# Imaging Drug Uptake by Bioorthogonal Stimulated Raman Scattering Microscopy

W. J. Tipping,<sup>a,b</sup> M. Lee,<sup>b</sup> A. Serrels,<sup>b,c</sup> V. G. Brunton<sup>b,\*</sup> and A. N. Hulme<sup>a,\*</sup>

<sup>*a*</sup> EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, U.K. <sup>*b*</sup> Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Crewe Road South,

Edinburgh, EH4 2XR, U.K.

<sup>c</sup> Current address: Queens Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, U.K.

## Supplementary Figures, Supplementary Materials and

**Synthetic Procedures** 

## **Table of Contents**

| Supplementary Figures S1- S11 and Table S1         | 1       |
|----------------------------------------------------|---------|
| General Methods                                    | 9       |
| Preparative and Analytical RP-HPLC Conditions      | 9       |
| Scheme S1 and Synthetic Procedures                 | 10      |
| References                                         | 20      |
| <sup>1</sup> H and <sup>13</sup> C NMR NMR Spectra | 21      |
| Raman labels                                       | 21 – 33 |
| Anisomycin analogues                               | 34 – 49 |
| DFT Optimised Geometries for compounds             | 50      |



**Figure S1** *N*-pyrrolidine labelled anisomycin derivatives (**2b-i**) used in the experimental determination of vibrational shifts and Raman scattering intensities. (**2h** = **PhDY-ANS**; **2i** = **BADY-ANS**) Dimethylamine counterparts (**3b-i**) used to as truncated models to enable rapid DFT calculations of vibrational shifts and Raman scattering activities ( $I_{Ram}$ ).

| Raman Label      | R                     | Compound         | <b>Raman shift</b> (cm <sup>-1</sup> ) <sup>a</sup> |
|------------------|-----------------------|------------------|-----------------------------------------------------|
| N=               | N-labelled anisomycin | 2b               | 2234                                                |
| Ř                | Me <sub>2</sub> N     | 3b               | -                                                   |
|                  | N-labelled anisomycin | 2c               | 2136                                                |
| Ř                | Me <sub>2</sub> N     | 3c               | -                                                   |
|                  | N-labelled anisomycin | 2d               | 2249                                                |
| Ř                | Me <sub>2</sub> N     | 3d               | -                                                   |
|                  | N-labelled anisomycin | 2e               | 2239                                                |
| Ř                | Me <sub>2</sub> N     | Зе               | -                                                   |
| D <sub>3</sub> C | N-labelled anisomycin | 2f               | 2260 <sup>b</sup>                                   |
| Ř                | Me <sub>2</sub> N     | 3f               | -                                                   |
|                  | N-labelled anisomycin | 2g               | N.D. <sup>c</sup>                                   |
|                  | Me <sub>2</sub> N     | Зg               | -                                                   |
|                  | N-labelled anisomycin | 2h<br>(PhDY_ANS) | 2236 <sup>d</sup>                                   |
|                  | Me <sub>2</sub> N     | 3h               | -                                                   |
|                  | N-labelled anisomycin | 2i               | 2219                                                |
| PhR              | Me <sub>2</sub> N     | (BADY-ANS)<br>3i | -                                                   |

 Table S1 Anisomycin derivatives and their dimethylamine counterparts used in DFT studies.

<sup>*a*</sup> Values presented for the solid material in the bioorthogonal region  $1800 - 2800 \text{ cm}^{-1}$ . <sup>*b*</sup> The bioorthogonal Raman shift due to the CD<sub>3</sub> group is of much lower intensity and was not used in this study. <sup>*c*</sup> Compound **2g** was found to be unstable to laser irradiation. <sup>*d*</sup> Intracellular shift 2219 cm<sup>-1</sup> determined by SRS imaging.



**Figure S2** Raman activities anisomycin analogues and their dimethylamine counterparts. A Predicted Raman activity of dimethylamine adducts **3b-i**, and EdU **1**. DFT predicted Raman scattering activity ( $I_{ram}$ ) of the peak maximum between 2100 – 2250 cm<sup>-1</sup> [gas phase intensities calculated at B3LYP/6-31G(d,p)]. EdU is highlighted in red for clarity. **B** Comparison of the DFT-predicted Raman activities and experimental spontaneous Raman scattering intensities for peaks in the region 2100 – 2250 cm<sup>-1</sup>. DFT gas phase activities ( $I_{Ram}$ ) for dimethylamine adducts **3b-i** calculated at the B3LYP/6-31G(d,p) level. Relative spontaneous Raman scattering intensities for the solid anisomycin analogues **2b-i** normalised to the peak area<sub>(819 cm-1)</sub> for each analogue and expressed as a percentage of the BADY-ANS peak; mean of ten replicates with error bars ± S.D. (**2h = PhDY-ANS**; **2i = BADY-ANS**)



**Figure S3** Spontaneous Raman spectroscopy of anisomycin ANS and analogues 2b-f, 2h and 2i as solid material. Spectra normalised to the anisomycin peak at 819 cm<sup>-1</sup> present in each sample, and offset for clarity. (2h = PhDY-ANS; 2i = BADY-ANS)

Note: compound 2g is unstable upon laser irradiation, and therefore no Raman spectrum is presented.



**Figure S4** Correlation of the predicted Raman scattering activities calculated by Gaussian ( $I_{ram}$ ), with experimental Raman intensities measured by spontaneous Raman scattering ( $I_{exp}$ ). Due to the large dynamic ranges, these are plotted as their logarithms.



**Figure S5** Effect of anisomycin **ANS** and analogues **2b-i** on the phosphorylation of JNK1/2 isoforms in SKBR3 cells. (**A**) Cells were exposed to either DMSO or anisomycin ANS (10  $\mu$ M) at selected timepoints; (**B**) Cells were exposed to DMSO (lane 1), and 5  $\mu$ M concentrations of anisomycin **ANS** (lane 2) and analogues **2b-i** (lanes 3-10) for 30 min. Western blot analysis was carried out with antibodies to phosphorylated JNK (pJNK1/2) and JNK1/2.  $\beta$ -actin was used as a loading control. (**2h** = **PhDY-ANS**; **2i** = **BADY-ANS**)



**Figure S6** Correlation between SRS intensity measured at 2219 cm<sup>-1</sup> (**BADY-ANS** on-resonance) and **BADY-ANS** concentration as DMSO stock solutions. Average pixel intensities were calculated using ImageJ software. Images were acquired at  $512 \times 512$  pixels with a 20 µs pixel dwell time. Data represented as mean of 6 replicates with error bars ± SD.



**Figure S7** Time-lapse imaging of anisomycin **ANS** uptake into live SKBR3 cells. SKBR3 cells were treated with **ANS** (10  $\mu$ M at t = 0 min) and imaged at 2219 cm<sup>-1</sup> (C=C, **BADY-ANS**) every minute for 60 mins. Images were acquired at 1024 × 1024 pixels, 20  $\mu$ s pixel dwell time. Scale bars: 10  $\mu$ m.



**Figure S8**. Fast-acquisition SRS images of fixed SKBR3 cells treated with **BADY-ANS**. SKBR3 cells treated with **BADY-ANS** (100  $\mu$ M, 20 mins) and images acquired at (i) 2953 cm<sup>-1</sup> (CH<sub>3</sub>, proteins); (ii) 2844 cm<sup>-1</sup> (CH<sub>2</sub>, lipids); (iii) 2219 cm<sup>-1</sup> (C≡C, **BADY-ANS**); and (iv) 2202 cm<sup>-1</sup> (cell silent region). Images acquired at 512 × 512 pixels, 2  $\mu$ s pixel dwell time, false colour for images applied to different detection wavenumbers. Scale bars: 10  $\mu$ m.



**Figure S9** Multi-colour SRS imaging of fixed SKBR3 cells treated with **BADY-ANS**. SKBR3 cells were treated with **BADY-ANS** (10  $\mu$ M, 30 min) and SRS images acquired at (i) 2844 cm<sup>-1</sup> (CH<sub>2</sub>, lipids) and (ii) 2219 cm<sup>-1</sup> (C=C, **BADY-ANS**) and (iii) overlay of (i) and (ii) showing that **BADY-ANS** is initially concentrated in lipid droplets in some of the cells. Images acquired at 1024 × 1024 pixels, 20 µs pixel dwell time, false colour for images applied to different detection wavenumbers. Scale bars: 10 µm.



Typical field of view



**Figure S10** Quantification of the number of lipid droplets present in SKBR3 cells following treatment with (i) DMSO; (ii) **ANS** (10  $\mu$ M, 30 min) and (iii) **BADY-ANS** (10  $\mu$ M, 30 min). SRS images were acquired at 2844 cm<sup>-1</sup> (CH<sub>2</sub>, lipids) across a typical field of view (~40 cells, 20× objective lens, n = 9 repeats), and the number of lipid droplets >1  $\mu$ m were counted using ImageJ. Inset: maximum intensity Z-projection for a typical field of view following acquisition of a Z-stack of SRS images at 2844 cm<sup>-1</sup>. Scale bar: 10  $\mu$ m. See Materials and Methods for further details. The average number of lipid droplets under each treatment is reported across n = 9 repeats.



Figure S11 Dual colour alkyne-label imaging by spontaneous Raman spectrosocpy. Spontaneous Raman spectrum of SKBR3 cells treated with EdU (100  $\mu$ M, 18 h) and BADY-ANS (100  $\mu$ M, 20 min). Peak at 2120 cm<sup>-1</sup> indicative of EdU (red) and peak at 2219 cm<sup>-1</sup> indicative of BADY-ANS (black). Raman spectrum acquired at  $\lambda_{ex} = 785$  nm for 60 s using a 50× objective.

## **Movie BADY-ANS**

Live SKBR3 cells were treated with **BADY-ANS** (10  $\mu$ M) at t=0 min and SRS images were acquired at 2219 cm<sup>-1</sup> (C=C, **BADY-ANS**) every minute for 60 minutes. The individual frames were compiled on ImageJ as an image stack to generate the movie. Scale bars: 50  $\mu$ m.

#### **Movie ANS**

Live SKBR3 cells were treated with ANS (10  $\mu$ M) at t=0 min and SRS images were acquired at 2219 cm<sup>-1</sup> (C=C, **BADY-ANS**) every minute for 60 minutes. The individual frames were compiled on ImageJ as an image stack to generate the movie. Scale bars: 50  $\mu$ m.

### **General Methods**

All non-aqueous reactions were carried out under an atmosphere of nitrogen or argon using ovendried glassware that was cooled in a desiccator prior to use. Unless otherwise noted, starting materials and reagents were obtained from commercial suppliers and were used without further purification. Toluene, THF, CH<sub>2</sub>Cl<sub>2</sub>, and Et<sub>2</sub>O were dried and purified by passage through activated alumina columns using a Glass Contour Solvent Purification System. Triethylamine was distilled from calcium hydride and stored over activated 4 Å molecular sieves under an argon atmosphere. Anhydrous DMF was purchased from Acros Organics. Saturated aqueous solutions of inorganic salts are represented as (volume, sat aq.). Nuclear magnetic resonance (NMR) spectra were recorded at ambient temperature (298 K, unless otherwise stated) on a Bruker AVA400, AVA500 or AVA600 spectrometer running at 400, 500, or 600 MHz (<sup>1</sup>H spectra) or 101, 126, 151 Hz (<sup>13</sup>C spectra), respectively. Chemical shifts (δ values) are reported in parts-per-million (ppm) relative to tetramethylsilane (<sup>1</sup>H and <sup>13</sup>C spectra;  $\delta_{\text{TMS}} = 0$ ) and are calibrated to the residual solvent peak. <sup>1</sup>H NMR data are reported as follows: chemical shift, relative intensity, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qn = quintet, m = multiplet, br = broad), coupling constants (J value, Hz), and interpretation. <sup>13</sup>C NMR data are reported as follows: chemical shift, relative intensity and assignment (Q = quaternary, CH = methane,  $CH_2$  = methylene,  $CH_3$  = methyl). Infra-red spectra (IR) were recorded neat on Shimadzu IRAffinity-1. The value of peaks at maximum absorbance  $(v_{max})$  are quoted in wavenumbers  $(cm^{-1})$ . Mass spectra were obtained by electrospray (ESI) on a Bruker microTOF II mass spectrometer, or by electron ionisation (EI) on a Kratos MS50TC mass spectrometer. Mass-to-charge ratios (m/z) of all parent (molecular) ions ( $[M]^{+/-}$ ) and their intensities are reported, followed by (major) fragment or adduct ions and their intensities. Melting points (mp) were determined on a Gallenkamp Electrothermal Melting Point apparatus and are uncorrected the temperature range.  $R_f$  values ( $R_f$ ) were recorded using Merck Silicagel 60 F254 aluminium backed plates. Flash chromatography was carried out using Merck Kieselgel 60 (Merck 9385) under positive pressure. Eluent compositions are quoted as v/v ratios. Rt values were recorded by analytical reverse phase HPLC analysis using a Waters 600E (100 µL) gradient pump using a 717plus autosampler and a Waters 996 PDA equipped with a Phenomenex Luna C18(2), 5 µm, 250 x 4.6 mm column at a flow rate of 1 mL min<sup>-1</sup>. Preparative reverse phase HPLC was performed using a Waters 600 (225 µL) system using a Waters 486 tuneable absorbance detector recording at 254 nm equipped with a Phenomonex Luna C18(2), 5  $\mu$ m, 250 x 21.2 mm column at a flow rate of 21.2 mL min<sup>-1</sup>.

| Flow Rate: 21.2 mL min <sup>-1</sup> |                             | λ: 275 nm |                   |
|--------------------------------------|-----------------------------|-----------|-------------------|
| Time (min)                           | % H <sub>2</sub> O + 0.1% T | FA        | % MeCN + 0.1% TFA |
| 0.0                                  | 80                          |           | 20                |
| 20                                   | 60                          |           | 40                |
| 50                                   | 60                          |           | 40                |
| 55                                   | 5                           |           | 95                |
| 65                                   | 5                           |           | 95                |

#### Preparative RP HPLC Method A

# Analytical RP HPLC Method B

| Flow Rate: 1.0 mL min <sup>-1</sup> | λ: 275 nm                     |                   |
|-------------------------------------|-------------------------------|-------------------|
| Time (min)                          | % H <sub>2</sub> O + 0.1% TFA | % MeCN + 0.1% TFA |
| 0                                   | 80                            | 20                |
| 20                                  | 60                            | 40                |
| 25                                  | 5                             | 95                |
| 35                                  | 5                             | 95                |
| 40                                  | 80                            | 20                |
| 50                                  | 80                            | 20                |

# Analytical RP HPLC Method C

| Flow Rate: 1.0 mL min <sup>-1</sup> | λ: 2                          | 275 nm            |
|-------------------------------------|-------------------------------|-------------------|
| Time (min)                          | % H <sub>2</sub> O + 0.1% TFA | % MeCN + 0.1% TFA |
| 0.0                                 | 95                            | 5                 |
| 30                                  | 5                             | 95                |
| 35                                  | 5                             | 95                |
| 40                                  | 95                            | 5                 |
| 50                                  | 95                            | 5                 |



Scheme S1 Synthesis of anisomycin analogues. Reagents and Conditions: ANS (60  $\mu$ mol), 4b-i (60  $\mu$ mol), K<sub>2</sub>CO<sub>3</sub>, DMF, 9 h, 71-95%.<sup>37</sup> Labels 4e and 4g were reacted as their alkyne protected-counterparts 4e-TMS and 4g-TMS which were deprotected *in situ*.

## Synthesis of labels 4e-i

## 5-Trimethylsilyl-2,4-pentadiyn-1-ol, S1

TMS



A solution of 1,4-bis(trimethylsilyl)butadiyne (486 mg, 2.50 mmol) and LiBr (271 mg, 3.13 mmol) in anhydrous  $Et_2O$  (25 mL) at -10 °C, was stirred for 10 min in darkness. MeLi (1.95 mL, 3.13 mmol; 1.6 M in  $Et_2O$ ) was added dropwise and the mixture was stirred at -10 °C for 15 min,

warmed to rt and stirred for a further 2 h in darkness. The mixture was cooled to 0 °C, and a suspension of paraformaldehyde (225 mg, 7.50 mmol) in dry Et<sub>2</sub>O (30 mL) was added slowly, the mixture was warmed to rt and stirred for 18 h in darkness. The mixture was washed with NH<sub>4</sub>Cl (50 mL; sat. aq.), NaHCO<sub>3</sub> (50 mL; sat. aq.), and brine (50 mL). The combined aqueous extracts were extracted with Et<sub>2</sub>O (3 × 50 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered, and concentrated *in vacuo*. The crude material was purified using flash column chromatography (Hexane:EtOAc, 5:1) to afford the product as a pale golden oil (199 mg, 52%). **R**<sub>f</sub> (Hexane:EtOAc, 5:1) = 0.19; **IR** (neat, cm<sup>-1</sup>) 3323 (OH), 2224 (C≡C), 2108 (C≡C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  4.26 (2H, s, CH<sub>2</sub>); 0.20 (9H, s, 3CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz) 87.2 (1C, Q), 85.5 (1C, Q), 76.5 (1C, Q), 68.7 (1C, Q), 49.6 (1C, CH<sub>2</sub>), -1.9 (3C, 3CH<sub>3</sub>); *m*/z (EI) 152.1 ([M]<sup>+</sup>, 22%), 137.0 (100), 109.0 (17), 77.0 (10), 75.0 (31), 63 (3); **HRMS** (EI) calcd. for C<sub>8</sub>H<sub>12</sub>OSi [M]<sup>+</sup> 152.0652, found 152.0647. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data were in good agreement with the literature.<sup>1</sup>

#### 5-Bromo-1-trimethylsilyl-1,3-pentadiyne, 4e-TMS



A solution of 5-trimethylsilyl-2,4-pentadiyn-1-ol **S1** (59.8 mg, 400  $\mu$ mol) in anhydrous Et<sub>2</sub>O (1.0 mL) at 0 °C, was treated successively with pyridine (2.5  $\mu$ L, 32  $\mu$ mol) and PBr<sub>3</sub> (15.2  $\mu$ L, 160  $\mu$ mol). The reaction mixture was warmed to rt and stirred for 18 h in darkness. The mixture was diluted with

Et<sub>2</sub>O (30 mL) and washed with Na<sub>2</sub>CO<sub>3</sub> (15 mL; sat. aq.). The aqueous layer was separated and extracted with Et<sub>2</sub>O (3 × 30 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified using flash column chromatography (Hexane) to afford the product as a pale yellow oil (68 mg, 79%). **R**<sub>f</sub> (Hexane) = 0.74; **IR** (neat, cm<sup>-1</sup>) 2358 (C=C), 2112 (C=C); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  4.15 (2H, s, CH<sub>2</sub>); 0.22 (9H, s, 3CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  87.8 (1C, Q), 86.6 (1C, Q), 72.6 (1C, Q), 70.1 (1C, Q), 13.0 (1C, CH<sub>2</sub>), -2.0 (3C, 3CH<sub>3</sub>); *m/z* (EI) 216.0 ([<sup>81</sup>BrM]<sup>+</sup>, 42%), 214.0 ([<sup>79</sup>BrM]<sup>+</sup>, 40), 201.0 (100), 199.0 (97), 172.9 (34), 170.9 (26), 135.1 (44), 64.1 (78); **HRMS** (EI) calcd. for C<sub>8</sub>H<sub>11</sub>BrSi [<sup>79</sup>BrM]<sup>+</sup> 213.9808, found 213.9807. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data are in good agreement with the literature.<sup>2</sup>

## [5-<sup>2</sup>H<sub>3</sub>]-1-Trimethylsilyl-1,3-pentadiyne, S2

 $CD_3$ 



A solution of 1,4-bis(trimethylsilyl)butadiyne (972 mg, 5.00 mmol) in anhydrous THF (10 mL) was treated with MeLi•LiBr complex (3.78 mL, 5.67 mmol, 1.5 N in Et<sub>2</sub>O), and the resultant mixture stirred at rt for 5 h in darkness. The reaction mixture was cooled to -78 °C, and CD<sub>3</sub>I (335  $\mu$ L,

5.38 mmol) was added dropwise. The mixture was stirred at -78 °C for 1 h, and slowly warmed to rt over 12 h. The reaction mixture was cooled to 0 °C, and slowly quenched with NH<sub>4</sub>Cl (20 mL; sat. aq.). The aqueous mixture was then extracted with Et<sub>2</sub>O ( $3 \times 15$  mL), and the combined organic

extracts were washed with water (3 × 15 mL) and brine (15 mL). The resultant organic mixture was dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified using flash column chromatography (Hexane) to give the product as a pale yellow oil (400 mg, 57%).  $\mathbf{R}_f$ (Hexane) = 0.82; **IR** (neat, cm<sup>-1</sup>) 2266 (C≡C), 2230 (C≡C), 2110 (CD); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  0.18 (9H, s, 3CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  88.4 (1C, Q), 80.8 (1C, Q), 75.1 (1C, Q), 64.0 (1C, Q), 1.6 (1C, sept, *J* 20.9 Hz, *C*D<sub>3</sub>), -1.7 (3C, 3 × CH<sub>3</sub>); *m*/z (EI) 139.0 ([M]<sup>+</sup>, 39%), 124.0 (100); **HRMS** (EI) calcd. for C<sub>8</sub>H<sub>9</sub>D<sub>3</sub>Si [M]<sup>+</sup> 139.0891, found 139.0889.

## [6-<sup>2</sup>H<sub>3</sub>]-2,4-Hexadiyn-1-ol, S3

 $CD_3$ 



A solution of  $[5-{}^{2}H_{3}]$ -1-trimethylsilyl-1,3-pentadiyne **S2** (139 mg, 1.00 mmol) in anhydrous THF (10 mL) was cooled to -10 °C, and treated with MeLi•LiBr complex (830 µL, 1.25 mmol, 1.5 N in Et<sub>2</sub>O). The mixture was stirred at -10 °C for 15 min, warmed to rt and stirred for an additional

2 h. After complete desilylation, the mixture was cooled to -10 °C, and a suspension of paraformaldehyde (60.9 mg, 2.03 mmol) in anhydrous THF (3.0 mL) was added. The mixture was warmed to rt and stirred for 18 h. The reaction was quenched by the slow addition of NH<sub>4</sub>Cl (20 mL; sat. aq.), and the organic layer was washed with NaHCO<sub>3</sub> (20 mL; sat. aq.) and brine (20 mL). The combined aqueous layers were extracted with Et<sub>2</sub>O (3 × 30 mL), and the combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane:EtOAc, 10:1 → Hexane:EtOAc, 4:1) to afford the product as pale yellow needles (95 mg, 98%). **R**<sub>f</sub> (Hexane:EtOAc, 4:1) = 0.39; **IR** (neat, cm<sup>-1</sup>) 3329 (OH), 2259 (C≡C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  4.21 (2H, s, CH<sub>2</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  75.8 (1C, Q), 73.1 (1C, Q), 69.1 (1C, Q), 63.2 (1C, Q), 49.6 (1C, CH<sub>2</sub>), 1.5 (1C, sept., *J* 20.7 Hz, CD<sub>3</sub>); *m*/z (EI) 97.0 ([M]<sup>+</sup>, 100%), 80.0 (60), 77.9 (73), 69.0 (72), 68.0 (46), 62.9 (60), 52.9 (39); **HRMS** (EI) calcd. for C<sub>6</sub>H<sub>3</sub>D<sub>3</sub>O [M]<sup>+</sup> 97.0602, found 97.0598.

# [6-<sup>2</sup>H<sub>3</sub>]-1-Bromo-2,4-hexadiyne, 4f



A solution of  $[6^{-2}H_3]$ -2,4-hexadiyn-1-ol **S3** (27.2 mg, 280 µmol) in anhydrous Et<sub>2</sub>O (1.0 mL) at 0 °C, was treated successively with pyridine (1.9 µL, 24 µmol) and PBr<sub>3</sub> (10.5 µL, 110 µmol). The reaction mixture was warmed to rt and stirred for 18 h in darkness. The mixture was diluted with

Et<sub>2</sub>O (20 mL) and washed with Na<sub>2</sub>CO<sub>3</sub> (10 mL; sat. aq.). The aqueous layer was separated and extracted with Et<sub>2</sub>O (3 × 25 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane) to afford the product as a colourless oil (36 mg, 80%). **R**<sub>f</sub>(Hexane) = 0.85; **IR** (neat, cm<sup>-1</sup>) 2257 (C=C); <sup>1</sup>**H NMR** (CD<sub>3</sub>OD, 600 MHz)  $\delta$  4.10 (2H, s, CH<sub>2</sub>Br); <sup>13</sup>**C NMR** (CD<sub>3</sub>OD, 151 MHz)  $\delta$  78.0 (1C, Q), 70.8 (1C, Q), 69.4 (1C, Q), 62.9 (1C, Q), 13.6 (1C, CH<sub>2</sub>), 1.7 (1C, sept. *J* 20.1 Hz, CD<sub>3</sub>); *m/z* (EI) 161.0 ([<sup>81</sup>BrM]<sup>+</sup>, 27%), 159.0 ([<sup>79</sup>BrM]<sup>+</sup>, 28), 80.1 (100), 78.1 (58), 63.0 (62) **HRMS** (EI) calcd. for C<sub>6</sub>H<sub>2</sub>D<sub>3</sub>Br [<sup>79</sup>BrM]<sup>+</sup> 158.9757, found 158.9762.

#### 4-Iodobenzyl alcohol, S4

## 1-Trimethylsilyl-1,3-butadiyne, S5

A solution of 1,4-bis(trimethylsilyl)butadiyne (972 mg, 5.00 mmol) in anhydrous Et<sub>2</sub>O (10 mL) at 0 °C was treated with MeLi•LiBr complex (5.0 mL, 7.50 mmol, 1.5 N in Et<sub>2</sub>O). The reaction mixture was warmed to rt, and stirred for 5 h. The reaction was quenched by the addition of NH<sub>4</sub>Cl (10 mL, sat. aq.), and the resulting mixture extracted with Et<sub>2</sub>O (3 × 20 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried (MgSO<sub>4</sub>), filtered and concentrated at ambient conditions overnight. The product was found to be volatile and unstable when concentrating to dryness; approximate concentration was determined by <sup>1</sup>H NMR (0.16 N in Et<sub>2</sub>O). **R**<sub>f</sub> (Hexane) = 0.98; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  2.13 (1H, s, *H*C=CC=C), 0.23 (9H, s, 3 × CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  88.0 (1C, Q), 84.7 (1C, Q), 68.3 (1C, CH), 66.6 (1C, Q), -0.6 (3C, 3CH<sub>3</sub>). <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data are in good agreement with the literature.<sup>4</sup>

## 4-(4-Trimethylsilyl-1,3-butadiyn-1-yl)benzyl alcohol, S6

A mixture of 4-iodobenzyl alcohol **S4** (748 mg, 3.20 mmol), Et<sub>3</sub>N (890  $\mu$ L, 6.40 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (45.5 mg, 65.0  $\mu$ mol, 2 mol%) and CuI (34.2 mg, 180  $\mu$ mol, 5.6 mol%) were dissolved

in anhydrous Et<sub>2</sub>O (4 mL). The reaction mixture was stirred for 10 minutes, after which 1trimethylsilyl-1,3-butadiyne **S5** (20 mL, 3.2 mmol, 0.16 N in Et<sub>2</sub>O) was added, and the mixture stirred at rt for 18 h. The resulting mixture was concentrated *in vacuo* and re-dissolved in CH<sub>2</sub>Cl<sub>2</sub> (50 mL). The organic mixture was washed with HCl (2 × 40 mL, 1 N aq.) and water (40 mL). The combined aqueous washings were extracted CH<sub>2</sub>Cl<sub>2</sub> (3 × 100 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (CH<sub>2</sub>Cl<sub>2</sub>) to afford the product as a light brown solid (272 mg, 37%). **R**<sub>f</sub>(CH<sub>2</sub>Cl<sub>2</sub>) = 0.36; **mp** 88 - 90 °C; **IR** (neat, cm<sup>-1</sup>) 3256 (OH), 2203 (C=C), 2102 (C=C), 1508 (C=C); <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.51 (2H, d, *J* 8.4 Hz, 2 × Ar*H*), 7.35 (2H, d, *J* 8.4 Hz, 2 × Ar*H*), 4.73 (2H, d, *J* 5.9 Hz, CH<sub>2</sub>OH), 1.72 (1H, t, *J* 5.9 Hz, CH<sub>2</sub>OH), 0.26 (9H, s, 3 × CH<sub>3</sub>); <sup>13</sup>**C** NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  142.2 (1C, Q), 132.9 (2C, CH), 126.8 (2C, CH), 120.6 (1C, Q), 90.8 (1C, Q), 87.8 (1C, Q), 76.6 (1C, Q), 74.2 (1C, Q), 64.8 (1C, CH<sub>2</sub>), -0.4 (3C, CH<sub>3</sub>); m/z (EI) 228.1 ([M]<sup>+</sup>, 39%), 213.1 (100); **HRMS** (EI) calcd. for C<sub>14</sub>H<sub>16</sub>OSi [M]<sup>+</sup> 228.0965, found 228.0978. <sup>1</sup>H NMR spectroscopic data is in good agreement with the literature.<sup>5</sup>

#### 4-(4-Trimethylsilyl-1,3-butadiyn-1-yl)benzyl bromide, 4g-TMS

A solution of 4-(4-trimethylsilyl-1,3-butadiyn-1-yl)benzyl alcohol **S6** (91 mg, 400  $\mu$ mol) in anhydrous Et<sub>2</sub>O (1 mL) at 0 °C, was treated with pyridine (2.5  $\mu$ L, 32  $\mu$ mol) then PBr<sub>3</sub>(15.2  $\mu$ L,

160 μmol). The reaction mixture was warmed to rt and stirred for 18 h in darkness. The reaction mixture was diluted with Et<sub>2</sub>O (30 mL) and washed with Na<sub>2</sub>CO<sub>3</sub> (15 mL; sat. aq.). The aqueous layer was separated and extracted with Et<sub>2</sub>O (3 × 30 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane) to afford the product as a pale yellow solid (90 mg, 77%). **R**<sub>f</sub> (Hexane) = 0.48; **mp** 65 – 67 °C; **IR** (neat, cm<sup>-1</sup>) 2203 (C≡C), 2099 (C≡C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz) δ 7.50 (2H, d, *J* 8.4 Hz, 2 × Ar*H*), 7.44 (2H, d, *J* 8.4 Hz, 2 × Ar*H*), 4.59 (2H, s, CH<sub>2</sub>Br), 0.24 (9H, s, 3 × CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz) δ 140.0 (1C, Q), 132.6 (2C, CH), 129.1 (2C, CH), 121.0 (1C, Q), 90.0 (1C, Q), 87.2 (1C, Q), 75.6 (1C, Q), 74.0 (1C, Q), 31.7 (1C, CH<sub>2</sub>), -1.9 (3C, CH<sub>3</sub>); *m/z* (EI) 292.0 ([<sup>81</sup>BrM]<sup>+</sup>, 14%), 290.0 ([<sup>79</sup>BrM]<sup>+</sup>, 14), 211.1 (100), 196.0 (27), 183.0 (24); **HRMS** (EI) calcd. for C<sub>14</sub>H<sub>15</sub>BrSi [<sup>79</sup>BrM]<sup>+</sup> 290.0121, found 290.0132.

#### 4-Phenyl-1-trimethylsilyl-1,3-butadiyne, S7

A mixture of iodobenzene (180  $\mu$ L, 1.6 mmol), Et<sub>3</sub>N (450  $\mu$ L, TMS 3.2 mmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (11.5 mg, 16.4 µmol, 1 mol%) and CuI (8.8 mg, 46.2 µmol, 3 mol%) were dissolved in anhydrous Et<sub>2</sub>O (2 mL). The mixture was stirred for 10 min, after which 1-trimethylsilyl-1,3-butadiyne S5 (10 mL, 1.6 mmol, 0.16 N in Et<sub>2</sub>O) was added, and the mixture stirred at rt for 18 h. The mixture was concentrated in vacuo and re-dissolved in  $CH_2Cl_2$  (25 mL). The organic mixture was washed with HCl (2 × 20 mL, 1 N aq.) and water (20 mL). The combined aqueous washings were extracted  $CH_2Cl_2$  (3 × 50 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated in vacuo. The crude material was purified by flash column chromatography (CH<sub>2</sub>Cl<sub>2</sub>) to afford the product as a pale yellow oil (260 mg, 82%).  $\mathbf{R}_{f}$ (Hexane) = 0.64; IR (neat, cm<sup>-1</sup>) 2207 (C=C), 2102 (C=C); <sup>1</sup>H NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$ 7.53 - 7.49 (2H, m, 2 × ArH), 7.46 - 7.41 (1H, m, ArH), 7.38 (2H, t, J 7.5 Hz, 2 × ArH), 0.24 (9H, s, 3 × CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz) δ 132.2 (2C, CH), 129.3 (1C, CH), 128.3 (2C, CH), 121.1 (1C, Q), 89.5 (1C, Q), 87.4 (1C, Q), 76.0 (1C, Q), 73.3 (1C, Q), -1.8 (3C, CH<sub>3</sub>); *m/z* (EI) 198.1  $([M]^+, 32\%)$ , 183.2 (100); **HRMS** (EI) *m/z* calcd. for C<sub>13</sub>H<sub>14</sub>Si  $[M]^+$  198.0859, found 198.0862. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data are in good agreement with the literature.<sup>6</sup>

## 5-Phenyl-2,4-pentadiyn-1-ol, S8



A solution of 4-phenyl-1-trimethylsilyl-1,3-butadiyne S7 (198.3 mg, 1.00 mmol) in anhydrous THF (10 mL) was cooled to -10 °C, and treated with MeLi•LiBr complex (1.3 mL, 2.00 mmol, 1.5 N in  $Et_2O$ ).

The mixture was stirred at -10 °C for 15 min, warmed to rt and stirred for an additional 2 h. After complete desilylation, the mixture was cooled to -10 °C, and a suspension of paraformaldehyde (90.7 mg, 3.02 mmol) in anhydrous THF (3.0 mL) was added. The mixture was warmed to rt and stirred for 18 h. The reaction was quenched by the slow addition of NH<sub>4</sub>Cl (20 mL; sat. aq.), and the organic layer was washed with NaHCO<sub>3</sub> (20 mL; sat. aq.) and brine (20 mL). The combined aqueous layers were extracted with Et<sub>2</sub>O (3 × 30 mL), and the combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane:EtOAc, 10:1) to afford the product as a pale yellow oil (117.2 mg, 75%). **R**<sub>f</sub> (Hexane:EtOAc, 5:2) = 0.54; **IR** (neat, cm<sup>-1</sup>) 3293 (OH), 2241 (C=C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  7.53 – 7.48 (2H, m, 2 × Ar*H*), 7.45 – 7.35 (3H, m, 3 × Ar*H*), 4.34 (2H, s, C*H*<sub>2</sub>OH); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  132.1 (2C, CH), 129.1 (1C, CH), 128.3 (2C, CH), 121.4 (1C, Q), 81.2 (1C, Q), 77.1 (1C, Q), 72.7 (1C, Q), 68.3 (1C, Q), 49.8 (1C, CH<sub>2</sub>); *m/z* (EI) 156.0 ([M]<sup>+</sup>, 100%), 139.0 (22), 128.1 (65), 102.0 (64); **HRMS** (EI) *m/z* calcd. for C<sub>11</sub>H<sub>8</sub>O [M]<sup>+</sup> 156.0570, found 156.0565. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data are in good agreement with the literature.<sup>7</sup>

#### 5-Bromo-1-phenyl-1,3-pentadiyne, 4h



A solution of 5-phenyl-2,4-pentadiyn-1-ol **S8** (117.2 mg, 750  $\mu$ mol) in anhydrous Et<sub>2</sub>O (3 mL) at 0 °C, was treated with pyridine (4.8  $\mu$ L, 60  $\mu$ mol) then PBr<sub>3</sub> (28.5  $\mu$ L, 300  $\mu$ mol). The reaction mixture was

warmed to rt and stirred for 18 h in darkness. The mixture was diluted with Et<sub>2</sub>O (30 mL) and washed with Na<sub>2</sub>CO<sub>3</sub> (15 mL; sat. aq.). The aqueous layer was separated and extracted with Et<sub>2</sub>O (3 × 30 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane) to afford the product as a yellow oil (97 mg, 59 %). **R**<sub>f</sub> (Hexane) = 0.47; **IR** (neat, cm<sup>-1</sup>) 2243 (C≡C), 2222 (C≡C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  7.55 – 7.51 (2H, m, 2 × Ar*H*), 7.47 – 7.42 (1H, m, Ar*H*), 7.41 – 7.37 (2H, m, 2 × Ar*H*), 4.24 (2H, s, C*H*<sub>2</sub>Br); <sup>13</sup>**C** NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  132.2 (2C, CH), 129.4 (1C, CH), 128.3 (2C, CH), 121.0 (1C, Q), 78.9 (1C, Q), 77.3 (1C, Q), 72.3 (1C, Q), 69.8 (1C, Q), 13.4 (1C, CH<sub>2</sub>); *m/z* (EI) 219.9 ([<sup>81</sup>BrM]<sup>+</sup>, 11%), 217.9 ([<sup>79</sup>BrM]<sup>+</sup>, 11), 139.0 (100); **HRMS** (EI) calcd. for C<sub>11</sub>H<sub>7</sub>Br [<sup>79</sup>BrM]<sup>+</sup> 217.9726, found 217.9711.

#### 4-(4-Phenyl-1,3-butadiyn-1-yl)benzyl alcohol, S9

A solution of 4-phenyl-1-trimethylsilyl-1,3-butadiyne S7 (100.1 mg, 500  $\mu$ mol) in THF:MeOH (2 mL, 1:1 v/v) was treated with K<sub>2</sub>CO<sub>3</sub> (138.2 mg, 1.00 mmol) and the mixture

stirred at rt for 2 h. The reaction was quenched by the addition of NH<sub>4</sub>Cl (2.0 mL, sat. aq.) and Et<sub>2</sub>O (4.0 mL). The organic phase was separated, washed with brine (2 × 5 mL), dried (MgSO<sub>4</sub>) and filtered. To the deprotected alkyne was added Et<sub>3</sub>N (4.2 mL, 30.0 mmol), 4-iodobenzyl alcohol **S4** (117.1 mg, 500 µmol), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (3.5 mg, 5.0 µmol, 1 mol%) and CuI (2.7 mg, 14 µmol, 2.8 mol%), and the mixture stirred at rt for 18 h. The reaction was quenched by the addition of NH<sub>4</sub>Cl (10 mL, sat. aq.) and the resulting mixture extracted with Et<sub>2</sub>O (3 × 20 mL). The combined organic extracts were washed with brine (15 mL), dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane:EtOAc, 5:2) to give the product as a white solid (97.6 mg, 84%). **R**<sub>f</sub> (Hexane:EtOAc, 5:2) = 0.35; **mp** 126 – 128 °C;

**IR** (neat, cm<sup>-1</sup>) 3246 (OH), 2216 (C=C), 2145 (C=C); <sup>1</sup>**H** NMR (CD<sub>3</sub>OD, 500 MHz)  $\delta$  7.58 – 7.51 (4H, m, 4 × Ar*H*), 7.48 – 7.35 (5H, m, 5 × Ar*H*), 4.65 (2H, s, C*H*<sub>2</sub>OH); <sup>13</sup>C NMR (CD<sub>3</sub>OD, 126 MHz)  $\delta$  143.3 (1C, Q), 132.1 (2C, CH), 132.0 (2C, CH), 129.1 (1C, CH), 128.3 (2C, CH), 126.6 (2C, CH), 121.6 (1C, Q), 120.2 (1C, Q), 80.9 (1C, Q), 80.7 (1C, Q), 73.0 (1C, Q), 72.8 (1C, Q), 63.2 (1C, CH<sub>2</sub>); *m*/*z* (EI) 232.1 ([M]<sup>+</sup>, 100%), 202.1 (44); **HRMS** (EI) calcd. for C<sub>17</sub>H<sub>12</sub>O [M]<sup>+</sup> 232.0883, found 232.0889. <sup>1</sup>H and <sup>13</sup>C NMR spectroscopic data are in good agreement with the literature.<sup>8</sup>

#### 4-(4-Phenyl-1,3-butadiyn-1-yl)benzyl bromide, 4i



A solution of 4-(4-phenyl-1,3-butadiyn-1-yl)benzyl alcohol **S9** (116.1 mg, 500  $\mu$ mol) in anhydrous Et<sub>2</sub>O (3 mL) at 0 °C, was treated with pyridine (4.8  $\mu$ L, 60  $\mu$ mol) then PBr<sub>3</sub> (28.5  $\mu$ L,

300 µmol). The reaction mixture was warmed to rt and stirred for 18 h in darkness. The reaction mixture was diluted with Et<sub>2</sub>O (30 mL) and washed with Na<sub>2</sub>CO<sub>3</sub> (15 mL; sat. aq.). The aqueous layer was separated and extracted with Et<sub>2</sub>O (3 × 30 mL). The combined organic extracts were dried (MgSO<sub>4</sub>), filtered and concentrated *in vacuo*. The crude material was purified by flash column chromatography (Hexane) to afford the product as white solid (91 mg, 62 %). **R**<sub>f</sub> (Hexane) = 0.25; **IR** (neat, cm<sup>-1</sup>) 2216 (C≡C), 2145 (C≡C); <sup>1</sup>**H NMR** (CD<sub>3</sub>OD, 500 MHz)  $\delta$  7.57 – 7.51 (4H, m, 4 × Ar*H*), 7.49 – 7.38 (5H, m, 5 × Ar*H*), 4.60 (2H, s, C*H*<sub>2</sub>Br); <sup>13</sup>C **NMR** (CD<sub>3</sub>OD, 126 MHz)  $\delta$  139.8 (1C, Q), 132.4 (2C, CH), 132.1 (2C, CH), 129.2 (1C, CH), 129.1 (2C, CH), 128.3 (2C, CH), 121.4 (1C, Q), 121.4 (1C, Q), 81.2 (1C, Q), 80.4 (1C, Q), 73.7 (1C, Q), 72.9 (1C, Q), 31.7 (1C, CH<sub>2</sub>); *m/z* (EI) 295.9 ([<sup>81</sup>BrM]<sup>+</sup>, 12%), 293.9 ([<sup>79</sup>BrM]<sup>+</sup>, 12), 215.0 (100), 213.0 (44), 107.4 (10); **HRMS** (EI) calcd. for C<sub>17</sub>H<sub>11</sub>Br [<sup>79</sup>BrM]<sup>+</sup> 294.0039, found 294.0034.

## Characterisation of anisomycin analogues 2b-i

# General procedure for the synthesis of Raman-labelled anisomycin derivatives

To a solution of **ANS** (60.0  $\mu$ mol) in DMF (1.5 mL) was added potassium carbonate (60.0  $\mu$ mol) and **4b-i** (60.0  $\mu$ mol), the solution was stirred at room temperature for 9 h. The solution was then concentrated *in vacuo*, and the residue was purified by RP HPLC, and freeze dried to afford the product.

### N-Cyanomethyl anisomycin, 2b



**Purification** (Method A); colourless oil (20.9 mg, 87%). **R**<sub>t</sub> (Method B) = 19.4 min; **IR** (neat, cm<sup>-1</sup>) 3410 (OH), 2363 (C=N), 1748 (C=O), 1672 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.17 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 6.89 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 4.82 (1H, d, *J* 3.7 Hz, C<sub>3</sub>*H*), 4.31 – 4.28 (1H, m C<sub>4</sub>*H*), 3.89 – 3.70 (2H, dd, *J* 41.5, 17.5 Hz, NC*H*<sub>2</sub>C=N), 3.82 (3H, s, OMe), 3.79 (1H, dd, *J* 11.2, 6.1 Hz, C<sub>5</sub>*H*<sub>d</sub>H<sub>b</sub>), 3.65 (1H, dd, *J* 

12.4, 7.4 Hz, C<sub>2</sub>*H*), 3.01 – 2.92 (2H, m, C*H*<sub>2</sub>Ar), 2.86 (1H, dd, *J* 11.2, 6.1 Hz, C<sub>5</sub>H<sub>a</sub>*H<sub>b</sub>*), 2.19 (3H, s, O*Ac*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  170.9 (1C, Q), 158.8 (1C, Q), 129.8 (2C, CH), 127.9 (1C, Q), 114.5 (2C, CH), 112.8 (1C, Q), 80.1 (1C, CH), 73.5 (1C, CH), 65.8 (1C, CH), 59.1 (1C, CH<sub>2</sub>), 55.3

(1C, CH<sub>3</sub>), 40.6 (1C, CH<sub>2</sub>), 31.4 (1C, CH<sub>2</sub>), 20.7 (1C, CH<sub>3</sub>); *m/z* (ESI) 305.2 ( $[M + H]^+$ , 100%), 263.1 (11), 179.0 (41), 117.0 (22); **HRMS** (ESI) calcd. for C<sub>16</sub>H<sub>20</sub>O<sub>4</sub>N<sub>2</sub>Na  $[M + Na]^+$  327.1315, found 327.1315.

#### *N*-Propargyl anisomycin, 2c



**Purification** (Method A); colourless oil (21.6 mg, 90%). **R**<sub>t</sub> (Method B) = 16.6 min; **IR** (neat, cm<sup>-1</sup>) 3277 (OH), 2131 (C=C), 1749 (C=O), 1672 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>**H** NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.14 (1H, d, *J* 8.6 Hz, 2 × ArH), 6.88 (1H, d, *J* 8.6 Hz, 2 × ArH), 4.82 (1H, d, *J* 4.0 Hz, C<sub>3</sub>H), 4.40 – 4.36 (1H, m, C<sub>4</sub>H), 4.22 – 4.15 (1H, m, C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 4.03 – 4.00 (1H, m,

C<sub>2</sub>H), 3.95 (2H, ddd, *J* 38.2, 17.2, 2.1 Hz, NC*H*<sub>2</sub>C=CH), 3.82 (3H, s, O*Me*), 3.21 – 3.15 (1H, m, C<sub>5</sub>H<sub>a</sub>*H*<sub>b</sub>), 3.15 – 3.07 (1H, m, C*H*<sub>2</sub>Ar), 2.62 (1H, t, *J* 2.1 Hz, NCH<sub>2</sub>C=C*H*), 2.20 (3H, s, O*Ac*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  170.4 (1C, Q), 158.9 (1C, Q), 129.8 (2C, CH), 127.2 (1C, Q), 114.5 (2C, CH), 78.74 (1C, Q), 78.68 (1C, CH), 77.2 (1C, CH),\* 72.3 (1C, CH), 63.3 (1C, CH), 57.8 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 41.2 (1C, CH<sub>2</sub>), 29.6 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>); *m/z* (ESI) 326.1 ([M + Na]<sup>+</sup>, 100%), 304.2 ([M + H]<sup>+</sup>, 8), 284.1 (18), 262.1 (15), 244.1 (6); **HRMS** (ESI) calcd. for C<sub>17</sub>H<sub>22</sub>O<sub>4</sub>N [M + H]<sup>+</sup> 304.1549, found 304.1547. \*Obscured by solvent peak – observed in HSQC.

### N-2-Butyn-1-yl anisomycin, 2d



**Purification** (Method A); colourless oil (17.6 mg, 71%). **R**<sub>t</sub> (Method B) = 23.1 min; **IR** (neat, cm<sup>-1</sup>) 3271 (OH), 2247 (C=C), 1751 (C=O), 1670 (C=O, TFA), 1612 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.11 (2H, d, *J* 8.2 Hz, 2 × Ar*H*), 6.87 (2H, d, *J* 8.2 Hz, 2 × Ar*H*), 4.87 (1H, s, C<sub>3</sub>*H*), 4.34 (1H, s, C<sub>4</sub>*H*), 4.18 (1H, br. s, C<sub>5</sub>*H*<sub>a</sub>H<sub>b</sub>), 4.08 (1H, br. s, C<sub>2</sub>H), 3.91 (2H, dd, *J* 31.0, 17.0 Hz, NCH<sub>2</sub>C=CMe), 3.81 (3H, s, OMe), 3.24 (1H, d, *J* 11.6 Hz,

C<sub>5</sub>H<sub>a</sub>*H<sub>b</sub>*), 3.17 − 3.06 (2H, m, C*H*<sub>2</sub>Ar), 2.17 (3H, s, O*Ac*), 1.94 (3H, s, NCH<sub>2</sub>C≡C*Me*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) δ 170.2 (1C, Q), 158.9 (1C, Q), 129.8 (2C, CH), 127.1 (1C, Q), 114.5 (2C, CH), 87.8 (1C, Q), 78.0 (1C, CH), 71.7 (1C, CH), 66.7 (1C, Q), 65.7 (1C, CH), 58.0 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 42.5 (1C, CH<sub>2</sub>), 29.4 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>), 3.6 (1C, CH<sub>3</sub>); *m*/*z* (ESI) 318.2 ([M + H]<sup>+</sup>, 100%); **HRMS** (ESI) calcd. for C<sub>18</sub>H<sub>24</sub>O<sub>4</sub>N [M + H]<sup>+</sup> 318.1700, found 318.1705.

#### N-2,4-Pentadiyn-1-yl anisomycin, 2e



**Purification** (Method A); pale yellow oil (18.8 mg, 74%). **R**<sub>t</sub> (Method B) = 24.2 min; **IR** (neat, cm<sup>-1</sup>) 3271 (OH), 2236 (C=C), 1751 (C=O), 1670 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.15 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 6.89 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 4.90 – 4.85 (1H, m, C<sub>3</sub>*H*), 4.39 – 4.35 (1H, m, C<sub>4</sub>*H*), 4.12 (1H, dd, *J* 12.1, 5.7 Hz, C<sub>5</sub>*H*<sub>a</sub>H<sub>b</sub>), 4.00 – 3.94 (1H, m, C<sub>2</sub>*H*), 3.97 (2H, dd, *J* 59.7, 18.0 Hz, NC*H*<sub>2</sub>C=C-), 3.83 (3H, s, OMe),

3.17 – 3.06 (3H, m, C<sub>5</sub>H<sub>a</sub>*H<sub>b</sub>* + C*H*<sub>2</sub>Ar), 2.29 (1H, s, -C=C*H*), 2.20 (3H, s, O*Ac*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  170.2 (1C, Q), 158.9 (1C, Q), 129.8 (2C, CH), 127.1 (1C, Q), 114.6 (2C, CH), 78.3 (1C, CH), 74.1 (1C, Q), 72.0 (1C, CH), 69.6 (1C, Q), 66.5 (1C, Q), 66.3 (1C, CH), 64.9 (1C, Q), 58.6 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 42.6 (1C, CH<sub>2</sub>), 29.9 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>); *m*/*z* (ESI) 328.2 ([M + H]<sup>+</sup>, 100%), 179.0 (7); **HRMS** (EI) calcd. for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>N [M + H]<sup>+</sup> 328.1543, found 328.1544.

## *N*-[6-<sup>2</sup>H<sub>3</sub>]-2,4-Hexadiyn-1-yl anisomycin, 2f



**Purification** (Method A); colourless oil (20.4 mg, 77%). **R**<sub>t</sub> (Method C) = 21.1 min; **IR** (neat, cm<sup>-1</sup>) 3289 (OH), 2264 (C=C), 1751 (C=O), 1670 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz) δ 7.15 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 6.89 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 4.90 (1H, d, *J* 3.7 Hz, C<sub>3</sub>*H*), 4.41 – 4.38 (1H, m, C<sub>4</sub>*H*), 4.23 (1H, dd, *J* 12.5, 5.6 Hz, C<sub>5</sub>*H*<sub>a</sub>H<sub>b</sub>), 4.12 – 4.07 (1H, m, C<sub>2</sub>*H*) 4.04 (2H, dd, *J* 51.5, 17.8 Hz, NC*H*<sub>2</sub>C≡C-), 3.83 (3H, s, O*Me*), 3.24 (1H, d, *J* 12.5 Hz, C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 3.19 – 3.09 (2H, m, C*H*<sub>2</sub>Ar), 2.20 (3H, s, O*Ac*); <sup>13</sup>C **NMR** (CDCl<sub>3</sub>, 126 MHz) δ 170.2 (1C, Q),

159.0 (1C, Q), 129.8 (2C, CH), 126.8 (1C, Q), 114.6 (2C, CH), 79.1 (1C, Q), 78.1 (1C, CH), 75.8 (1C, Q), 71.9 (1C, CH), 66.0 (1C, CH), 63.0 (1C, Q), 62.0 (1C, Q), 58.2 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 42.6 (1C, CH<sub>2</sub>), 29.5 (1C, CH<sub>2</sub>), 20.5 (1C, CH<sub>3</sub>) 3.73 (1C, m, CD<sub>3</sub>); m/z (ESI) 345.2 ([M + H]<sup>+</sup>, 100%), 179.0 (6); **HRMS** (ESI) calcd. for C<sub>20</sub>H<sub>21</sub>D<sub>3</sub>O<sub>4</sub>N [M + H]<sup>+</sup> 345.1888, found 345.1888.

#### N-4-(1,3-Butadiyn-1-yl)benzyl anisomycin, 2g



**Purification** (Method A); light brown oil (28.5 mg, 95%). **R**<sub>t</sub> (Method B) = 28.2 min; **IR** (neat, cm<sup>-1</sup>) 3273 (OH), 1751 (C=O), 1670 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.58 (2H, d, *J* 8.2 Hz, 2 × Ar*H*), 7.49 (2H, d, *J* 8.2 Hz, 2 × Ar*H*), 6.99 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 6.84 (2H, d, *J* 8.6 Hz, 2 × Ar*H*), 4.93 (1H, d, *J* 3.2 Hz, C<sub>3</sub>*H*), 4.32 – 4.23 (3H, m, C<sub>4</sub>*H* + NC*H*<sub>2</sub>Ar), 4.03 – 3.89 (2H, m, C<sub>2</sub>*H* + C<sub>5</sub>*H*<sub>a</sub>*H*<sub>b</sub>), 3.79 (3H, s, O*Me*), 3.15 – 3.08 (2H, m, C<sub>5</sub>H<sub>a</sub>*H*<sub>b</sub> + C*H*<sub>X</sub>H<sub>Y</sub>Ar), 2.91 – 2.84 (1H, m, CH<sub>X</sub>*H*<sub>Y</sub>Ar), 2.55 (1H, s, -C=C*H*), 2.16 (3H, s, O*Ac*); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  169.9 (1C, Q), 158.9 (1C, Q), 133.5 (2C, CH), 130.9 (2C, CH), 129.7

(2C, CH), 127.2 (1C, Q), 123.0 (1C, Q), 117.9 (1C, Q), 114.5 (2C, CH), 77.8 (1C, Q), 77.2 (1C, CH), 75.3 (1C, Q), 74.0 (1C, Q), 72.3 (1C, CH), 72.3 (1C, CH), 67.8 (1C, CH), 59.9 (1C, CH<sub>2</sub>), 58.8 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 30.4 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>); *m/z* (ESI) 404.2 ( $[M + H]^+$ , 100%), 179.0 (17); **HRMS** (ESI) calcd. for C<sub>25</sub>H<sub>26</sub>O<sub>4</sub>N  $[M + H]^+$  404.1856, found 404.1869. \* Obscured by solvent peak – observed in HSQC.

## N-5-Phenyl-2,4-pentadiyn-1-yl anisomycin, 2h (PhDY-ANS)



**Purification** (isocratic 60:40 H<sub>2</sub>O: MeCN 0.1% TFA), light brown oil (21.0 mg, 73%). **R**<sub>t</sub> (Method C) = 31.3 min; **IR** (neat, cm<sup>-1</sup>) 3284 (OH), 2253 (C=C), 1751 (C=O), 1672 (C=O, TFA), 1612 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) δ 7.58 – 7.55 (2H, m,  $2 \times \text{Ar}H$ ), 7.47 – 7.43 (1H, m, ArH), 7.41 – 7.34 (2H, m,  $2 \times \text{Ar}H$ ), 7.18 (2H, d, *J* 8.6 Hz,  $2 \times \text{Ar}H$ ), 6.90 (2H, d, *J* 8.6 Hz,  $2 \times \text{Ar}H$ ), 4.90 (1H, d, *J* 3.8 Hz, C<sub>3</sub>H), 4.41 (1H, br s, C<sub>4</sub>H), 4.23 – 4.18 (1H, m, C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 4.15 – 4.02 (3H, m, C<sub>2</sub>H + NCH<sub>2</sub>C=C-), 3.83 (3H, s, OMe), 3.25 – 3.22 (1H, m, C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 3.19 – 3.10 (2H, m, CH<sub>2</sub>Ar), 2.21 (3H, s, OAc); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) δ 170.3 (1C, Q), 159.0 (1C, Q),

132.9 (2C, CH), 130.1 (1C, CH), 129.8 (2C, CH), 128.6 (2C, CH), 127.1 (1C, Q), 120.5 (1C, Q), 114.6 (2C, CH), 79.5 (1C, Q), 78.6 (1C, CH),\* 74.9 (1C, Q), 72.3 (1C, CH), 72.3 (1C, Q), 65.7 (1C, CH), 58.1 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 42.5 (1C, CH<sub>2</sub>), 29.7 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>); *m/z* (ESI) 404.2 ( $[M + H]^+$ , 100%), 324.9 (4), 246.9 (5), 179.0 (9); **HRMS** (ESI) calcd. for C<sub>25</sub>H<sub>26</sub>O<sub>4</sub>N [M + H]<sup>+</sup> 404.1856, found 404.1861. \*Q peak expected at 77.2 ppm obscured by solvent peak.

#### N-4-(4-Phenyl-1,3-butadiyn-1-yl)benzyl anisomycin, 2i (BADY-ANS)



**Purification** (isocratic 50:50 H<sub>2</sub>O:MeCN 0.1% TFA), pale yellow oil (28.0 mg, 81%). **R**<sub>t</sub> (Method C) = 29.9 min; **IR** (neat, cm<sup>-1</sup>) 3284 (OH), 2218 (C=C), 1751 (C=O), 1670 (C=O, TFA), 1613 (C=C), 1585 (C=C), 1514 (C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.61 – 7.54 (4H, m, 4 × ArH), 7.50 (2H, d, *J* 7.9 Hz, 2 × ArH), 7.43 – 7.34 (3H, m, 3 × ArH), 6.99 (2H, d, *J* 8.6 Hz, 2 × ArH), 6.84 (2H, d, *J* 8.6 Hz, 2 × ArH), 4.95 (1H, s, C<sub>3</sub>H), 4.32 – 4.25 (3H, m, C<sub>4</sub>H + NCH<sub>2</sub>Ar), 4.05 – 3.87 (2H, m, C<sub>2</sub>H + C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 3.79 (3H, s, OMe), 3.17 – 3.06 (2H, m, CH<sub>X</sub>H<sub>Y</sub>Ar + C<sub>5</sub>H<sub>a</sub>H<sub>b</sub>), 2.91 – 2.81 (1H, m, CH<sub>X</sub>H<sub>Y</sub>Ar), 2.15 (3H, s, OAc); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz)  $\delta$  169.9 (1C, Q), 158.9 (1C, Q), 133.2 (2C, CH), 132.6 (2C, CH), 131.0 (2C, CH), 129.7 (2C, CH), 129.5 (1C, CH), 128.5 (2C, CH), 127.3 (1C, Q), 123.8

(1C, Q), 121.5 (2C, Q), 114.5 (2C, CH), 82.6 (1C, Q), 80.2 (1C, Q), 77.2 (1C, CH),\* 75.0 (1C, Q), 73.6 (1C, Q), 72.3 (1C, CH), 69.2 (1C, CH), 60.2 (1C, CH<sub>2</sub>), 58.9 (1C, CH<sub>2</sub>), 55.3 (1C, CH<sub>3</sub>), 30.5 (1C, CH<sub>2</sub>), 20.6 (1C, CH<sub>3</sub>); *m/z* (ESI) 480.2 ( $[M + H]^+$ , 100%), 324.9 (4), 246.9 (6); **HRMS** (ESI) calcd. for C<sub>31</sub>H<sub>30</sub>O<sub>4</sub>N  $[M + H]^+$  480.2169, found 480.2179. \*Obscured by solvent peak – observed in HSQC.

# References

- 1. N. P. Bowling, N. J. Burrmann, R. J. Halter, J. A. Hodges and R. J. McMahon, *J. Org. Chem.*, 2010, **75**, 6382-6390.
- 2. B. F. Coles and D. R. M. Walton, *Synthesis*, 1975, **6**, 390-391.
- 3. C.-R. Elie, N. Noujeim, C. Pardin and A. R. Schmitzer, *Chem. Commun.*, 2011, 47, 1788-1790.
- 4. F. Ungeheuer and A. Fürstner, *Chem. Eur. J.*, 2015, **21**, 11387-11392.
- 5. V. T. Tripp, J. S. Lampkowski, R. Tyler and D. D. Young, *ACS Comb. Sci.*, 2014, **16**, 164-167.
- 6. K. Semba, T. Fujihara, T. Xu, J. Terao and Y. Tsuji, *Adv. Synth. Catal.*, 2012, **354**, 1542-1550.
- 7. W. Yin, C. He, M. Chen, H. Zhang and A. Lei, *Org. Lett.*, 2009, **11**, 709-712.
- 8. H. Yamakoshi, A. Palonpon, K. Dodo, J. Ando, S. Kawata, K. Fujita and M. Sodeoka, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 664-667.



-S21-







<sup>1</sup>H NMR CD<sub>3</sub>OD, 500 MHz



— 4.21



110 100 f1 (ppm) . 170 



f1 (ppm) , 70 







100 90 f1 (ppm) 0 200 190 . 180 170 160 . 150 140 . 130 . 120 110 80 . 70 60 50 . 40 . 30 20 10









-S33-











| 70°C                                                                  | 5                                                                                                                |                        |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------|
| N·TFA                                                                 |                                                                                                                  | - 10                   |
| SS'02 MeO ACO                                                         |                                                                                                                  | 20                     |
| <sup>13</sup> C NMR<br><sup>0+'62 —</sup> CDCl <sub>3</sub> , 126 MHz |                                                                                                                  | 30 -                   |
| 67.24                                                                 |                                                                                                                  | - 4                    |
|                                                                       | KARAA MAKANGA KANA M  | 20                     |
| 62°55 —<br>00°85 —                                                    |                                                                                                                  | - 09                   |
| 12 59 ~<br>12'99 ~<br>82'12 —                                         |                                                                                                                  | 70                     |
| Þ0 82 —                                                               |                                                                                                                  | - 80                   |
| 08.78 —                                                               |                                                                                                                  | - 06                   |
|                                                                       | e de vergen andere de la companya d   | 100<br>100<br>11 (ppm) |
| 70'LTT                                                                | u na                                                                         | 110                    |
|                                                                       |                                                                                                                  | 120                    |
| 92'5ZT — – — — — — — — — — — — — — — — — — —                          |                                                                                                                  | 130                    |
|                                                                       |                                                                                                                  | 140                    |
|                                                                       | o-baylo retrokandi Verene                                                                                        | 150                    |
| ī6'8Sī —                                                              |                                                                                                                  | 160                    |
| ∠τ·0ζτ —                                                              |                                                                                                                  | 170                    |
|                                                                       |                                                                                                                  | 180                    |
|                                                                       |                                                                                                                  | 190                    |
|                                                                       | and the second | 200                    |



|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\lceil \circ \rceil$ |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 10                  |
| 09'0Z MeO AcO                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50                    |
| <sup>58'6Z</sup> — <sup>13</sup> C NMR<br>CDCl <sub>3</sub> , 126 MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 -                  |
| 65'ZÞ —                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 4                   |
| — 22°35                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 20                  |
| - 28'64                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 09                  |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 70                  |
| 26.87 ~~                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 8                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 6                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f1 (ppm)              |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110                   |
| 09 #11                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120                   |
| 28.271 —                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 130                   |
|                                                                       | the state of the | 140                   |
|                                                                       | o'hord' a shekek ka                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150                   |
| ₩ <sup>128.</sup> 94                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 160                   |
| 81.071 —                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190                   |
|                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                   |

















Optimised geometries for compounds  $\mathbf{3b} - \mathbf{i}$  and EdU 1 reported in standard orientation.

Compound **3b** 

| Cent | ter | Atomic | Atomic | Coordinates (Angstroms) |           |           |
|------|-----|--------|--------|-------------------------|-----------|-----------|
| Num  | ber | Number | Туре   | х                       | Y         | Z         |
|      | 1   | 7      | 0      | -0.734458               | 0.019048  | -0.315890 |
|      | 2   | 6      | 0      | 0.313091                | -0.749856 | 0.346684  |
|      | 3   | 6      | 0      | 1.659521                | -0.258487 | 0.012313  |
|      | 4   | 7      | 0      | 2.725570                | 0.128507  | -0.232204 |
|      | 5   | 1      | 0      | 0.221497                | -0.755436 | 1.451740  |
|      | 6   | 1      | 0      | 0.248247                | -1.793650 | 0.018611  |
|      | 7   | 6      | 0      | -0.767810               | 1.407920  | 0.133985  |
|      | 8   | 6      | 0      | -2.028421               | -0.633888 | -0.155670 |
|      | 9   | 1      | 0      | -2.358687               | -0.702430 | 0.898480  |
|      | 10  | 1      | 0      | -1.989625               | -1.646617 | -0.569082 |
|      | 11  | 1      | 0      | -2.784963               | -0.071902 | -0.710056 |
|      | 12  | 1      | 0      | -1.525026               | 1.951952  | -0.437096 |
|      | 13  | 1      | 0      | -1.007331               | 1.508945  | 1.209557  |
|      | 14  | 1      | 0      | 0.199817                | 1.882118  | -0.049365 |

# Compound 3c

| Cente | er | Atomic | Atomic | Coor      | dinates (Ang | gstroms)  |
|-------|----|--------|--------|-----------|--------------|-----------|
| Numbe | er | Number | Туре   | х         | Y            | Z         |
|       | 1  | 7      | 0      | -0.767768 | 0.026340     | -0.327453 |
|       | 2  | 6      | 0      | 0.277283  | -0.765840    | 0.326502  |
|       | 3  | 6      | 0      | 1.632731  | -0.291730    | 0.032283  |
|       | 4  | 6      | 0      | 2.758672  | 0.085260     | -0.186153 |
|       | 5  | 1      | 0      | 3.750362  | 0.415941     | -0.391754 |
|       | 6  | 1      | 0      | 0.144504  | -0.799805    | 1.428299  |
|       | 7  | 1      | 0      | 0.183575  | -1.801230    | -0.024993 |
|       | 8  | 6      | 0      | -0.781121 | 1.408745     | 0.136043  |
|       | 9  | 6      | 0      | -2.068516 | -0.605670    | -0.157562 |
| 1     | 10 | 1      | 0      | -2.388366 | -0.678099    | 0.900767  |
| 1     | 11 | 1      | 0      | -2.050200 | -1.617216    | -0.576164 |
| 1     | 12 | 1      | 0      | -2.825977 | -0.030151    | -0.697916 |
| 1     | 13 | 1      | 0      | -1.528160 | 1.973716     | -0.429597 |
| 1     | 14 | 1      | 0      | -1.022327 | 1.503315     | 1.213072  |
| 1     | 15 | 1      | 0      | 0.196675  | 1.864557     | -0.036221 |

# Compound 3d

| Cent | ter Atomic Atomic Coordinates (Angstroms) |        |      |           |          |             |
|------|-------------------------------------------|--------|------|-----------|----------|-------------|
| Numk | ber                                       | Number | Туре | x         | Ŷ        | Z           |
|      | 1                                         | 7      | 0    | -1.392028 | 0.05737  | B -0.334655 |
|      | 2                                         | 6      | 0    | -0.447850 | -0.83708 | 3 0.344648  |
|      | 3                                         | 6      | 0    | 0.955656  | -0.46345 | 5 0.146229  |
|      | 4                                         | 6      | 0    | 2.120160  | -0.16843 | 0.006758    |
|      | 5                                         | 6      | 0    | 3.525513  | 0.18315  | B -0.175691 |
|      | 6                                         | 1      | 0    | -0.652795 | -0.89753 | 3 1.434543  |
|      | 7                                         | 1      | 0    | -0.607190 | -1.84858 | 1 -0.050995 |
|      | 8                                         | 6      | 0    | -1.320897 | 1.42100  | 5 0.174688  |
|      | 9                                         | 6      | 0    | -2.745833 | -0.47115 | 9 -0.252143 |
|      | 10                                        | 1      | 0    | -3.126560 | -0.54853 | 3 0.785792  |
|      | 11                                        | 1      | 0    | -2.785498 | -1.46865 | 6 -0.702101 |
|      | 12                                        | 1      | 0    | -3.426196 | 0.17887  | 5 -0.810630 |
|      | 13                                        | 1      | 0    | -1.988051 | 2.06260  | 7 -0.409240 |
|      | 14                                        | 1      | 0    | -1.612802 | 1.503112 | 2 1.240510  |
|      | 15                                        | 1      | 0    | -0.301068 | 1.79858  | 4 0.070852  |
|      | 16                                        | 1      | 0    | 3.657016  | 0.84837  | 9 -1.036357 |
|      | 17                                        | 1      | 0    | 4.137220  | -0.70878 | 1 -0.351827 |
|      | 18                                        | 1      | 0    | 3.929622  | 0.69467  | 6 0.705101  |

# Compound 3e

| Cent | ter | Atomic | Atomic | C001      | rdinates (An | gstroms)  |
|------|-----|--------|--------|-----------|--------------|-----------|
| Num  | ber | Number | Туре   | х         | Y            | Z         |
|      | 1   | 7      | 0      | 1.743369  | 0.088101     | -0.341381 |
|      | 2   | 6      | 0      | 0.851697  | -0.851133    | 0.344060  |
|      | 3   | 6      | 0      | -0.565912 | -0.531043    | 0.175870  |
|      | 4   | 6      | 0      | -1.748950 | -0.277082    | 0.060645  |
|      | 5   | 6      | 0      | -3.081257 | 0.004226     | -0.071134 |
|      | 6   | 6      | 0      | -4.262749 | 0.254405     | -0.186994 |
|      | 7   | 6      | 0      | 1.639722  | 1.439034     | 0.198637  |
|      | 8   | 6      | 0      | 3.116762  | -0.396923    | -0.310218 |
|      | 9   | 1      | 0      | 2.272599  | 2.112049     | -0.387209 |
|      | 10  | 1      | 0      | 0.607299  | 1.788793     | 0.123557  |
|      | 11  | 1      | 0      | 1.952840  | 1.508386     | 1.258658  |
|      | 12  | 1      | 0      | 3.175704  | -1.382550    | -0.783182 |
|      | 13  | 1      | 0      | 3.530632  | -0.481379    | 0.713691  |
|      | 14  | 1      | 0      | 3.755788  | 0.287765     | -0.875389 |
|      | 15  | 1      | 0      | 1.070778  | -0.919510    | 1.430810  |
|      | 16  | 1      | 0      | 1.035101  | -1.852197    | -0.067659 |
|      | 17  | 1      | 0      | -5.300200 | 0.473039     | -0.288809 |

| Center | Atomic | Atomic | .c Coordinates (Angstroms) |           |           |
|--------|--------|--------|----------------------------|-----------|-----------|
| Number | Number | Туре   | х                          | Y         | Z         |
| 1      | 7      | 0      | 2.448883                   | 0.130785  | -0.355908 |
| 2      | 6      | 0      | 1.610169                   | -0.865899 | 0.317498  |
| 3      | 6      | 0      | 0.176990                   | -0.601446 | 0.191101  |
| 4      | 6      | 0      | -1.019035                  | -0.395767 | 0.112814  |
| 5      | 6      | 0      | -2.364893                  | -0.169503 | 0.021800  |
| 6      | 6      | 0      | -3.561139                  | 0.031825  | -0.058714 |
| 7      | 6      | 0      | 2.294290                   | 1.460356  | 0.222479  |
| 8      | 6      | 0      | 3.842372                   | -0.292795 | -0.356710 |
| 9      | 1      | 0      | 2.885420                   | 2.177552  | -0.354801 |
| 10     | 1      | 0      | 1.245621                   | 1.763349  | 0.174825  |
| 11     | 1      | 0      | 2.623024                   | 1.515620  | 1.278831  |
| 12     | 1      | 0      | 3.937830                   | -1.262356 | -0.856363 |
| 13     | 1      | 0      | 4.274909                   | -0.385997 | 0.658998  |
| 14     | 1      | 0      | 4.442802                   | 0.434073  | -0.911695 |
| 15     | 1      | 0      | 1.859959                   | -0.957681 | 1.396078  |
| 16     | 1      | 0      | 1.828900                   | -1.844584 | -0.129685 |
| 17     | 6      | 0      | -4.993769                  | 0.271936  | -0.154556 |
| 18     | 1      | 0      | -5.543572                  | -0.317460 | 0.588139  |
| 19     | 1      | 0      | -5.376746                  | 0.001618  | -1.145239 |
| 20     | 1      | 0      | -5.230234                  | 1.328138  | 0.017994  |

# Compound 3f (note the CD<sub>3</sub> group in compound 3f was modelled as a CH<sub>3</sub> group).

# Compound 3g

| Center |     | Atomic | Atomic | Coor      | Coordinates (Angstroms) |           |
|--------|-----|--------|--------|-----------|-------------------------|-----------|
| Num    | ber | Number | Туре   | Х         | Y                       | Z         |
|        |     |        |        |           |                         |           |
|        | 1   | 6      | 0      | 1.484532  | 0.153765                | -0.128905 |
|        | 2   | 6      | 0      | 2.895098  | -0.005048               | -0.036238 |
|        | 3   | 6      | 0      | 4.104613  | -0.141372               | 0.043617  |
|        | 4   | 6      | 0      | 5.457705  | -0.293958               | 0.132962  |
|        | 5   | 6      | 0      | 6.661833  | -0.429750               | 0.212668  |
|        | 6   | 6      | 0      | 0.660936  | -0.930802               | -0.496260 |
|        | 7   | 6      | 0      | -0.716072 | -0.770711               | -0.585674 |
|        | 8   | 6      | 0      | -1.316815 | 0.466110                | -0.309944 |
|        | 9   | 6      | 0      | -0.499488 | 1.539897                | 0.061943  |
|        | 10  | 6      | 0      | 0.881639  | 1.395449                | 0.149696  |
|        | 11  | 1      | 0      | 7.717864  | -0.549104               | 0.282449  |
|        | 12  | 6      | 0      | -2.815067 | 0.647080                | -0.463765 |
|        | 13  | 7      | 0      | -3.589291 | -0.485779               | 0.039252  |
|        | 14  | 6      | 0      | -4.967655 | -0.447127               | -0.431861 |
|        | 15  | 6      | 0      | -3.530831 | -0.587380               | 1.493502  |
|        | 16  | 1      | 0      | -3.991992 | 0.279904                | 2.004370  |
|        | 17  | 1      | 0      | -2.490991 | -0.660805               | 1.821372  |
|        | 18  | 1      | 0      | -4.055172 | -1.490887               | 1.819373  |
|        | 19  | 1      | 0      | -5.530120 | 0.435978                | -0.071939 |
|        | 20  | 1      | 0      | -5.496614 | -1.342109               | -0.089781 |
|        | 21  | 1      | 0      | -4.987956 | -0.438512               | -1.526243 |
|        | 22  | 1      | 0      | -3.045112 | 0.748767                | -1.532989 |
|        | 23  | 1      | 0      | -3.117984 | 1.603182                | 0.007751  |
|        | 24  | 1      | 0      | -1.350203 | -1.608438               | -0.857569 |
|        | 25  | 1      | 0      | -0.950776 | 2.502880                | 0.287326  |
|        | 26  | 1      | 0      | 1.504697  | 2.234830                | 0.440275  |
|        | 27  | 1      | 0      | 1.116821  | -1.892151               | -0.709603 |
|        |     |        |        |           |                         |           |

# Compound 3h

| Center |     | Atomic | Atomic | Coor      | rdinates (Ang | gstroms)  |
|--------|-----|--------|--------|-----------|---------------|-----------|
| Num    | ber | Number | Type   | Х         | Y             | Z         |
|        |     |        |        |           |               |           |
|        | 1   | 7      | 0      | -4.646655 | 0.153748      | -0.404009 |
|        | 2   | 6      | 0      | -3.878351 | -0.820234     | 0.377146  |
|        | 3   | 6      | 0      | -2.431145 | -0.634692     | 0.275514  |
|        | 4   | 6      | 0      | -1.223538 | -0.494856     | 0.217317  |
|        | 5   | 6      | 0      | 0.130318  | -0.344823     | 0.149261  |
|        | 6   | 6      | 0      | 1.341520  | -0.210944     | 0.088250  |
|        | 7   | 1      | 0      | -4.129916 | -1.822433     | 0.005927  |
|        | 8   | 1      | 0      | -4.162651 | -0.809512     | 1.451034  |
|        | 9   | 6      | 0      | -4.455154 | 1.516943      | 0.077383  |
|        | 10  | 6      | 0      | -6.056790 | -0.210923     | -0.428709 |
|        | 11  | 1      | 0      | -6.603158 | 0.495813      | -1.060153 |
|        | 12  | 1      | 0      | -6.176816 | -1.210831     | -0.858182 |
|        | 13  | 1      | 0      | -6.530316 | -0.208079     | 0.572801  |
|        | 14  | 6      | 0      | 2.754731  | -0.058537     | 0.016411  |
|        | 15  | 6      | 0      | 3.340651  | 1.222737      | 0.066347  |
|        | 16  | 6      | 0      | 4.723058  | 1.365559      | -0.006038 |
|        | 17  | 6      | 0      | 5.542769  | 0.240909      | -0.127020 |
|        | 18  | 6      | 0      | 4.971872  | -1.033098     | -0.176428 |
|        | 19  | 6      | 0      | 3.590583  | -1.187175     | -0.106561 |
|        | 20  | 1      | 0      | 3.142711  | -2.174575     | -0.145888 |
|        | 21  | 1      | 0      | 5.605576  | -1.909968     | -0.270543 |
|        | 22  | 1      | 0      | 6.621018  | 0.356682      | -0.182624 |
|        | 23  | 1      | 0      | 5.162793  | 2.357756      | 0.032655  |
|        | 24  | 1      | 0      | 2,700076  | 2.093286      | 0.160917  |
|        | 25  | 1      | 0      | -3.393172 | 1.772585      | 0.049610  |
|        | 26  | - 1    | 0      | -4.821051 | 1.667160      | 1.111934  |
|        | 27  | 1      | 0      | -4.991663 | 2.210682      | -0.576665 |
|        |     | -      |        |           |               |           |
|        |     |        |        |           |               |           |

# Compound 3i

| Center Atomic Atomic Coordinat |     |        | dinates (And | tes (Angstroms) |           |           |
|--------------------------------|-----|--------|--------------|-----------------|-----------|-----------|
| Num                            | ber | Number | Type         | х               | Y         | Z         |
|                                |     |        |              |                 |           |           |
|                                | 1   | 6      | 0            | -1.315577       | 0.256791  | -0.253756 |
|                                | 2   | 6      | 0            | 0.102430        | 0.194002  | -0.184730 |
|                                | 3   | 6      | 0            | 1.321562        | 0.136091  | -0.129048 |
|                                | 4   | 6      | 0            | 2.678051        | 0.070319  | -0.068597 |
|                                | 5   | 6      | 0            | 3.897006        | 0.010016  | -0.015175 |
|                                | 6   | 6      | 0            | -2.084959       | -0.922580 | -0.347723 |
|                                | 7   | 6      | 0            | -3.470461       | -0.857154 | -0.419874 |
|                                | 8   | 6      | 0            | -4.135809       | 0.377372  | -0.397025 |
|                                | 9   | 6      | 0            | -3.373221       | 1.546765  | -0.294047 |
|                                | 10  | 6      | 0            | -1.984414       | 1.496473  | -0.226808 |
|                                | 11  | 6      | 0            | 5.315475        | -0.063999 | 0.045713  |
|                                | 12  | 6      | 0            | 6.083557        | 1.090020  | 0.305092  |
|                                | 13  | 6      | 0            | 7.471530        | 1.010723  | 0.363626  |
|                                | 14  | 6      | 0            | 8.117246        | -0.212249 | 0.165926  |
|                                | 15  | 6      | 0            | 7.365588        | -1.361306 | -0.091903 |
|                                | 16  | 6      | 0            | 5.977147        | -1.293657 | -0.152558 |
|                                | 17  | 6      | 0            | -5.644785       | 0.442378  | -0.535417 |
|                                | 18  | 7      | 0            | -6.341919       | -0.583998 | 0.237408  |
|                                | 19  | 6      | 0            | -7.730790       | -0.721703 | -0.180849 |
|                                | 20  | 6      | 0            | -6.243209       | -0.349965 | 1.673983  |
|                                | 21  | 1      | 0            | -6.743122       | 0.585148  | 1.992799  |
|                                | 22  | 1      | 0            | -5.193237       | -0.292310 | 1.971200  |
|                                | 23  | 1      | 0            | -6.704863       | -1.182158 | 2.214256  |
|                                | 24  | 1      | 0            | -8.333520       | 0.191533  | -0.011332 |
|                                | 25  | 1      | 0            | -8.200973       | -1.539754 | 0.373797  |
|                                | 26  | 1      | 0            | -7.777030       | -0.964492 | -1.247186 |
|                                | 27  | 1      | 0            | -5.905045       | 0.286370  | -1.591170 |
|                                | 28  | 1      | 0            | -5.991810       | 1.464019  | -0.281928 |
|                                | 29  | 1      | 0            | -4.060407       | -1.766112 | -0.481429 |
|                                | 30  | 1      | 0            | -3.874374       | 2.511101  | -0.265512 |
|                                | 31  | 1      | 0            | -1.404625       | 2.410082  | -0.146821 |
|                                | 32  | 1      | 0            | -1.579384       | -1.882607 | -0.365200 |
|                                | 33  | 1      | 0            | 5.389318        | -2.183329 | -0.352625 |
|                                | 34  | 1      | 0            | 5.577856        | 2.037610  | 0.458229  |
|                                | 35  | 1      | 0            | 8.052149        | 1.906263  | 0.564220  |
|                                | 36  | 1      | 0            | 9.200600        | -0.269551 | 0.212369  |
|                                | 37  | 1      | 0            | 7.863699        | -2.313849 | -0.246507 |
|                                |     |        |              |                 |           |           |

| EdU | 1 |
|-----|---|
|-----|---|

| Center<br>Number |    | Atomic | Atomic | Coordinates (Angstroms) |           | gstroms)  |
|------------------|----|--------|--------|-------------------------|-----------|-----------|
|                  |    | Number | Туре   | х                       | Y         | Z         |
|                  | 1  | 6      | 0      | -3.465456               | -0.156665 | 0.141031  |
|                  | 2  | 6      | 0      | -2.495357               | 0.949151  | 0.069546  |
|                  | 3  | 6      | 0      | -1.182516               | 0.663521  | -0.174319 |
|                  | 4  | 7      | 0      | -0.708477               | -0.608621 | -0.349559 |
|                  | 5  | 6      | 0      | -1.547545               | -1.725838 | -0.300667 |
|                  | 6  | 7      | 0      | -2.872801               | -1.418918 | -0.067171 |
|                  | 7  | 8      | 0      | -4.660692               | -0.064356 | 0.349249  |
|                  | 8  | 8      | 0      | -1.130455               | -2.864252 | -0.449351 |
|                  | 9  | 6      | 0      | -2.944260               | 2.286255  | 0.242697  |
|                  | 10 | 6      | 0      | 0.730596                | -0.893789 | -0.597338 |
|                  | 11 | 8      | 0      | 1.377160                | 0.293538  | -1.031385 |
|                  | 12 | 6      | 0      | 2.468053                | 0.606272  | -0.148842 |
|                  | 13 | 6      | 0      | 2.851185                | -0.732291 | 0.502545  |
|                  | 14 | 6      | 0      | 1.478651                | -1.388847 | 0.651891  |
|                  | 15 | 6      | 0      | 3.584842                | 1.247264  | -0.956472 |
|                  | 16 | 8      | 0      | 4.671367                | 1.409807  | -0.043620 |
|                  | 17 | 8      | 0      | 3.498049                | -0.593251 | 1.745262  |
|                  | 18 | 1      | 0      | 3.258898                | 2.209279  | -1.375194 |
|                  | 19 | 1      | 0      | 3.848241                | 0.581258  | -1.791028 |
|                  | 20 | 1      | 0      | 1.006679                | -1.000883 | 1.560312  |
|                  | 21 | 1      | 0      | 1.500216                | -2.477110 | 0.709650  |
|                  | 22 | 1      | 0      | -0.438225               | 1.442703  | -0.265904 |
|                  | 23 | 1      | 0      | -3.499896               | -2.213420 | -0.024743 |
|                  | 24 | 1      | 0      | 0.746835                | -1.631428 | -1.402974 |
|                  | 25 | 1      | 0      | 3.468511                | -1.306020 | -0.209650 |
|                  | 26 | 1      | 0      | 2.142207                | 1.295376  | 0.644590  |
|                  | 27 | 6      | 0      | -3.319951               | 3.426318  | 0.391604  |
|                  | 28 | 1      | 0      | -3.665182               | 4.425265  | 0.524165  |
|                  | 29 | 1      | 0      | 4.279920                | -0.044872 | 1.576336  |
|                  | 30 | 1      | 0      | 5.427849                | 1.772633  | -0.519746 |