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1 Core set of lethality scores

1.1 Alternative definition

1.1.1 Core set definition using assay controls

The core set is defined as the set of lethality scores forming the core of the
scores’ distribution, per replicate. As such, it should be formed by a part of the
scores’ distribution that can be expected to be the same across replicates and
cell lines, corresponding to phenotypes that are observed across all screens in
similar proportions. In the main text we built it by choosing a fixed percentage
of all lethality scores. This seems a reasonable choice in studies where educated
guesses can be made about the proportion of viabilities overlapping between
different screens, such as when whole-genome screens are used. However, in
dedicated screens using a subset of all library features, it may be harder to
choose such a proportion. As an alternative, we propose to define the core set
using their distances relative to the assay negative and positive controls. Since
the core set is meant to exclude extreme (lethal) phenotypes, we will define it
as the set of values closer to the negative controls than to the positive controls.

Specifically, per replicate k we defined distances from each lethality score to
the negative controls distribution as:

dik(ZN ) =
|Zik − Z̃N

k |
MADN

k

, for replicate k,

where Zik represents the (re-scaled) observed value for feature i of replicate k,
Z̃N
k and MADN

k represent the median and median absolute deviation (MAD) re-
spectively of lethality scores for negative controls and |x| represents the absolute
value of x. A similar expression was used to yield distances from each lethality
score and those of the positive controls, producing dik(ZP ). Then, for each
replicate k, the core set {Zc

ik} is formed by lethality scores {Zik, i = 1, . . . , Ck}
such that γdik(ZP ) > dik(ZN ), for some fixed γ > 0. Note that the number
Ck of scores included in {Zc

ik} typically varies with the replicate k. Since the
distance used was standardized by the controls’ variability, it takes technical
variability into account.

In the distance defined above, we standardize the difference between each
lethality score and the center of the controls’ distribution by a measure of the
controls’ variability. We suggested using the MAD as it is a robust measure.
However, in case the data at hand is obtained via deep sequencing, such as is
the case with pooled gene-silencing screens, this may be undesirable. Indeed,
positive controls may then involve many zeros, yielding possibly MAD=0 for
some replicates. Note that it is often not the case that positive controls have
indeed zero variability, so this is just an artefact. In such cases, alternatives for
the MAD are the inter-quartile range, which is slightly less robust, but even it
may yield zeros, or the classic standard deviation.
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1.1.2 Interpretation of the cut-off

We proposed to use a distance defined in terms of the scaled difference to the
center of each control distribution, standardized by its median absolute devi-
ation. This implies that, for a feature with lethality score z and γ = 1, the
distances are |z − Z̃N |/MADZN / and |z − Z̃P |/MADZP , where all values refer
to the same replicate but the index k is omited for clarity. If we note that the
lethality scores for negative controls are centered at 0 and those for positive
controls are centered at 1, we can re-write these distances as |z|/MADZN and
|z − 1|/MADZP . So, the cut-off for the core set is the value zc such that these
distances are equal, which means zc must satisfy

|zc|
MADZN

=
|zc − 1|
MADZP

|zc|MADZP − |zc − 1|MADZN

MADZN MADZP

= 0.

Since the cut-off zc is by definition between the medians of negative and positive
controls, clearly it satisfies 0 < zc < 1, so we can write:

zcMADZP + (zc − 1)MADZN

MADZN MADZP

= 0

zc(MADZP + MADZN )−MADZN

MADZN MADZP

= 0

zc(MADZP + MADZN ) = MADZN

zc =
MADZN

(MADZP + MADZN )
.

So, the cut-off is essentially set as a relationship between the controls’ variabil-
ities.

Specifically, if the negative controls have very small variability compared
with the positive controls, the cut-off will be very small. If in addition the library
features display (considerably) more variability than the negative controls, then
lethality scores selected by this distance will not represent well the core of the
scores distribution.

1.1.3 Choosing γ

We suggest choosing γ so that a large enough percentage of lethality scores is
included in the core set. Specifically, we consider choosing the cut-off so as to
guarantee a certain representation of all lethality scores or, in other words, to
guarantee a given proportion of lethality scores is included in the core set. The
specific proportion may vary according to the fraction of siRNAs believed to
yield a different lethality status across cell lines. In genome-wide screens this
fraction may lie between 0.5% and 5%, but this may also vary across cell lines.
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Assuming at most 5% of scores differ in their lethality status, we can use the
95th percentile Z.95 of the scores as the cut-off zc to set γ, as in:

Z.95 = γ
MADZN

(MADZP + MADZN )
⇒ γ =

Z.95(MADZP + MADZN )

MADZN

. (1)

Alternatively, in studies where a large proportion of library features is ex-
pected to display a lethal phenotype, a value of γ such as 1, halfway between
negative and positive controls, may be more appropriate. The specific γ value
used will then determine the part of the lethality scores’ distribution that will
be normalized to being the same across replicates and cell lines.

1.2 Studying depletion as well as proliferation effects

Some studies are designed to measure both depletion as proliferation effects –
in other words, both lethal as well as growth-promoting features are of interest.
In such cases, the core set should include the core of the lethality scores’ distri-
bution excluding both tails. One relatively simple way of doing this is to define
each replicate’s core set as all values between the 2.5 and the 97.5 percentiles,
for example, leaving 2.5% of values on each tail.

Alternatively, distances from negative and positive controls distributions can
be used, for example by including in the core set all lethality scores in a sym-
metric interval around zc, such as [zc− δ, zc + δ] for some δ > 0, where zc is the
score value satisfying dck(ZN ) = dck(ZP ), as defined in subsection 1.1.2.

2 Simulation study

2.1 Motivation

Here we assume that 6 cell lines are available, each being screened in triplicate.
Per replicate, lethality score measurements are obtained for a number (M =
1000) of library features are studied, as well as for negative and positive controls
(200 each). Interest lies in finding library features that yield different phenotypes
between cell lines. In this context, scores are negatively associated with viability,
with higher values representing less viability.

All entries in the data matrix are drawn from independent normal distribu-
tions, with parameters varying as follows. Controls’ lethality scores are drawn
with standard deviation 0.1; negative controls’ lethality scores have mean 0
whilst positive controls have mean 1. Library features are drawn from a nor-
mal distribution with standard deviation twice that of controls, each with a
different mean µi(i = 1, . . . , 1000) that itself is drawn from a beta distribution.
In order to introduce heterogeneity between the library features, we generate
means assuming µi ∼ B(2, 6), so that the beta distribution is asymmetric to the
left, with expected value 2/8 = 0.25, so that most library features yield little
lethality. The above sets parameters under H0, which states that there are no
library features with differential phenotypes between cell lines.
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To make the data more realistic, we also introduce a stretch/contraction
effect, which consists in multiplying the signal of library lethality scores as well
as positive controls’ mean by a fixed value, per replicate. Constants used here
are: 0.7 (cell lines 1, 4) and 1.4 (cell lines 3, 6). Data for cell lines 2, 5 was
neither stretched nor contracted after simulation.

2.2 No cell line effect

Data generated showed enough separation between controls distributions, as
well as the signal stretching/contraction expected (see top-left column graph in
supplementary figure 1). When overlayed, however, these signal range changes
could seem to suggest a cell line effect, even though no true cell line effect is
present in this case and the signal stretching/contraction is orthogonal to the
tested cell line effect.

The generated data is then normalized as follows. For each replicate, we
define the core set as all lethality scores up to the 95th percentile. These val-
ues are then quantile-normalized, and the same normalization is extended to
the remainder of the data. This corrects for the signal range changes in the
appropriate way (see top-middle column graph in supplementary figure 1).

Small differences on the densities’ tails may remain after rscreenorm, but
these do not lead to false positives. To illustrate that, we fit a linear regression
model per library feature, where we test for a non-existent group effect: group
1 includes cell lines 1, 2 and 3, whilst group 2 includes the remaining cell lines.
Note that this group effect is orthogonal to the stretch effect. The p-values for
this comparison obtained with the quantile-normalized data seem to follow a
uniform distribution, which would be expected under no effect (data not shown).
In contrast, p-values for the same comparison obtained using the lethality scores
show an enrichment of small values, suggesting that there is an effect when
the data does not (data not shown). Indeed, corresponding false discovery
rates (bottom-left graph in supplementary figure 1) yielded when using the
un-normalized lethality scores are well above the expected value, for all FDR-
control levels used. In contrast, when using the rscreenorm data false discovery
rates remained around the expected value.

2.3 Cell line effect

In order to generate differential effects for library features, we assume that 80%
of all library features is not affected and thus has observations generated as de-
scribed above. For the remaining 200 library features, we generate observations
for half of the cell lines (1, 2 and 3) in the same way, whilst the other half is
generated with a mean of 0.5.

Generated lethality scores for library features had distributions that varied
considerably (bottom-left graph in supplementary figure 1). After rscreenorm,
for which 95% of the data for cell lines 1, 2, 3 and 70% of that for cell lines
4, 5 and 6 were used, the data distributions were much more similar (bottom-
middle graph in supplementary figure 1). Here we point out that the upper tail
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of distributions differ, allowing for different proportions of scores being extreme.
Of course, in practice the proportion of of signal that overlaps is unknown, so
researchers may avoid the arbitrariness of a set-proportion and instead build
core sets using distances relative to controls, as described in subsection 1.1.1.

In order to better understand the impact of using rscreenorm in this case,
we simulate 1000 datasets in the same way described above. We then again
fit a linear regression model including a group effect (cell lines 4, 5, 6 vs. 1,
2, 3) per library feature. Un-normalized lethality scores consistently yield false
positives, in agreement with what was observed for the case with no effect. For
features with effect between the two cell lines groups, un-normalized lethality
scores results yield somewhat more power, at the cost of more false positives.
This is confirmed by the corresponding false discovery rates (bottom-right graph
in supplementary figure 1), where we can see that the un-normalized lethality
scores often yielded proportions above the expected value, given by the FDR-
control level used. In contrast, when using the rscreenorm data false discovery
rates remained around the expected value.

2.4 Biased positive conttrols

The setups so far described assume that both negative and positive controls
yield responses in accordance to their phenotypes. In practice, however, assay
controls can be biased, for example due to unforeseen technical issues. A bias
on the negative controls could be circumvented by centering the screens around
the median response of library features, say, since it is robust to features with
lethal phenotype. However, a bias on the positive controls is harder to correct
for, unless there are enough known library features with lethal phenotype, which
is not always the case.

To evaluate the effect of positive controls bias on results, we extend the
simulation study above to include such a bias. Specifically, we will introduce
biases as follows: for cell lines 1, 2, 3, we add respectively −0.2, 0, 0.2 to the
positive controls means, and subtract the same values from the library features
means. The same is done for cell lines 4, 5, 6, so that cell lines in each group
are affected in the same way. Since the stretch effect is a multiplicative effect
with mean 0.6, 1, 1.15 for cell lines 1, 2, 3 of group 1 respectively, and cell lines
4, 5, 6 of group 2, the combination of bias and stretch leads to positive control
means, which were originally equal to 1, to be approximately

group 1 0.4 1 1.35

group 2 0.4 1 1.35,

where we point out that this is taken as the mean across each cell line’s repli-
cates, and a normal error is added with standard deviation 0.1 to yield per-
replicate positive control means. Note also that the positive controls variability
is kept unchanged, whilst library features will vary more or less depending on
the stretch. In this case, we see that, for cell lines 1 and 4, the positive control
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means are slightly smaller than that for library features. We will refer to this
bias setting as “bias 1”.

We will also consider a second situation where, for cell lines 1, 2, 3, we add
respectively 0.2, 0,−0.2 to the positive controls means, and subtract the same
values from the library features means. The same is done for cell lines 4, 5, 6,
as before. In this case, the combination of bias and stretch leads to positive
control means to be approximately

group 1 0.8 1 0.95

group 2 0.8 1 0.95,

where, as before, a normal error is added with standard deviation 0.1 to yield
per-replicate positive control means. In this case, we see that, for cell lines 1,
3, 4 and 6, the positive control means are smaller than 1. We will refer to this
bias setting as “bias 2”.

These different setups are illustrated by the corresponding distributions of
controls, as well as for the library feature means, in supplementary figure 3.
Note that the main difference between the no-bias and bias 1 situations are for
cell lines 1, 4, which display larger lethality scores in bias 1 than without any
bias. On the other hand, in bias 2 library features for cell lines 1, 4 overlap less
with positive controls than without any bias.

Subsequently, 1000 independent datasets are simulated under each bias type,
and both false positive rates as true positive rates yielded by the analysis as be-
fore are evaluated (supplementary figure 4). Interestingly, in the bias 1 situation,
when rscreenorm is used more true positives are yielded than when no normal-
ization is used, which contrasts with what is observed for the no-bias situation.
This seems to follow from the higher lethality scores for cell lines 1 and 4 in
bias 1, and rscreenorm correctly separates the group effect from the bias. In
the bias 2 situation, rscreenorm yields less true positives than no normalization,
similarly to the no-bias situation. Here we should point out that, in all cases,
rscreenorm results yield false positive rates within the expected range, whilst
the data without normalization yields (much) higher false positive rates.

3 Cell lines

3.1 Cells and conditions

A549 and SW1573 non-small cell lung cancer (NSCLC) cell lines, VU-SCC-
120 and VU-SCC-1131 head and neck squamous cell carcinoma (HNSCC) cell
lines, PC-3 prostate cancer (PCa) cell line and 786-O renal cancer (RCC) and
SV40 immortalized primary fibroblast cell line VU-1149 were cultured using
the appropriate culture medium with glutamine and penicillin/streptomycin
added, in a humidified atmosphere of 5% CO2 at 37◦C (conditions listed in
Supplementary Table I).
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3.2 siRNA screens

Cell lines were subjected to high-throughput forward or reverse transfection in
272 96-wells or 68 384-wells plates. Experimental conditions were optimized to
achieve amongst others optimal cell densities, optimal concentrations of trans-
fection reagents, and the most suitable assay duration. In replicates of 21,121
wells, genes were targeted in duplicate (96-wells) or triplicate (384-wells) using
SMARTpool siRNAs of the siARRAY Human Genome library (Dharmacon,
part of GE Healthcare, LaFayette, CA, Cat. No. #G-003500, #G-003600, #G-
004600 and #G-005000). The siRNA pools were transfected into the cells using
DharmaFECT1 (Dharmacon) or RNAiMax (Thermo Fisher Scientific,Waltham,
MA, USA) transfection reagent. The non-targeting control siRNA siControl#1
or siControl#2 used as negative control (siCon; Cat. No. #D-001210-01-05
and #D-001210-02-05, Dharmacon) and siRNA targeting the polo-like kinase
1 gene (siPLK1; Cat. No. #M-003290-01, Dharmacon) as a positive control.
Note that the library also contains siPLK1; we will refer to the former as positive
controls and to the latter as sample siPLK1. The siRNAs are identical but the
positive controls siRNAs were not part of the library and added manually to the
plates. After transfection, cells were cultured for 4-7 days. Subsequently, cell
viability was assessed either using the Cell-Titer Blue R© assay (CTB; Promega
Benelux, Leiden, The Netherlands) or by counting of nuclei using 4’,6-diamidino-
2-phenylindole (DAPI) or Hoechst 33342 automated cytometry readout on an
Acumen eX3 plate reader (TTP Labtech, Melbourn, United Kingdom).

3.3 CRISPR-Cas screens

We also apply our method to the publicly available CRISPR-Cas screening data
of Hart et al. [18]. We obtained the read count data for 9 cell lines that were
screened using the basic library of roughly 90K gRNA from http://tko.ccbr.utoronto.ca/.
The library contains gRNAs that are cloned in lentiviral vectors, pooled and in-
troduced in the cells simultaneously with genome-wide coverage. After selection
and a certain incubation time, gRNAs that are depleted from the pool at later
time points versus the T0 control are identified by next generation sequencing.
Absence of a particular gRNA is an indication that the gene targeted by that
guide RNA is essential for that cell line.

3.4 Supplementary table: cell lines
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Cell line Cell No. Plate Culture Transfection Conc † Transfection Duration Doubling Viability Negative Positive

name type repl. type medium type (nM) reagent ‡ (h) time (h) Assay control control

‡ / % FCS

A549 NSCLC 2 96 DMEM/5 forward § 25 DharmaFECT1 120 22 CTB siCon#1 siPLK1

SW1573 NSCLC 2 96 DMEM/5 forward § 25 DharmaFECT1 96 22§ NC * siCon#2 siPLK1

VU-SCC-120 HSNCC 2 96 DMEM/5 forward § 25 DharmaFECT1 96 20 CTB siCon#2 siPLK1

VU-SCC-1131 HNSCC 3 384 DMEM/5 reverse 25 RNAiMax 120 24 CTB siCon#2 siPLK1

VU-1149 Fib 3 384 DMEM/10 reverse 25 RNAiMax 96 NA CTB siCon#2 siPLK1

PC-3 PCa 2 96 RPMI1640/10 forward § 20 DharmaFECT1 168 25-50 § NC * siCon#2 siPLK1

786-O RCC 3 384 DMEM/10 reverse 20 DharmaFECT1 72 22-45 & NC * siCon#1 siPLK1

Table 1: Summary of experimental conditions for 7 human genome wide siRNA screens. † siRNA concentration; ‡ Assay
duration after transfection; NSCLC = non-small cell lung cancer; PCa = prostate cancer; Fib = Simian virus 40 immortalized
fibroblasts; HNSCC = head and neck squamous cell carcinoma; RCC = renal cell cancer; DMEM = Dulbeccos Modified Eagles
Medium (Lonza, Verviers, Belgium); FCS = Fetal Calf Serum; *source Nagel et al; § source NCI, ATTC, DSMZ; * NC =
Nuclei count; & source NCI, Williams et al, Cowley et al; CTB = CellTiter-Blue assay; siCon = negative control siRNA pool;
siPLK1 = smart pool siRNA targetting PLK1 Polo-like kinase 1 mRNA; § for forward transfections, cells were seeded 24 hours
prior to transfection.
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4 Example: siRNA data sets

4.1 Studies involved

To illustrate our method, we will consider data from whole-genome siRNA
screens corresponding to multiple cell lines. Here we use data obtained from
the following studies:

• Sanne Martens-de Kemp (head & neck cancer, published)

• Jasmina Hodzic (prostate cancer, unpublished)

• Koen van der Mijn (renal cancer, unpublished)

• Remco Nagel (lung cancer, published)

• Chantal Stoepker (head & neck cancer, unpublished)

• Ilya Kotov (lung cancer, published)

• Job de Lange (fibroblasts, published)

Each one of these studies has performed siRNA screens, using an experi-
mental protocol that suited the specific cell line used, such as incubation time,
and the study objectives. All studies involved measuring cell viability for the
whole genome using the same Dharmacon siRNA library, distributed either over
272 96-well plates, as was the case in the studies of Martens, Hodzic, Kotov and
Nagel, or over 68 384-well plates, as in the studies of van der Mijn, Stoepker and
de Lange. Each study involved a single cell line under at least two conditions,
one of which was untreated or wild type. To illustrate our method, only the
untreated/wild type replicates of each study were used.

The negative control used in each study is typically a siControl. The positive
control used was in all cases siPLK1. Plate design involved controls on all plates,
positioned on the second column of the plate, in cases where 96-well plates were
used, or on the first four columns, in cases where 384-well plates were used. The
number of controls per plate may vary per experiment.

The read-out method also varied per experiment. The Hodzic, van der Mijn
and Nagel studies used automated cell counting after fluorescent nulcear stain-
ing, whilst the remaining used whole-well metabolic activity (CTB conversion)
measurement.

4.2 Reading in and scaling viability data

Data for each replicate was read into R[R Core Team, 2016], configured and
annotated using the package cellHTS2[Boutros et al., 2006] and gene annotation
files. Although different studies used different plate sizes, the whole-genome
siRNA library used was the same. Thus, after configuration and annotation,
the same siRNAs had measurements for all experiments. As plate design did
differ across studies, the number of controls varied.
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After configuration, all viability values were log2-transformed, to introduce
some regularization to the data. Although this is not necessary for our non-
parametric pre-processing method to work, which is also robust to extreme
values, we here used this transformation to yield better visualization.

No spatial trends were observed for specific plates, so pre-processing pro-
gressed by investigating other technical effects.

4.3 Negative controls comparable

We first centered data per replicate around its negative controls, which in essence
yield the same phenotype across the entire data. We then estimate technical
effects using the negative controls, and subsequently correct the entire data.
Technical effects that can be corrected in this way include plate and screening
date effect.

Specifically, we fitted a regression model to the log2-transformed viability
value for all sample siRNAs. The model included design-specific effects such
as plate and seeding day, for studies where this was needed. The negative
control-centered viability data X∗

ijk can be interpreted as the (scaled) viability
for siRNA i relative to the average negative control viability.

While the data is now centered around the same value, the functional ranges
varies, represented by values between negative and positive controls. Lethality
scores fix this, yielding comparable functional ranges between replicates and
replicates.

Lethality scores still vary due to both technical factors, as illustrated by
the controls’ distributions, as well as biological ones. We noted in particular
that library siRNAs’ lethality scores distributions varied across cell lines and
replicates more than controls, illustrating variability arising from both sources.
In contrast with controls that were spotted on plates by hand, library siRNAs
were robot-spotted on plates, so their viability values (and lethality scores)
should yield very comparable distributions across replicates. While differences
on the upper tail of distributions could be attributed to varying proportions
of lethal siRNAs across cell lines, the core of the distributions can be safely
assumed to be the same – differences arising typically due to factors that are
not directly related to phenotype and, thus, not of interest. So, we will quantile
normalize each replicate’s lethality scores to make the core of their distributions
the same.

4.4 Core sets for the siRNA screens

It is important that this core set includes enough of the lethality score values, so
as to represent well the core of its distribution. In the current study, we started
off by setting γ = 1 for all replicates for consistency. However, we noted that
the core sets’ representation of the lethality scores distributions was relatively
low for replicates of the studies using PC-3 and the A549 (supplementary figure
7). Indeed, the core set fell too short of the tail, due to the relatively small
negative control variances for these replicates.
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Each distribution reflects biological and technical variability between siR-
NAs, typically with no or low lethality, and they vary due to experimental
variability. However, if conditions could have been kept precisely the same, we
would have expected these distributions to also be the same. Thus, it is reason-
able to assume that the core set’s lethality scores distributions are the same for
all replicates, per experiment.

Our quantile normalization not only minimized variability between replicates
within the same experiment, but also made lethality scores between experiments
more comparable (bottom graphs in figure 4 of the main text). Here it is
obvious to see that the empirical distributions mostly overlapped in the low-
lethality range, the part of the distribution actually normalized. Differences on
the upper-tail remained, as they should, preserving phenotypical information.

Another way to illustrate this improvement is to compute the correlations be-
tween replicates before and after normalization. The density plot of all pairwise
correlations between replicates shows that our pre-processing approach essen-
tially corrected effects that increase the lowest correlations (left graph in sup-
plementary figure 8). Considering now the individual correlations, we noticed
indeed that most change very little (less than 0.05), except for those involving
A549 replicates: of those involving the first replicate, three decreased by more
than 0.05, whilst of those involving the second replicate, almost all increased
by more than 0.05 (right graph in supplementary figure 8). These corresponded
indeed to the low-correlations shoulder that improved in the density plot. So
our normalization has the potential to improve correlations between replicates,
where needed.

5 Example: CRISPR-Cas screen data

5.1 Data set used

Being non-parametric, rscreenorm can also be used to pre-process count data
with a large number of zeroes, such as pooled CRISPR-Cas screen data arising
from multiple cell lines. We illustrate this by applying it to a publicly available
CRISPR-Cas screen data set, published and previously analysed by Hart et al.
[2015], and available via the url http://tko.ccbr.utoronto.ca/. Specifically,
the data refers to five different cell lines, each screened once at T = 0 and sub-
sequently at multiple time points, chosen according to the cell line-specific du-
plication time. We used the read counts of the basic library containing roughly
90k guide RNAs. At T = 0 a single replicate was obtained, whilst for later time
points at least duplicates were generated. A total of 57 screens were produced,
with the number of replicates per cell line given in supplementary table 2.

5.2 Count data often has zeroes

The tab-delimited files with data for the various cell lines were read in, together
with guide RNA ids as well as control ids. This being count data, there may
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Time T0 T > 0
Cell line
DLD 1 3
GBM 1 6
HCT116.1 1 10
HCT116.2 1 12
HeLa 1 12
RPE1 1 8

Table 2: Number of replicates available from the TKO data, per cell line and
time point.

be measurements precisely equal to zero. While zeros are widespread in the
data, they are informative because of their relationship with the phenotype
(depletion), and thus cannot be disregarded. As data transformation, we used
the hyperbolic arc sine, that keeps measurements equal to zero with the same
value, while transforming the data scale. It has been shown [Tibshirani, 1988]
to be the transformation that corrects as much as possible for the dependence
of the variance upon the mean. Although this step is not necessary for our
non-parametric pre-processing method to work, it yields better visualization.

After transforming the data, densities of the values per replicate and per
guide RNA type (library, negative and positive control) were made (figure 1
of the main text). These densities show that there is considerable variability
between screens for different replicates and cell lines, in particular with mea-
surements at T > 0 displaying a shift compared to those for T = 0.

5.3 Lethality scores and quantile normalization

We took 778 guide RNAs labelled as “chr10Promiscuous” for positive controls,
as these were most likely to yield depletion according to Hart et al. [2015]. These
guide RNAs had a bimodal distribution of values per replicate, with the left-
most peak seemingly corresponding to guide RNAs leading to depletion, whilst
the right-most peak corresponding to a mild phenotype (data not shown). We
decided to use as positive controls the subset of chr10Promiscuous guide RNAs
that yielded values as often as possible under the left-most peak. By using a cut-
off between the two peaks as c = 4 for replicates observed at T = 0, and as c = 2
for replicates observed at later time points, we could separated observations
between two peaks for all replicates. A total of 224 chr10Promiscuous guide
RNAs with distinct sequences had their values below c for at least 50 cases, out
of the total 57 observed. This formed the set of positive controls used hereafter.

The next step was to define core sets, and use those to quantile-normalize the
data. We used the same distance definitions as before, where the median and
MAD per control type and replicate are used for negative controls. However,
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due to the large number of (informative) zeroes in the data in general, and in
particular in the positive controls, their MADs often yield zero. This was still the
case for the slightly less robust inter-quartile range (IQR), so we decided to use
the standard deviation as variability measurement in the computed distances.

The negative controls’ lethality scores yielded similar spread to that of library
guide RNAs, so after setting a value γ = 1, the majority of score values were
included in the core sets (data not shown). Importantly, the right tails of
the library guide RNAs distributions were not included in the core sets. Per
replicate, at least 90% of all scores were included in the core set, which was
considered acceptable.

Subsequently, quantile normalization was applied. As expected, the nor-
malized data for the various cell lines, time points and replicates displayed a
similar distribution, except for the tail where differential phenotype may still
be detected (figure 1 in the main text). Importantly, after normalization the
variability of measurements per guide RNA decreased substantially (data not
shown).

We conclude that our pre-processing method can be used on CRISPR-Cas
screen data to correct for differences between replicates, and that it helps to
decrease technical variability in the data.

5.4 Assessing reproducibility

We would like to assess the reproducibility of results obtained with rscreenorm,
and compare these to results obtained after median-centering the data. The
latter is the pre-processing done by MAGeck (Li et al. [2014]). In order to
assess reproducibility, we fit a regression model to replicates corresponding to
each pair of cell lines, involving a cell line effect, a time (T = 0 vs T > 0)
effect and an interaction between these two factors. P-values are extracted for
each effect as well as for the interaction. Cell line pairs with one cell line in
common are likely to yield an overlap between gRNAs found to have an effect,
either because they are cell line-specific, or because they are lethal for both cell
lines. So, we compare hit lists between pairs having one cell line in common by
producing tables of these test results. This is done for hit lists yielded for three
different cut-offs selecting hits: p ≤ 0.01, p ≤ 0.001 and p ≤ 0.0001.

Each table produces two counts for concordance between test conclusions
(either both tests are not significant or both tests are significant), as well as
two counts for discordance. Concordance and discordance counts can now be
compared between those yielded by rscreenorm and those yielded by median-
centering. Scatterplots of these counts are in supplementary figure 8. From this
figure, we can see that concordance counts are typically higher for rscreenorm
when both results are not significant, and discordance results are typically lower
with rscreenorm, compared with median-centering. Concordance counts are
sometimes slightly higher with median-centering than with rscreenorm. Inter-
estingly, this trend is the same regardless of the effect considered (cell line, time
and the interaction between them). This suggests that concordance/discordance
counts are data-led, rather than linked to a biological effect.
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We conclude that concordance is mostly higher, and discordance is almost
always lower, with rscreenorm compared with median-centering.

6 Supplementary figures
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Figure S1: Simulation study: results without an effect between cell lines 1, 2, 3
and 4, 5, 6 (top-row graphs) and with an effect (bottom-row graphs). Graphs
on first column represent density plots per replicate for each cell line, before
normalization. Graphs on middle column represent density plots per replicate
for each cell line, after rscreenorm, where we noticed that biological effects (cell
lines in warmer colours vs. cell lines in colder colours) remain in the bottom
graph, whilst no differences between cell lines are visible when no biological
effect is present (top graph). Graphs on the right column display the proportion
of false discoveries made across 1000 simulated datasets using the same setup,
according to various false discovery-rate cut-offs, indicated by the red diamonds.
Here we used different cut-offs for the no-effects and with-effects simulations for
clarity, although conclusions are unchanged if cut-offs change.
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Figure S2: Simulation study results with effect between cell lines 1, 2, 3 and 4,
5, 6. Graphs on first row represent density plots per replicate for each cell line:
on the left after rscreenorm, where we noticed that biological effects (cell lines
in warmer colours vs. cell lines in colder colours) remain and, on the right,
after classic quantile normalization using all library scores, where differences in
the upper-tails corresponding to lethal hits have been corrected away. Graphs
on the bottom row display the proportion of true discoveries made across 1000
simulated datasets using the same setup, according to various false discovery-
rate cut-offs (left, rscreenorm data; right, classic quantile-normalized data).
Median true positive rates obtained with rscreenorm are displayed in the right-
hand side graph as green diamonds.
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Figure S3: Simulation study: density of library feature means (solid line), and
distributions of negative and positive controls (blue and red dotted lines, re-
spectively), with one cell line per graph. Vertical gray-dashed line represents
the response expected for positive controls. Rows 1, 2: stretch effect, but no
positive control bias. Rows 3, 4: positive control bias 1. Rows 5, 6: positive
control bias 2. The main difference between the no-bias and bias 1 situations
are for cell lines 1, 4, which display larger lethality scores in bias 1 than without
any bias.
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Figure S4: Simulation study: boxplots of true positive percentages (left column)
and false positive proportions (right column) under the three bias-related situ-
ation: no bias (top row), bias 1 (middle row) and bias 2 (bottom row). Vertical
gray-dashed lines separate results obtained for different FDR cut-offs in each
graph.
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Figure S5: siRNA screen data example: density plots of siRNA data centered
around siCons per plate, per experiment. Dotted lines represent distributions
for controls: negative (blue) and positive (red). Values for library siRNAs
siUBB, siUBC and siPLK1 are displayed as red squares, circles and triangles,
respectively. These consistently display lethal phenotype across all cell lines and
replicates, but yield different values depending on the cell line: for example,
for cell lines 786-O and VU1131 these all yield log2-viabilities below -4 for all
replicates, whilst for SW1573 and VU-SCC-120 their log2-viabilities are between
-4 and -2.
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Figure S6: siRNA screen data example: density plots of lethality scores for all
siRNAs, per experiment. Dotted lines represent distributions for controls: neg-
ative (blue) and positive (red). Values for library siRNAs siUBB, siUBC and
siPLK1 are displayed as red squares, circles and triangles, respectively. These
consistently display lethal phenotype across all cell lines and replicates, but
yielded log2-viabilities that varied considerably between cell lines (see figure 5).
In contrast, their lethality scores are much more comparable, being all between
0.5 and 1.5.
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Figure S8: siRNA screen data example: Pearson correlation between pairs of
replicates, both of the same cell line as from different cell lines. Left: Density of
Pearson correlations, before (blue) and after (red) rscreenorm. Right: Pearson
correlations between replicates before (x-axis) and after (y-axis) rscreenorm,
sorted by their values before normalization. Correlations involving one of the
cell line A549 replicates are coloured as either purple (replicate 1) or green
(replicate 2). All correlations that changed by more than 0.05 between the two
lists involve one of the A549 replicates.
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Figure S9: siRNA screen data example: Removal of plate effects within replicates
of arrayed screens by rscreenorm. Boxplots of log2-raw viability values (top),
robust z-scores (middle) and rscreenorm scores (bottom) for the first replicate
of cell line SW1573. Same plates are identified by the same colours for negative
controls (left boxes), sample siRNAs (middle boxes) and positive controls (right
boxes). Here we display -log2-raw data and -robust z-scores, to make displays
interpretable in the same way and direction so in all cases, values indicating
more lethality are displayed higher than those corresponding to more viability.
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Figure S10: CRISPR-Cas screen data example: density plots of hyperbolic-arc
sine-transformed viabilities for positive controls per replicate, grouped by cell
line. Note that the distributions are always bimodal, with the one corresponding
to T = 0 displaying a mode on the right-hand side, whilst the ones corresponding
to T > 0 displaying modes on the left-hand side.
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Figure S11: CRISPR-Cas screen data example: density plots of hyperbolic-arc
sine-transformed viabilities per replicate, separately for library guide RNAs,
negative and positive controls, with replicates grouped by cell line. Note that
positive controls distributions are still bimodal for T = 0, but all others consis-
tently represent lethal phenotypes.
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Figure S12: CRISPR-Cas screen data example: density plots of lethality scores
per replicate, separately for library guide RNAs, negative and positive controls,
with replicates grouped by cell line.
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Figure S13: CRISPR-Cas screen data example: density plots of lethality scores
per replicate, separately for library guide RNAs, negative and positive controls,
with replicates grouped by cell line. Dark-gray dashed line: core set of 95% of
all lethality scores used by rscreenorm.
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Figure S14: CRISPR-Cas screen data example: density plots of rscreenorm scores
per replicate, separately for library guide RNAs, negative and positive controls,
with replicates grouped by cell line.
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Figure S15: CRISPR-Cas screen data example: scatterplots of concordance (left)
and discordance (right) counts per pre-processing, with rscreenorm on the x-axis
and median-centering on the y-axis. Top graphs: cell line effect results. Middle
graphs: time effect results. Bottom graphs: interaction effect between time and
cell line.
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