGGCCTA
CML277	13.4 r 6	GTTAGACTACTGAGACATAGA ATACCACCTCA AGA A AGCAGGCCTA
P39	65 f 1	GTTAGCTATACATGACTCTGCCTTGCCGCTAAACCATCTCGCGATT
Tx303	$65f^{2}$	GTTAGTGTGTATCAGTACATGCTTGCCGCTAAACCATCTCGCGATT
Mo17	65f3	GTTAGTATGTGATCGTCTCTCCTTGCCGCTAAACCATCTCGCGATT
Hp301	65f4	GTTAGTACGACTACATATCAGCTTGCCGCTAAACCATCTCGCGATT
B73	65f5	GTTAGTATCTCTGTAGAGTCTCTTGCCGCTAAACCATCTCGCGATT
CMI 277	65f6	GTTAGTCTATGTCTCAGTAGTCTTGCCGCTAAACCATCTCGCGATT
P39	65 r 1	GTTAGGCAGAGTCATGTATAGTTCTTGCGCCCACCTCCTTCTGAAA
Ty 303	$65 r^{2}$	GTTAGCATGTACTGATACACATTCTTGCGCCCACCTCCTTCTGAAA
Mo17	65 r 3	GTTAGGAGAGACGATCACATATTCTTGCGCCCACCTCCTTCTGAAA
Hp301	65 r 4	GTTAGCTGATATGTAGTCGTATTCTTGCGCCCACCTCCTTCTGAAA
B73	65r5	GTTAGAGACTCTACAGAGATATTCTTGCGCCCACCTCCTTCTGAAA
CMI 277	65r6	GTTAGACTACTGAGACATAGATTCTTGCGCCCACCTCCTTCTGAAA
P30	1.6 ± 1	GTTAGCTATACATGACTCTGCA AGCTCTA AGCGCCGCCATGGTTA
T_{y} 303	1.0 ± 1	GTTAGEGETATCAGTACATGA AGCTCTA AGCGCCGCCATGGTTA
Mo17	$1.0_{-1_{-2}}$	
Up201	1.0_{-1}_{-3}	
11p301 p73	1.0_1_4 1.6 f 5	
D75 CMI 277	1.0_1_J 1.6_f_6	
D30	$1.0_{-1_{-0}}$	
F 39 Ty 202	$1.0 _ _1$	
1X303 Mo17	$1.0 \perp 2$	
W01/	1.0_1_5 1.6 r 4	
прэ01 172	1.0_ <u>r_</u> 4	
D/J CMI 277	1.0_Г_Э	
CML2//	1.0_r_0	GTIAGACIACIGAGACAIAGAGCAICTTGGCGTACACCTTGTTGG

Supplementary Figures

Figure S1. Dot-plots of alignments between amplicon reference sequences and inaccurate consensus sequences generated by LAA. (a-g) The reference sequence for each amplicon is labeled according the chromosome, start and stop position in the reference genome of B73 v3 (x-axes). The consensus sequences are labeled 7-13 (y-axes). Green lines show alignments in the same orientation while red lines show alignments in reverse orientation.