1 Harnessing genetic potential of wheat germplasm banks through impact-oriented-2 prebreeding for future food and nutritional security

- 3
- 4 Sukhwinder Singh^{1*†}, Prashant Vikram^{1†}, Deepmala Sehgal^{1†}, Juan Burgueño¹, Achla Sharma²,
- 5 Sanjay K. Singh³, Carolina P. Sansaloni¹, Ryan Joynson⁴, Thomas Brabbs⁴, Cynthia Ortiz¹,
- Ernesto Solis-Moya⁵, Velu Govindan¹, Naveen Gupta⁶, Harminder S. Sidhu⁶, Ashwani K.
 Basandrai⁷, Daisy Basandrai⁷, Lourdes Ledesma-Ramires⁵, Maria P. Suaste-Franco⁵, Guillermo
- Fuentes-Dávila⁸, Javier I. Moreno⁹, Kai Sonder¹, Vaibhav K. Singh¹⁰, Sanjay Singh¹¹, Sajid
- 9 Shokat^{12,13}, Mian A. R. Arif¹², Khalil A. Laghari¹³, Puja Srivastava², Sridhar Bhavani¹⁴, Satish
- 10 Kumar³, Dharam Pal¹⁵, Jai P. Jaiswal¹⁶, Uttam Kumar⁶, Harinder K. Chaudhary⁷, Jose Crossa¹,
- 11 Thomas S. Payne¹, Muhammad Imtiaz¹⁸, Virinder S. Sohu², Gyanendra P. Singh³, Navtej S.
- 12 Bains², Anthony Hall^{4,19}, Kevin V. Pixley^{1*}
- 13
- 14 ¹International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán,
- 15 Texcoco, México, C.P. 56237
- ²Department Plant Breeding & Genetics, Punjab Agriculture University, Ludhiana-141004, India
- 17 ³ICAR-Indian Institute of Wheat and Barley Research, Karnal-132001, India
- ⁴Earlham Institute, Norwich, Norfolk, NR4 7UG, UK
- 19 ⁵Carretera Celaya-San Miguel de Allende, Km .6.5, C.P. 38110, Celaya, Guanajuato, México
- 20 ⁶Borlaug Institute for South Asia (BISA), CIMMYT, Ladhowal, Punjab, 141004, India
- 21 ⁷CSK Himachal Pradesh Agricultural University Palampur, H.P. India, 176062
- 22 ⁸INIFAP-CIRNO, Campo Experimental Norman E. Borlaug, Apdo. Postal 155, Km 12 Norman E. Borlaug, Cd.
- 23 Obregon, Sonora, Mexico CP 85000
- ⁹INIFAP, Interior Parque Los Colomos S/N, Colonia Providencia, CP. 44660, Guadalajara, Jalisco
- 25 ¹⁰ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110 012, INDIA
- 26 ¹¹National Research Center for Plant Biotechnology, New Delhi 110 012, INDIA
- 27 ¹²Nuclear Institute for Agriculture and Biology, Faislabad -38000, Pakistan
- 28 ¹³Department of Plant and Environmental Sciences, Crop Science, University of Copenhagen, Højbakkegård Allé 13,
- 29 DK-2630, Taastrup, DENMARK
- 30 ¹⁴Nuclear Institute of Agriculture, Tando Jam, Sindh, 70050, Pakistan,
- ¹⁵CIMMYT World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri. P.O. Box 1041–00621, Nairobi,
 Kenya
- 32 Kenya
- 33 ¹⁶ICAR-Indian Agricultural Research Institute, Regional Station, Shimla-171004, India
- ¹⁷Department of Genetics & Plant Breeding, G.B. Pant University of Agriculture & Technology, Pantnagar- 263145
 Uttarakhand, India
- 36 ¹⁸CIMMYT Pakistan, NARC CSI Complex, Park Road, Islamabad- 44000, Pakistan
- ¹⁹School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- 38
- 39 ⁺Equal contributions
- 40 *Corresponding authors:
- 41 Sukhwinder Singh | Wheat Lead- Seeds of Discovery
- 42 International Maize and Wheat Improvement Center (CIMMYT)
- 43 Tel: +52 (595) 952 1900 (2104) Email: suk.singh@cgiar.org
- 44 Kevin Pixley | Director, Genetic Resources Program
- 45 International Maize and Wheat Improvement Center (CIMMYT)
- 46 Carretera México-Veracruz Km. 45, El Batán, Texcoco, México, C.P. 56237
- 47 Tel: +52-595-9521900 (1397) Email: k.pixley@cgiar.org
- 48
- 49
- 50

Supplementary Table 1. Haplotype variation among three sets of germplasm; exotic, pre breeding, and elite

2	
-≺	
-	

Chromosome	Germplasm set	Total number of haplotypes	Length of haplotypes (number of SNPs in a haplotype): min to max	Genomic regions in PBLs where large HBs in elites were broken (genetic position in cM based on 64K map)
1A	Elite	10	2-36	
	Exotic	33	2-7	
	PBLs	32	2-10	190.3-194.7, 195.8- 196.6, 204.3-204.7, 206.7-207.0, 208.1-218.3, 225.2-226.0, 226.4-228.4, 313.4-343.3
1B	Elite	4	2-3	
	Exotic	23	2-8	
	PBLs	14	2-5	
1D	Elite	1	4	
	Exotic	14	2-6	
	PBLs	11	2-3	75-78
2A	Elite	7	2-6	
	Exotic	19	2-3	
	PBLs	18	2-6	
2B	Elite	9	2-10	
	Exotic	27	2-5	
	PBLs	30	2-6	68-69
2D	Elite	3	3-8	
	Exotic	20	2-8	

	PBLs	10	2-12	114-118
3A	Elite	5	2-8	
	Exotic	16	2-5	
	PBLs	20	2-5	
3B	Elite	10	2-8	
	Exotic	23	2-5	
	PBLs	33	2-6	130.8-131.5, 185.4 – 185.6, 285.5 – 286.1
3D	Elite	1	5	
	Exotic	11	2-22	
	PBLs	9	2-5	
4A	Elite	4	3-7	
	Exotic	11	2-5	
	PBLs	14	2-4	181.7 – 190.0, 211.0-215.4
4B	Elite	4	2-9	
	Exotic	9	2-4	
	PBLs	6	2-3	
4D	Elite	1	3	
	Exotic	8	2	
	PBLs	6	2	
5A	Elite	10	2-5	
	Exotic	20	2-6	
	PBLs	20	2-5	
5B	Elite	11	2-15	
	Exotic	28	2-6	

	PBLs	37	2-4	23.3-23.8, 23.9-25.5, 63.7- 69.1, 100.4-106.1, 107.2- 115.7
5D	Elite	1	7	
	Exotic	6	2-3	
	PBLs	3	2-5	217.9-228.8
6A	Elite	5	3-8	
	Exotic	13	2-4	
	PBLs	19	2-6	110.8-112.3
6B	Elite	3	2-6	
	Exotic	14	2-4	
	PBLs	15	2-6	
6D	Elite	4	2-3	
	Exotic	10	2-39	
	PBLs	6	2-3	
7A	Elite	11	2-7	
	Exotic	25	2-6	
	PBLs	28	2-6	
7B	Elite	10	2-8	
	Exotic	16	2-3	
	PBLs	23	2-5	61.6-75.1, 76.7-79.0
7D	Elite	1	2	
	Exotic	21	2-23	
	PBLs	6	2-4	

- 1 Supplementary Table 2. Contribution of exotic and elite alleles in ten crosses with equal to or
- 2 more than 16 pre-breeding lines selected after 7 cycles of selection (separate excel sheet attached)
- 3

Supplementary Table 3. Haplotype associations with grain yield and related traits (separate excel
 sheet attached)

- 5 6
- 7 Supplementary Table 4. Haplotype blocks associated with grain yield under heat stress and
- 8 irrigated situation
- 9

Hanlatura Chromosoma		Irrigated		Heat-2016		Heat-2017	
паріотуре	Chromosome	P-value	R ² (%)	P-value	R ² (%)	<i>P</i> -value	$R^{2}(\%)$
HB18.1	6D	9.88E-05	2.8	3.30E-12	6.1	5.3076E-07	3.7
HB8.22	3B	8.33E-04	3.4	6.29E-04	3.6	0.00204	3.0
HB16.10	6A	3.42E-05	4.2	9.90E-04	3.4	0.00045675	3.4
HB18.2	6D	1.38E-06	3.7	3.30E-12	6.2	2.44E-04	3.0

Supplementary Table 5A. Haplotype associations for yellow rust resistance in 984 PBLs

			Location-	Location-
Haplotype	Chromosome	<i>P</i> -value	PAU	Palampur
HB1.21	1A	0.00103		
HB1.31	1A	0.000113		**
HB1.32	1A	8.16E-05		**
HB2.1	1B	0.000924		***
HB2.7	1B	3.76E-06	**	**
HB3.4	1D	0.000426	***	
HB3.7	1D	0.000151		**
HB5.2	2B	0.00155		***
HB5.23	2B	0.00138	**	**
HB19.4	7A	1.74E-05		**
HB20.22	7B	0.00309	**	**

P-Value significance level: *: < 0.01; **: < 0.01; ***: < 0.001

Supplementary Table 5B. Haplotype associations for powdery mildew resistance in the pre-breeding germplasm set

Haplotype	Chromosome	<i>P</i> -value	\mathbb{R}^2
HB14.36	5B	3.17E-05	0.0308
HB17.11	6B	1.09E-04	0.0281

Supplementary Table 6. Genes found within trait-associated intervals along with their molecular function and genome annotation (separate excel sheet attached)

Supplementary Table 7. Eight allelic variants of gene Traes_6DS_84A4D85F.1 with SIFT score <0.05

Variant ID	Chromosome: bp	Alleles	Class	Source	Conseq.Type	SIFT	Transcript
EPITAEV07251078	6D:3099529	G/C	SNP	Inter-homoeologous	Missense variant	0	Traes_6DS_84A4FD85F1
EPITAEV01106843	6D:3099718	T/G	SNP	Inter-homoeologous	Missense variant	0	Traes_6DS_84A4FD85F1
EPITAEV01106544	6D:3099856	T/C	SNP	Inter-homoeologous	Missense variant	0	Traes_6DS_84A4FD85F1
EPITAEV01106553	6D:3099833	G/A	SNP	Inter-homoeologous	Missense variant	0.01	Traes 6DS 84A4FD85F1
EPITAEV01106611	6D:3099439	C/T	SNP	Inter-homoeologous	Missense variant	0.02	Traes 6DS 84A4FD85F1
EPITAEV01106815	6D:3099471	G/T	SNP	Inter-homoeologous	Missense variant	0.02	Traes_6DS_84A4FD85F1
EPITAEV01106694	6D:3099160	T/C	SNP	Inter-homoeologous	Missense variant	0.03	Traes_6DS_84A4FD85F1
EPITAEV01106840	6D:3099708-3099709	GG/CA	substitution	Inter-homoeologous	Missense variant	0.04	Traes_6DS_84A4FD85F2

1 Supplementary Table 8A. Pre-breeding lines identified as potential donors for grain yield under

2 heat stress

GID	Exotic parent type	2015-16	2016-17
		kg	ha ⁻¹
7641495	Synthetic	2261	2346
7644075	Synthetic	2325*	2418*
7645422	Synthetic	2338*	2488*
7645970	Synthetic	2214	2407*
7689940	Landrace	2415*	2362
BAJ #1	Check	2144	2216
VOROBEY	Check	1769	1985
SOKOLL	Check	NA	2023
LSD(0.05)		526	386

3 In crop season 2015-16 and 2016-17, 984 and 230 PBLs respectively, were evaluated under heat stress

4 environment at Ciudad Obregon, Mexico. The number of PBLs with grain yield equal/comparable to Baj#1

5 and Vorobey (checks) in 2015-16 were 610 and 908 respectively, and, in 2016-17 they were 165 and 193

6 respectively. *: PBLs yielding significantly higher than Vorobey.

7

8 Supplementary Table 8B. Pre-breeding lines performing comparable or better than checks for 9 grain yield under drought stress

GID	Exotic parent type	2015-16	2016-17
		kg]	ha ⁻¹
7643084	Synthetic	3587	4510
7642492	Synthetic	3480	4574
7688508	Landrace	3360	4787*
7687479	Synthetic	3167	5198*
7642491	Synthetic	2766	5151* ^µ
VOROBEY	Check	3346	4613
BAJ #1	Check	3111	4858
SOKOLL	Check	NA	3968
LSD(0.05)		868	457

10 A total of **984** and **230** PBLs were evaluated in crop season of 2015-16 and 2016-17 respectively, under

drought stress environment at Ciudad Obregon, Mexico. Of these, grain yield of **940** and **799** PBLs were

equal/comparable to Baj#1 and Vorobey, in the crop season 2015-16 respectively. In the 2016-17 season,

13 PBLs with grain yield equal/ comparable to Baj#1 and Vorobey were 43 and 89, respectively. *: Three

14 PBLs yielded significantly higher than Vorobey in the crop season 2016-17; ^µ: One PBL yielded

significantly higher than Baj#1 in the crop season 2016-17.

16

Supplementary Table 9. List of exotics with minor haplotypes associated with agronomic traits
 18

Supplementary Table 10. List of elites, exotics and pre-breeding lines used in this study. Separate
 excel sheet attached.

21 10-A: Salient features of the 25 elites that were either released varieties or better performing lines

22 in CIMMYT's multi-location trials. These elites were used for developing pre-breeding germplasm

- 1 populations; 10-B: Details of 165 exotics involved in 183 crosses representing 984 pre-breeding
- 2 lines; 10-C: Details of 183 three-way crosses representing 984 pre-breeding lines
- 3

4 Supplementary Table 11. (A) Details of 10,111 SNP makers used for analysis in this study; (B) 5 Details of 7.180 SNP markers used for hopleture analysis in this study. Separate event short

Details of 7,180 SNP markers used for haplotype analysis in this study. Separate excel sheet
 attached

7

8 **Supplementary** Table 12. Location and size of QTL intervals and number of annotated genes 9

Interv Numb Chromoso Interval Interval al size er of (Mbp) Interval Genes Number of GY associated genes* me start end 6579864 6902774 (NB-LRR Resistance Associated HB5.23 2B41 42 32.29 279 genes)10 1237265 1376101 13.88 (GY related genes) 4 HB10.5 4A 09 08 61 HB16.1 4180390 4465922 0 6A 34 70 28.55 138 (GY related genes) 14 (GY related genes) 6 4555134 6843670 2.29 48 HB18.1 6D

*Flagged as previously associated with grain yield by KnetMiner

10 11 12

13 SUPPLEMENTARY FIGURE LEGENDS

14

Fig. S1. Pictorial presentation of haplotype blocks comparison between of elite and PBL haplotype
 block map. Figure shows the distribution of same 36 SNPs in elite and PBL haplotype map

Fig. S2. SNP allele profiles on all 21 chromosomes (columns) for pre-breeding lines (PBLs) of 10 crosses (rows). Black lines delimit chromosomes and crosses. Black dots inside the black lines are missing values, while blue and orange dots represent elite- and exotic-specific alleles, respectively. Green color corresponds to unidentified, or alleles originating from recombination of elite and exotics. Chromosomal regions where elite, exotic or recombinant alleles prevailed in the PBLs appear as vertical patterns of the same color.

23 24

Fig. S3: Phylogenetic tree of the *Traes_6DS_84A4D85F.1* candidate gene, from EnsemblPlants
 database, (<u>http://plants.ensembl.org/index.html</u>) showing closest similarity with the gene
 F775_22033 in *Aegilops tauschii*, coding for isoflavone reductase IRL-like protein.

28

Fig. S4: BLAST analysis of two SNPs in HB18.1 revealed a significant hit for the SNP 2 (clone ID 1067078), with a candidate gene, *Traes_6DS_84A4D85F.1*. This gene is homologous to the rice gene *LOC_0s06g27770.1*, coding for isoflavone reductase. Allelic variants are shown in UTR, coding and intron regions of the gene (<u>http://plants.ensembl.org/index.html</u>). The dark yellow colored rectangular boxes represent missense mutations (causing deleterious amino acid changes) in the coding region.

35

Fig. S5. Average TKW of PBLs with alleles AC, AT and TC (X-axis) for HB18.2. PBLs with haplotype AC had highest TKW. The haplotype AC was present in 6% of PBLs.

Fig. S6. Different regions in the world map (i) to which the exotic parents belong and (ii) where pre-breeding germplasms have been shared

Fig. S7. Presenting number of crosses made in the last 5 years for wheat pre-breeding and development stages of germplasm and anticipated product delivery timeline has been illustrated

Fig. S8. Graph showing a three dimensional principal component analysis graph of 1711 gene bank accessions out of which 244 exotics in different genetic spaces. The selected and unselected genotypes are presented with red and yellow dots respectively

2 Fig.S1

- 2 Fig.S2

- .

Fig.S4

- 2 Fig.S5

- ~

- Fig.S6

	200	2021	IC ₁ F ₃
2015	500	2020	TC_1F_4
2014	200	2019	TC_1F_5
2013	126	2018	TC_1F_6
2012	244	2017	TC ₁ F ₇
Crossing Initiated	Number of crosses	Mobilization to breeding	Filial stage of pre breeding

2 Fig.S7

2 Fig.S8