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A Results

A.1 Simulations

We describe the simulation setup in Section A.1.1. In Section A.1.2, we provide additional details on the methods

considered in the benchmarking experiments. Finally, we present the results of these experiments in Section A.1.3.

A.1.1 Simulation Setup

We simulate the life history of a metastatic tumor by generating a cell tree using an agent-based model. This model is

an extension of the model used to simulate tumor growth in [37], with the equal multiplicative fitness landscape and

the logistic growth function described in [2]. We extend the model to include migrations and passenger mutations.

Moreover, we constrain mutations to adhere to the infinite sites assumption and to be copy neutral. A discrete time-

step, or generation, is composed of two phases. The first phase consists of cell cycle events—replication and death.

The second phase consists of cell migration events. In the following, we will elaborate on the two phases and describe

the overall simulation algorithm.

Cell Cycle Events: Replication and Death A cell c has two quantities associated to it: (1) the anatomical site

a(c) in which the cell resides, (2) the set σ(c) of mutations the cell harbors. Each mutation i has a fitness effect si.

We model mutations as either drivers or passengers, with a driver mutation i having positive fitness effect si = 0.01

and passenger mutation i having fitness effect si = 0. The subset of mutations of cell c that are drivers are denoted

by σ̂(c). As described in [37], we use a phenotype-based density-limited model, where the phenotype of a cell c is

defined by the set σ̂(c) of driver mutations the cell contains. Let N(σ̂(c)) be the number of cells with phenotype σ̂(c)

in anatomical site a(c), and let K(σ̂(c)) be the carrying capacity for phenotype σ̂(c) in anatomical site a(c). Then, we

define the birth probability as

b(c) =
1

2

∏
i∈σ(c)

[
(1 + si) ·

(
1− N(σ̂(c))

K(σ̂(c))

)]
where the carrying capacity for phenotype σ̂(c) depends on the number |σ̂(c)| of driver mutations in cell c, i.e.

K(σ̂(c)) = 50000 · |σ̂(c)|.

In each generation, cell c replicates with probability b(c) and dies with probability d(c) = 1− b(c). If cell c replicates,

we generate two new daughter cells c1 and c2. Daughter cell c1 is identical to c, i.e.

a(c1) = a(c),

σ(c1) = σ(c).

With a probability 0.1, daughter cell c2 acquires one new mutation such that

a(c2) = a(c),

σ(c2) = σ(c) ∪ {n+ 1}.
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where n is the total number of distinct mutations across all cells. This mutation rate is consistent with observed per-

nucleotide somatic mutation rates [29] and whole-exome sequencing. With probability p̂ = 2 · 10−7, mutation n + 1

is a driver with sn+1 = 0.01, and else, with probability 1− p̂, mutation n+ 1 is a passenger with sn+1 = 0.

Migration We restrict migrations so that the resulting migration graphG adheres to a pre-specified migration pattern

defined as follows.

• Monoclonal single-source seeding (mS), where every generation at most one single cell per anatomical site s

migrates to a new anatomical site t.

• Polyclonal single-source seeding (pS), where every generation at most one group of cells migrates from an

anatomical site s to a new anatomical site t, or to an existing anatomical site t′ that was previously seeded from

anatomical site s.

• Polyclonal multi-source seeding (pM), where every generation at most one group of cells migrates from an

anatomical site s to a new anatomical site t, or to an anatomical site t′ that has not seeded from an ancestor of s.

• Polyclonal reseeding (pR), where every generation at most one group of cells migrates from an anatomical site s

to a new anatomical site t, or to an existing anatomical site t′ 6= s.

Migration occurs after the cell cycle events (i.e. replication or death). Let N(s, y) = {c | a(c) = s, σ̂(c) = y}

be the number of cells c in anatomical site s with phenotype (driver mutations) ˆσ(c) = y. Let Y (s) be the set of

phenotypes in anatomical site s. For each anatomical site s, we decide to initiate a migration event with a probability

that is proportional to the number of cells in s and the number of drivers they contain, i.e.

10−6
∏

y∈Y (s)

(N(s, y) · |y|).

The exact migration event depends on the specified migration pattern as follows.

• In the case of mS, we select a single cell c uniformly at random from the cells residing in anatomical site s.

Subsequently, we set a(c) = t where t is a new anatomical site.

• In the case of pS, we draw the number k of migrating cells from Poisson(1). We then pick k cells c1, . . . , ck

without replacement from anatomical site s. Next, with probability 0.5, we decide to migrate to a new anatomical

site t and set a(ci) = t for all i ∈ [k]. Or, with probability 0.5, we migrate to an existing anatomical site t′ that

has been previously seeded from s and thus set a(ci) = t′ for all i ∈ [k].

• In the case of pM, we draw the number k of migrating cells from Poisson(1). We then pick k cells c1, . . . , ck

without replacement from anatomical site s. Next, with probability 0.5, we decide to migrate to a new anatomical

site t and set a(ci) = t for all i ∈ [k]. Or, with probability 0.5, we migrate to an existing anatomical site t′ that

has not been seeded from an ancestor of s and set a(ci) = t′ for all i ∈ [k].
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• In the case of pR, we draw the number k of migrating cells from Poisson(1). We then pick k cells c1, . . . , ck

without replacement from anatomical site s. Next, with probability 0.5, we decide to migrate to a new anatomical

site t and set a(ci) = t for all i ∈ [k]. Or, with probability 0.5, we migrate to an existing anatomical site t′ 6= s.

Initialization and Termination We initialize the simulation with a single cell c in anatomical site a(c) = P (where

P is the primary tumor) with no passenger mutations and a single driver mutation, i.e. σ(c) = σ̂(c) = {1}. An

anatomical site s is detectable if it has at least 5000 cells. We have two termination conditions:

1. No more cells are alive.

2. The number of detectable anatomical sites is greater than a pre-specified parameter Σmax.

From Cell Tree to Clone Tree We start by identifying the set X of mutations that occur at 5% frequency in at least

one anatomical site. For each cell c, we set σ̄(c) = σ(c) ∩ X . This yields a partition of cells into clones, i.e. each

clone c̄s is a set of cells c with identical mutations σ̄(c) = σ(c̄s) in the same anatomical site σ(c) = s. Recall that

mutations in the cell tree adhere to the infinite sites assumption. As such, we obtain the clone tree from clones c̄s

using the perfect phylogeny theorem [16]. More specifically, we construct a binary matrix B = [bc̄s,i], whose rows

correspond to clones and columns to mutations X; an entry bc̄s,i is 1 if i ∈ σ(c̄s) and 0 otherwise. By construction,

matrix B is conflict free and thus the corresponding clone tree T can be obtained in linear time [16]. Since B may

contain repeated columns, the edges of T may be labeled by a set of co-occurring mutations. Each such set forms a

mutation cluster. Each leaf u of T corresponds to a clone c̄s and is thus labeled by ˆ̀(u) = s. In addition, we label

each leaf corresponding to clone c̄s by the proportion α(c̄s) of cells of anatomical site s that comprise clone c̄s.

Simulating Read Counts Let T be the simulated clone tree and let m = |Σ| be the number of anatomical sites. We

generate bulk sequencing samples for each anatomical site s. Each sample p is a mixture of the clones present in the

corresponding anatomical site s. Let k be the number of clones in anatomical site s. We model mixture proportions

up,1, . . . , up,k as a draw from Dir(5 · α(c̄s,1), . . . , 5 · α(c̄s,k)), where α(c̄s,j) is the proportion of cells in anatomical

site s of clone c̄s,j . For each mutation i ∈ X , we define the frequency fp,i as follows:

fp,i =
1

2

∑
j∈[k] : i∈σ(c̄s,j)

up,j (1)

In other words, fp,i is the true proportion of reads in sample p that contain SNV i under the assumption that the

corresponding locus is part of a copy-neutral region of an autosomal chromosome. We then simulate the total number

dp,i of reads as a draw from Poisson(200), yielding a number of reads that is typical in a whole-exome sequencing

experiment. Next, we draw vp,i variant reads from Binomial(dp,i, fp,i). The number rp,i of reference reads is dp,i −

vp,i. Note that we assume the tumor samples to be pure and do not model normal admixture.

Simulated Instances We varied the maximum number Σmax ∈ {5, 8} of detectable anatomical sites and considered

different migration patterns: mS, pS, pM and pR. For each combination of Σmax and migration pattern, we simulated
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ten clone trees and migration histories. Subsequently, we obtained two bulk samples of the primary tumor and a single

bulk sample for each metastasis. Thus, we have 80 simulated instances in total (Tables 2 and 3).

A.1.2 Methods

MACHINA As described in the main text, MACHINA’s PMH-TI mode consists of three steps:

1. Clustering of mutations, yielding frequency matrices (F−, F+) whose entries f−p,C and f+
p,C are, respectively,

the lower bound and upper bound of the confidence interval of the frequency of cluster C in sample p.

2. Inferring the set T of mutation trees given (F−, F+).

3. Solving the PMH-TI for each mutation tree T ∈ T given (F−, F+).

First, to obtain mutation clusters and their frequencies, we use the clustering procedure of AncesTree [8], which

we describe briefly in the following. Let X̂p,i be a random variable describing the variant allele frequency (VAF)

for a sample p and mutation i. For mutation i in sample p, we model the observed number ṽp,i of variant reads as

ṽp,i ∼ Binomial(d̃p,i, X̂p,i) where d̃p,i is the total number of reads at the mutation locus. Assuming a uniform prior on

the binomial proportion, the posterior distribution over VAF X̂p,i given ṽp,i and d̃p,i is Beta(1+ ṽp,i, 1+(d̃p,i− ṽp,i)).

To infer mutation clusters, we compute 99.9% confidence intervals [f̂−p,i, f̂
+
p,i] on the VAF posterior distribution of

X̂p,i for each mutation i in sample p. Using these intervals, we construct an undirected graph G, where each vertex

vi ∈ V (G) corresponds to a unique mutation i and there is an edge (vi, vj) ∈ E(G) if and only if the confidence

intervals [f̂−p,i, f̂
+
p,i] and [f̂−p,j , f̂

+
p,j ] overlap for each sample p. Each connected component C of G corresponds to a

mutation cluster. To infer a confidence interval [f−p,C , f
+
p,C ] on the frequency of mutation cluster C in each sample p,

we combine the read counts for all mutations in the same mutation cluster C, yielding a combined variant read count

vp,C =
∑
i∈C vp,i and combined total read count dp,C =

∑
i∈C dp,i. We assume that each cluster C has a fixed

VAF Xp,C , such that for all mutations i ∈ C, X̂p,i = Xp,C . Then, with a uniform prior, the posterior distribution

of Xp,C given vp,C and dp,C is Beta (1 + vp,C , 1 + (dp,C − vp,C)). For each mutation cluster C and sample p, we

infer 95% confidence intervals [f̂−p,C , f̂
+
p,C ] on the VAF distribution Xp,C . Since each mutation is copy-neutral, we

obtain frequencies [f−p,C , f
+
p,C ] by multiplying the VAFs [f̂−p,C , f̂

+
p,C ] by 2. Frequency matrices (F−, F+) contain all

frequency intervals [f−p,C , f
+
p,C ] for each sample p and mutation cluster C.

Second, given (F−, F+), we enumerate all mutation trees T using the SPRUCE algorithm [9]. Third, given

(F−, F+), we solve the PMH-TI for each mutation tree T ∈ T under various restrictions on the topology of the

resulting migration graph G. That is, we restrict G to (1) an S pattern, (2) either an S or an M pattern or (3) leave G

unrestricted. All instances were solved to optimality by MACHINA.

Treeomics We run Treeomics [38] twice on each instance, with and without subclone detection. For both runs, we

use default arguments. All simulated instances were solved to optimality by Treeomics.
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Neighbor Joining We run the neighbor joining algorithm [42] implemented in the phangorn R package [46]. To do

so, we first obtain a binary mutation matrix B = [bp,i] using a variant allele frequency threshold of 0.01, i.e. bp,i = 1

if and only if the variant allele frequency of mutation i in sample p is at least 0.01. Next, following the default settings,

we measure the distance between a pair of samples using the Hamming distance.

PhyloWGS We ran PhyloWGS [7] with default arguments. We define a clone i to be present in a sample p only if

the inferred mixing proportion up,i is at least 0.05.

AncesTree We run AncesTree [8] with default arguments (β = 0.8 and γ = 0.01) and provide it with the same

mutation clusters used by MACHINA. We define a clone i to be present in a sample p only if the inferred mixing

proportion up,i is at least 0.05.

A.1.3 Results

Robinson-Foulds Distance We use the Robinson-Foulds distance [39] to assess the accuracy of each inferred phylo-

genetic tree T by comparing the topology of the anatomical site labels in T to the simulated tree T ∗. Each edge (u, v)

of T induces a bipartition, or split, of the leaf set L(T ) into {U, V } such that upon removal of (u, v) the set U contains

those leaves present in the connected component that contains u and the set V contains the leaves that are present in the

connected component that contains v. Rather than considering splits {U, V } directly, we consider `-splits composed

of the two sets {`(U), `(V )} of anatomical site labels of {U, V }, i.e.

{`(U), `(V )} = {{`(u) | u ∈ U}, {`(v) | v ∈ V }}. (2)

We note that an `-split {`(U), `(V )} is a multi-set. Let L(T ) be the set of all `-splits of a clone tree T . The Robinson-

Foulds distance d(T ∗, T ) between the simulated tree T ∗ and the inferred tree T is the size of the symmetric difference

between L(T ) and L(T ∗), i.e.

d(T ∗, T ) = |(L(T ∗) \ L(T )) ∪ (L(T ) \ L(T ∗))|. (3)

Note that [38] used a similar measure but only considered the set `(V ) for each split {U, V }.

Clone Tree Inference Supplementary Fig. 4A and Supplementary Fig. 5A show that the clone trees inferred by

MACHINA are more accurate than those inferred by Treeomics and neighbor joining. In addition, Treeomics with and

without subclone detection outperforms neighbor joining. Enabling subclone detection in Treeomics-sub improves the

results considerably, which is not surprising given that our simulations result in anatomical sites each composed of

multiple clones. However, Treeomics-sub cannot match the performance of MACHINA and AncesTree, likely because

these methods use variant allele frequencies to deconvolve mixed samples and thus are better able to detect subclones.

PhyloWGS achieves similar performance to Treeomics-sub but performs worse than AncesTree and MACHINA. Im-

portantly, MACHINA outperforms both PhyloWGS and AncesTree, thus showing that MACHINA’s performance is not

only due to deconvolution but also due to the integrative inference of parsimonious clone trees and migration histories.
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Migration History Inference Next, we assess the performance of MACHINA by considering the inferred migration

graphs G and vertex labelings ` identified for each simulated instance. We only consider the results obtained by

MACHINA run without any topological constraints onG. We do not show results for Treeomics and neighbor joining as

these methods do not yield a vertex labeling and migration graph. Supplementary Fig. 4B and Supplementary Fig. 5B

show that MACHINA successfully determines the migration patterns of the mS instances. However, simulated instances

with more complex migration patterns (e.g. pM and pR) can often be explained by simpler migration patterns. To

further investigate this, we compare the inferred migration graphG to the simulated migration graphG∗ by computing

multi-edge recall and precision as follows:

recall(G,G∗) =
|E(G) ∩ E(G∗)|
|E(G∗)|

and precision(G,G∗) =
|E(G) ∩ E(G∗)|
|E(G)|

.

As E(G) and E(G∗) are multi-sets, we take the multiplicity of each multi-edge into account when computing recall

and precision; e.g. a recall of 100% means that each multi-edge of G∗ composed of c edges corresponds to a multi-

edge inG composed of at least c edges between the same anatomical sites. We use the F1 score as a summary statistic,

which is the harmonic mean between recall and precision, i.e.

F1(G,G∗) = 2 · precision(G,G∗) · recall(G,G∗)

precision(G,G∗) + recall(G,G∗)
.

We find that the precision and recall of the migration graph identified by MACHINA decreases with increasing com-

plexity of the simulated migration pattern (Supplementary Fig. 4C and Supplementary Fig. 5C).

To identify drivers of metastasis, the set of migrating clones must be determined accurately. We assess this by

comparing the set U(T, `) of migrating clones in the inferred clone tree T and vertex labeling ` to the set U(T, `∗) of

migrating clones in the simulated clone tree T ∗ and the simulated vertex labeling `∗. More specifically, the set U(T, `)

is composed of the mutations present in the vertices that are incident to migration edges, i.e. U(T, `) = {σ̄(u) |

(u, v) ∈ E(T ), `(u) 6= `(v)} where σ̄(u) denotes the set of mutations present in vertex u. We compute recall and

precision of the migrating clones as:

recall(U(T, `), U(T ∗, `∗)) =
|U(T, `) ∩ U(T ∗, `∗)|

|U(T ∗, `∗)|
and precision(U(T, `), U(T ∗, `∗)) =

|U(T, `) ∪ U(T ∗, `∗)|
|U(T, `)|

.

Again, we consider the F1 score defined as

F1(U(T, `), U(T ∗, `∗)) = 2 · precision(U(T, `), U(T ∗, `∗)) · recall(U(T, `), U(T ∗, `∗))

precision(U(T, `), U(T ∗, `∗)) + recall(U(T, `), U(T ∗, `∗))
. (4)

Supplementary Fig. 4D and Supplementary Fig. 5D show that MACHINA identifies the clones that migrate and seed

metastases with high precision and recall across all simulated migration patterns.

Minimum-Migration Vertex Labelings McPherson et al. [28] use the Sankoff algorithm [45] to find a vertex la-

beling with minimum migration number µ given a clone tree. We enumerate all minimum-migration vertex labelings

given the simulated clone tree T ∗ for each instance. Supplementary Fig. 4E and Supplementary Fig. 5E show that for

each simulated clone tree T ∗ many such vertex labelings exist and that the migration number µ does not distinguish
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between different migration patterns of varying complexity. For instance, the simulated clone tree with seed 2 and sim-

ulated pattern pS (Supplementary Fig. 5E) has 800 minimum-migration vertex labelings, the majority of which (60%)

correspond to more complex migration patterns. These findings illustrate the importance of using more sophisticated

score functions that distinguish between migration patterns of varying complexity.

Mutation Clustering In the above results, we used the clustering algorithm described in Section A.1.2. In the

following, we explore the performance of MACHINA when the output of different mutation clustering algorithms –

including PhyloWGS [7], PyClone [41], Clomial [53] and SciClone [30] – are input to MACHINA. We note that Phy-

loWGS simultaneously clusters mutations and arranges the resulting clusters into a tree; in the following comparisons

we discard the tree and only use the inferred mutation clusters; we refer the reader to Figs. 4 and 5 for PhyloWGS’s

clone tree inference performance results. We run PhyloWGS with default arguments. We use the binomial model in

PyClone and specify a default sequencing error rate of 0.001, a purity of 1 and use 10,000 MCMC iterations with a

burnin of 1,000. We use the default maximum number of 10 clusters in Clomial. For SciClone, we use the default beta

mixture model and the default number of at most 10 mutation clusters. Using larger numbers of mutation clusters in

both Clomial and SciClone leads to prohibitive running times.

We assess the performance of each clustering method on the Σmax = 5 instances. Supplementary Fig. 16A shows

that the width of the 95% confidence intervals of the mutation cluster frequencies is largely unaffected by the clustering

algorithm. Supplementary Fig. 16B shows that PyClone, Clomial and SciClone infer far fewer clusters than MACHINA

and PhyloWGS. We now assess whether this affects the accuracy of the inferred clusterings. A clustering is a partition

of the set of n mutations. Let C denote the inferred clustering and let C∗ denote the simulated clustering. To assess the

similarity of C to C∗ typically all
(
n
2

)
pairs of mutations are considered. For each pair (a, b) of distinct mutations the

following four cases are distinguished.

1. True positive (TP): if (a, b) co-occur in a cluster in C and C∗.

2. False positive (FP): if (a, b) co-occur in a cluster in C but do not co-occur in C∗.

3. True negative (TN): if (a, b) do not co-occur in C nor in C∗.

4. False negative (FN): if (a, b) do not co-occur in C but do co-occur in C∗.

The commonly-used Rand index [36] is defined as the accuracy, i.e. (TP + TN) / (TP + FP + TN + FN). We find for

each clustering method and migration pattern that the number of false negatives is around 0 (data not shown). In other

words, the recall of each clustering method is around 1. Therefore, instead of using the Rand index, we compute the

precision, defined as TP / (TP + FP). Supplementary Fig. 16C shows that MACHINA and PhyloWGS achieve higher

clustering precision than PyClone, Clomial and SciClone, which is likely due to the larger number of inferred clusters

by the former methods.

Next, we assess the impact of using different clustering algorithms as input to MACHINA. Supplementary Fig. 17A

shows that the clone trees inferred by MACHINA are more similar to the simulated clone trees than those inferred
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by neighbor joining [42], Treeomics [38], PhyloWGS [7] and AncesTree [8]. We note, however, that MACHINA’s

performance decreases with the precision of the clustering algorithm used to generate input clusters for MACHINA.

Indeed, Supplementary Fig. 17B shows that the recall and precision of the migration clones also decreases when

MACHINA is used together with clustering algorithms that achieved lower precision on these simulated instances.

Supplementary Fig. 17C shows that despite the differences in the inference of the migrating clones, the inferred

migration graphs are robust to the choice of clustering algorithm, with very minor variation in F1 scores.

Downsampling Sequencing Coverage, Sample Purity and Number of Sequenced Samples To evaluate the ro-

bustness of MACHINA and the used mutation clustering algorithm, we perform downsampling experiments, where we

reduce the number of sequenced samples, the sample purity and the sequencing coverage. To do so, we simulate 10

metastatic tumors with Σmax = 5 anatomical sites for each of the four migration patterns (mS, pS, pM and pR). For

each simulated tumor, we generate a baseline instance containing three bulk samples per anatomical site with a mean

sequencing coverage of 10,000x, a nucleotide sequencing error rate of 0.001 and a sample purity of 1. We then retain

for each anatomical site {1, 2, 3} bulk samples. Next, for each retained sample, we downsample the sequencing depth

of each SNV to {200x, 500x, 1000x, 10000x} using different purities {0.5, 0.8, 1.0}. Thus, for each simulated tumor

we have 3 · 4 · 3 = 36 sets of sequencing reads, corresponding to all combinations of number of samples, coverage

and purity.

We run MACHINA’s clustering algorithm on each instance and compute 95% confidence intervals (as described

previously). Supplementary Fig. 18A shows that the width of the 95% confidence intervals of the mutation clus-

ters frequencies decreases with increasing coverage and number of samples. Concordantly, the clustering precision

increases with increasing coverage and number of samples (Supplementary Fig. 18B). By comparing each downsam-

pled instance to the baseline, we find that MACHINA benefits from higher resolution sequencing data, with the number

of samples having the largest impact, followed by the depth of sequencing and the sample purity (Supplementary

Fig. 18C-E).

Downsampling Number of SNVs We now evaluate the effect of the number of sequenced SNVs on the performance

of MACHINA. Recall that previously we used a mutation rate of 0.1, corresponding to whole exome sequencing

data (Section A.1.1). We increase this rate to 10 mutations every cell division, corresponding to whole genome

sequencing data [29]. For each migration pattern (mS, pS, pM and pR), we simulate 10 metastatic tumors with

Σmax = 8 anatomical sites, amounting to a total of 4 · 10 = 40 instances. We generate two bulk samples of the

primary tumor and a single bulk sample for each metastasis; each with a purity of 0.8. We sequence each sample

at an average depth of 200x and an error rate of 0.001. Subsequently, we downsample the number of SNVs to

{100%, 50%, 10%, 5%, 1%, 0.5%, 0.1%} of all SNVs. We use the MACHINA clustering algorithm to group SNVs

with similar variant allele frequencies across all samples, and we run MACHINA in PMH-TI mode to obtain clone

trees and migration histories.

We find that the performance of MACHINA is affected by the number of sequenced SNVs. Importantly, MACHINA

achieves good performance in the regime of whole exome data (with only 1 to 5% of all SNVs). More specifically,
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we find that the number of inferred mutation clusters increases with the number of SNVs (Supplementary Fig. 19B).

Similarly, we find that with more SNVs the uncertainty in mutation clusters decreases, as shown by the mean width of

the 95% confidence intervals of frequencies of mutation clusters (Supplementary Fig. 19C). The clustering precision

and recall, as defined above, are affected by the number of SNVs, with the precision decreasing and recall increasing

with increasing numbers of SNVs (Supplementary Fig. 19D-E). On the other hand, the clone tree distance d(T ∗, T )

between the simulated tree T ∗ (containing all SNVs) and each inferred tree T (containing a subset of the SNVs)

decreases with increasing number of SNVs (Supplementary Fig. 19F). Finally, the precision and recall (summarized

by the F1 score) of the clones that migrate to different anatomical sites (Supplementary Fig. 19G), and of the migration

graph (Supplementary Fig. 19H) increases with increasing numbers of SNVs. Note that in the computation of the F1

score of the migrating clones, we define a clone by the subset of SNVs that were present in the downsampled instance.

That is, in Equation (4) we define U(T ∗, `∗) = {σ̄(u) ∩X | (u, v) ∈ E(T ∗), `∗(u) 6= `∗(v)} where σ̄(u) is the set of

mutations present in vertex u of T ∗ and X is the set of mutations present in the downsampled instance.

A.2 Metastatic Colorectal Cancer

Most of the published studies [3–5, 12–14, 20, 23–25, 27, 47, 49–51, 54, 55] derive clone trees using standard phy-

logenetic techniques based on neighbor-joining [42], maximum parsimony [11] or maximum likelihood [10]. The

implicit assumption that these studies make is that the sequenced anatomical sites are homogeneous, i.e. composed

of a single clone. Here, we show that the sample homogeneity assumption can lead to clone trees and consequently

migration histories that are likely incorrect. In particular, we show that the resulting clone trees have multiple cases of

homoplasy, where identical single-nucleotide mutations occur independently on different branches of the tree. While

homoplasy cannot definitively be ruled out in cancer evolution, it is highly implausible to see multiple (even dozens)

of such events. Indeed, no homoplasy, or the infinite sites assumption, is the standard assumption for single-nucleotide

mutations in cancer [17, 26, 32, 48].

A recent commentary [1] discusses the issues of the sample homogeneity assumption on heterogeneous tumor

sequencing data. We illustrate how the issue of extensive homoplasy arises in a study of five patients with metastatic

colorectal cancers [23]. In this study, the authors sequenced for each patient 2–6 metastases and 2–5 regions from

the primary tumor, and used maximum parsimony to infer phylogenetic trees, assuming that each region consists of a

single clone. We find that the published trees exhibit extensive homoplasy, with many violations of the infinite sites

assumption (Supplementary Table 4). The most extreme example is patient CRC2, which has 412 identified SNVs,

41 of which violate the infinite sites assumption (Supplementary Fig. 1A). An evolutionary history where ≈10% of

SNVs occur independently multiple times is highly unlikely, particularly because the majority of these mutations are

not known cancer-causing mutations that may have undergone positive selection. Moreover, the violations cluster

on the tree: 24 of the violations occur on the branch leading to region P3 from the primary tumor, with 18 of these

mutations also occurring on a single branch leading to region P1 from the primary tumor and metastases M1 and M2.

When comparing the distribution of the variant allele frequencies (VAFs) of these 18 mutations to the VAF distribution

of the other mutations, we find a clear indication that P3 is not homogeneous and contains a subclone composed of
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the 18 homoplasy mutations (Supplementary Fig. 1B). This example clearly demonstrates the differences between

the clone tree and the migration graph and shows that ignoring intra-tumor heterogeneity results in a tree that is

neither representative of the evolutionary relationships between clones/cells nor representative of the migrations of

cells between anatomical sites.

A.3 Metastatic Ovarian Cancer

We run the Sankoff enumeration algorithm (Supplementary Methods) on the reported clone trees of all metastatic

ovarian cancers in [28]. In all cases, the reported vertex labeling is among the enumerated vertex labelings (Supple-

mentary Table 5). For patients 1, 3 and 7, we find multiple vertex labelings with the same minimum migration number

µ∗ but different comigration number γ. We also consider the effect of resolving polytomies (Supplementary Table 6)

and find for most patients that this results in fewer migrations than reported. We describe these results in more detail

in the following.

None of the enumerated vertex labelings of patient 1 have comigration number γmin = m−1 = 6 and consequently

do not correspond to a single-source seeding (S) pattern. When enforcing an S pattern using the ILP (Supplementary

Methods), we find that with LOv as the primary, µ = 15 migrations are required, and that with an ROv primary,

µ = 14 are required. This suggests that ROv is a more likely primary under a single-source seeding constraint.

However, by resolving the polytomies in this patient’s clone tree under an S pattern, we find that in both cases only

µ = 12 migrations are needed (Supplementary Fig. 6C and D). When allowing for reseeding (R) in the polytomy

resolution, we find that the most parsimonious solution is obtained with LOv as the primary with migration number

µ = 11 but with comigration number γ = 7 and reseeding between LOv and ROv (Supplementary Fig. 6E).

For patient 3 with m = 8 anatomical sites, the minimum migration number µ∗ = 27 is achieved with both LOv

and ROv as the primary, with 4 and 20 vertex labelings, respectively (Supplementary Table 5). The reported vertex

labeling has comigration number γ = 9 with LOv as the primary [28] (Supplementary Fig. 7B). However, there are

two vertex labelings where the primary is either LOv or ROv, that both achieve the minimum comigration number

γmin = m− 1 = 7 (Supplementary Fig. 7C and D). These labelings correspond to a polyclonal parallel single-source

seeding (pPS) pattern, where each metastasis is seeded only once from the primary by multiple comigrating clones.

Since McPherson et al. [28] do not reconstruct the migration pattern nor analyze the number of comigrations, they

overlook these more parsimonious explanations. When further exploring binarizations, we arrive at fewer migrations

µ = 25 with both LOv and ROv as the primary (Supplementary Fig. 7E and F).

For patient 7, the authors report a vertex labeling with migration number µ = 11. This labeling, however, has

a non-ovarian anatomical site (RUt, right uterosacral ligament) as the primary, which might be unlikely for ovarian

cancer (Supplementary Fig. 8B). We find that the reported labeling is the only minimum migration labeling with RUt

as the primary (Supplementary Table 5). When using one of the ovaries (LOv or ROv) as the primary, we find for

LOv four labelings with migration number µ = 12 and for ROv 32 labelings with migration number µ = 13. Among

these, there are multiple labelings that achieve the minimum comigration number γmin = 6 (e.g., Supplementary

Fig. 8C and D). Thus with either of the ovaries as the primary more migrations are required than with an RUt primary.
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The clone tree, however, has four polytomies, whose resolution leads to a migration history with migration number

µ = 11 and comigration number γmin = 6 for either LOv and ROv as the primary Supplementary Fig. 8E and F).

Moreover, solving the PHM-TR problem with RUt as the primary does not result in fewer than µ = 11 migrations

(Supplementary Fig. 8G). These findings suggest that analysis of the migration history provides no evidence for the

authors’ statement that the primary tumor is located in the right uterosacral ligament (RUt) as opposed to either of the

ovaries (LOv or ROv).

For the remaining patients, we find that polytomy resolution allows for the identification of more parsimonious

migration patterns than reported. For instance, for patient 2 there exists a binarization and subsequent labeling with a

monoclonal single-source seeding (mS) pattern. Moreover, for patients 4 and 9 we can no longer distinguish between

LOv and ROv as the primary when resolving polytomies.

Interestingly, in our analyses of the ovarian cancer dataset, where metastasis typically proceeds via the intraperi-

toneal cavity lacking physical barriers, we find large numbers of comigrating clones, while our analyses of the breast,

prostate and melanoma datasets (in the next sections), where metastasis follows the more common mechanisms of

lymphagenous or hematogenous spread, have few numbers of comigrating clones. This suggests that the extent of

comigration may differ depending on the mode of metastatic spread. However, more comprehensive analyses with

larger sample numbers are required to support this hypothesis.

A.4 Metastatic Prostate Cancer

In a seminal paper, Gundem et al. [15] studied the evolutionary history of ten metastatic prostate cancers. The authors

sequenced matched primary and metastasis samples using whole genome sequencing (WGS) technology. Among

the ten patients, the authors concluded that five patients exhibited polyclonal seeding and eight patients exhibited

metastasis-to-metastasis spread. In our nomenclature, a parallel single-source seeding (PS) pattern indicates the ab-

sence of metastasis-to-metastasis spread (Supplementary Table 9). As described in the main text, the presence of a

primary tumor sample is essential for reconstructing the complete migration history. However, only five patients (A10,

A22, A29, A31 and A32) included a sequencing sample from the primary prostate anatomical site (Supplementary

Table 7). We analyze the migration history of these five patients with MACHINA.

Patient A10 has 9472 SNVs distributed over m = 4 anatomical sites. Gundem et al. [15] identified a clone tree

with nine mutation clusters and upon manual analysis hypothesized that each metastasis of this patient was seeded by

a single clone and that metastasis-to-metastasis spread took place. MACHINA (in PHM-TR mode) resolves a single

polytomy in the reported clone tree and identifies a vertex labeling with a monoclonal parallel single-source seeding

pattern (mPS), migration number µ = 3, comigration number γ = 3 and seeding site number σ = 1 (Supplementary

Fig. 9A and Supplementary Fig. 10A). We thus recapitulate the authors’ finding of monoclonal seeding. However,

in the migration history inferred by MACHINA each metastasis is seeded directly from the primary tumor, which is

an alternative explanation that should be evaluated alongside the metastasis-to-metastasis spread hypothesis reported

by the authors. Careful analysis of the vertex labeling inferred by MACHINA reveals that the ‘gold’ mutation cluster

(containing 1218 mutations) is key in distinguishing the two alternative scenarios (Supplementary Fig. 10A). For
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a parallel migration pattern this cluster must have originated in the primary prostate tumor, whereas in the case of

metastasis-to-metastasis spread this cluster must have originated in either the periportal or the perigastric lymph node.

Gundem et al. [15] reported a cancer cell fraction (CCF) of 0.4% in the prostate sample of the ‘gold’ mutation cluster.

If this value is accurate then the clone composed of the mutations in the ‘grey’ and ‘gold’ clusters was present in only a

small proportion in the prostate at the time of sequencing and must have seeded both the periportal and the perigastric

lymph node, ruling out metastasis-to-metastasis spread. In case the observed CCF is due to sequencing artifacts and

in reality is 0, the scenario of parallel seeding of the two lymph nodes would imply that the clone containing both the

‘gold‘ and ‘grey‘ mutation clusters must have become extinct in the prostate, whereas the existence of such an extinct

clone is not required in the case of metastasis-to-metastasis spread. These considerations must be taken into account

before drawing conclusions regarding the mode of seeding. Thus, Gundem et al.’s finding of metastasis-to-metastasis

spread for this patient is not conclusive.

Patient A29 has 8275 SNVs in m = 2 anatomical sites. MACHINA finds a vertex labeling with migration number

µ = 1, comigration number γ = 1 and seeding site number σ = 1 (Supplementary Fig. 9B), thus confirming the

authors’ finding of monoclonal parallel single-source seeding (mPS).

Patient A31 has 4852 SNVs in m = 5 anatomical sites. Gundem et al. [15] identified a clone tree with ten

mutation clusters and hypothesized that polyclonal seeding and metastasis-to-metastasis spread have taken place for

this patient. MACHINA (in PHM-TR mode) resolves three polytomies in the reported clone tree and finds that the

most parsimonious vertex labeling has migration number µ = 10, comigration number γ = 4 and seeding site number

σ = 2, corresponding to a polyclonal single-source seeding (pS) pattern (Supplementary Fig. 9C and Supplementary

Fig. 10B). Although a pPS pattern requires two more migrations (µ = 12) for this patient (Supplementary Fig. 9D),

the presence of the ‘dark green’ and ‘light blue’ mutation clusters in the prostate—with CCFs of 6.4% and 1.2%,

respectively—indicate that parallel seeding of all metastases from the primary is a likelier explanation than metastasis-

to-metastasis spread.

Patient A32 has 9388 SNVs in m = 6 anatomical sites. The authors identified a clone tree with 12 mutation

clusters, and upon manual analysis hypothesize that several metastases of this patient were seeded polyclonally via

a metastatic cascade. Indeed, we find that the most parsimonious vertex labeling has migration number µ = 7,

comigration number γ = 5 and seeding site number σ = 2 and corresponds to a polyclonal multi-source seeding

(pM) migration pattern with metastasis-to-metastasis spread (Supplementary Fig. 9E). Under a parallel single-source

seeding (PS) constraint (defined in Section B.2) we find a polyclonal parallel single-source seeding (pPS) migration

history with a single additional migration (µ = 8), comigration number γ = 4 and seeding site number σ = 1 (Supple-

mentary Fig. 9F and Supplementary Fig. 10C). This alternative migration history with only one additional migration

must be taken into account when deciding whether metastasis-to-metastasis spread took place, especially given that

minimum-migration labeling follows a complex polyclonal multi-source seeding pattern. Similarly to patient A10,

there is a single mutation cluster whose presence in the primary prostate tumor would allow one to definitively rule out

metastasis-to-metastasis spread (Supplementary Fig. 10C). This is the ‘light blue’ cluster; Gundem et al. [15] report

a CCF of 0.3% in the prostate for this cluster. Thus, targeted sequencing of the mutations in the ‘light blue‘ cluster
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would be highly informative. Note that even if targeted sequencing fails to establish the presence of this clone in the

primary tumor, parallel seeding might still be an explanation for this patient. In this case, the reason for not observing

the clone could be either extinction of the clone or insufficient sequencing resolution.

Finally, patient A22 has 10262 SNVs in m = 10 anatomical sites. Using the clone tree reported by the authors,

MACHINA finds that the most parsimonious vertex labeling for this patient has migration number µ = 26, comigration

number γ = 12 and seeding site number σ = 5, corresponding to a polyclonal reseeding (pR) pattern (Supplementary

Table 7). Enforcing a parallel single-source seeding (PS) migration pattern results in 10 more migrations. Contingent

on the accuracy of the reported clone tree, this finding indicates that metastasis-to-metastasis may have likely taken

place for this patient.

In summary, while MACHINA’s results show complete agreement with Gundem et al. [15] in concluding polyclonal

seeding, we find that for three patients (A10, A31 and A32) a scenario of parallel seeding of all metastases from the

primary tumor is also consistent with the data.

A.5 Metastatic Melanoma

To study whether migration in melanoma follows a serial progression from primary tumor to regional metastases

to distant metastases, Sanborn et al. [44] performed whole exome sequencing on matched primary and metastases

from eight patients with metastatic melanoma. More specifically, the authors aimed to find evidence for the seeding of

multiple distinct anatomical sites from the primary tumor, likely ruling out a serial progression. In addition, the authors

aimed to detect polyclonal seeding of anatomical sites by identifying mutations that are subclonal in distinct metastatic

sites. Two patients were found to have polyclonal-seeded metastases and non-serial progression was concluded for

six patients. We use MACHINA to analyze the migration history of the six patients reported to have a non-serial

progression (Supplementary Table 8).

We only consider SNVs that occur in copy-neutral regions and cluster these using the AncesTree clustering al-

gorithm [8], described in Section A.1.2. We exclude patient H from our analysis due to the absence of copy-neutral

SNVs. By solving the PMH-TI problem, MACHINA finds that only patients C and E have undergone polyclonal seed-

ing, in agreement with [44]. MACHINA infers a parallel single-source seeding (PS) pattern for patients A, C, D and F,

and infers a migration history with σ = 2 seeding sites and migration number µ = 5 for patient E. These findings are

in line with the conclusion of the likely absence of serial progression by Sanborn et al. [44].

A.6 Metastatic Breast Cancer

Hoadley et al. [19] restricted their analyses to single-nucleotide variants (SNVs) that occur in copy-neutral regions.

The authors used SciClone [30] to cluster mutations with the same variant allele frequency (VAF) across all anatomical

sites. We correct the reported cluster assignments of mutations 47 and 81, as described in Supplementary Table 1. We

use the reported mutation clusters to infer confidence intervals on the frequency of cells containing the mutations

present in a cluster. We do this by viewing variant reads as draws from a binomial distribution similarly to SciClone.
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More specifically, let C be a mutation cluster and let vs,i and rs,i denote, respectively, the number of variant and

reference reads of SNV i ∈ C in anatomical site s. Assuming a uniform prior on the true frequency of cluster C

leads to a beta posterior distribution given the observed variant and reference read counts of the mutations present in

cluster C, i.e. Beta
(
1 +

∑
i∈C vs,i, 1 +

∑
i∈C rs,i

)
. For each mutation cluster C and anatomical site p, we use the

Bonferroni correction to infer confidence intervals [f̂−p,C , f̂
+
p,C ] on the posterior distribution such that the family-wise

type-I error rate is 1 − α = 5%. That is, given m = 6 samples, n = 10 mutations clusters and α = 0.95, we use a

confidence of

1− 1− α
mn

≈ 99.92%.

Multiplying each interval [f̂−p,C , f̂
+
p,C ] by 2 yields frequency matrices (F−, F+).

Patient A7 Patient A7 has m = 6 anatomical sites, including the breast primary and five metastases from the brain,

kidney, liver, lung and rib. The authors identified 478 SNVs that occur in copy-neutral genomic regions. These SNVs

were clustered into 10 clusters using SciClone [30] (Supplementary Fig. 2A). SPRUCE finds two different mutation

trees that differ in their ordering of mutation clusters 3 and 5 (Supplementary Fig. 2B). One of the mutation trees,

denoted by T , corresponds to the mutation tree reported by the authors. The authors conflated mutation clusters and

clones, and erroneously inferred a clone tree from T by assigning an anatomical site to each mutation cluster if the

corresponding VAF was greater than 0. This yielded a clone tree with 22 extant clones (Supplementary Fig. 2C). By

manually assigning anatomical sites to internal vertices and resolving polytomies, Hoadley et al. [19] inferred two

distinct migration histories: (i) a polyclonal multi-source seeding (pM) history with migration number µ = 12 and

comigration number γ = 6 (Main Text), and (ii) a polyclonal single-source seeding (pS) with µ = 15 and γ = 5

(Supplementary Fig. 2D). By running MACHINA to solve the PMH-TI problem given (F−, F+) and either of the

mutation trees, we arrive at parsimonious monoclonal single-source seeding (mS) histories with µmin = 5 migrations

and γmin = 5 comigrations (Supplementary Fig. 2E). Note that for both mutation trees there is ambiguity in the order

of migrations between between kidney and liver, relative to the lung metastasis (2F).

We ran Treeomics, with and without subclone detection enabled, given the variant allele frequencies of patient

A7. In both cases, Treeomics infers a phylogenetic tree that contains only a single clone for each anatomical site

(Supplementary Fig. 2G). This apparent homogeneity of the metastases might be an artifact of the discretization of

the variant allele frequencies in the Treeomics algorithm. As the migration history of this patient most likely follows

an mS pattern, the clones in each metastatic site will correspond to a single clade. Therefore, the discretization step

will not result in violations of the infinite sites assumption and subsequently Treeomics will not invoke the subclone

detection heuristic (which, in fact, is a variation of the split row operation described in [18]). We observed the same

phenomenon in all simulated mS instances, where no subclones were detected in the metastases by Treeomics.

We provide the method by McPherson et al. [28] the clone tree that MACHINA inferred from the reported mutation

tree (leftmost tree in Supplementary Fig. 2B). This clone tree has two polytomies (Supplementary Fig. 2E). Since

the McPherson et al. method [28] only considers the migration number µ and does not resolve polytomies, it is

unable to infer the mS migration history with migration number µ = 5 identified by MACHINA (Supplementary

17



Fig. 2F). Instead, it infers monoclonal multi-source seeding (mM) migration patterns with one additional migration

(Supplementary Fig. 12).

Patient A1 This patient hasm = 5 anatomical sites, including the primary breast tumor and four metastases from the

lung, spinal, adrenal glands and liver. The authors report 329 copy-neutral SNVs, distributed over 9 mutation clusters

(Supplementary Fig. 13A). SPRUCE [9] finds four different mutation trees that differ in the ordering of mutation

clusters 4, 6 and 7 (Supplementary Fig. 13B). Two of the four mutation trees correspond to mutation trees inferred by

the authors using ClonEvol [6]. Hoadley et al. [19] infer a polyclonal parallel single-source seeding (pPS) migration

history with migration number µ = 13 and comigration number γmin = 4 (Supplementary Fig. 13C). By jointly

analyzing the cell division, mutation and migration history we infer, for each of the four mutation trees, clone trees that

admit migration histories with migration number µ = 6 and comigration number γmin = 4 (Supplementary Fig. 13D).

These results provide a more parsimonious explanation of the history of this metastatic cancer than previously reported

in [19].

Treeomics identifies a clone tree that misses two subclones in the breast and the adrenal samples (Supplementary

Fig. 14A). This is a likely consequence of the VAF discretization step in Treeomics. In the breast sample, the dis-

cretization incorrectly removes a cluster of 48 mutations; the presence of this cluster is supported by the number of

variant read of the comprising mutations (Supplementary Fig. 14B). On the other hand, in the adrenal sample, there

are two mutation clusters that have distinct VAFs, one of which with the aforementioned 48 mutations; this informa-

tion is lost upon discretization (Supplementary Fig. 14B). Consequently, the minimum migration history of the clone

tree inferred by Treeomics misses the polyclonal seeding of the adrenal metastasis (Supplementary Fig. 14C). The

method employed by McPherson et al. [28] identifies the same migration graph when given the clone tree inferred by

MACHINA.

B Methods

In Section B.1 we define the various mathematical concepts that we use for analyzing the migration history of a

metastatic cancer. Next, we introduce in Section B.2 the three problem statements for (1) inferring a migration history

given a clone tree (PMH), (2) refining polytomies in a given clone tree using the migration history (PHM-TR), and

(3) inferring the clone tree and migration history jointly given mutation frequencies from bulk sequencing data (PMH-

TI). Finally, in Section B.3 we describe MACHINA (Metastatic And Clonal History INtegrative Analysis), an algorithm

that solves the three problems and provides a framework for comprehensively analyzing the cell division, mutation

and migration history of metastatic cancers.

B.1 Preliminaries

We start by introducing notation that we use throughout the manuscript. Let T be a rooted tree with vertex set V (T )

and edge set E(T ). We further split the vertex set V (T ) into a leaf set L(T ) and internal vertex set I(T ). Vertex r(T )
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denotes the root of T . We denote the children of a vertex u by δT (u). We write u �T v if and only if vertex v is

reachable from vertex u, and we write u ≺T v if and only if u 6= v and v is reachable from v. We denote by Tv the

subtree of T rooted at vertex v.

We consider a metastatic cancer composed of n mutations that are present in clones from m distinct anatomical

sites denoted by Σ. The primary tumor, denoted by P ∈ Σ, is the origin of the tumor. The mutation tree T describes

the mutation history of the metastatic cancer and is formally defined as follows.

Definition 1. A mutation tree T is an edge-labeled rooted tree whose n edges are labeled uniquely by mutations [n].

Requiring each mutation to label at exactly one edge of the mutation tree is known in population genetics as the

infinite sites assumption, or in phylogenetics as the perfect phylogeny condition [16]. This assumption states that

a mutation only occurs once throughout the entire history of a tumor and is never lost. Since the root vertex r(T )

corresponds to a normal cell, we have that r(T ) has state 0 for every character/mutation i ∈ [n]. According to the

clonal theory of cancer [34], we have that all tumor cells are descendant from the same tumor cell, i.e. we require

|δ(r(T ))| = 1. Each vertex vi ∈ V (T ) \ {r(T )} corresponds to a unique mutation i ∈ [n] that labels the incoming

edge of vi. As such, each vertex vi ∈ V (T ) defines a clone that is composed of the mutations that label the edges of

the unique path from vi to the root r(T ). A mutation tree T does not assign clones to anatomical sites. To that end,

we define a clone tree T as follows.

Definition 2. A clone tree T is a rooted tree whose leaves are labeled by anatomical sites Σ via the function

` : L(T )→ Σ such that for each anatomical site s there exists a leaf u labeled by `(u) = s. The edges of T are

labeled via the function λ : E(T ) → [n] ∪ {⊥} such that for each mutation i ∈ [n] there is exactly one edge (u, v)

where λ(u, v) = i. Edges labeled by ⊥ do not introduce a new mutation.

A clone tree T describes the cell division and mutation history of the clones currently present in anatomical sites Σ.

One infers a clone tree T using specialized phylogenetic inference techniques from tumor sequencing data [7–9, 21,

22,26,33,35,40,48,52]. Note that multiple regions from a single anatomical site may be sequenced, and doing so may

improve the accuracy of the inferred clone tree. The leaves L(T ) of the clone tree T are the extant clones of the tumor

and each leaf u ∈ L(T ) is labeled by the anatomical site `(u) in which it occurs. The internal vertices V (T ) \ L(T )

are the ancestral clones. Each directed edge (u, v) ∈ E(T ) is labeled by the somatic mutation λ(u, v) that distinguish

clone v from clone u. Note that each clone tree T corresponds to a unique mutation tree T obtained by condensing

all unlabeled edges of T . We will elaborate on this in Section B.2.2. Unless explicitly mentioned, we omit the edge

labeling of T in the following.

While the clone tree describes the lineage of the clones according to cell divisions and mutations, it does not

directly describe the migration history of the clones of a tumor. To describe the migration history, we need to assign

each internal vertex v an anatomical site `(v) ∈ Σ.

Definition 3. Let T be a clone tree on anatomical sites Σ with leaf labeling ˆ̀. The vertex labeling ` : V (T ) → Σ

extends ˆ̀ to all vertices of T such that `(r(T )) = P and `(u) = ˆ̀(u) for all leaves u.
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We call a clone-tree edge (u, v) a migration edge provided `(u) 6= `(v). We model the migration patterns, i.e. the

origin and destination anatomical site of each migration, by a directed multigraph called the migration graph, which

is formally defined as follows.

Definition 4. A migration graph G on anatomical sites Σ is a connected, vertex-labeled directed multigraph whose

m = |Σ| vertices are in 1-1 correspondence with Σ.

We denote the edge multiset of G by E(G). As such, E(G) may contain multiple edges (s, t)—all such occur-

rences combined form a multi-edge.

Migration patterns, as described by the migration graph, can be distinguished in two different ways. First, by the

number of clones that migrate between two anatomical sites, i.e. only a single clone migrates in the case of monoclonal

seeding (m), whereas multiple clones migrate in the case of polyclonal seeding (p). Second, by the topology of

migrations: with parallel single-source seeding (PS) all migrating clones originate from the primary P , with single-

source seeding (S) all the clones that migrate to an anatomical site originate from the same source anatomical site,

whereas they have multiple origins with multi-source seeding (M), and with reseeding (R) clones migrate back and

forth between anatomical sites. Supplementary Table 9 shows the different migration patterns.

Each vertex labeling ` of a clone tree T determines the migration graph G. That is, each migration edge (u, v) in

T , with `(u) 6= `(v), corresponds to an edge (`(u), `(v)) in G. There exist many different vertex labelings ` of a clone

tree T , yielding different migration graphs (Supplementary Fig. 20), which we distinguish by the migration number

µ(T, `), the comigration number γ(T, `) and the seeding site number σ(T, `), defined in the following sections.

B.1.1 Migration Number µ(T, `)

Given a clone tree T and vertex labeling `, we define the migration number µ(T, `) as the number of migration edges,

i.e.

µ(T, `) = |{((u, v) ∈ E(T ) | `(u) 6= `(v)}|. (5)

Equivalently, the migration number µ(T, `) is the number |E(G)| of edges of G. Since each of the m− 1 metastases

must be seeded, we make the following observation.

Observation 1. The migration number µ(T, `) is at least µmin = m− 1.

We note that the case of µmin = m− 1 migrations corresponds to monoclonal single-source seeding (mS), where

every metastasis is seeded by a single migrating clone. Not every clone tree admits a vertex labeling with migration

number µmin (Supplementary Fig. 20). The following proposition presents a necessary and sufficient condition for the

existence of a labeling with migration number µmin.

Proposition 1. Let ν(s) be the lowest common ancestor of all leaves labeled by anatomical site s 6= P , and let ν(P )

be r(T ). Then, a clone tree T with leaf labeling ¯̀has a vertex labeling `∗ with migration number µ(T, `) = µmin if

and only if for all distinct anatomical sites s, t and clone-tree leaves u, v where ¯̀(u) = s and ¯̀(v) = t the paths from

ν(s) to u and from ν(t) to v are vertex disjoint.
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Proof. (⇒) Let `∗ be a vertex labeling of T with migration number µ(T, `∗) = µmin. Consider two distinct clone-tree

leaves u, v such that `∗(u) = s, `∗(v) = t and s 6= t. Assume for a contradiction that the paths from ν(s) to u and from

ν(t) to v overlap at clone-tree vertex w. We claim that `∗(ν(s)) = s and `∗(ν(t)) = t, as otherwise µ(T, `∗) > µmin.

Thus, it holds that `∗(w) = s and `∗(w) = t. However, s 6= t, which is a contradiction. Hence, the paths from ν(s) to

u and from ν(t) to v are vertex disjoint.

(⇐) We show constructively how to obtain a valid clone-tree vertex labeling `∗ from ν given that for all distinct

anatomical sites s, t ∈ Σ and clone-tree leaves u, v ∈ L(T ) such that ¯̀(u) = s and ¯̀
T (v) = t the paths from ν(s) to u

and from ν(t) to v are vertex disjoint. For each clone-tree vertex u ∈ V (T ), set `∗(u) = s if ν(s) is the first clone-tree

vertex encountered on the unique path from u to r(T ). We claim that `∗ is a vertex labeling of T subject to the two

conditions of Definition 3.

1. By definition of ν, we have that ν(P ) = r(T ) and thus `∗(r(T )) = P .

2. Suppose for a contradiction that there exists a clone-tree leaf u such that `∗(u) 6= ¯̀(u). Let ¯̀(u) = s. Now, by

definition of ν, it holds that ν(s) � u. Let `∗(u) = t. Note that by the premise that t 6= s. By construction, it

holds that ν(t) � u. Since T is a tree, it must hold that either ν(s) ≺ ν(t) � u or ν(t) ≺ ν(s) � u. Either

case would be a contradiction with the fact that the paths from ν(s) to u and from ν(t) to v are vertex disjoint.

Hence, `∗(u) = ¯̀(u) for all clone-tree leaves u.

By construction of `∗, we have that T [{u ∈ V (T ) | `∗(u) = s}] is connected for each anatomical site s. Thus, `∗ has

migration number µmin = m− 1.

Note that the above condition can be checked in polynomial time. In the main text we described that a clone

tree may admit many vertex labelings with the same minimum number of migrations but with very distinct migration

graphs. To distinguish such vertex labelings, we consider additional objective functions.

B.1.2 Comigration Number γ(T, `)

Given a clone tree T and vertex labeling `, a comigration is a subset of migration edges between the same anatomical

sites that occur on distinct branches in the clone tree.

Definition 5. Given a clone tree T and vertex labeling `, a comigration is a subset X ⊆ E(T ) of edges that (1) occur

on distinct branches of T , and (2) there exist distinct anatomical sites s 6= t such that `(u) = s and `(v) = t for each

(u, v) ∈ X .

Note that a comigration may consist of just a single migration edge. The comigration number γ(T, `) is the size of

the smallest partition of migration edges into comigrations. Equivalently, one can determine γ(T, `) by counting the

number γ(s, t) of comigrations between distinct anatomical sites s 6= t:

γ(T, `) =
∑
s6=t

γ(s, t). (6)
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The number γ(s, t) of comigrations between distinct anatomical sites s 6= t is the maximum number of migration

edges (u, v) with `(u) = s and `(v) = t that are on the same path of T starting from the root r(T ).

If G does not contain a directed cycle then every path in T starting at r(T ) contains at most one migration edge

(u, v) labeled by the same sites `(u) = s and `(v) = t. The following observation thus follows.

Observation 2. If G does not contain a directed cycle then the comigration number γ(T, `) equals the number of

multi-edges in G, i.e. γ(T, `) = |{(s, t) ∈ E(G)}|.

Supplementary Fig. 21 shows an example where G has a directed cycle and the comigration number γ(T, `) does

not equal the number of multi-edges of G.

Since every comigration is composed of at least one migration, we make the following observation.

Observation 3. The comigration number γ(T, `) is at most the number µ(T, `) of migrations.

Since there are m− 1 metastases that each must be seeded, we note the following.

Observation 4. The comigration number γ(T, `) is at least γmin = m− 1.

The case where each metastasis is seeded by a single comigration results in the migration graph G being a multi-

tree, as noted in the following observation.

Observation 5. Let G be the migration graph of a vertex labeling ` and clone tree T . Then, γ(T, `) = γmin = m− 1

if and only if G is a multi-tree.

Vertex labelings with γmin comigrations correspond to single-source seeding (S) migration patterns. There always

exist such vertex labelings with γmin comigrations, as noted in the following.

Observation 6. Let ` be a vertex labeling of a clone tree T such that `(u) = P for every internal vertex u. Then,

γ(T, `) = γmin.

From Proposition 1 and Observation 3, the following result follows for the case of clone trees T with homogeneous

anatomical sites, i.e. where each anatomical site is composed of a single clone.

Proposition 2. A homogeneous clone tree has a vertex labeling with migration number µmin and comigration number

γmin.

Recall that in Section A.2 we described that many analyses of metastatic cancers in the literature are based on the

implicit assumption that samples are homogeneous, and derive a sample tree using standard phylogenetic techniques.

If in addition only one sample were taken from each anatomical site then the above result implies that there exist a

vertex labeling of the sample tree with a monoclonal single-source seeding (mS) pattern, migration number µmin and

comigration number γmin.
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B.1.3 Seeding Site Number σ(T, `)

We now introduce a third objective, the seeding site number σ(T, `). A seeding site is an anatomical site s that is a

source of migrations, that is, there exists a migration edge (u, v) where `(u) = s. Thus, the number σ(T, `) of seeding

sites is defined as

σ(T, `) = |{s ∈ Σ | ∃(u, v) ∈ E(T ) : `(u) = s, `(v) 6= s}|. (7)

With m > 1 anatomical sites, the number of seeding sites must be at least 1.

Observation 7. The seeding site number σ(T, `) is at least σmin = 1.

Since the clone-tree root r(T ) must be labeled by the primary P (Definition 3), we make the following observation.

Observation 8. Let G be the migration graph of a vertex labeling ` and clone tree T . Then, σ(T, `) = σmin = 1 if

and only if G is a multi-tree where only the vertex corresponding to anatomical site P has out-degree greater than 0.

Combining the above result with Observation 5, we obtain the following proposition.

Proposition 3. If σ(T, `) = σmin = 1 then γ(T, `) = γmin = m− 1.

We extend Observation 4 to include the number of seeding sites.

Observation 9. Let ` be a vertex labeling of a clone tree T such that `(u) = P for every internal vertex u. Then,

γ(T, `) = γmin and σ(T, `) = σmin.

Supplementary Table 9 shows that the different scores distinguish different migration patterns.

B.2 Problem Statements

B.2.1 Parsimonious Migration History

The first problem we tackle is that of inferring a migration history (vertex labeling) given a clone tree. As mentioned,

there are many different objective functions one could use to score a vertex labeling. From Observation 9 it follows

that labeling every internal vertex u of T by P results in the minimum comigration number γmin = m − 1 and the

minimum seeding site number σmin = 1. Thus, as an objective it makes sense to consider the migration number

γ(T, `) first. Based on Proposition 3, ties must be broken by considering the comigration number γ(T, `) followed by

the seeding site number σ(T, `). The Parsimonious Migration History (PMH) problem adheres to this prioritization of

the different objectives.

Problem 1 (Parsimonious Migration History (PMH)). Given a clone tree T , find a vertex labeling ` with the minimum

migration number µ(T, `) = µ∗(T ) and subsequently the smallest comigration number γ(`, T ) = γ̂(T ) and smallest

seeding site number σ(`, T ) = σ̂(T ), where

γ̂(T ) = min
` : µ(T,`)=µ∗(T )

γ(T, `) and σ̂(T ) = min
` : µ(T,`)=µ∗(T ),γ(T,`)=γ̂(T )

σ(T, `). (8)

The resulting migration graph G is (1) restricted to an PS pattern, or (2) restricted to either an PS or S pattern, or

(3) restricted to an PS, S or M pattern, or (4) unrestricted.
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B.2.2 Parsimonious Migration History with Tree Refinement

A clone tree is a coarse-grained representation of a cell tree, whose vertices are cells and directed edges relate parental

cells to the their daughters. As the division of a cell results in two daughter cells, the cell tree is a rooted full binary

tree, i.e. every internal vertex has out-degree 2 (Supplementary Fig. 22). Direct observation of the cell tree is nearly

impossible as longitudinal high-fidelity measurements of somatic mutations in large numbers of single tumor cells is

a huge technical challenge [31]. Conceptually, given a set X of mutations, collapsing all vertices of the cell tree with

the same subset X ′ ⊂ X of mutations yields the clone tree. In practice, we infer a clone tree given measurements of

only the extant clones. As such, the resulting clone tree will typically be non-binary and contain many polytomies, i.e.

vertices with out-degree greater than 2 that reflect the uncertainty in the ancestral relationships of their children. We

may refine polytomies by analyzing a non-binary clone tree in light of the migration history.

We start by defining two operations that can be performed on any clone tree T : SPLIT(u) and CONTRACT(u, v).

The operation SPLIT(u) takes as input a vertex u of T such that |δ(u)| > 2 and transform T into T ′ by introducing

a new vertex u′, an edge (u, u′) labeled by λ(u, u′) = ⊥ and between 2 and |δ(u)| − 1 children of u are moved to

u′. On the other hand, the operation CONTRACT(u, v) takes as input an edge (u, v) of T such that v 6∈ L(T ) and

λ(u, v) = ⊥. This operation results in a new clone tree T ′ through the reassignment of the children δ(v) of v to u,

and the removal of edge (u, v) and vertex v. Since in a canonical clone tree T(T ,U) the only edges labeled by ⊥ are

incoming to leaves, the CONTRACT operation cannot be applied to T(T ,U). We write T ∼ T ′ if T ′ can be obtained

from T through a sequence of zero, one or multiple SPLIT and CONTRACT operations (Supplementary Fig. ??). A

refinement T ′ is a clone tree obtained from T through a sequence of (zero or more) SPLIT operations. We have the

following problem.

Problem 2 (Parsimonious Migration History with Tree Refinement (PHM-TR)). Given a clone tree T , find a refine-

ment T ′ of T and vertex labeling ` of T ′ with the minimum migration number µ(T ′, `) = µ∗(T ′) and subsequently

the smallest comigration number γ(T ′, `) = γ̂(T ′) and smallest seeding site number σ(T ′, `) = σ̂(T ′). The resulting

migration graph G is (1) restricted to an PS pattern, or (2) restricted to either an PS or S pattern, or (3) restricted

to an PS, S or M pattern, or (4) unrestricted.

Since in a refinement T ′ of T all internal vertices with out-degree 1 are retained, we have the following proposition,

which states that tree refinement does not lead to worse solutions for the migration history.

Proposition 4. Let T ′ be a refinement of T and let ` be a vertex labeling of T . Then, there exists a vertex labeling `′

such that (µ(T, `), γ(T, `), σ(T, `)) = (µ(T ′, `′), γ(T ′, `′), σ(T ′, `′)).

Proof. We define

`′(v′) = `(β(v′))

and claim that

(µ(T, `), γ(T, `), σ(T, `)) = (µ(T ′, `′), γ(T ′, `′), σ(T ′, `′)).
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We show that µ(T, `) = µ(T ′, `′) and σ(T, `) = σ(T ′, `′) by showing that there exists a bijection between the

migration edges of T and the migration edges of T ′. More specifically, let Y ⊆ E(T ) be the subset of migration edges

in T and let Y ′ ⊆ E(T ′) be the subset of migration edges in T ′. We define the function ξ : Y ′ → Y such that

ξ(u′, v′) = (β(u′), β(v′)).

We claim that ξ is a bijection. To see this, let (u, v) ∈ Y be a migration edge of T . Consider the subtree T ′v of T ′

as defined previously, and let v′ be the root of this subtree and u′ its parent. Now, u′ must be in the tree T ′u. Thus,

β(u′) = u and β(v′) = v. Hence, ξ(u′, v′) = (β(u′), β(v′)) = (u, v). Moreover, `′(u′) = `(β(u′)) = `(u) and

`′(v′) = `(β(v′)) = `(v). Therefore (u′, v′) is a migration edge in T ′.

It remains to show that γ(T, `) = γ(T ′, `′). By construction, we have that u′ �T ′ v′ if and only if β(u′) �T β(v′).

Thus, the order of the migration edges in T ′ is respected in T by ξ. Hence, γ(T, `) = γ(T ′, `′) and σ(T, `) =

σ(T ′, `′).

B.2.3 Parsimonious Migration History with Tree Inference

In this section we introduce the problem of jointly inferring parsimonious clone trees and migration histories from

bulk measurements of a metastatic cancer. We start by reviewing our previous results on clone tree inference from

bulk samples [8], where we made the infinite sites assumption. This assumption assumes the absence of homoplasy

and requires that a mutation only occurs once and is never lost. This is a reasonable assumption considering the length

of the human genome and underlies many published methods for tumor phylogeny inference [7–9, 21, 22, 26, 33, 35,

40, 48, 52]. As a consequence of the infinite sites assumption, each edge of a mutation tree T is labeled uniquely by

a mutation from [n] = {1, . . . , n}. We represent a mutation tree T by an n × n binary matrix B called the mutation

matrix, which is defined as follows.

Definition 6 ([8]). A matrix B ∈ {0, 1}n×n is a mutation matrix provided:

1. There exists exactly one r ∈ [n], corresponding to the founder mutation, such that
∑n
i=1 br,i = 1.

2. For each j ∈ [n] \ {r} there exists exactly one i ∈ [n] such that bi ⊆ bj and
∑n
l=1(bj,l − bi,l) = 1.

3. bi,i = 1 for all i ∈ [n].

We note that there is a 1-1 correspondence between the set Bn of mutation matrices and the set Tn mutation trees

on n mutations, and refer to [8] for additional details.

Lemma 1 ([8]). There is a 1-1 correspondence between Tn and Bn.

Most cancer sequencing studies consider one one or more bulk samples from m anatomical sites. Let k be the

total number of sequenced samples. We denote with σ(s) the set of samples taken from anatomical site s. Since each

bulk sample p is a mixture of thousands to millions of cells, we do not directly observe a mutation tree T (or mutation

matrix B). Instead, we measure various quantities that allow us to infer an k × n frequency matrix F = [fp,i] whose

entries fp,i describe the frequency of cells in sample p that harbor mutation i [9].
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Definition 7 ([8]). An k × n matrix F = [fp,i] is a frequency matrix provided 0 ≤ fp,i ≤ 1 for each sample p and

mutation i. Moreover, for each mutation i there exists a sample p such that fp,i > 0.

Given a mutation tree T , we describe the clonal composition of all samples by an k×n mixture matrix U , defined

as follows.

Definition 8 ([8]). An k × n matrix U = [up,j ] is a mixture matrix provided up,j ≥ 0 and
∑
j up,j ≤ 1 for all

samples p.

Frequency matrix F follows directly from mixture matrix U and mutation matrix B, as stated in the following

equation.

F = UB. (9)

We have the inverse problem.

Problem 3 (Tree Inference Problem). Given frequency matrix F infer mixture matrix U and mutation matrix B such

that F = UB.

The infinite sites assumption, used in the definitions of mutation matrix B and mutation tree T , leads to the

following two important results.

Lemma 2 ([8]). Given frequency matrix F and mutation matrix B, matrix U = [up,j ] with entries

up,j = fp,j −
∑

vl∈δ(vj)

fp,l (10)

is the unique matrix U such that F = UB.

Not every mutation matrix B yields a mixture matrix U with nonnegative entries given F . In previous work, we

proved that nonnegativity is a necessary and sufficient condition for solutions to the Frequency Matrix Factorization

problem [8].

Lemma 3 ([8]). Given frequency matrix F , a mutation matrix B admits a mixture matrix U if and only if

fp,i ≥
∑

vj∈δ(vi)

fp,j (SC)

for each mutation i and sample p.

Thus, the set of extant clones and their anatomical sites is fully determined given a frequency matrix F and a

mutation tree T (mutation matrix B). We say that a mutation matrix B (or equivalently mutation tree T ) generates

frequency matrix F if and only if there exists a mixture matrix U such that F = UB. While there is a unique U for a

given mutation matrix B (mutation tree T ), the problem of finding a mutation matrix given F is underdetermined, i.e.

multiple mutation matricesB may explain the observed frequencies F [9]. On the other hand, the problem of deciding

whether there exists a mutation matrix B (or mutation tree T ) given F is NP-complete [8]. Supplementary Fig. 23

summarizes the results of this section.
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Clustering Mutations There is extensive uncertainty in the measurements used to obtain F . We model the uncer-

tainty of the frequencies F by considering confidence intervals denoted by F− = [f−s,i] and F+ = [f+
s,i]. Given

frequency intervals F− = [f−s,i], F
+ = [f+

s,i] and a mutation matrix B = [bj,i], there may be many mixture matrices

U = [us,j ] such that ∑
j

us,j · bj,i ∈ [f−s,i, f
+
s,i].

Thus, a given mutation matrix B may correspond to different mixture matrices U that assign different complements

of extant clones to anatomical sites. We propose to deal with this ambiguity by jointly inferring parsimonious clone

trees and migration histories.

Problem 4 (Parsimonious Migration History with Tree Inference (PMH-TI)). Given a mutation tree T̄ , whose vertices

vi are labeled by intervals [f−s,i, f
+
s,i] for each anatomical site s, find an assignment F̂ = [f̂s,i] of frequencies such that

f̂s,i ∈ [f−s,i, f
+
s,i] and

f̂s,i ≥
∑

vj∈δ(vi)

f̂s,j (SC)

for each vertex vi and anatomical site s, and the resulting clone tree T admits a refinement T ′ and vertex labeling `

with the minimum migration number µ(T ′, `) = µ∗(T ′) and subsequently the smallest comigration number γ(T ′, `) =

γ̂(T ′) and smallest seeding site number σ(T ′, `) = σ̂(T ′). The resulting migration graph G is (1) restricted to an PS

pattern, or (2) restricted to either an PS or S pattern, or (3) restricted to an PS, S or M pattern, or (4) unrestricted.

Note that multiple mutation matrices may be compatible with the observations (F−, F+). Thus, we must solve

the above problem for each mutation matrixB that explains the observations (F−, F+). These mutation matrices may

be inferred using our enumeration algorithm SPRUCE [9].

Since we only sequence a tiny subset of all the reads that are present in a bulk sample, we typically do not have the

resolution to infer the ancestral relationships of every pair i, j of mutations. Specialized clustering algorithms have

been proposed to groups of mutations with similar frequencies into mutation clusters [30, 41, 43, 53]. Importantly, a

mutation cluster does not correspond to a clone but corresponds to an edge label of a mutation tree (Supplementary

Fig. 3). Application of these clustering algorithms yields frequency interval matrices (F−, F+) whose columns corre-

spond to mutation clusters rather than individual mutations. The problems that we introduced in the last two sections

extend trivially to mutation clusters.

B.3 MACHINA

B.3.1 Unconstrained Parsimonious Migration History Problem

As noted by McPherson et al. [28], finding a vertex labeling ` of a clone tree T with the minimum migration number

µ(T, `) = µ∗(T ) is an instance of the small phylogeny problem under a maximum parsimony objective with a single

character, and can be solved in polynomial time with the Sankoff algorithm [45]. In particular, the recurrence M [u, s]

yields the minimum number of state transitions, or the minimum number of migrations, when clone-tree vertex u is
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assigned anatomical site s, and is defined as

M [u, s] =


∞, if u ∈ L(T ) and `(u) 6= s,

0, if u ∈ L(T ) and `(u) = s,∑
v∈δ(u) mint∈Σ{cs,t +M [v, t]}, if u 6∈ L(T )

(11)

where cs,t = 0 if s = t and cs,t = 1 otherwise. Since the root vertex r(T ) must be labeled by P , the minimum

migration number µ∗(T ) is given by M [r(T ), P ]. We note that the entries of M can be computed using dynamic

programming bottom-up from the leaves of T (Algorithm 2). To compute all minimum-migration labelings, we

store for each vertex-anatomical site pair (v, s) the set ∆(v, s) composed of all pairs (w, t) where w ∈ δ(v) and

t = arg mint∈Σ{cs,t +M [v, t]}.

We now describe how to adapt the backtrace step of the Sankoff algorithm to enumerate all vertex labelings that

have µ∗(T ) migrations. The idea is to maintain a frontier H , which is a queue, composed of vertex-anatomical site

pairs (v, s) that lead to a minimum-migration labeling. Initially, we set H = {(r(T ), P )}. Then, at every iteration we

remove the first pair (v, s) from the queue H and set `(v) = s. Next, we make a copy of H called H ′ from which we

remove all pairs (w, t) where t = s. In addition, we add all pairs in ∆(v, s) to the front of H ′. We record whether we

actually removed entries from H ′ and then recurse. To avoid enumerating duplicate labelings, we empty the queue if

no entries were removed from H ′. We report a labeling whenever H is empty (Algorithms 1 and 2, 3).

Algorithm 1: SANKOFF(T,Σ, `)

Input: Clone tree T with anatomical sites Σ and leaf labeling `.

Output: All vertex labelings ` of T with the minimum migration number µ(T, `) = µ∗(T ).

1 M ← ∅

2 SOLVE(T,Σ, `,M, r(T ))

3 H ← {(r(T ), P )}

4 BACKTRACE(T,M,∆, H, `)

B.3.2 Constrained Parsimonious Migration History Problem

The Sankoff algorithm, presented in the previous section, solves the unconstrained PMH problem, i.e. among the

enumerated vertex labelings with migration number µ∗(T ) return those labelings with the comigration number γ̂(T )

and seeding site number σ̂(T ). As such, the resulting migration graph G may contain directed cycles and correspond

to a reseeding (R) pattern. Here, we present an integer linear program (ILP) for solving the PMH problem subject to

one of the following restrictions where the migration graph G has (1) a PS pattern, (2) either a PS or S pattern, (3) a

PS, S or an M pattern.

We order the anatomical sites Σ = {1, . . . ,m} such that anatomical site 1 is the primary P . The clone-tree vertices

V (T ) are ordered such that v1 is the clone-tree root r(T ). We introduce variables x ∈ {0, 1}|V (T )|×m such that xi,s
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indicates whether clone-tree vertex vi is labeled by anatomical site s, i.e. xi,s = 1 if and only if `(vi) = s.

m∑
s=1

xi,s = 1 ∀vi ∈ V (T ) (12)

x1,1 = 1 (13)

xi,s = 1 ∀vi ∈ L(T ), s = `(vi) (14)

xi,s = 0 ∀vi ∈ L(T ), s 6= `(vi) (15)

Constraints (12) model that each clone-tree vertex is labeled by only one anatomical site. Constraint (13) ensures that

the clone-tree root is labeled by the primary tumor P , whereas Constraints (14) and (15) fix the labels of the clone-tree

leaves.

To model whether an edge is a migration edge, we introduce variables z ∈ {0, 1}|E(T )|×m such that zi,j,s = 1 if

and only if the edge (vi, vj) is not a migration edge, i.e. `(vi) = `(vj). Equivalently, variables zi,j,s correspond to the

product xi,s · xj,s, which we model using the following constraints.

zi,j,s ≤ xi,s ∀(vi, vj) ∈ E(T ), 1 ≤ s ≤ m (16)

zi,j,s ≤ xj,s ∀(vi, vj) ∈ E(T ), 1 ≤ s ≤ m (17)

Note that we do not need to enforce that zi,j,s ≥ xi,s + xj,s − 1 as this constraint is implied by the objective function

where we minimize the number of migrations.

Next, we introduce variables y ∈ {0, 1}|E(T )|, which indicate whether the incident vertices of clone-tree edge

(vi, vj) are labeled by different anatomical sites, i.e. yi,j = 1 if and only if `(vi) 6= `(vj). Now, a clone-tree edge

(vi, vj) is not a migration edge if and only if vi and vj are not labeled by the same anatomical site s. This is captured

by the following constraints.

m∑
s=1

zi,j,s = 1− yi,j ∀(vi, vj) ∈ E(T ) (18)

We now introduce variables c ∈ {0, 1}m×m such that each variable cs,t indicates whether there exists a migration

edge (vi, vj) where vi is labeled by anatomical site s and vj is labeled by anatomical site t.

cs,t ≥ xi,s + xj,t − 1 ∀(vi, vj) ∈ E(T ), 1 ≤ s, t ≤ m (19)

cs,s = 0 ∀1 ≤ s ≤ m (20)

Constraints (19) force cs,t to be 1 if there exists an edge (vi, vj) such that xi,s = 1 and xj,s = 1. Note that the

objective function ensures that cs,t = 0 if no such edge exists. Constraints (20) set cs,s = 0 in accordance with the

definitions of a migration and a comigration.

Finally, we introduce variables d ∈ {0, 1}m such that ds = 1 if and only if there exists a migration edge (vi, vj)

where `(vi) = s, as captured by the Constraints (21). Constraint (22) encodes that the primary P by definition is a
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seeding site.

ds ≥ cs,t ∀1 ≤ s, t ≤ m (21)

d1 = 1 (22)

We have now introduced all the variables and constraints needed to formulate the PMH problem as an ILP. In the

objective function we consider the migration number. We assume that the comigration number equals the number

of multi-edges, which is the case for labelings that result in migration graphs that do not contain directed cycles

(Observation 2). We multiply this number by 1/|V (T )| to break ties in favor of labelings with smaller comigration

number. In the case of further ties, i.e. labelings with migration number µ∗ and comigration number γ̂, we consider

the seeding site number, which we multiply by 1/(m · |V (T )|). We thus have the following ILP.

min
x,y,z,c,d

∑
(vi,vj)∈E(T )

yi,j +
1

|V (T )|

m∑
s=1

m∑
t=1

cs,t +
1

m · |V (T )|

m∑
s=1

ds

s.t. (12), (13), (14), (15), (16), (17), (18), (19), (20), (21) and (22)

xi,s ∈ {0, 1} ∀vi ∈ V (T ), 1 ≤ s ≤ m (23)

yi,j ∈ {0, 1} ∀(vi, vj) ∈ E(T ) (24)

zi,j,s ∈ {0, 1} ∀(vi, vj) ∈ E(T ), 1 ≤ s ≤ m (25)

cs,t ∈ {0, 1} ∀1 ≤ s, t ≤ m (26)

ds ∈ {0, 1} ∀1 ≤ s ≤ m (27)

We now describe how to impose constraints on the topology of the migration graph, as described by variables

c ∈ {0, 1}m×m. Recall that for parallel single-source seeding (PS) it holds that s = P and t 6= P for all edges (s, t)

of the migration graph. We encode this using the following constraints.

m∑
s=1

cs,1 = 0 (28)

cs,t = 0 ∀2 ≤ s, t ≤ m (29)

c1,t = 1 ∀2 ≤ t ≤ m (30)

Constraints (28) prevent reseeding into the primary P . Constraints (29) prevent migration edges between different

metastases and Constraints (30) enforce that each metastasis is seeded from P .

For single-source seeding (S), we require that variables c ∈ {0, 1}m×m are constrained to be a tree. In addition to

Constraints (28), we introduce the following constraints that ensure that each metastatic site is seeded from only one

other site.
m∑
s=1

cs,t = 1 ∀2 ≤ t ≤ m (31)

For multi-source seeding (M), we require the migration graph G to be a multi-DAG, i.e. G must not contain

any directed cyles. To model this, we denote the set of all directed cycles by C and introduce the following cycle
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inequalities. ∑
(s,t)∈C

cs,t ≤ |C| − 1 ∀1 ≤ t ≤ m,C ∈ C (32)

To summarize, we model various seeding patterns by extending the ILP with different constraints: we model PS

using (28), (29) and (30), S by (28) and (31), and M by (32).

We note that the above ILP is not guaranteed to an yield optimal solution when one does not impose a topological

constraint (PS, S or M). However, should, for a specific unconstrained instance, the resulting migration graph be a

multi-DAG, then optimality and correctness are guaranteed.

B.3.3 Parsimonious Migration History with Tree Refinement Problem

We consider the PHM-TR problem, where given a clone tree T we seek a binarization T ′ of T and vertex labeling ` of

T ′ such that (µ(T ′, `), γ(T ′, `), σ(T ′, `)) is minimum (Problem 2). We refer to Section B.2.2 for the formal definition

of a binarization. Here, we describe an ILP for solving this problem.

We define a directed simple graph S, called the search graph, that will contain all binarizations T ′ of a given clone

tree T as constrained spanning trees. Similarly to the definition of a binarization, we do this recursively using the

function EXPAND. We initialize S to contain a single vertex r(S) and invoke EXPAND(r(T ), r(S)). For each call

EXPAND(u, u′1), let δ(u) = {v1, . . . , vk} be the children of u. If k = 1, we add the vertex v′1 to S as well as the edge

(u′1, v
′
1). If k > 1, we add the vertices {u′2, . . . , u′k−1, v

′
1, . . . , v

′
k}. In addition, we introduce edges (u′i, v

′
j) for each

i ∈ {1, . . . , k− 1} and j ∈ {1, . . . , k}, and the edges (u′i, u
′
j) for each i ∈ {1, . . . , k− 1} and j ∈ {i+ 1, . . . , k− 1}.

We recurse on each child vi of u and its counterpart v′i. Algorithm 4 shows the pseudocode.

We now proceed with presenting an ILP for solving the PHM-TR problem. We introduce variables w ∈

{0, 1}|E(S)| such that each variable wi,j indicates whether edge (vi, vj) ∈ E(S) is in the solution binary clone tree.

We require that each vertex vi 6= r(S) has in-degree 1 and that each vertex vi 6= L(S) has either out-degree 1 or 2.∑
(vi,vj)∈E(S)

wi,j = 1 ∀vj ∈ V (S) \ {r(S)} (33)

∑
vj∈δ(vi)

wi,j = 1 ∀vj ∈ I(S), |δ(vi)| = 1 (34)

∑
vj∈δ(vi)

wi,j = 2 ∀vj ∈ I(S), |δ(vi)| > 1 (35)

Moreover, we change the domains of variables x ∈ {0, 1}|V (T )|×m, y ∈ {0, 1}|E(T )| and z ∈ {0, 1}|E(T )|×m and

their corresponding constraints to x ∈ {0, 1}|V (S)|×m, y ∈ {0, 1}|E(S)| and z ∈ {0, 1}|E(S)|×m.

We force yi,j to be 0 if the edge (vi, vj) of S is not picked using the following constraint.

yi,j ≤ wi,j ∀(vi, vj) ∈ E(S) (36)

We replace (18) by the following constraint, where we only consider edges (vi, vj) that are in the solution.
m∑
s=1

zi,j,s = wi,j − yi,j ∀(vi, vj) ∈ E(S) (37)
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We replace (19) by the following constraint, where in addition to xi,s = 1 and xj,s = 1 we require wi,j = 1 for cs,t to

be 1.

cs,t ≥ xi,s + xj,t + wi,j − 2 ∀(vi, vj) ∈ E(S), 1 ≤ s, t ≤ m (38)

Thus, we have the following ILP.

min
x,y,z,c,d,w

∑
(vi,vj)∈E(S)

yi,j +
1

|V (S)|

m∑
s=1

m∑
t=1

cs,t +
1

m · |V (S)|

m∑
s=1

ds

s.t. (12), (13), (14), (15), (16), (17), (20), (21), (22) and (33)− (38)

xi,s ∈ {0, 1} ∀vi ∈ V (S), 1 ≤ s ≤ m (39)

yi,j ∈ {0, 1} ∀(vi, vj) ∈ E(S) (40)

zi,j,s ∈ {0, 1} ∀(vi, vj) ∈ E(S), 1 ≤ s ≤ m (41)

cs,t ∈ {0, 1} ∀1 ≤ s, t ≤ m (42)

ds ∈ {0, 1} ∀1 ≤ s ≤ m (43)

wi,j ∈ {0, 1} ∀(vi, vj) ∈ E(S) (44)

Similarly to the PMH problem, we consider restrictions of the allowed seeding patterns by introducing additional

constraints: we model PS using (28), (29) and (30), S by (28) and (31), and M by (32).

B.3.4 Parsimonious Migration History with Tree Inference Problem

We consider the PMH-TI problem. In this problem we are given a mutation tree T (or mutation matrix B) whose ver-

tices vi are labeled by frequency intervals [f−s,i, f
+
s,i] for each anatomical site s. Each frequency assignment F̂ = [f̂s,i]

yields a clone tree T potentially containing polytomies. The task is to find an assignment F̂ = [f̂s,i] of frequen-

cies such that for each vertex vi and anatomical site s the following three conditions hold: (1) f̂s,i ∈ [f−s,i, f
+
s,i], (2)

f̂s,i ≥
∑
vj∈δ(vi) f̂s,j , and (3) the resulting clone tree T obtained from F̂ and B admits a binarization T ′ with the

minimum migration number µ∗(T ′) and subsequently the smallest comigration number γ̂(T ′) and smallest seeding

site number σ̂(T ′).

We start by defining the extended search graph R, a directed graph that will contain all binarized clone trees as

subtrees. To that end, we need to identify all potential extant clones given a mutation tree T and frequency matrices

(F−, F+). In [9] we defined a lower bound F̂− = [f̂−s,i] as follows.

f̂−s,i =

f
−
s,i, if vi ∈ L(T ).

max
{
f−s,i,

∑
vj∈δ(vi) f̂

−
s,j

}
, if vi 6∈ L(T ).

(45)

Observe that f̂−s,i can be computed bottom-up from the leaves of T . Intuitively, f̂−s,i is the minimum frequency that a

mutation-tree vertex vi can attain for anatomical site s while satisfying the sum condition and respecting the provided
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lower bounds F−. Similarly, we define

f̂+
s,i =

f
+
s,i, if vi = r(T ),

min
{
f+
s,i, f̂

+
s,π(vi)

−
∑
vj∈δ(π(vi))\{vi} f̂

−
s,j

}
, if vi 6= r(T ).

(46)

Intuitively, f̂+
s,i is the maximum frequency that a mutation-tree vertex vi can attain for anatomical site swhile satisfying

the sum condition and respecting the provided frequency bounds (F−, F+). This quantity can be computed top-down

from the root r(T ). Now, we can define the maximum mixture proportion u+
s,i as follows.

u+
s,i = f̂+

s,i −
∑

vj∈δ(vi)

f̂−s,i. (47)

Clone vi ∈ V (T ) is potentially present in anatomical site s if u+
s,i > 0. If this is the case, we introduce a new vertex

vi,s labeled by `(vi,s) = s and directed edge (vi, vi,s). Let T denote the tree obtained by following this procedure.

We obtain the extended search graph R by invoking EXPAND(r(T ), r(R)), where initially R only contains a single

vertex r(R).

To represent that a clone vi ∈ V (T ) is absent in anatomical site s, or equivalently that vertex vi,s is ab-

sent, we introduce a dummy anatomical site, which we represent by index 0. We change the domains of vari-

ables x ∈ {0, 1}|V (T )|×m, y ∈ {0, 1}|E(T )| and z ∈ {0, 1}|E(T )|×m and their corresponding constraints to

x ∈ {0, 1}|V (R)|×(m+1), y ∈ {0, 1}|E(R)| and z ∈ {0, 1}|E(R)|×(m+1). Importantly, the constraints involving vari-

ables z ∈ {0, 1}|E(R)|×(m+1) will not include anatomical site s unless they are reintroduced below.

Recall that L(R) corresponds to the set of vertices with out-degree 0, which in our case are vertices vi,s indicating

that clone vi occurs in anatomical site s > 0. We introduce the following constraints.

m∑
s=0

xi,s = 1 ∀vi ∈ V (R) (48)

xi,s + xi,0 = 1 ∀vi,s ∈ L(R) (49)

xi,t = 0 ∀vi,s ∈ L(T ), t 6= s (50)

Constraints (48) impose that each vertex is assigned exactly one anatomical site. Constraints 49 state that the leaf

vertices vi,s ∈ L(R) are either assigned anatomical site s or anatomical site 0. Constraints (50) state that anatomical

site 0 cannot be assigned to the internal vertices of R.

We introduce fractional variables u, f ∈ [0, 1]m×|I(R)|, where us,i denotes the mixture proportion of clone vi in

anatomical site s and fs,i denotes the frequency of mutation i in anatomical site s. We have the following constraints.

fs,i ≥ f̂−s,i ∀1 ≤ s ≤ m, vi ∈ I(R) (51)

fs,i ≤ f̂+
s,i ∀1 ≤ s ≤ m, vi ∈ I(R) (52)

fs,i ≥
∑

vj∈δ(vi)\L(R)

fs,j ∀1 ≤ s ≤ m, vi ∈ I(R) (53)

us,i = fs,i −
∑

vj∈δ(vi)\L(R)

fs,j ∀1 ≤ s ≤ m, vi ∈ I(R) (54)
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Constraints (51) and (52) restrict the frequencies to be within the supplied confidence intervals. Constraints (53) model

the sum condition and constraints (54) model the mixture proportion.

We relate mixture proportions to anatomical site labelings using the following big M constraint.

xi,s ≥ us,i ∀vi,s ∈ L(R) (55)

zi,(i,s),0 ≤ 1− us,i ∀(vi, vi,s) ∈ E(R), vi,s ∈ L(R) (56)

zi,j,0 = 0 ∀(vi, vj) ∈ E(R), vi,j 6∈ L(R) (57)

Constraints (55) force variables xi,s to be 1 if clone vi is present in anatomical site s > 0. Constraints (56) prevent

zi,(i,s),0 from being 1 if clone vi is present in anatomical site s > 0. Anatomical site 0 can only be used for the leaf

vertices of R as encoded by Constraints (57). We replace (37) by the following constraint, where we only consider

edges (vi, vj) that are in the solution.

m∑
s=0

zi,j,s = wi,j − yi,j ∀(vi, vj) ∈ E(R) (58)

Thus, we have the following mixed integer linear program.

min
x,y,z,c,d,w,f ,u

∑
(vi,vj)∈E(R)

yi,j +
1

|V (R)|

m∑
s=1

m∑
t=1

cs,t +
1

m · |V (R)|

m∑
s=1

ds

s.t. (13), (16), (17), (20), (21), (22) and (33)− (36), (38), (48)− (58)

xi,s ∈ {0, 1} ∀vi ∈ V (R), 0 ≤ s ≤ m (59)

yi,j ∈ {0, 1} ∀(vi, vj) ∈ E(R) (60)

zi,j,s ∈ {0, 1} ∀(vi, vj) ∈ E(R), 0 ≤ s ≤ m (61)

cs,t ∈ {0, 1} ∀1 ≤ s, t ≤ m (62)

ds ∈ {0, 1} ∀1 ≤ s ≤ m (63)

wi,j ∈ {0, 1} ∀(vi, vj) ∈ E(R) (64)

0 ≤ fs,i ≤ 1 ∀1 ≤ s ≤ m, vi ∈ V (T ) (65)

0 ≤ us,i ≤ 1 ∀1 ≤ s ≤ m, vi ∈ V (T ) (66)

Similarly to the PMH and PHM-TR problem, we consider restrictions of the allowed seeding patterns by introduc-

ing additional constraints: we model PS using (28), (29) and (30), S by (28) and (31), and M by (32).
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Algorithm 2: SOLVE(T,Σ, `,M, u)

Input: Clone tree T with anatomical sites Σ and leaf labeling `, table M and clone-tree vertex u.

Output: Computes the entries M [u, s] for each anatomical site s ∈ Σ.

1 if u ∈ L(T ) then

2 foreach s ∈ Σ do

3 if `(u) = s then

4 M [u, s]← 0

5 ∆[u, s]← ∅

6 else

7 M [u, s]←∞

8 ∆[u, s]← ∅

9 else

10 foreach v ∈ δ(u) do

11 SOLVE(T,Σ, `,M, v)

12 foreach s ∈ Σ do

13 M [u, s]← 0

14 foreach v ∈ δ(u) do

15 c←∞

16 foreach t ∈ Σ do

17 if COST(M,u, s, v, t) < c then

18 c← COST(M,u, s, v, t)

19 M [u, s]←M [u, s] + c

20 ∆[u, s]← ∅

21 foreach t ∈ Σ do

22 if COST(M,u, s, v, t) = c then

23 ∆[u, s]← ∆[u, s] ∪ {(v, t)}
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Algorithm 3: BACKTRACE(T, `,M,∆, H)

Input: Clone tree T with anatomical sites Σ and leaf labeling `, table M , back pointers ∆, and H is the frontier.

Output: Enumerates all vertex labelings ` of T with minimum migration number µ(T, `) = µ∗(T ).

1 if H = ∅ then

2 Report `

3 else

4 done← False

5 while H 6= ∅ and not done do

6 (v, s)← POP(F )

7 `(v) = s

8 H ′ ← ∅

9 foreach (w, t) ∈ H do

10 if s 6= t then H ′ ← {(w, t)} ∪H

11 if H ′ = H then done← True

12 foreach (w, t) ∈ ∆(v, s) do

13 H ← {(w, t)} ∪H

14 BACKTRACE(T, `,M,∆, H ′)

Algorithm 4: EXPAND(u, u′1)

Input: Vertex u ∈ V (T ) and corresponding vertex u′1 ∈ V (S).

Output: Constructs a subgraph rooted at u′1 that contains all binarizations of the subtree of T rooted at u as

spanning trees.

1 Let δ(u) = {v1, . . . , vk}

2 if k = 1 then

3 V (S)← V (S) ∪ {v′1}

4 E(S)← E(S) ∪ {(u′1, v′1)}

5 else

6 V (S)← V (S) ∪ {u′2, . . . , u′k−1}

7 V (S)← V (S) ∪ {v′1, . . . , v′k}

8 for i← 1 to k − 1 do

9 for j ← i+ 1 to k − 1 do

10 E(S)← E(S) ∪ {(u′i, u′j)}

11 for j ← 1 to k do

12 E(S)← E(S) ∪ {(u′i, v′j)}

13 for i← 1 to k do

14 EXPAND(vi, v
′
i)
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Aparicio, Alexandre Bouchard-Côté, and Sohrab P Shah. PyClone: statistical inference of clonal population

structure in cancer. Nature methods, 11(4):396–398, April 2014.

[42] N Saitou and M Nei. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molec-

ular Biology and Evolution, 4(4):406–425, July 1987.

40



[43] Sohrab Salehi, Adi Steif, Andrew Roth, Samuel Aparicio, Alexandre Bouchard-Côté, and Sohrab P Shah. dd-
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Supplementary Figure 1: Not accounting for intra-tumor heterogeneity within regions leads to an unlikely clone

tree with extensive homoplasy in colorectal patient 2 [23]. (A) The published phylogenetic tree of colorectal cancer

patient CRC2 was inferred by maximum parsimony [23]. Of the 412 sequenced single-nucleotide variants (SNVs), 41

exhibit homoplasy, occurring independently on multiple branches of the tree, as indicated by the red numbers on the

branches (number of introduced mutations in black). A subset of 18 SNVs have undergone homoplasy and occur in

P1, M1, M2 and P3 (indicated by ‘*’). (B) For each region P1, M1, M2 and P3, we show the variant allele frequency

(VAF) distribution of the 18 SNVs with homoplasy (light green), and the VAF distribution of the remaining SNVs that

are present in the region (dark green). In region P3, the homoplasy SNVs have significantly lower VAFs than the other

SNVs in the region (Wilcoxon rank-sum p-value: 2.4 · 10−5), indicating that P3 is not homogeneous and contains a

subclone composed of the homoplasy SNVs. On the other hand, in regions P1, M1 and M2, the homoplasy SNVs do

not have significantly different VAFs than the other SNVs in each region, possibly indicating that they are clonal in

these regions.
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Supplementary Figure 2: MACHINA infers a parsimonious monoclonal single-source seeding history for breast

cancer patient A7 [19]. (A) Patient A7 is composed ofm = 6 anatomical sites. We show 99.92% confidence intervals

on the SciClone posterior distribution. (B) In the mutation tree reported by the authors cluster 3 precedes cluster 5.

Using SPRUCE [9], we find an alternative mutation tree where cluster 5 precedes cluster 3. (C) Hoadley et al. [19]

report a clone tree with 22 extant clones based on the leftmost mutation tree shown in (B). Viewing these clones in

light of the reported VAFs (indicated by ‘?’ in (A)) shows that many are unsupported and have negative proportions

in their respective anatomical sites. (D) Subsequent analysis by Hoadley et al. [19] yielded a polyclonal single-source

seeding (pS) migration pattern with migration number µ = 15 and comigration number γmin = 5. (E) There exists a

frequency matrix F̂ (indicated by ‘◦’ in (A)) that results in two clone trees with only 9 extant clones. We show only

one clone tree; in the other clone tree, the order of the edges labeled by mutation clusters 3 and 5 is swapped. (F)

We find more parsimonious migration patterns with µmin = 5 and γmin = 5. In addition to ambiguity in the order of

mutation clusters 3 and 5, we find that there is ambiguity in the seeding order between kidney and liver, relative to the

lung metastasis. (G) Treeomics does not identify the two subclones that MACHINA detected in the liver and brain.
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ing sample M1 shows three apparent mutation clusters. (B) The samples are composed of two extant clones, one

containing the diamond set and triangle set of mutations, and one containing the diamond and star set of mutations.

Although the diamond cluster is present in high frequency in all samples, there is no clone in a sample containing just

the diamond set of mutations. This example illustrates that mutation clusters and clones are distinct concepts.
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Supplementary Figure 6: Resolving polytomies in the clone tree of ovarian cancer patient 1 leads to more par-

simonious migration histories than reported in [28]. (A) Clone tree refinements under different topological con-

straints lead to varying migration number µ and comigration number γ. Shapes indicate different migration patterns.

(B) The migration graph obtained from the reported vertex labeling has comigration number γ = 10 and corresponds

to a complex migration pattern where the small bowel (SBwl) metastasis is both a destination for clones from the

ROv (right ovary) primary and a source of clones for multiple anatomical sites, including LOv (left ovary) and several

other metastases. (C-D) Solving the PHM-TR problem under an S constraint results in migration number µ = 12

and comigration number γmin = 6 for both LOv and ROv as the primary. (E) With LOv as the primary, solving the

unconstrained PHM-TR problem results in migration number µ = 11 and comigration number γ = 7, corresponding

to a pR pattern.
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Supplementary Figure 7: Different vertex labelings exist for ovarian cancer patient 3 with fewer migrations than

reported in [28]. (A) Patient 3 has multiple vertex labelings with the minimum migration number µ∗ = 27 but

with different comigration number γ. Shapes indicate different migration patterns. (B) The reported vertex labeling

has comigration number γ = 9, and corresponds to a polyclonal multi-source seeding (pM) pattern where both the

sigmoid colon deposit (ClnE) and the cul de sac (CDSB) are seeded by clones from the left ovary and the omentum

(Om). (C-D) There exist two vertex labelings with the same minimum migration number but with comigration number

γmin = 7, where the metastases are only seeded from the left ovary (LOv) or the right ovary (ROv). (E-F) Resolving

polytomies in the clone tree results in fewer migrations µ = 25 for the same comigration number γmin = 7 with either

LOv or ROv as the primary.
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Supplementary Figure 8: Resolving polytomies in ovarian cancer patient 7 suggests an LOv or ROv primary as

opposed to the RUt primary reported in [28]. (A) Not resolving polytomies leads to varying migration numbers µ

using different primary tumors. Shapes indicate different migration patterns. (B-D) Not resolving polytomies leads

to the same comigration number γmin = 6 but different migration numbers depending on the primary tumor: µ = 11

with the right uterosacral ligament (RUt), µ = 12 with the left ovary (LOv), and µ = 13 with the right ovary (LOv).

(E-G) Resolving the polytomies leads to migration number µ = 11 and comigration number γmin = 6 in all cases.
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Supplementary Figure 9: MACHINA infers parsimonious migration histories without metastasis-to-metastasis

spread for four prostate cancer patients [15]. We solve the PHM-TR problem with MACHINA for each of the clone

trees reported in [15]. (A) MACHINA finds a monoclonal parallel single-source seeding (mPS) migration history for

patient A10, which does not support the authors’ claim of metastasis-to-metastasis spread. (B) Similarly to Gundem et

al. [15], we find a migration history with an mPS migration pattern. (C-D) MACHINA finds that two more migrations

are required to obtain a polyclonal parallel single-source seeding (pPS) migration history for patient A31, indicating

that metastasis-to-metastasis spread may have taken place. (E-F) On the other hand, only a single additional migration

is required to obtain a polyclonal parallel single-source (pPS) migration history for patient A32 instead of a complex

polyclonal multi-source seeding (pM) pattern.
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Supplementary Figure 10: The clone trees of prostate cancers A10, A31 and A32 reported in [15] support parallel single-source seeding (PS) of all metastases

from the primary tumor. Panels show vertex labelings and resolved clone trees inferred by MACHINA (in PHM-TR) mode. The edges are labeled by mutation

clusters (obtained from [15]) and filled vertices correspond to polytomies resolved by MACHINA. Tables show cancer cell fractions (CCFs) of each mutation cluster

in each anatomical site. (A) The ‘gold’ mutation cluster in patient A10 has a CCF of 0.4% in the prostate. If this value is accurate then the ‘gold’ clone must have

seeded both the periportal and the perigastric lymph node, ruling out metastasis-to-metastasis spread. (B) The ‘dark green’ and ‘light blue’ mutation clusters in

patient A31 have a CCF in the prostate of 6.4% and 1.2%, respectively. This indicates that metastasis-to-metastasis spread is not a likely explanation. (C) Similarly

to patient A10, there is a single mutation cluster whose presence in the primary prostate tumor would allow one to conclude parallel seeding (Supplementary

Fig. 10C). The ‘light blue’ cluster (CCF of 0.3% in the prostate) is key to ruling out metastasis-to-metastasis spread. Note that a parallel seeding explanation for

these three patients does not require the presence of the indicated mutation clusters in the primary tumor.
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Supplementary Figure 11: MACHINA recapitulates the cases of polyclonal seeding and non-serial progression

reported in [44]. (A-E) We show the clone tree and migration graph inferred by MACHINA.
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Supplementary Figure 12: The method by McPherson et al. [28] identifies complex mM patterns for breast cancer

A7. In total, the number of minimum migration labelings in the clone tree inferred by MACHINA is 52, each having a

monoclonal multi-source seeding (mM) pattern.
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Supplementary Figure 13: Joint analysis of mutation, cell division and migration history reveals a polyclonal

parallel single-source seeding (pPS) migration history for breast cancer patient A1 [19]. (A) Patient A1 is com-

posed of m = 5 anatomical sites. We show 99.99% confidence intervals on the SciClone posterior distribution. (B)

SPRUCE [9] infers four mutation trees, two of which were previously identified by the authors using ClonEvol [6].

(C) The authors infer a polyclonal parallel single-source seeding (pPS) history with migration number µ = 13 and

comigration number γmin = 4. (D) By analyzing the four mutation trees jointly with the migration history, MACHINA

finds that the liver and adrenal metastases are seeded by two clones each. The resulting migration history has migration

number µ = 6 and comigration number γmin = 4, corresponding to a polyclonal parallel single-source seeding (pPS)

history.
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Supplementary Figure 14: Treeomics does not detect the additional subclone in adrenal that likely resulted from

polyclonal seeding in breast cancer patient A1 [19]. (A) Treeomics detects subclones in the breast and liver for

patient A1 [19]. (B) The 48 mutations on the edge incoming to ‘SC 5’ correspond to mutations from clusters 2 and

4. Inspection of the variant allele frequencies of these 48 mutations reveals that they are present in breast, liver and

adrenal. Although these mutations have small variant allele frequencies in the breast, all 48 mutations have at least one

variant read, indicating the clusters’ likely presence in the breast, especially when compared to the variant read counts

of the mutations of clusters that are absent in the breast (e.g., clusters 6 and 9 are shown here). Due to the variant allele

frequency discretization step in Treeomics, this cluster was not detected in the breast in the resulting tree. Moreover,

the VAF distribution in adrenal indicates the presence of two distinct clusters of mutations, one containing the 48

mutations and one not. Again, the discretization step discards this important information. (C) As such, the minimum

migration history of the clone tree inferred by Treeomics misses the polyclonal seeding of adrenal (dashed), which

MACHINA recovers.
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Supplementary Figure 15: We simulate a metastatic tumor by extending an existing agent-based model [37].

(A) In this model, tumor cells accumulate mutations and migrate following different migration patterns: monoclonal

and polyclonal single-source seeding (mS and pS, respectively), polyclonal multi-source seeding (pM) and polyclonal

reseeding (pR). Subsequent in silico sequencing of the resulting tumor cells results in a simulated clone tree T ∗, vertex

labeling `∗, migration graphG∗ and variant allele frequencies F . (B) To assess the similarity of a clone tree T inferred

from F to T ∗, we adapt the Robinson-Foulds distance. For both T ∗ and T , we first determine the set of `-splits. (C)

The distance d(T ∗, T ) is the number of `-splits unique to either T ∗ (cyan) or T (orange).
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Supplementary Figure 16: Comparison of different clustering algorithms on the Σmax = 5 simulation instances.

We compare the mutation clusters produced by MACHINA to mutation clusters produced by PhyloWGS [7], Py-

Clone [41], Clomial [53] and SciClone [30]. (A) We find that across different migration patterns (mS in light green,

pS in dark green, pM in purple and pR in orange) the mean 95% confidence interval widths of the cluster mutation

frequencies show little variation. (B) MACHINA and PhyloWGS infer far more clusters than the other methods. The

simulated number of mutation clusters is indicated by ‘truth’. (C) As a result, MACHINA and PhyloWGS achieve

higher clustering precision than PyClone, Clomial and SciClone.
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Supplementary Figure 17: MACHINA performance with different mutation clustering algorithms. We run

MACHINA (in PMH-TI mode) on the Σmax = 5 simulation instances given mutation clusters obtained by Phy-

loWGS [7], PyClone [41], Clomial [53] and SciClone [30]. (A) We show the distribution of clone tree distances

d(T ∗, T ) between the simulated tree T ∗ and each inferred tree T for each simulated migration pattern (mS in light

green, pS in dark green, pM in purple and pR in orange). MACHINA’s performance decreases when used in conjunc-

tion with clustering methods with lower clustering precision. However, regardless of the used clustering algorithm,

MACHINA outperforms existing clone tree inference algorithms (neighbor joining [42], Treeomics [38], PhyloWGS [7]

and AncesTree [8]). (B) The precision and recall of clones that migrate to different anatomical sites, as summarized

by the F1 score, is affected by the used clustering algorithm and is correlated with the clustering precision of each

method (Supplementary Fig. 16A). (C) Although the precision and recall of the inferred migrating clones varies across

clustering methods, the inferred migration graphs are robust to these differences.
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Supplementary Figure 18: Performance of MACHINA for varying purity, sequence coverage, and number of sam-

ples. Ten metastatic tumors for each of the four migration patterns (mS, pS, pM and pR) were simulated. From each

anatomical site, simulated DNA sequencing data from three bulk samples with a purity of 1, a nucleotide sequencing

error rate of 0.001 and a target coverage of 10,000x was generated.Columns correspond to purity values, colors corre-

spond to number of samples and the x-axis corresponds to the sequencing coverage. (A) The mean 95% confidence

interval widths of the cluster mutation frequencies inferred by MACHINA’s clustering algorithm. (B) The clustering

precision. (C) The distribution of clone tree distances d(T ∗, T ) between the simulated tree T ∗ and each inferred tree

T . (D-E) The precision and recall of the migration graph (D) and clones that migrate to different anatomical sites (E),

as summarized by the F1 score.
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Supplementary Figure 19: MACHINA’s performance varies with the number of mutations, achieving good perfor-

mance in the regime of whole exome sequencing data (indicated in red). For each migration pattern (mS, pS, pM

and pR), we simulate 10 metastatic tumors with Σmax = 8 anatomical sites and a rate of 10 mutations every cell di-

vision, corresponding to whole genome sequencing data. We downsample the initial number of simulated SNVs from

100% to 0.1%. (A) The plot shows the resulting number of SNVs using a log scale; the mean numbers of SNVs are

shown in parentheses. Fractions of 1-5% correspond to the number of mutations observed in whole exome sequencing

datasets. (B) We use the MACHINA clustering algorithm to group SNVs with similar variant allele frequencies. The

number of inferred mutation clusters increases with the number of SNVs. (C) Similarly, with more SNVs the uncer-

tainty in mutation clusters decreases, as shown by the mean width of the 95% confidence intervals of frequencies of

mutation clusters. (D-E) The clustering precision and recall are affected by the number of SNVs, with the precision

decreasing and recall increasing with increasing numbers of SNVs. (F) The clone tree distance d(T ∗, T ) between the

simulated tree T ∗ (containing all SNVs) and each inferred tree T (containing a subset of the SNVs) decreases with

increasing number of SNVs. (G-H) Similarly, the precision and recall (summarized by the F1 score) of the clones that

migrate to different anatomical sites (G), and of the migration graph (H) increases with increasing numbers of SNVs.

Note that in (H) we define a clone by the subset of SNVs present in the downsampled instance.
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Supplementary Figure 20: There exists a tradeoff between the migration number µ and the comigration number

γ. (A) The given clone tree T with m = 3 anatomical sites has three labelings on the Pareto front: (B) (µ1, γ1) =

(4, 4), (C) (µ2, γ2) = (5, 3) and (D) (µ3, γ3) = (6, 2). Thus, the minimum migration number µ∗(T ) is 4 and the

minimum comigration number γmin is m − 1 = 2. There exists no vertex labeling with both migration number

µ∗(T ) and comigration number γmin, thus showing that there is a tradeoff between both scores. Moreover, there

exists no vertex labeling with migration number µmin = m − 1 and comigration number γmin = m − 1 (gray box

in (A)), indicating that T does not admit a mS migration history. The shaded area contains infeasible points with

migration number µ < µmin (Observation 1), µ < γ migrations (Observation 3), and comigration number γ < γmin

(Observation 4).
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Supplementary Figure 21: The comigration number γ(T, `) may not equal the number of multi-edges in a migra-

tion graph G with directed cycles. (A) Vertex labeling ` of clone tree T results in three migration edges: (r, bcdef ),

(bcdef , def ) and (def , f). (B) These migration edges result in a directed cycle in the migration graph G. Multi-graph

G has two multi-edges: (P,M1) and (M1, P ), where multi-edge (P,M1) has multiplicity two and corresponds to

migration edges (r, bcdef ) and (def , f). Inspecting T reveals that (r, bcdef ) and (def , f) occur on the same branch

of T and consequently clone def must have occurred after the migration of clone r to anatomical site P . Thus, there

are two separate comigrations between (P,M1) leading to comigration number γ(T, `) = 3, which is different from

the number of two multi-edges in G.
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Supplementary Figure 22: Constraints on the migration history help resolve polytomies in clone trees. (A) A cell

tree is a full binary tree that represents the cell division, mutation and migration history of a tumor. Due to lack of data,

the cell tree is unknown. The leaves of the cell tree are extant cells and are labeled by the anatomical site in which they

occur. (B) Instead, using specialized phylogeny inference techniques, one infers a clone tree from DNA sequencing

data, which in general contains polytomies and is non-binary. Solving the PMH problem using this non-binary clone

tree results in an incorrect migration history and migration pattern, where two clones migrate from P and seed M1

and a single clone migrates from P and seeds M2, corresponding to a polyclonal single-source seeding (pS) pattern.

(C) By solving the PHM-TR problem, we find a refinement of the original clone tree with a single migration from P

to M1 followed by one migration from M1 to M2, corresponding to a parsimonious monoclonal single-source seeding

(mS) pattern.
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Supplementary Figure 23: With tumor bulk sequencing we do not directly observe the mutation tree, instead we

observe variant allele frequencies which are mixed measurements of the leaves of an unknown clone tree. Com-

bining these with copy-number calls yields a frequency matrix F . By subsequently solving the frequency factorization

problem, we obtain potentially many mutation matrices B, each associated with a unique mixture matrix U such that

F = UB. From U and B (or equivalently T ) we obtain the canonical clone tree T(T ,U). The shown canonical clone

tree contains a polytomy, a vertex with more than two children.
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Supplementary Figure 24: All binarizations of clone tree T can be modeled as constrained spanning trees of

graph S. (A) Clone tree T admits a labeling ` with cost (µ(T, `), γ(T, `), σ(T, `)) = (5, 5, 3). (B) The graph S

contains all binarizations as spanning trees, among which T ′ with labeling `′ and cost (µ(T ′, `′), γ(T ′, `′), σ(T ′, `′)) =

(4, 3, 2).
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breast brain kidney liver lung rib
Mutation(47 0.01 0.01 0.18 0.48 0.00 0.36
Mutation(81 0.00 0.03 0.24 0.50 0.00 0.29
Cluster(2 0.00 0.01 0.21 0.44 0.02 0.36
Cluster(3 0.00 0.01 0.21 0.45 0.00 0.00

Supplementary Table 1: Reported clustering [19] of mutations 47 and 81 in patient A7 is likely incorrect. The table

shows variant allele frequencies (VAFs) for mutations 47 (chromosome 7, position 12163423) and 81 (chromosome 7,

position 57562948), as well as cluster mean VAFs for clusters 2 and 3. Mutations 47 and 81 were reported by Hoadley

et al. [19] as belonging to cluster 3. The two mutations are more consistent with cluster 2 due to their high VAFs in

the rib sample (red box).
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seed
#anatomical #mut. simulated MACHINA (S) MACHINA (S, M) MACHINA (S, M, R)

sitesm trees |T| pattern (µ, δ) pattern (µ, δ) pattern (µ, δ) pattern (µ, δ)

0 5 2 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

2 5 4 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

3 6 4 mS (5, 5) mS (5, 5) mS (5, 5) mS (5, 5)

4 5 3 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

5 5 1 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

7 5 2 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

8 5 12 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

9 5 1 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

10 5 2 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

12 5 2 mS (4, 4) mS (4, 4) mS (4, 4) mS (4, 4)

17 5 1 pS (5, 4) pS (5, 4) pS (5, 4) pS (5, 4)

23 5 2 pS (7, 4) pS (7, 4) pS (7, 4) pS (7, 4)

25 5 4 pS (6, 4) pS (6, 4) pS (6, 4) pS (6, 4)

31 5 36 pS (5, 4) pS (5, 4) pS (5, 4) pS (5, 4)

32 5 4 pS (5, 4) pS (5, 4) pS (5, 4) pS (5, 4)

35 5 1 pS (5, 4) mS (4, 4) mS (4, 4) mS (4, 4)

40 6 12 pS (6, 5) pS (6, 5) pS (6, 5) pS (6, 5)

49 5 4 pS (5, 4) pS (5, 4) pS (5, 4) pS (5, 4)

62 5 4 pS (5, 4) mS (4, 4) mS (4, 4) mS (4, 4)

81 5 15 pS (6, 4) pS (5, 4) pS (5, 4) pS (5, 4)

76 5 4 pM (6, 5) pS (6, 4) pS (6, 4) pS (6, 4)

209 5 12 pM (7, 5) pS (5, 4) pS (5, 4) pS (5, 4)

473 7 80 pM (10, 8) pS (10, 6) pS (10, 6) pS (10, 6)

512 5 12 pM (6, 5) pS (6, 4) mM (5, 5) mM (5, 5)

534 5 24 pM (6, 5) pS (5, 4) pS (5, 4) pS (5, 4)

545 6 8 pM (7, 6) mS (5, 5) mS (5, 5) mS (5, 5)

565 5 4 pM (6, 5) pS (6, 4) pS (6, 4) pS (6, 4)

694 5 30 pM (6, 5) pS (6, 4) pS (6, 4) pS (6, 4)

865 5 8 pM (7, 5) pS (7, 4) mM (5, 5) mM (5, 5)

907 6 2 pM (7, 6) pS (8, 5) mM (6, 6) mM (6, 6)

17 6 48 pR (9, 6) pS (9, 5) pS (9, 5) pS (9, 5)

247 5 78 pR (7, 5) pS (7, 4) pS (7, 4) pS (7, 4)

518 5 2 pR (6, 5) pS (5, 4) pS (5, 4) pS (5, 4)

538 5 4 pR (8, 5) pS (7, 4) mM (6, 6) mM (6, 6)

571 6 2 pR (7, 6) pS (6, 5) pS (6, 5) pS (6, 5)

950 7 8 pR (8, 7) mS (6, 6) mS (6, 6) mS (6, 6)

955 5 8 pR (6, 5) pS (6, 4) pS (6, 4) pS (6, 4)

981 5 4 pR (6, 5) mS (4, 4) mS (4, 4) mS (4, 4)

1140 5 12 pR (6, 5) pS (5, 4) pS (5, 4) pS (5, 4)

2155 7 120 pR (9, 8) pS (9, 6) pS (9, 6) pR (8, 7)

Supplementary Table 2: Simulated instances and MACHINA results with Σmax = 5 anatomical sites. For each

simulated instance, we show the used random number generator seed, the simulated migration pattern, the number m

of resulting anatomical sites, the simulated migration and comigration numbers (µ, γ) and the number |T| of mutation

trees enumerated by SPRUCE [9]. Next, we show the migration pattern and the migration and comigration numbers

(µ, γ) inferred by MACHINA under various topological constraints.
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seed
#anatomical #mut. simulated MACHINA (S) MACHINA (S, M) MACHINA (S, M, R)

sitesm trees |T| pattern (µ, δ) pattern (µ, δ) pattern (µ, δ) pattern (µ, δ)

0 9 2 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

2 9 2 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

3 9 8 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

4 8 8 mS (7, 7) mS (7, 7) mS (7, 7) mS (7, 7)

5 8 1 mS (7, 7) mS (7, 7) mS (7, 7) mS (7, 7)

7 8 2 mS (7, 7) mS (7, 7) mS (7, 7) mS (7, 7)

8 9 2 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

9 9 1 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

10 8 4 mS (7, 7) mS (7, 7) mS (7, 7) mS (7, 7)

12 9 108 mS (8, 8) mS (8, 8) mS (8, 8) mS (8, 8)

0 10 192 pS (12, 9) pS (12, 9) pM (11, 10) pM (11, 10)

2 8 144 pS (11, 7) pS (11, 7) pM (10, 8) pM (10, 8)

5 8 6 pS (9, 7) pS (8, 7) pS (8, 7) pS (8, 7)

12 8 6 pS (8, 7) mS (7, 7) mS (7, 7) mS (7, 7)

23 8 4 pS (10, 7) pS (9, 7) pS (9, 7) pS (9, 7)

31 8 60 pS (8, 7) pS (8, 7) pS (8, 7) pS (8, 7)

35 8 24 pS (9, 7) pS (9, 7) pS (9, 7) pS (9, 7)

37 8 4 pS (8, 7) mS (7, 7) mS (7, 7) mS (7, 7)

54 8 1 pS (8, 7) mS (7, 7) mS (7, 7) mS (7, 7)

69 8 2 pS (8, 7) mS (7, 7) mS (7, 7) mS (7, 7)

7 8 6 pM (10, 9) pS (9, 7) mM (8, 8) mM (8, 8)

19 8 48 pM (9, 8) pS (9, 7) pS (9, 7) pS (9, 7)

35 9 48 pM (11, 9) pS (11, 8) pM (10, 9) pM (10, 9)

45 8 2 pM (11, 9) pS (10, 7) pS (10, 7) pS (10, 7)

76 9 4 pM (10, 9) pS (10, 8) pS (10, 8) pS (10, 8)

172 10 180 pM (14, 11) pS (14, 9) pM (12, 10) pM (12, 10)

216 8 6 pM (9, 8) pS (8, 7) pS (8, 7) pS (8, 7)

239 8 2 pM (9, 8) pS (8, 7) pS (8, 7) pS (8, 7)

241 8 6 pM (9, 8) pS (9, 7) mM (8, 8) mM (8, 8)

243 9 12 pM (13, 9) pS (13, 8) pS (13, 8) pS (13, 8)

9 8 16 pR (9, 8) pS (10, 7) pS (10, 7) pR (9, 8)

157 11 48 pR (12, 11) pS (12, 10) pS (12, 10) pS (12, 10)

383 8 16 pR (10, 9) pS (10, 7) pM (9, 8) pM (9, 8)

394 9 12 pR (10, 9) pS (9, 8) pS (9, 8) pS (9, 8)

905 8 10 pR (9, 8) pS (9, 7) pS (9, 7) pS (9, 7)

981 9 8 pR (12, 10) pS (9, 8) pS (9, 8) pS (9, 8)

1070 8 20 pR (9, 8) mS (7, 7) mS (7, 7) mS (7, 7)

10046 8 2 pR (11, 8) pS (9, 7) mM (8, 8) mM (8, 8)

10157 8 32 pR (9, 8) pS (9, 7) pS (9, 7) pS (9, 7)

30342 8 2 pR (10, 8) pS (8, 7) pS (8, 7) pS (8, 7)

Supplementary Table 3: Simulated instances and MACHINA results with Σmax = 8 anatomical sites. For each

simulated instance, we show the used random number generator seed, the simulated migration pattern, the number m

of resulting anatomical sites, the simulated migration and comigration numbers (µ, γ) and the number |T| of mutation

trees enumerated by SPRUCE [9]. Next, we show the migration pattern and the migration and comigration numbers

(µ, γ) inferred by MACHINA under various topological constraints.
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patient m
#primary

#metastases #SNVs
#SNVs w/

regions homoplasy

CRC1 7 4 3 209 12

CRC2 7 5 2 412 41

CRC3 11 5 6 253 15

CRC4 6 4 2 191 5

CRC5 4 2 2 144 1

Supplementary Table 4: The clone trees inferred by Kim et al. [23] have extensive homoplasy. The last column

shows the number of characters that violate the infinite sites assumption after the removal of the specified region.
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patient #anatomical sites m primary #migrations µ #comigrations γ pattern #solutions

1 7 LOv 13 7 pR 2

1 7 LOv 13 11 pR 2

1 7 ROv 13 10 pM 1

2 2 ROv 2 1 pS 1

3 8 LOv 27 7 pS 1

3 8 LOv 27 9 pM 3

3 8 ROv 27 7 pS 1

3 8 ROv 27 9 pM 3

3 8 ROv 27 10 pM 4

3 8 ROv 27 12 pM 12

4 4 LOv 7 3 pS 1

4 4 ROv 6 3 pS 1

7 7 LOv 12 6 pS 2

7 7 LOv 12 7 pM 2

7 7 ROv 13 6 pS 2

7 7 ROv 13 7 pM 2

7 7 ROv 13 8 pM 6

7 7 ROv 13 9 pM 8

7 7 ROv 13 9 pR 6

7 7 ROv 13 10 pM 2

7 7 ROv 13 10 pR 6

7 7 RUt 11 6 pS 1

9 3 LOv 4 2 pS 1

9 3 ROv 5 2 pS 1

10 3 ROv 6 2 pS 1

Supplementary Table 5: Results of the Sankoff enumeration algorithm for seven ovarian cancer patients [28]. We

enumerate all vertex labelings that achieve the minimum migration number µ∗ with either LOv (left ovary) or ROv

(right ovary) as the primary. Patients 1, 3 and 7 admit multiple vertex labelings with the same minimum migration

number µ∗. These labelings yield different migration patterns with different comigration numbers γ; the migration

patterns are polyclonal single-source seeding (pS), polyclonal multi-source seeding (pM) and polyclonal reseeding

(pR). For patient 1, the comigration number varies from 7 to 11, for patient 3 it varies from 7 to 12, and for patient

7 it varies from 6 to 10. Note that for patient 1, none of the vertex labelings have a single-source seeding migration

pattern, i.e. they do not achieve the minimum comigration number γmin = m − 1 = 6. The minimum migration

number µ∗ = 11 for patient 7 is achieved when using a non-ovary anatomical site (RUt, right uterosacral ligament) as

the primary. 68
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patient m #SNVs

Gundem et al. [15] MACHINA (PS) MACHINA (PS, S) MACHINA (PS, S, M, R)

#clusters
monoclonal met-to-met

pattern (µ, γ, σ) pattern (µ, γ, σ) pattern (µ, γ, σ)
seeding spread

A10 4 9472 9 yes (m) yes mPS (3,3,1) mPS (3,3,1) mPS (3,3,1)

A29 2 8275 5 yes (m) no (PS) mPS (1,1,1) mPS (1,1,1) mPS (1,1,1)

A31 5 4852 10 no (p) yes pPS (12,4,1) pS (10,4,2) pS (10,4,2)

A32 6 9388 12 no (p) yes pPS (8,4,1) pPS (8,4,1) pM (7,5,2)

A22 10 10262 16 no (p) yes pPS (36,9,1) pS (32,9,3) pR (26,12,5)

Supplementary Table 7: Results for five prostate cancer patients [15]. From left to right, we show the patient

identifier, the number m of anatomical sites, the reported presence or absence of monoclonal seeding and a metastatic

cascade. Next, we show the inferred migration pattern and score using different constraints for the PHM-TR problem

(parallel single-source (PS), single-source (S), multi-source (M) and reseeding (R)).

patient m #SNVs
Sanborn et al. [44] MACHINA

#clusters polyclonal #clusters pattern (µ, γ, σ)

A 4 124/2467 7 no 4 mPS (3,3,1)

C 3 1056/1408 5 yes 5 pPS (3,2,1)

D 4 13/1160 3 no 2 mPS (3,3,1)

E 5 59/96 6 yes 7 pS (5,4,2)

F 4 2136/2136 7 no 5 mPS (3,3,1)

Supplementary Table 8: Results for five metastatic melanoma patients. From left to right, we show the patient, the

number m of anatomical sites, the number of copy-neutral and total number of SNVs, the number of reported clusters

and whether polyclonal seeding was reported in [44]. Next, we show the number of clusters inferred by the AncesTree

clustering algorithm and finally the migration pattern and parsimony score inferred by MACHINA.
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µ > µmin

γ = γmin

σ > σmin

directed acyclic multi-graph

µ > µmin + 1

γ > γmin

σ > σmin

directed multi-graph

µ > µmin + 1

γ > γmin

σ > σmin

Supplementary Table 9: Taxonomy of migration patterns between anatomical sites. Migration patterns can be

distinguished in two different ways. First, by the number of clones that migrate between two anatomical sites: each

metastasis is seeded by a single clone in the case of monoclonal (m) seeding, whereas with polyclonal (p) seeding

multiple clones migrate from one anatomical site to another. Second, by the migration topology: each metastasis is

seeded only from the primary tumor with parallel single-source seeding (PS), is seeded from a single anatomical site

with single-source seeding (S), and has multiple anatomical seeding sites with multi-source seeding (M) and clones

migrate back and forth between anatomical sites in the case of reseeding (R). With m anatomical sites µmin = m− 1

and γmin = m − 1 are lower bounds on the migration and comigration number, respectively. The migration pattern

affects the migration number µ and the comigration number γ.
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