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Supplementary Notes 1 Typing and comparative phylogeny
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Supplementary Figure 1 A) Comparison between the core genome tree and the binary tree
constructed from the absence-presence pattern of accessory elements. B) and C) The
phylogenetic tree constructed from the core genome alignment and the species annotation

from the variants analysis of hsp60 and rpoB genes.



Supplementary Notes 2 MLST comparison

To allow comparisons with previous analyses of E. cloacae, we determined the MLST
composition of the population [1] and found that around half of isolates belonged to eleven
major STs (Supplementary Figure 2 A). Of these major STs, ST78, ST108 and ST114 were
previously identified as the most widespread STs in a global collection [2]. This confirms that the
UK is linked to the proposed global circulation of a limited number of clones [2] and suggests
that other clones may have the potential to spread globally. The resolution of MLST was
sufficient to discriminate between clones that are greater than 1000 SNPs apart (Supplementary
Figure 2 B), and thus our results also show that MLST has satisfactory discriminatory power to

identify major clones on the tree (Supplementary Figure 2 C).
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Supplementary Figure 2 A) MLST composition of the dataset. The results are sorted according
the frequency of STs. Singleton STs are clustered as the other STs. B) Distribution of STs across
the phylogenetic tree. Each colour corresponds to one ST shown in A). C) Pairwise SNP

distribution for the core genomes for the pairs with the same (blue) and different STs (red).



Supplementary Notes 3 Substitution rate estimation and linkage analysis
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Supplementary Figure 3 A) The substitution rate estimated for four clusters with detectable
temporal signals on the phylogenetic tree. The error bars show 95% confidence intervals. B) The
calculated age of the Most Recent Common Ancestor (MRCA) for ten clusters detected on the
phylogenetic tree. The error bars show 95% confidence intervals. For the clusters without a
detectable temporal signal we used the mean substation rate of clusters 7, 8, 18 and 31 to
estimate the MRCA, and the means of 95% confidence intervals for clusters 7, 8, 18, 31 to
estimate the upper and lower confidence intervals. C) Isolates with close inter-hospital
relationships in the last ~20 years. The blue plot shows the estimated time of the recent
ancestor for each isolate pair of less than 40 SNPs distance. The results are sorted according to
the time of divergence between samples. The error bars show 95% confidence intervals. To
compute the upper and lower values of the confidence interval for the error bars, we divided
the pairwise distances by the mean upper and lower values of the error bars of the substitution

rates for the clusters in A). The brown plot shows the geographical distance between these pairs



and the green histogram shows the distribution of pairwise geographical distances for the whole
collection. D) The connectivity network for samples within the collection at a SNP cut-off of 40.
Each node corresponds to one sample. Each colour corresponds to one hospital. The edges show
the connection between isolates that were <40 SNPs apart. The numbers show pair-wise SNP

distances.
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Supplementary Figure 4 A) Root-to-tip distances for the groups with temporal signal. The grey
area around the fitted line is 95% confidence interval. B) Distribution of root-to-tip distances for
the identified clades. The boxes give the interquartile range, the whiskers indicate the boundary

of 1.5 times the interquartile range, and the points beyond that are outliers.
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Supplementary Figure 5 A) Plot of the number of isolates in the connectivity network divided by

total population size for different values of the SNP cut-off. B) Plot of the number of edges that

connect two isolates of the same isolation origin (same hospital) divided by the total number of

edges for different values of the SNP cut-off. 3% of total pairwise divergences occurred between

isolates of the same hospital origin in the total dataset. C) Connectivity network constructed for

the 20 SNP cut-off. The edges and numbers show links and SNP distances, respectively. Each

colour corresponds to one hospital. Each node represents one isolate.



Supplementary Notes 4 Plasmid analysis

Plasmids can be difficult to identify directly from draft genomes assembled from short reads, as
used here. We therefore searched the collection for the presence of known plasmid replicons
using a database of known plasmid replicons and discovered several plasmids that appear to
have been acquired from other gram-negative species by the isolates in our collection
(Supplementary Figure 6). Amongst the major plasmids, HI2A Col156 (from Escherichia coli), R
(from Klebsiella pneumoniae), FIAH1_H1 (from Salmonella enterica) and colRNA (from Klebsiella
pneumoniae) were present in the majority of our samples (Supplementary Figure 3). Some of
the plasmids (such as the conjugative R plasmid) are known to harbor virulence and resistance

elements and are capable of transferring between gram-negative Enterobacteriaceae [3].
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Supplementary Figure 6 Distribution of plasmid replicons from the PlasmidFinder database
across the phylogenetic tree constructed for the core genome. Only plasmids present in more

than 0.05% of the population are shown here.



Supplementary Notes 5 Virulence factors analysis

Knowledge about virulence factors in E. cloacae is scarce [4, 5]. Although recent studies have
identified some factors, the exact involvement of these in the progression of disease is still
unknown [4]. We therefore screened a database of known virulence factors and were able to
identify several putative virulence factors in the population, including the outer membrane
protein A (OmpA), the transcriptional regulator PhoP and flagella biosynthesis proteins (Fli)
(Supplementary Figure 7). These factors can be involved in host-pathogen interactions and intra-
macrophage survival in other pathogens, although they may also have other functions in
environmental organisms. Other proteins such as siderophore production (Iro), the toxin subunit
CdtC and fimbrial chaperones (Lpf) had only been acquired in some clades. The cytotoxin has
been described previously as a virulence factor [6] and fimbrial proteins are believed to
contribute to cell adhesion and biofilm formation, both of which are important in the process of
disease development [7]. It seems likely, therefore, that pathogenicity of E. cloacae may vary

both within and between clades.
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Supplementary Figure 7 Distribution of virulence factors identified by srst2 across the
phylogenetic tree constructed for the core genome. Only virulence factors present in more than

0.05% of the population are shown here.
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Supplementary Notes 6 Antimicrobial resistance analysis

Enterobacter cloacae is known to be intrinsically resistant to a wide range of beta-lactams
including cephalosporins and penicillins. This is due either to the presence of extended-
spectrum beta-lactamases or to the over-production of AmpC, which can be caused by changes
in the regulation of the chromosomal ampC gene or the acquisition of additional ampC genes [4,
8]. Compared to virulence factors, the antimicrobial resistance determinants of E. cloacae have
been more closely scrutinized. E. cloacae is intrinsically resistant to amoxicillin, amoxicillin—
clavulanate, first-generation cephalosporins and cefoxitin [4]. By contrast, E. cloacae is widely
susceptible to fluoroquinolones, aminoglycosides, piperacillin—tazobactam and carbapenems,

but for some of these antibiotics increased resistance levels have been reported [9, 10].

The MIC values for thirteen antimicrobials from four different groups were available for the
isolates in our collection. With the exception of cefoxitin, amoxicillin, cefuroxime and
amoxicillin-clavulanate, there was considerable variation within the MICs (Supplementary Figure
8 and 9). As expected, variations in MIC tended to be correlated for antimicrobials with similar
mechanisms of action (e.g. ceftazidime and pipercilin-tazobactam and amoxicillin and
cefuroxime, and for the antimicrobials that are derived from each other (e.g. tigecyline and
minocycline) (Supplementary Figure 9 A). We determined the phenotypes (resistance status) for
the antibiotics with known clinical breakpoints. The findings showed that the collection was
extensively resistant to different classes of beta-lactams, including ceftazidime (S:25, 1:23,
R:268), amoxicillin (S:0, I:0, R: 316), amoxicillin-clavulanate (S:3, 1:0, R:313), cefotaxime (S:12, 1.8,
R:240), cefuroxime (S:0, 1:0, R:316) and piperacillin-tazobactam (S:41, 1:61, R:214). (Cefotaxime
was included in the testing panel of antimicrobials from 2003, but not earlier). However, the
collection exhibited a higher susceptibility to impenem (S:310, 1:3, R:3), ciprofloxacin (S:136,
[:45, R:135), gentamicin (S: 179. 1:18, R:119) and tigecycline (S: 173, 1:78, R:54) (Supplementary
Figure 9 B and 10 A and 10 B). These data are largely in agreement with previous reports for E.
cloacae, according to which non-beta lactam antimicrobials such as ciprofloxacin and gentamicin

along with carbapenems still offer an effective treatment for E. cloacae infections [4, 5, 11].
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Supplementary Figure 8 Distribution of MIC values for different antimicrobials for the BSAC
collection (in red) and, where it was available, for the EUCAST collection (in blue) (see Methods).
The dotted lines illustrate clinical breakpoints for the antimicrobials with known breakpoints.
The dotted curves are the fitted density distributions. The letters S, | and R stand for susceptible,
intermediate and resistant, respectively. The abbreviations of antimicrobials are: amoxicillin
(amx), cefuroxime (cxm), amoxicillin-clavulanate (amc), cefotaxime (ctx), cefoxitin (fox),
imipenem (imp), piperacillin-tazobactam (tzp), ciprofloxacin (cip), ceftazidime (caz), gentamicin

(gen), tigecycline (tgc), minocycline (min) and tetracycline (tet).

13
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Supplementary Figure 9 A) Correlogram to display correlations between pairwise MIC values for

the antimicrobials. The blue and red colours show positive and negative correlations. The colour

density illustrates the strength of correlation. B) The frequency of resistant, intermediate,

susceptible phenotypes within the population for the antimicrobials studied here. Abbreviations

are the same as in Supplementary Figure 8.
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Supplementary Figure 10 A) MIC distribution for antimicrobials across the phylogenetic tree. B)
Phenotypic distribution of susceptible, intermediate and resistant categories for the

antimicrobials with known clinical cutoffs.
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STs and antimicrobials

We compared the MICs for the major STs in the dataset to identify any STs that were associated
with increased resistance to specific antimicrobials (Supplementary Figure 11). Compared with
other STs, ST68 is relatively more resistant to piperacillin-tazobactam, and ST114 and ST171 are
relatively more resistant to ciprofloxacin and tetracycline/minocycline, respectively
(Supplementary Figure 8). Even though ST78 and ST114 were previously recognized as ESBL
producers, the MIC values of these isolates against the beta-lactams were not significantly
different from other isolates [12]. The lack of strict correlation between MICs and STs suggests
that E. cloacae, like other major nosocomial Enterobacteriaceae, has first disseminated and

subsequently acquired antimicrobial resistance determinants [12].
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Supplementary Figure 11 MIC distributions for the major STs in our collection. The
abbreviations are the same as in Supplementary Figure 8. The boxes give the interquartile range,
the whiskers indicate the boundary of 1.5 times the interquartile range, and the points beyond

that are outliers.
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Antimicrobial resistance determinants and ESBL analysis

Enterobacter cloacae is known to be intrinsically resistant to a wide range of beta-lactams
including cephalosporins and penicillins. This is due either to the presence of extended-
spectrum beta-lactamases or to the over-production of AmpC [4, 8]. Our collection was
composed of 85 ESBL-containing isolates and 230 non-ESBL isolates and 281 non-CTX-M and 25
CTX-M producing isolates (Supplementary Figure 12A). Comparing the MICs of these two sub-
groups did not show a significant difference in resistance between the two sub-classes for most
beta-lactams except ceftazidime (Supplementary Figure 13). This suggests that resistance is
predominantly caused by hyper-production of AmpC rather than ESBLs, even when these are

present (see also [4]).

Furthermore we found that the isolates in our collection were enriched in beta-lactamases,
which were present at varying frequencies, implying that the multiple acquisitions of beta-
lactamases have contributed to the resistance (Supplementary Figure 12B). In addition to ampC
and its homologues, which were found at multiple copies in the core and accessory genome and
confer resistance to most beta-lactams except carbapenem drugs, we also found some other
known amp genes such as those encoding the signal transducers AmpG (in 315 isolates) and
AmpE (in 311 isolates), the penicillin binding protein AmpH (in 313 isolates). Copies of genes
encoding the beta-lactamase regulator AmpR and AmpD were also present in the collection and
have been previously described in E. cloacae and Escherichia coli [13-15]. Some well-known
beta-lactamases like oxacillinase (oxa), bla-OKP and bla-LEN have been gained by isolates
throughout the tree but others such as bla-CMG and bla-MIR were restricted to some clades
only. Altogether, our results support the idea that the concurrent action of multiple beta-

lactamases contributes to the high level of resistance to cephalosporins in our collection.

17
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phylogenetic tree. Our collection was composed of 85 ESBL-containing isolates and 230 non-
ESBL isolates and 281 non-CTX-M and 25 CTX-M producing isolates. B) Distribution of beta-

lactamases, detected by srst2 in the Resfinder database, across the phylogenetic tree.
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Supplementary Figure 13 Distribution of MIC values for different antimicrobials for ESBL and

non-ESBL sub-populations. The abbreviations are defined in Supplementary Figure 8. The boxes
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range, and the points beyond that are outliers.
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There are only a few reports of carbapenemase-producing E. cloacae, which make this
antimicrobial an effective treatment choice for this species although recently carbapenem
resistance has been increasingly seen in some regions [16, 17]. Our samples were extensively
susceptible to imipenem, which is consistent with the lack of known carbapenemases such as
serine carbapenemase KPC, NDM, GIM, VIM and the oxa-48 genes [9, 18-20]. In the few isolates
that were relatively more resistant, the putative beta-lactamase precursor bim and the

metalloenzyme carbapenemase beta-lactamases nmc genes, described in [21], were present.

Our isolates exhibited an intermediate level of resistance to gentamicin. The acquisition of three
groups of aminoglycoside modifying enzymes i.e. acetyltransferases (AAC), phosphotransferases
(APH) and adenylyltransferases (AAD) mainly account for resistance to aminoglycosides [4].
Screening against the antimicrobial resistance gene database indicates that multiple copies of
acetyltransferases (aac), phosphotransferases (str) and adenylyltransferases (aad) genes have
been acquired by multiple isolates across the phylogenetic tree. The presence of aac and str
genes is strongly associated with MIC values for gentamicin (p-value < 10®) (Supplementary
Figure 14). Amongst the variants of aac genes, aac(3) and aac(6) genes are frequently reported
in members of the Enterobacteriaceae family [22]. Moreover, the regression analysis reveals
some other putative genes strongly associated with gentamicin resistance. This includes several

copies of acetyltransferase and phosphotransferase enzymes (Supplementary Figure 15).

Our isolates appear to have acquired multiple copies of tetracycline resistance genes
independently (Supplementary Figure 14) and the presence of these genes is strongly associated
with MIC values for tetracycline (p-value < 10®). The genes include tetracycline efflux proteins
Tet(A), Tet(B), Tet(C) and Tet(D) and the monooxygenase Tet(X). The regression analysis on
accessory genes also reveals some other putative resistance genes like the tetracycline
repressor protein class D in 14 isolates and a tetracycline repressor originating from transposon
Tn10. These genes were acquired independently in different isolates across the tree and
strongly associated with the elevated MICs for minocycline and tetracycline in some isolates
(Supplementary Figure 15). We conclude that multiple mechanisms appear to cause the MIC

levels for tetracyclines to increase in E. cloacae.
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Ciprofloxacin appears to be one the few remaining effective antimicrobials to treat E. cloacae
infections, despite recent observations that quinolone resistance has been globally on the rise in
E. cloacae isolates [23-25]. Although the enzymatic resistance to ciprofloxacin is attributed to
the presence of AAC (6’) and gyrase binding protein Qnr [24], in our collection there was no
strong correlation between ciprofloxacin MICs and the presence of these genes (Supplementary
Figure 14). Similarly although the majority of isolates seem to harbor efflux pumps ogx gene,
which is known to cause quinolone resistance, there is no association between the presence of
the genes and the MIC level for ciprofloxacin (Supplementary Figure 14). These findings seem to

exclude the implication of known resistance enzymes in conferring resistance to ciprofloxacin.

Besides enzymatic resistance, mutations in gyrase A and B or subunits of DNA topoisomerase IV
genes are widely described as ciprofloxacin resistance mechanisms in Enterobacteriaceae [26].
In line with this, we identified three non-synonymous point mutations in position 87 i.e. D87V
(in 4 isolates), D87A (in 3 isolates) and D87G (in 7 isolates) in the well-known quinolone
resistance-determining regions (QRDR) region of gyrA [27] that were strongly associated with
MIC values for ciprofloxacin and occurred in parallel across the tree (Supplementary Figure 16
A). Furthermore we identified two putative non-synonymous mutations in position 78 (G78A in
1 isolate) and position 80 (S80I in 43 isolates) of DNA topoisomerase IV subunit A (parC with
Locus_tag: ECL_04341) that exhibit strong association with resistance and may be studied
further in future studies (Supplementary Figure 16 A). In addition, the number of non-
synonymous mutations in the DNA topoisomerase IV subunit A was strongly correlated with MIC
values, which indicates that a combination of non-synonymous changes rather than a single

mutation in this gene may be responsible for the elevated MICs (Supplementary Figure 16 B).
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Supplementary Figure 14 Distribution of antimicrobial resistance genes found in the ResFinder
database across the phylogenetic tree for three classes of antimicrobials: Tetracycline,
Fluoroquinolone and Aminoglycoside, as well as ordered in the figures. The first columns in each
block show the relative MIC values for the antimicrobials. The * and ** signs show the
significance level (p-value) of association between the presence of the gene and MIC value of

<102 and <107, respectively.
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Supplementary Figure 15 Distribution of some putative antimicrobial resistance genes found
the in the accessory genome that strongly correlate with MICs. The antimicrobial abbreviations
are the same as in Supplementary Figure 8. The group 6672, group 23998, cysE 3, neo,
group 21421, yok genes are major facilitator superfamily protein, acetyltransferases and
phosphotransferase. The pcoS 1, group 31203, group 31202, group 24050, group_14333 and
group_1069 genes are modifying enzymes, major facilitator superfamily and tetracycline

repressor proteins.
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Supplementary Figure 16 A) Distribution of putative resistance SNPs in position 87 of gyrA and
positions 78 and 80 of the subunit A of DNA topoisomerase IV (parC) that are strongly
associated with the MIC values for ciprofloxacin (first column). B) Plot of non-synonymous SNP
density versus the log,(MIC) in the subunit of DNA topoisomerase IV subunit A (p-value < 10®).
The grey area shows 95% confidence interval. To better illustrate data point density, we have
introduced error values taken from a normal distribution with the mean value of 0 and standard

deviation of 0.1 along the x and y axes for each data point.
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Supplementary Notes 7 Global isolates
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Supplementary Figure 17 Phylogenetic tree of the whole genomes of the isolates studied here
(BSAC) in the context of previously published genomes, which are mapped to the reference
genome detailed in Methods. The accession numbers and publication IDs for the previously
published isolates are provided in Supplemental Table S5. The majority of the isolates that were
isolated from the USA and found within the rare sub-species of E. cloacae were recovered only
from the one hospital in the USA [28] and therefore do not represent the diversity of E. cloacae

across the USA.
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Supplementary Figure 18 Comparison between the clusters we identified in the collection and

those detected by HierBAPS across the phylogenetic tree. Columns are defined as follows:

Column 1: identified clusters

Column 2: 2" iteration of BAPS with k=50
Column 3: 1% iteration of BAPS with k=50
Column 4: 2" iteration of BAPS with k=30
Column 5: 1% iteration of BAPS with k=30
Column 6: 2" iteration of BAPS with k=10
Column 7: 1% iteration of BAPS with k=10
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Supplementary Tables:

Supplementary Table 1.csv: Table of accession numbers of isolates studied here and the
results of antimicrobial susceptibility testing. Columns are defined as follows:

A) SangerlID: Run identification number, as produced by pipelines at the Wellcome Trust
Sanger Institute.

B) SamplelD: Secondary sample accession at the European Nucleotide Archive (ENA).

C) ContigAcc.: Accession numbers for annotated contigs.

D) HospitalOrCentre: Hospital code.

E) Isolation year: Year of isolation of isolates.

F) CambridgelD: Hospital accession ID for the isolates used for sequencing.

G) ENA run accession ID: Accession ID for sequencing run at the ENA.

H) ESBL: ESBL status of the isolates.

[) ESBL_CTXM: Status of isolates with respect to the possession of bla-CTXM genes.

J-V) MIC values for the antimicrobials. The abbreviations of antimicrobials are:
amoxicillin (amx), cefuroxime (cxm), amoxicillin-clavulanate (amc), cefotaxime (ctx),
cefoxitin (fox), imipenem (imp), piperacillin-tazobactam (tzp), ciprofloxacin (cip),
ceftazidime (caz), gentamicin (gen), tigecycline (tgc), minocycline (min) and tetracycline
(tet).

W) Contig.Total.Length: Total lengths of contigs for each isolates.

X) No.Contigs: Number of contigs for each isolate.

Y) Avg.Contig.Length: Average length of contigs for each isolate.

Z) Largest.Contig: Lengths of largest contig for each isolates.

27



Supplementary Table 2.csv: Results of the regression model based on the presence of
genes in the accessory genome. Columns are defined as follows:

A) Gene: name of accessory genes.

B) Annotation: function/product of genes.

C) Count: Number of isolates with each accessory gene.

D) Association value: association expressed as -logio(p-value) of the regression model.

E) Antimicrobial: Antimicrobial names. Abbreviations are the same as in
SupplementalTable S1.csv.

Supplementary Table 3.csv: Results of the regression model based on presence of

individual SNPs. Columns are defined as follows:

A) Position_in_reference_genome: position of the SNP in the reference E. cloacae ATCC
13047 genome.

B) CDS/rRNA/tRNA/Intergenic: Genomic status of the region in which the SNP occurs.

C) Strand: DNA strand of the coding region where the SNP occurs. The values -1 and +1
refer to reverse and forward strands, respectively.

D) CDS_name: Name of the coding region.

E) Product: Protein product of the coding region.

F) Synonymous/Non-synonymous: impact of SNPs at the protein level.

G) Ref_base: Base in the positions of SNPs in the reference genome.

H) SNP_base: Altered base at SNP sites.

[) Count: Number of SNPs.

J) Association value: association expressed as -logio(p-value) of the regression model.

K) Antimicrobial: Antimicrobial names. Abbreviations are the same as in
SupplementalTable S1.csv.
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Supplementary Table 4.csv: Results of the regression model based on the number of
non-synonymous SNPs. Columns are defined as follows:

A) Gene: Locus tag id in the reference E. cloacae ATCC 13047 genome.
B) Association value: association expressed as -logio(p-value) of the regression model.

C) Antimicrobial: Antimicrobial names. Abbreviations are the same as in
SupplementalTable S1.csv.

D) Product: Product of genes with strong association scores.

Supplementary Table 5.csv: Table of isolates used to contextualize MDR E. cloacae
isolates. Columns are defined as follows:

A) Sample ID: ID of isolate.

B) Country: Country of isolation.

C) Continent: Continent of isolation.

D) Origin: clinical versus non-clinical/environmental isolates.

E) Pubmed ID: ID of publications where isolates are reported.

F) Comment: Status of isolates with respect to food-borne status.
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