
Biophysical Journal, Volume 115
Supplemental Information
Tuning Length Scales of Small Domains in Cell-Derived Membranes

and Synthetic Model Membranes

Caitlin E. Cornell, Allison D. Skinkle, Shushan He, Ilya Levental, Kandice R.
Levental, and Sarah L. Keller

1 SUPPLEMENTARY FIGURES

Figure S1: Small domains in a GUV do not exhibit hysteresis when temperature is cycled.
The same 35/35/30 DiPhyPC/DPPC/cholesterol vesicle treated with DPPC-loaded HPαCD
is shown in all panels. The scale bar is 20 µm.

Figure S2: The fraction of GPMVs exhibiting small domains increases in hypertonic solution.
A. A field of GPMVs derived from MDCK cells in an isotonic solution. B. The same field
of GPMVs after addition of 250 mM NaCl to the outer solution. Images were collected ∼1
min after the addition of NaCl solution. Scale bars are 20 µm.

Table S1: Lipid compositions of the ratios in Fig. 11A-C and Fig. S4.

Figure S3: G(r) and S(k) for the points in Fig. 7A. In panels A-D, the grey curves are fits
to a power law and the dot-dashed curves are fits to an exponential.

Figure S4: G(r) and S(k) for the points in Fig. 7B. In panels A-D, the grey curves are fits
to a power law and the dot-dashed curves are fits to an exponential.

Ratio 1 Ratio 2 Ratio 3 Ratio 4
0.0

0.2

0.4

0.6

0.8

A
re

a
Fr

ac
tio

n
of

 D
ar

k
P

ha
se

Figure S5: The fraction of area that appears dark increases monotonically from lipid ratio
1 to 4 (Fig. 11A) for a population of vesicles. The bars represent the average area fraction
for each lipid ratio. The numbers of vesicles analyzed for lipid ratios 1−4 were 6, 10, 9, and
6, respectively. The error bars represent the standard deviation.

2 Methods

2.1 Area Fraction

For membranes exhibiting small-scale domains, images of vesicles were collected such that

the top, spherical cap of the vesicle lay within the < 5µm depth of field of the microscope

objective; the remainder of the vesicle appeared as a bright ring. Square areas were drawn

(edge length 15−60 µm) that included only areas in focus. Pixel intensities were thresholded

to yield only white and black areas. Images within the 2D squares were projected onto 3D

spherical surfaces using MATLAB code by Sarah Veatch.S1 The area fraction of the dark

regions was the 3D projected area of all black pixels divided by the projected area of all

pixels in the image.

For vesicles exhibiting large-scale coexisting Lo-Ld coexistence, images were collected

when domains aligned roughly perpendicular to the field of view. Area fractions were then

assessed geometrically by evaluating the surface area of spherical caps relative to the surface

area of an entire sphere.

2.2 Radial Distribution Function and Structure Factor

We define the two dimensional radial distribution function (RDF) for the image as:

g (r) =
〈δρ(r′ + r)δρ(r′)〉

〈δρ(r)〉2
(1)

where δρ(r) is the contrast between the two dimensional image grey value vector and the

image average grey value:

δρ(r) = ρ(r)− ρ̄ (2)

and

ρ̄ =

∫
drρ(r)∫

dr
. (3)

To implement the above definition for our pixelated image, we put the grey value vector into

matrix representation:

ρ(r) = ρi,j (4)

where r is the position vector represented by a matrix element as a pixel at i-th row and

j-th column. The average density can be calculated as:

ρ̄ =
m∑
i=1

n∑
j=1

ρi,j
mn

(5)

and the contrast:

δρ(r) = δρij = ρi,j − ρ̄ (6)

Thus, the 2-D g(r) becomes:

g(r) = g(ri,j) =

(
m,n∑
k,l=1

δρk,l · δρk+i,l+j

)
(

m,n∑
k,l=1

δρk,l

)2 (7)

for all i ∈ (1,m) and j ∈ (1, n). The one dimensional RDF, g(r), is the two dimensional

function that reports modulation in the direction perpendicular to the stripes and is averaged

over the direction parallel to the stripes in the image, assuming translational invariance:

g(r) = g(ri) =
n∑
j=1

g(ri,j)

n
(8)

Due to the finite size of the image, the calculation yields fewer data points as the separation

between two correlated pixels increases and approaches the image size, thus the quality of

g(r) degrades as r increases.

We can also calculate the one dimensional structure factor as a Fourier transform of the

1-D g(r) of the image using the generic definitionS2.:

S(k) = 1 + ρ̄

∫
gαβ(r)e−ik · rdr (9)

The actual Fouier transform is carried out using the fast Fourier transform function provided

in the NumPy v 1.14 Python software packageS3,S4.

SUPPLEMENTARY PYTHON CODE

""" This script will take an 8-bit image and compute a pair correlation function, G(r), of

the pixels in the image. First, a pair correlation is calculated along the x-direction. This

generates a 2D pair correlation with correlations between particles in X and Y. The code

then plots one slice of the G(r) in the x-direction against the radius.

The pair correlation function will be normalized around 0 and this code can also calculate

an envelope function of the G(r). The code fits either an exponential or a power law function

to the G(r) or envelope and gives error bounds. This version truncates the envelope function

after the first several peaks of the G(r)

import matplotlib.pyplot as plt

import numpy as np

from scipy.misc import imread

from scipy.optimize import curve_fit

def calcrdf(phi):

’’’ This function calculates the radial distribution function

of an image composed of an array of pixels. It returns a 2D

G(r) integrated over the average contrast intensity ’’’

Set up the size of the array

Lx = phi.shape[0]

Ly = phi.shape[1]

Define field as contrast from average

pixel intensity (can be negative)

dphi = phi - np.average(phi)

Calculate the average contrast intensity

diphiavg2 = np.average(dphi**2)

Define the array for a 2D G(r)

rho2 = np.zeros((Lx+1, Ly+1))

Calculate the 2D G(r)

for dx in np.arange(Lx):

for dy in np.arange(Ly):

phi2 = dphi

rho2[dx,dy] = np.average(phi2[0:Lx-dx,0:Ly-dy] * phi2[dx:Lx,dy:Ly])

return rho2/diphiavg2

def exponential(x, a, b, c):

return a * np.exp(-b * x) + c

def power(x, a, b, c):

return a * (x**(-b)) + c

def power2(x, a, b):

return a * (x**(-b))

if __name__ == "__main__":

Load in the image

im = imread("GUV_28 deg.tif")

phi = im

Calculate the 2D G(r) using the RDF function

dgr_2d = calcrdf(phi)

Slice the 2D G(r) in the x-direction, where

dy=0 to obtain a 1D G(r)

dgr_1d = dgr_2d[0]

Calculate the numerical derivative of G(r)

to find the maxima to fit to an exponential

or power law curve

gr_deriv = np.diff(dgr_1d)

Roll the derivative over one to see where

it changes sign

gr_derivposition = np.array(gr_deriv > 0, dtype=int)

gr_derivposition2 = np.roll(gr_derivposition, 1)

np.array(gr_derivposition - gr_derivposition2 == -1, dtype=int)

maxX = np.array(gr_derivposition-gr_derivposition2 == -1, dtype=int)

Define the array in units of pixels

(will need the max number of pixels)

r = np.arange(80)

Define the array in units of microns

(will need the resolution of the image)

r = r*0.17

Redefine r to shift by half a pixel length.

This is due to an error in fitting a power law

when there are 0’s present in r. The

uncertainty of the self correlation is on the

order of the size of the pixel (0.17 Âţm)

r = r+0.17/2

Redefine the bounds of the 1D G(r)

g_r = dgr_1d[:80]

For plotting, set the maxX at 0 equal to 1

and find the x values where maxX is 1

and the y values where x is 1 multiplied

by the 1D G(r)

maxX[0] = 1

envelopeX = r[maxX==1]

envelopeY = maxX[maxX==1]*g_r[maxX==1]

Truncate the envelope at ~6 Âţm

and delete erroneous point at 1 pixel noise

envelopeX = envelopeX[:7]

envelopeY = envelopeY[:7]

print(envelopeX)

envelopeX = np.delete(envelopeX,4)

envelopeY = np.delete(envelopeY,4)

Fit the data to an exponential curve or power law

poptE, pcovE = curve_fit(exponential, envelopeX, envelopeY)#,

p0=[1,1],maxfev=10000)

fitE = exponential(envelopeX, *poptE)

poptP, pcovP = curve_fit(power2, envelopeX, envelopeY, p0 =[1,1])

fitP = power2(envelopeX, *poptP)

#print(popt)

#print(pcov)

Calculate the error based on a taylor expansion

and the most weighted parameters (a and c)

perrE = np.sqrt(np.diag(pcovE))

upperE = fitE + (perrE[0]+perrE[2])

lowerE = fitE - (perrE[0]+perrE[2])

perrP = np.sqrt(np.diag(pcovP))

upperP = fitP + (perrP[0])

lowerP = fitP - (perrP[0])

Calculate the residual and the variance to obtain

the R-squared value for both fits

residualE = np.sum((envelopeY - fitE)**2)

varianceE = np.sum((envelopeY- envelopeY.mean())**2)

r_squaredE = 1 - (residualE/varianceE)

print(r_squaredE)

residualP = np.sum((envelopeY - fitP)**2)

varianceP = np.sum((envelopeY - envelopeY.mean())**2)

r_squaredP = 1 - (residualP/varianceP)

print(r_squaredP)

Plot the G(r)

Make a plot with space for subplots

fig, axes = plt.subplots(1,1,sharex=True, sharey=True, figsize=(6,4))

Plot the G(r) and the fit with error bounds

x = np.linspace(envelopeX.min(),envelopeX.max(),200)

axes.axhline(0, color = "black", linestyle =’--’, alpha=0.2)

axes.plot(r, g_r, color = "black", alpha = 0.7, label = ’data’)

axes.plot(x, exponential(x,*poptE), color = "blue", alpha = 0.7, linestyle =

’-.’, label = ’exponential fit’)

axes.plot(x, power2(x,*poptP), color = "green", alpha = 0.4, label = ’power law

fit’)

axes.plot(envelopeX,envelopeY, marker = "o", linestyle = "None", markersize =

5, markeredgecolor = "grey", markerfacecolor = "None")

axes.set_ylabel("G(r)", fontname="Arial", fontsize=15)

axes.set_xlabel("Radius (Âţm)", fontname="Arial", fontsize=15)

axes.text(8, 0.85, ’R^2 exponential = 0.999 \nR^2 power = 0.998’,

style=’normal’,

bbox={’facecolor’:’None’, ’alpha’:0.5, ’pad’:3})

Save the figure as a PDF

plt.savefig("GUV_28deg_combined_truncate.pdf")

plt.show()

Extra code to compute the S(k)

Calculate the S(k) by taking a Fourier

Transform of the magnitude squared of the

1D G(r)

rho_k = np.fft.fft(dgr_1d)

s_k = np.real(rho_k)**2 + np.imag(rho_k)**2

Truncate the s_k to cut off the

mirrored part of the plot

s_k = s_k[0:19]

References

(S1) Veatch, S. L.; Soubias, O.; Keller, S. L.; Gawrisch, K. Critical Fluctuations in Domain-

Forming Lipid Mixtures. Proc. Natl. Acad. Sci. U.S.A. 2013, 104, 17650–17655.

(S2) Hansen, J. P.; McDonald, I. R. Theory of Simple Liquids (Fourth Edition), 4th ed.;

Academic Press: Oxford, 2013.

(S3) Oliphant, T. E. Python for Scientific Computing. Comput. Sci. Eng. 2007, 9, 10–20.

(S4) Jones, E.; Oliphant, T.; Peterson, P.; et al., SciPy: Open source scientific tools for

Python. 2001–; http://www.scipy.org/, [Online; accessed 2018-01-22].

