

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients in the Netherlands: a register-based cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021509
Article Type:	Research
Date Submitted by the Author:	20-Jan-2018
Complete List of Authors:	Deen, Laura; University of Amsterdam, Department of Public Health, Academic Medical Centre; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Buddeke, Josefien; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Vaartjes, Ilonca; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Bots, Michael; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Nørredam, Marie; University of Copenhagen, Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services Research, Department of Public Health; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Agyemang, Charles; University of Amsterdam, Department of Public Health, Academic Medical Center
Keywords:	Ethnicity, breast cancer, migrant, cardiovascular disease, cardiovascular mortality

SCHOLARONE[™] Manuscripts

Page 1 of 25

1 2		
3 4	1	Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients
5 6	2	in the Netherlands: a register-based cohort study.
7 8	3	
9 10 11	4	Laura Deen, MSC ^{1,2} ; Josefien Buddeke, MSC ³ ; Ilonca Vaartjes, PhD ³ ; Michiel L. Bots, MD
12 13	5	PhD ³ ; Marie Norredam, MD PhD ^{2,4} ; Charles Agyemang, MPH, PhD ¹
14 15	6	¹ Department of Public Health, Academic Medical Centre, University of Amsterdam, Amsterdam
16 17	7	Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
18 19 20	8	² Section of Immigrant Medicine, Department of Infectious Diseases, Copenhagen University
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34	9	Hospital, Kettegård allé 30, 2650 Hvidovre, Denmark
	10	³ Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht,
	11	Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
	12	⁴ Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services
	13	Research, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014
	14	København K, Denmark
34 35 36	15	
37 38	16	Corresponding author:
39 40	17	Laura Deen, Department of Public Health, Academic Medical Centre, University of Amsterdam,
41 42 43	18	Amsterdam Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
43 44 45	19	e-mail: <u>nhq382@alumni.ku.dk</u> , telephone.: +4527514559
46 47	20	
48 49	21	Word count:
50 51 52	22	Abstract: 239.
53 54	23	Total manuscript (excluding references, tables and figures): 3876
55 56	24	
57 58	-	1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

25 Abstract

Objectives: Cardiovascular disease (CVD) is of increasing concern among breast cancer survivors. However, evidence on ethnic differences in CVD among women with breast cancer is sparse. We assessed ethnic differences in cardiovascular morbidity and mortality among breast cancer patients in the Netherlands.

Methods: A nationwide register-based cohort study comprising all women with a first admission for breast cancer (n=127,714) between 1996 and 2010 in the Netherlands was conducted. Differences in CVD admission, CVD mortality and overall CVD event, which comprised a CVD admission and/or CVD mortality, between the largest ethnic minority groups (Surinamese, Moroccan, Turkish, Antillean, and Indonesian) and the Dutch general population (henceforth, Dutch) were investigated using Cox proportional hazard models.

Results: The incidence of cardiovascular outcomes varied by ethnic group. The incidence of an overall cardiovascular event was significantly higher for women with breast cancer from Suriname (HR=1.46;95% CI 1.29–1.64) and Turkey (HR=1.25;95% CI 1.03–1.51), compared with Dutch women with breast cancer. In contrast, Indonesian women with breast cancer had a significantly lower risk (HR=0.88; 95% CI 0.81–0.96) of a cardiovascular event compared with Dutch women with breast cancer. There were no significantly differences between Moroccan and Antillean women, and Dutch women with breast cancer.

46 Conclusions: Our findings suggest that Surinamese and Turkish women with breast cancer are 47 disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breast 48 cancer. More work is needed to unravel the potential factors contributing to these differences.

1 2	
2 3 4 5	49 50
6 7	51
8 9	52
10 11	53
12 13 14	54
15 16	55
17 18	56
19 20	
21 22 23	57
23 24 25	58
26 27	59
28 29	60
30 31	61
32 33 34	62
35 36	63
37 38	64
39 40	65
41 42 43	66
43 44 45	67
46 47	68
48 49	69
50 51	70
52 53 54	71
55 56	72
57 58	
59 60	

Strengths and limitations of this study:

- This study provides important new insights into ethnic differences in cardiovascular
- morbidity and mortality among breast cancer patients in a European country.
- The study builds on data from nation-wide registries with high validity. •
- Although the study is based on a nationwide cohort of breast cancer patients, absolute • numbers are somewhat small when divided into different ethnic groups.
 - Data on CVD risk factors, such as smoking, alcohol and obesity were not available since the ٠
- study builds on registry data.

Due to earlier diagnosis and more effective treatment, the survival rate among breast cancer patients has now improved resulting in a growing population of breast cancer survivors. In The Netherlands, the 5-year-age-standardized survival rate has increased from 80% in 1995-99 to 85% in 2005-09 [1]. With breast cancer becoming a curable disease, comorbidities and death from other conditions among breast cancer survivors are of increasing concern.

One of the most important comorbidities to consider in women with breast cancer is cardiovascular disease (CVD), and with the growing number of breast cancer survivors, a better understanding of the risk of CVD in this group is crucial. Studies show that women surviving breast cancer have an increased risk of CVD morbidity and CVD-specific mortality compared with women without breast cancer [2,3]. Moreover, among breast cancer survivors, CVD-related mortality is becoming more common than breast cancer-specific mortality [4,5]. This is mainly attributable to cardiotoxic effects of breast cancer therapy [6,7]. Further, survivors are typically older than the general population and may be more likely to develop CVD because of risk factors common to both cancer and CVD [8].

Evidence suggests ethnic inequalities in the prognosis of breast cancer with a higher risk of breast cancer-specific and overall mortality among some ethnic minority groups [9,10]. However, although ethnic variation in cardiovascular outcomes in the general population exists [11,12], the evidence among breast cancer patients is limited. Data from the US show that African American and Pacific Islander women with breast cancer had an increased risk of dying from CVD compared with White American breast cancer patients [4,13]. However, ethnic compositions and the national context vary across countries and, to our knowledge, no European study has Page 5 of 25

1 ว

BMJ Open

2
4
5
6
7
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
23 24
24
25
26
27
2/
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
-
55
54
55
56
57
58
59

60

97 examined the risk of CVD related outcomes in different ethnic groups among breast cancer 98 patients. Hence, the aim of this study was to explore differences in overall CVD event, CVD 99 admission and CVD mortality following a diagnosis of breast cancer between the largest ethnic 100 minority groups in the Netherlands compared with ethnic Dutch.

102 **2. Methods**

101

103 Study sample

This register-based cohort study builds on data from different Dutch nationwide registers. The 104 105 registries and linkage procedures used in this cohort study have previously been described in 106 detail [14]. In brief, we linked data between the national Dutch hospital discharge register, the 107 population register and the cause of death register using a record identification number. This 108 number is assigned to each resident in the Netherlands with a unique combination of birth date, 109 sex and postal code (84% of the Dutch population). The Dutch national hospital discharge 110 register and cause of death register were linked to identify all women with a first admission for 111 breast cancer between 1996 and 2010, using the International Classification of Diseases (ICD) 9th revision and ICD 10th revision. Both patients with invasive (ICD-9: 174 and ICD-10: C50) and in 112 situ breast cancer (ICD-9: 233 and ICD-10: D05) were identified and men were excluded. Data 113 114 from the population register and the cause of death register were available until 2012 and data 115 from the Dutch hospital discharge register were available until 2010. Individuals were followed 116 from the date of their first breast cancer admission until (a) CVD admission, (b) CVD death, (c) 117 death due to other causes, (d) first emigration or (d) study end (31.12.2012), whichever came 118 first. Linkage of data from the different registries was performed in agreement with the privacy 119 legislation in The Netherlands. All linkages and analysis were performed in a secured 120 environment of Statistics Netherlands.

1 2		
2 3 4	121	
5 6 7 8 9	122	Ethnic group
	123	Ethnic groups were constructed based on the country of birth of the resident and her parents,
9 10 11	124	according to the definition of Statistics Netherlands [15]. A woman was considered a migrant if
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	125	she was born abroad or at least one of the parents was born abroad. Women with both parents
	126	born in the Netherlands were indicated as being Dutch. The major non-Western migrant groups
	127	residing in the Netherlands were included, which are those born in Turkey, Suriname, Morocco,
	128	Indonesia, and the Netherlands Antilles.
	129	
	130	Outcomes
	131	CVD admission after a diagnosis of breast cancer was defined as all admissions with either the
	132	primary or secondary cause of admission coded as ICD-10: 017.2, 093, 228, 289.1-289.3, 390-
	133	459, 557,745–747, 780.2, 782.3, 7825, 7826, 785, 786.50–786.59, 789.2, 794.30–794.39.
32 33 34	134	Cardiovascular mortality was defined as dying from a cardiovascular cause after a diagnosis of
35 36	135	breast cancer. Overall cardiovascular event combined the two outcomes and comprised a hospital
37 38 39 40	136	admission for CVD, and/or a dying from a cardiovascular cause.
	137	
41 42 43	138	Data analyses
44 45	139	We first presented baseline characteristics as absolute numbers and percentages according to
46 47 48	140	ethnic group. Continuous variables were summarized as mean and standard deviation or as
48 49 50	141	median and interquartile range where appropriate. Subsequently, we calculated hazard ratios
51 52	142	(HR) and corresponding 95% confidence intervals (95% CI) using cox proportional hazard
53 54	143	regression analyses to assess ethnic differences in overall cardiovascular events, and separately
55 56 57	144	for hospital admission for CVD and cardiovascular mortality between ethnic minority groups and
57 58		6

Page 7 of 25

1

BMJ Open

2	
4	
5	
6	
7	
8	
9	
10	
11	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 59	
27	

60

160

145 the Dutch (reference group) with adjustment for age, year of admission and type of breast cancer.

146 Cox proportional hazard assumptions were checked and met. All analyses were performed using
147 SPSS 22.0 (SPSS Inc., Chicago, IL, USA).

149 **3. Results**

148

150 Table 1 presents the characteristics of the study population by ethnic group. In total, 127,714 151 women with a first admission for breast cancer between 01.01.1996 and 31.12.2010 were 152 included in the study, of which 5% belonged to an ethnic minority group (table 1). Dutch women 153 were in general followed for a longer period than the ethnic minority groups. Among migrants, 154 the Antilleans presented the smallest group and the Indonesians the largest group. In general, the 155 ethnic minority groups were younger than the Dutch population when diagnosed. During follow-156 up, 19% of the Dutch population experienced a hospital admission due to CVD, whereas among 157 the ethnic minorities the proportion of CVD admission ranged from 9% for Moroccans to 19% 158 for Surinamese women. 31,203 women with breast cancer died during follow-up, of which 25% 159 were due to a cardiovascular cause.

161 Table 2 shows the incidence of a CVD event, which comprises a hospital admission for CVD, 162 and/or dying from a cardiovascular cause, among breast cancer patients by ethnic group. 163 Compared with Dutch women with breast cancer, both Surinamese (HR=1.46;95% CI 1.29–1.64) 164 and Turkish (HR=1.25:95% CI 1.03–1.51) women with breast cancer had a higher incidence of 165 CVD event after adjustment for breast cancer diagnosis, period of breast cancer diagnosis and 166 age. In contrast, Indonesian women with breast cancer had a significantly lower risk (HR=0.88; 167 95% CI 0.81-0.96) of cardiovascular event compared with Dutch women. For Moroccans and 168 Antilleans there were no significantly differences from Dutch women.

Subsequently, we assessed cardiovascular admission and cardiovascular mortality separately. Table 3 shows the unadjusted and adjusted hazard ratios for a cardiovascular admission. Only women from Suriname had a significantly higher risk (HR=1.45; 95% CI 1.28-1.64) of cardiovascular admission compared with Dutch women with breast cancer, whereas women from Indonesia had a significantly lower risk of a cardiovascular admission (HR=0.85; 95% CI 0.78– 0.93). The unadjusted and adjusted hazard ratios for cardiovascular mortality for the different ethnic groups are shown in table 4. The adjusted hazard ratios for cardiovascular mortality were significantly higher for women from Suriname (HR=1.49; 95% CI 1.13-1.97) and Turkey (HR=1.96; 95% CI 1.28-3.01), compared with Dutch women, whereas there were no significantly differences between women from Indonesia and Dutch women. For Moroccan and Antillean women the numbers of deaths due to cardiovascular disease were too small to perform analyses.

64.6

4. Discussion

Key findings

In this population-based cohort study of women with breast cancer in the Netherlands, the risk of cardiovascular outcomes varied by ethnic group. Women from Suriname and Turkey had a higher risk of a CVD event compared with Dutch women with breast cancer. When separating cardiovascular admission and cardiovascular mortality, Surinamese women had a higher risk of both cardiovascular admission and cardiovascular mortality, whereas Turkish women only had a higher risk of cardiovascular mortality compared with Dutch women. In contrast, women from Indonesia with breast cancer had a lower risk of cardiovascular event, and cardiovascular admission, but similar risk of cardiovascular mortality compared with ethnic Dutch women with breast cancer. For Moroccan and Antillean women the risk of a cardiovascular event did not differ from Dutch women with breast cancer.

BMJ Open

193 Discussion of key findings

Evidence shows that ethnic minority and migrant groups in general have a lower risk of breast cancer compared with the majority population [16,17]. However, the results of this study indicate that among breast cancer patients, some ethnic minority groups are disadvantaged in terms of cardiovascular outcomes compared with Dutch women. The results of this study are in line with the sparse evidence on ethnic differences in CVD mortality among breast cancer patients in the US, which also found some ethnic minority groups to be disadvantaged in terms of cardiovascular mortality [4,13]. For example, African America women with ductal carcinoma in situ of the breast were found to have a higher risk of CVD death compared with White American women diagnosed with ductal carcinoma in situ of the breast [4]. However, even though CVD have been shown to vary by ethnic group [11,18] data among breast cancer patients in Europe have been lacking. Previous European studies on ethnic disparities in breast cancer prognosis have mostly focused on mortality after breast cancer diagnosis, and found that some ethnic minority groups have higher overall and breast cancer-specific mortality [9,10,19]. Our results thereby add a great value to the existing literature by showing that women with breast cancer from Suriname and Turkey are disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breast cancer. The higher incidence of CVD event among Surinamese women with breast cancer reflects the pattern of CVD among Surinamese women in the general Dutch population. Previous studies of the general population in the Netherlands showed that Surinamese women have a higher risk of both AMI and stroke compared with Dutch women [20,21], as well as a higher 5-year CVD mortality after initial admission for CVD [22]. Turkish women with breast cancer were in the present study found to have a higher incidence of CVD event, compared with Dutch women with breast cancer. However, this only partly reflects on the pattern among Turkish women in the general population in the Netherlands. Previous studies of

the general population in the Netherlands did not find differences in the incidence of stroke or AMI among Turkish women compared with the Dutch majority women [20,21]. However, when stratifying on age, a higher incidence of AMI were observed in 50- to 70-year-old Turkish women compared with the Dutch majority women [20].

The relatively low risk of CVD outcomes among Indonesian women with breast cancer are in contrast to previous studies of the general Dutch population that found no differences in incidence of AMI and a slightly higher risk of stroke among Indonesians compared with Dutch women [20,21]. The reasons for the better CVD prognosis among Indonesian breast cancer patients are unclear. However, Indonesians are well integrated in the Dutch society with respect to language and culture and have similar income levels and are employed at equal rates as the Dutch general population [23]. This possibly results in better access to health care services than other minority groups and may underlie the better cardiovascular health outcomes among Indonesian women with breast cancer.

Possible explanations for the higher risk of cardiovascular events among Surinamese and Turkish breast cancer patients may include disparities in access to health care services and a high risk factor burden among these ethnic minorities in the Netherlands. Regular health visits are important for early diagnosis of risk factors that can lead to CVD progression and it is possible that differences in health service utilisation may contribute to the observed ethnic differences in CVD risk among breast cancer patients. Evidence on health care utilization among breast cancer patients is scarce, but previous evidence of the general population in the Netherlands suggests that some ethnic minority populations use more general practitioner care than Dutch people do, but that they are less likely to use specialised care [24]. Moreover, ethnic differences in use of

Page 11 of 25

246

1

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21 22	
23	
24	
25	
26	
27	
27 28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
42	
43	
44	
45	
46	
47	
47 48	
49	
50	
51	
52	
53	
55 54	
54 55	
56	
57	
58	
59	

60

cardiac rehabilitation and lower adherence to medication therapy have been shown [25–28]. A
Danish study found that immigrants from Pakistan and Turkey did not receive adequate medical
treatment with beta-blockers after a first AMI compared with Danish-born residents [26]. In
addition, in the Netherlands, Surinamese people have been found to have poor blood pressure
control compared with their Dutch counterparts [28].

The relatively high incidence of CVD admission and mortality among Turkish and Surinamese 247 248 breast cancer women may be explained by the high prevalence of cardiovascular risk factors in 249 these populations. The current study lacked information on CVD risk factor and we were 250 therefore not able to address the possible contribution of these to the observed ethnic differences. 251 However, previous studies of Surinamese and Turkish populations in the Netherlands showed 252 that hypertension, diabetes mellitus and obesity are more common among these populations 253 compared with the Dutch general population [28-31]. As an example, a previous Dutch study 254 showed that the prevalence of hypertension, the leading risk factor for CVD worldwide, was 255 higher in both Turkish and Surinamese people than in Dutch people [28]. In addition, a study 256 from the US, found that African American breast cancer patients have higher prevalence of 257 certain CVD risk factors, such as hypertension, diabetes and obesity, prior to initiating aromatase 258 inhibitory therapy, compared with White American breast cancer patients of the same age [32]. 259 Evidence suggests that the presence of CVD risk factors among breast cancer patients at 260 diagnosis is a strong predictive factor for the development of cardiovascular damage associated 261 with breast cancer therapy [33]. The higher risk factor burden in some ethnic minority groups 262 may therefore contribute to the higher incidence of CVD in these groups.

Additionally, since the risk of CVD has been shown to vary according to breast cancer therapy [7,34], the observed differences may be explained by variation in the treatment received by

different ethnic groups. In the current study, data on treatment was not available. However, studies from the US and UK have reported that ethnic minority women were more likely to receive chemotherapy, which was largely explained by more advanced stage and higher grade tumours [35,36].

Our findings have important clinical and public health implications because identifying breast cancer patients who are most vulnerable to cardiovascular outcomes is important in order to guide strategies among breast cancer patients. The findings suggest the need to increase attention for these women in the cardiovascular risk factor management guidelines in the Netherlands and awareness of the observed ethnic differences in the risk of cardiovascular outcomes among breast cancer patients should be raised among clinicians and incorporated into oncology practices. The observed differences suggest the need for further studies to identify factors explaining these differences. More specific, studies addressing the potential contribution of both CVD risk factors and type of treatment to the observed ethnic differences found in this study are needed. This will help to tailor appropriate public health and clinical interventions to improve outcomes among breast cancer patients most at risk of adverse CVD outcomes.

282 Strength and limitations:

The strength of the current study is the validity of the registries, the linkage methods, and the lack of selection of the cohorts. A high validity of both the Dutch National Hospital Discharge Register and the Dutch Population Register has been demonstrated. In a random sample of the Hospital Discharge Register, 99% of the personal, admission and discharge data and 84% of the principal diagnoses (validated through medical record review by medical specialists) were correctly registered [37]. In addition, over 97% of the uniquely linked hospital admissions

BMJ Open

resulting from linkage of the Hospital Discharge Register with the Population Register wereshown to be correctly linked [38].

Nonetheless, some limitations must be considered. First, although the study is based on a nationwide cohort of breast cancer patients, absolute numbers are somewhat small when divided into different ethnic groups. Consequently, the numbers were too small to investigate different kinds of CVD, which could have afforded a more nuanced picture. Second, inherent to many national-level databases, we lack detailed data on CVD risk factors, such as smoking, alcohol, cholesterol and obesity, and therefore we were unable to do additional analyses to assess the contribution of these to the observed ethnic differences. However, we were able to shed light on the potential contributing risk factors to the observed differences due to previous studies on ethnic differences in risk factors in the Netherlands [28–31]. Additionally, the study lack data on treatment of breast cancer. Since, CVD risk has been shown to vary according to type of treatment [7,34], adjustment for treatment would have been preferable in order to assess the potential impact of differences in treatment to the observed ethnic differences in CVD. Finally, as in numerous studies, the classifications of the various ethnic groups were based on country of birth. Country of birth may reflect ethnicity reasonably well among some ethnic groups but is likely to be an unreliable proxy measure of ethnicity for other groups such as Surinamese [15]. The results may be generalised to other European settings with similar health care services and composition of ethnic groups.

5. Conclusion

311 The results of the current study suggest that the risk of CVD related outcomes among breast 312 cancer patients vary by ethnicity. Surinamese and Turkey breast cancer patients experienced a

2 3	313	higher risk, whereas Indonesian patients had a slightly lower risk of CVD event compared with
4 5 6	314	their Dutch counterparts. More extensive cohort studies are needed to identify the forms of CVD
7 8 9 10	315	that are most common in these groups as well as the potential factors contributing to these
10 11 12	316	differences.
13	317	
14 15 16	318	Competing interest: None declared.
16 17 18	319	
19 20	320	Funding
21 22	321	This work was supported by the Dutch Heart Foundation (grant number 2010B296).
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	322	
	323	Contributor ship statement
	324	LD, JB, IV, MLB, MN, CA were involved in the study design. LD and CA wrote the paper. JB
	325	analysed the data. JB, IV, MLB and MN critically revised the manuscript. All Authors approved
	326	the final version of the manuscript.
	327	
	328	Data sharing statement
	329	No additional data are available.
42 43	330	
44 45	331	
46 47	332	
48 49	333	
50 51 52	334	
53 54	335	
55 56	336	
57 58		14
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	337	Refe	rences
5 6	338	[1]	C. Allemani, H.K. Weir, H. Carreira, R. Harewood, D. Spika, X.S. Wang, F. Bannon, J. V.
7 8 9	339		Ahn, C.J. Johnson, A. Bonaventure, R. Marcos-Gragera, C. Stiller, G. Azevedo E Silva,
9 10 11	340		W.Q. Chen, O.J. Ogunbiyi, B. Rachet, M.J. Soeberg, H. You, T. Matsuda, M. Bielska-
12 13	341		Lasota, H. Storm, T.C. Tucker, M.P. Coleman, Global surveillance of cancer survival
14 15	342		1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based
16 17 18	343		registries in 67 countries (CONCORD-2), Lancet. 385 (2015) 977-1010.
19 20	344	[2]	S.H. Armenian, L. Xu, B. Ky, C. Sun, L.T. Farol, S.K. Pal, P.S. Douglas, S. Bhatia, C.
21 22	345		Chao, Cardiovascular disease among survivors of adult-onset cancer: A community-based
23 24	346		retrospective cohort study, J. Clin. Oncol. 34 (2016) 1122-1130.
25 26 27	347	[3]	P.T. Bradshaw, J. Stevens, N. Khankari, S.L. Teitelbaum, A.I. Neugut, M.D. Gammon,
28 29	348		Cardiovascular Disease Mortality Among Breast Cancer Survivors, Epidemiology. 27
30 31	349		(2016) 6–13.
32 33 34	350	[4]	A. Berkman, B. F. Cole, P.A. Ades, S. Dickey, S.T. Higgins, A. Trentham-Dietz, B.L.
35 36	351		Sprague, S.G. Lakoski, Racial differences in breast cancer, cardiovascular disease, and all-
37 38	352		cause mortality among women with ductal carcinoma in situ of the breast, Breast Cancer
39 40 41	353		Res. Treat. 148 (2014) 407–413.
41 42 43	354	[5]	J.L. Patnaik, T. Byers, C. DiGuiseppi, D. Dabelea, T.D. Denberg, Cardiovascular disease
44 45	355		competes with breast cancer as the leading cause of death for older females diagnosed with
46 47	356		breast cancer: a retrospective cohort study, Breast Cancer Res. 13 (2011) R64.
48 49 50	357	[6]	S.C. Darby, M. Ewertz, P. McGale, A.M. Bennet, U. Blom-Goldman, D. Brønnum, C.
51 52	358		Correa, D. Cutter, G. Gagliardi, B. Gigante, MB. Jensen, A. Nisbet, R. Peto, K. Rahimi,
53 54	359		C. Taylor, P. Hall, Risk of ischemic heart disease in women after radiotherapy for breast
55 56 57	360		cancer., N. Engl. J. Med. 368 (2013) 987-98.
57 58 59			15
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	361	[7]	P. Thavendiranathan, H. Abdel-Qadir, H.D. Fischer, X. Camacho, E. Amir, P.C. Austin,
5 6	362		D.S. Lee, Breast Cancer Therapy-Related Cardiac Dysfunction in Adult Women Treated in
7 8	363		Routine Clinical Practice: A Population-Based Cohort Study., J. Clin. Oncol. 34 (2016)
9 10 11	364		JCO.2015.65.1505
12 13	365	[8]	K.E. Weaver, R.E. Foraker, C.M. Alfano, J.H. Rowland, N.K. Arora, K.M. Bellizzi, A.S.
14 15	366		Hamilton, I. Oakley-Girvan, G. Keel, N.M. Aziz, Cardiovascular risk factors among long-
16 17 18	367		term survivors of breast, prostate, colorectal, and gynecologic cancers: A gap in
18 19 20	368		survivorship care?, J. Cancer Surviv. 7 (2013) 253-261.
21 22	369	[9]	H. Møller, K. Henson, M. Lüchtenborg, J. Broggio, J. Charman, V.H. Coupland, E.
23 24	370		Davies, R.H. Jack, R. Sullivan, P. Vedsted, K. Horgan, N. Pearce, A. Purushotham, Short-
25 26 27	371		term breast cancer survival in relation to ethnicity, stage, grade and receptor status:
28 29	372		national cohort study in England, Br. J. Cancer. (2016) 1-8.
30 31	373	[10]	F. Latif, J. Helgeland, G. Bukholm, I.R.K. Bukholm, Ethnicity differences in breast cancer
32 33	374		stage at the time of diagnosis in Norway, Scand. J. Surg. 104 (2015) 248–253.
34 35 36	375	[11]	A.A.M. Van Oeffelen, I. Vaartjes, K. Stronks, M.L. Bots, C. Agyemang, Incidence of
37 38	376		acute myocardial infarction in first and second generation minority groups: Does the
39 40	377		second generation converge towards the majority population?, Int. J. Cardiol. 168 (2013)
41 42 43	378		5422–5429.
44 45	379	[12]	R.S. Bhopal, N. Bansal, C.M. Fischbacher, H. Brown, S. Capewell, Ethnic variations in
46 47	380		heart failure: Scottish Health and Ethnicity Linkage Study (SHELS)., Heart. 98 (2012)
48 49	381		468–73.
50 51 52	382	[13]	P.A. Solanki, N.Y. Ko, D.M. Qato, G.S. Calip, Risk of cancer-specific, cardiovascular, and
53 54	383		all-cause mortality among Asian and Pacific Islander breast cancer survivors in the United
55 56	384		States, 1991-2011., Springerplus. 5 (2016) 82.
57 58			16
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
3 4	385	[14]	H.L. Koek, A. de Bruin, A. Gast, E. Gevers, J.W.P.F. Kardaun, J.B. Reistma, D.E.
5 6 7 8 9	386		Grobbee, M.L. Bots, Incidenc of first acute myocardial infarction in the Netherlands, Neth.
	387		J. Med. 65 (2007) 434–441.
9 10 11	388	[15]	K. Stronks, I. Kulu-Glasgow, C. Agyemang, The utility of "country of birth" for the
12 13	389		classification of ethnic groups in health research: the Dutch experience., Ethn. Health. 14
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	390		(2009) 255–269.
	391	[16]	M. Arnold, M.J. Aarts, S. Siesling, M. Van Der Aa, O. Visser, J.W. Coebergh, Diverging
	392		breast and stomach cancer incidence and survival in migrants in The Netherlands, 1996-
	393		2009., Acta Oncol. 52 (2013) 1195–1201.
	394	[17]	T. Gathani, R. Ali, A. Balkwill, J. Green, G. Reeves, V. Beral, K.A. Moser, Million
	395		Women Study Collaborators, Ethnic differences in breast cancer incidence in England are
	396		due to differences in known risk factors for the disease: prospective study., Br. J. Cancer.
30 31	397		110 (2014) 224–9.
32 33 34	398	[18]	N.F. Hempler, F.B. Larsen, S.S. Nielsen, F. Diderichsen, A.H. Andreasen, T. Jørgensen, A
35 36	399		registry-based follow-up study, comparing the incidence of cardiovascular disease in
37 38 39 40 41	400		native Danes and immigrants born in Turkey, Pakistan and the former Yugoslavia: do
	401		social inequalities play a role?, BMC Public Health. 11 (2011) 662.
41 42 43	402	[19]	E. Copson, T. Maishman, S. Gerty, B. Eccles, L. Stanton, R.I. Cutress, D.G. Altman, L.
44 45	403		Durcan, P. Simmonds, L. Jones, W. Tapper, D. Eccles, Ethnicity and outcome of young
46 47	404		breast cancer patients in the United Kingdom: the POSH study., Br. J. Cancer. 110 (2014)
48 49 50	405		230–41.
51 52	406	[20]	A.A.M. Van Oeffelen, C. Agyemang, K. Stronks, M.L. Bots, I. Vaartjes, Incidence of first
53 54	407		acute myocardial infarction over time specific for age, sex, and country of birth, (2014)
55 56 57	408		20–27.
57 58 59			17

1 2			
- 3 4	409	[21]	C. Agyemang, A.A.M. Van Oeffelen, M. Norredam, L.J. Kappelle, C.J.M. Klijn, M.L.
5 6	410		Bots, K. Stronks, I. Vaartjes, Ethnic disparities in ischemic stroke, intracerebral
7 8	411		hemorrhage, and subarachnoid hemorrhage incidence in the Netherlands, Stroke. 45 (2014)
9 10 11	412		3236–3242.
12 13	413	[22]	C. Agyemang, I. Vaartjes, M.L. Bots, I.G. van Valkengoed, J.S. de Munter, A. de Bruin,
14 15	414		M. Berger-van Sijl, J.B. Reitsma, K. Stronks, Risk of death after first admission for
16 17	415		cardiovascular diseases by country of birth in The Netherlands: a nationwide record-linked
18 19 20	416		retrospective cohort study., Heart. 95 (2009) 747-753.
21 22	417	[23]	L. Ho, V. Bos, A.E. Kunst, Differences in cause-of-death patterns between the native
23 24	418		Dutch and persons of Indonesian descent in the Netherlands, Am. J. Public Health. 97
25 26 27 28 29 30 31	419		(2007) 1616–1618.
	420	[24]	K. Stronks, a C. Ravelli, S. a Reijneveld, Immigrants in the Netherlands: equal access for
	421		equal needs?, J. Epidemiol. Community Health. 55 (2001) 701-707.
32 33 34	422	[25]	O. Cortes, H.M. Arthur, Determinants of referral to cardiac rehabilitation programs in
35 36	423		patients with coronary artery disease: A systematic review, Am. Heart J. 151 (2006) 249-
37 38	424		256.
39 40	425	[26]	N.F. Hempler, F. Diderichsen, F.B. Larsen, S. Ladelund, T. Jørgensen, Do immigrants
41 42 43	426		from Turkey, Pakistan and Yugoslavia receive adequate medical treatment with beta-
44 45	427		blockers and statins after acute myocardial infarction compared with Danish-born
46 47	428		residents? A register-based follow-up study, Eur. J. Clin. Pharmacol. 66 (2010) 735-742.
48 49 50	429	[27]	G. Feder, A.M. Crook, P. Magee, S. Banerjee, A.D. Timmis, H. Hemingway, Ethnic
50 51 52	430		differences in invasive management of coronary disease: Prospective cohort study of
53 54	431		patients undergoing angiography, BMJ Br. Med. J. 324 (2002) 511-516.
55 56	432	[28]	C. Agyemang, S. Kieft, M.B. Snijder, E.J. Beune, B.J. Van Den Born, L.M. Brewster, J.J.
57 58			18
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 19 of 25

1

2 3 4	433		Ujcic-Voortman, N. Bindraban, G. Van Montfrans, R.J. Peters, K. Stronks, Hypertension
4 5 6	434		control in a large multi-ethnic cohort in Amsterdam, The Netherlands: The HELIUS study,
7 8	435		Int. J. Cardiol. 183 (2015) 180-189.
9 10 11	436	[29]	J.K. Ujcic-Voortman, M.T. Schram, M.A. Jacobs-Van Der Bruggen, A.P. Verhoeff, C.A.
12 13	437		Baan, Diabetes prevalence and risk factors among ethnic minorities, Eur. J. Public Health.
14 15	438		19 (2009) 511–515.
16 17 18	439	[30]	N.R. Bindraban, I.G.M. van Valkengoed, G. Mairuhu, F. Holleman, J.B.L. Hoekstra,
19 20	440		B.P.J. Michels, R.P. Koopmans, K. Stronks, Prevalence of diabetes mellitus and the
21 22	441		performance of a risk score among Hindustani Surinamese, African Surinamese and ethnic
23 24 25	442		Dutch: a cross-sectional population-based study., BMC Public Health. 8 (2008) 271.
25 26 27	443	[31]	J.K. Ujcic-Voortman, G. Bos, C.A. Baan, A.P. Verhoeff, J.C. Seidell, Obesity and body fat
28 29 30 31 32 33 34	444		distribution: Ethnic differences and the role of socio-economic status, Obes. Facts. 4
	445		(2011) 53–60.
	446	[32]	L. Gallicchio, C. Calhoun, K. Helzlsouer, Cardiovascular Health among Black and White
35 36	447		Breast Cancer Patients Initiating Aromatase Inhibitor Therapy, Clin. Breast Cancer. 16
37 38	448		(2016) e23–e31.
39 40 41	449	[33]	N. Maurea, C. Coppola, G. Ragone, G. Frasci, A. Bonelli, C. Romano, R.V. Iaffaioli,
42 43	450		Women survive breast cancer but fall victim to heart failure: the shadows and lights of
44 45 46 47 48 49 50	451		targeted therapy., J. Cardiovasc. Med. (Hagerstown). 11 (2010) 861-868.
	452	[34]	E.J. Bowles, R. Wellman, H.S. Feigelson, A.A. Onitilo, A.N. Freedman, T. Delate, L.A.
	453		Allen, L. Nekhlyudov, K.A. Goddard, R.L. Davis, L.A. Habel, M.U. Yood, C. McCarty,
51 52	454		D.J. Magid, E.H. Wagner, P.S. Team, Risk of heart failure in breast cancer patients after
53 54 55	455		anthracycline and trastuzumab treatment: a retrospective cohort study, J. Natl. Cancer Inst.
55 56 57	456		104 (2012) 1293–1305.
58 59			19
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4	457	[35]	R.H. Jack, E.A. Davies, H. Møller, Breast cancer incidence, stage, treatment and survival
5 6	458		in ethnic groups in South East England, (2009) 545-550.
7 8	459	[36]	B.K. Killelea, V.Q. Yang, S. Wang, B. Hayse, S. Mougalian, N.R. Horowitz, A.B.
9 10 11	460		Chagpar, L. Pusztai, D.R. Lannin, N.R. Horowitz, B. Anees, Racial Differences in the Use
12 13	461		and Outcome of Neoadjuvant Chemotherapy for Breast Cancer : Results From the National
14 15	462		Cancer Data Base, 33 (2017) 4267–4276.
16 17 18	463	[37]	G. Paas, K. Veenhuizem, Research on the validity of the LMR (in Dutch), Prismant.
19 20	464		(2002).
21 22	465	[38]	A. De Bruin, J. Kardaun, F. Gast, E. De Bruin, M. Van Sijl, G. Verweij, Record linkage of
23 24 25	466		hospital discharge register with population register : Experiences at Statistics Netherlands,
25 26 27	467		Stat. Bruin A De, Kardaun J, Gast F, Bruin E De, Sijl M Van, Verweij G. Rec. Link. Hosp.
28 29	468		Disch. Regist. with Popul. Regist. Exp. Stat. Netherlands. Stat. (Ber). 2004;2123–32. S.
30 31 32	469		21 (2004) 23–32.
32 33 34	470		21 (2004) 23–32.
35 36	471		
37 38 39	472		
39 40 41	473		
42 43	474		
44 45	475		
46 47 48	476		
49 50	477		
51 52	478		
53 54 55	479		
55 56 57	480		
58 59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

	Ethnic Dutch N %	Antillean N %	Indonesian N %	Moroccan N %	Surinamese N %	Turki N %
No. of patients	120,809 (100)	454 (100)	3,457 (100)	919 (100)	1,351 (100)	724 (1
Mean age at diagnosis (y), sd	60.4 (13.3)	52.8 (11.8)	57.0 (13.1)	47.0 (10.7)	52.8 (12.7)	49.5 (
Attained age (y) end of						
follow-up	5 000 (4 0)	52 (11 7)		220 (25 0)	172 (12 7)	105 (1
≤ 44	5,029 (4.2)	53 (11.7)	206 (6.0)	230 (25.0)	172 (12.7)	125 (1
45-59	31,731 (26.3)	197 (43.4)	1,262 (36.5)	476 (51.8)	582 (43.1)	336 (4
60-74	46,671 (38.6)	169 (37.2)	1,199 (34.7)	185 (20.1)	421 (31.2)	225 (3
≥75	37.378 (30.9)	35 (7.7)	790 (22.9)	28 (3.0)	176 (13.0)	38 (5.
Follow-up time (y), median (IQR)	5.7 (6.8)	4.1 (5.4)	5.6 (6.6)	4.1 (5.0)	4.61 (6.1)	4.7 (5
Breast cancer diagnosis						
In situ	9,774 (8.1)	45 (9.9)	336 (9.7)	91 (9.9)	131 (9.7)	62 (8.
Invasive	111,035 (91.9)	409 (90.1)	3,121 (90.3)	828 (90.1).1	1,220 (90.3)	662 (9
Period of breast cancer						
diagnosis (y)	28,869 (23.9)	66 (14.5)	743 (21.5)	115 (12.5)	230 (17.0)	104 (
1996-1999	32,196 (26.7)	121 (26.7)	912 (26.4)	201 (21.9)	326 (24.1)	187 (2
2000-2003	33,385 (27.6)	139 (30.6)	990 (28.6)	289 (31.4)	420 (31.1)	222 (.
2004-2007	26,359 (21.8)	128 (28.2)	812 (23.5)	314 (34.2)	375 (27.8)	211 (2
2008-2010						
Marital status						
Single/ widowed/ divorced		268 (59.0)	1,701 (49.2)	301 (32.8)	820 (60.7)	277 (.
Living with partner/	66,949 (55.4)	186 (41.0)	1,756 (50.8)	618 (67.2)	531 (39.3)	447 (0
married						
Hospital admissions	22 421 (10 4)	(0, (15, 0))	(140)		250 (10.2)	101 (
CVD	23,431 (19.4)	68 (15.0)	515 (14.9)	85 (9.2)	259 (19.2)	101 (
- Heart failure	3,426 (2.8)	11(2.4)	66 (1.9) 25 (0.7)	13(1.4)	30(2.2)	16(2.
- Myocardial infarction	1,482 (1.2)	$< 10^{a}$ $< 10^{a}$	25(0.7)	$<10^{a}$ $<10^{a}$	$<10^{a}$	<10 ^a <10 ^a
- Cerebrovascular disease	3,529 (2.9)	<10	82 (2.4)	<10	34 (2.5)	<10
Death during follow-up						
Total deaths	29,966 (24.8)	101 (22.2)	665 (19.2)	124 (13.5)	251 (18.6)	96 (13
Breast cancer cause	12,279 (10.2)	64 (14.1)	301 (8.7)	82 (8.9)	136 (10.1)	51 (7.
Cardiovascular cause	7,438 (6.2)	<10 ^a	158 (4.6)	11 (1.2)	50 (3.7)	21 (2.
Other causes	10,249 (8.5)	<10	206 (6.0)	31 (3.4)	65 (4.8)	24 (3.
Abbreviations: CVD = card ^a = Not given in line with th 483 484 485					ess than 10	

	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
Ethnic g Dutch Suriname	1.00 (Ref.)	1.00 (Ref.)
		1.46 (1.29-1.64)
Morocca		1.01 (0.83-1.24)
Turkish	0.71 (0.59-0.86)	1.25 (1.03-1.51)
Antillean		1.24 (0.98-1.56)
Indonesia		0.88 (0.81-0.96)
88 Adjusted 89	for age, year of admission and type	of breast cancer
90		
91		
	Unadjusted and adjusted hazard ra	tios [95% confidence interval] for a <u>cardiov</u>
95 <u>aumissio</u>	Unadjusted	Adjusted
	HR (95% CI)	HR (95% CI)
Ethnic g	roup	
Dutch	1.00 (Ref.)	1.00 (Ref.)
Suriname	1.09 (0.96-1.23)	1.45 (1.28-1.64)
Morocca	ns 0.53 (0.43-0.66)	0.92 (0.75 -1.14)
Turkish	0.76 (0.63-0.93)	1.21(0.99-1.47)
Antillean	s 0.89 (0.70-1.13)	1.24 (0.98-1.57)
Indonesia	uns 0.75 (0.69-0.82)	0.85 (0.78-0.93)
•	for age, year of admission and type	of breast cancer
95		
96 97		
	Unadjusted and adjusted hazard ration	os for <u>cardiovascular mortality</u> by ethnic group
	Unadjusted	Adjusted
Ethnic g	HR (95% CI)	HR (95% CI)
Dutch	1.00 (Ref.)	1.00 (Ref.)
Suriname	· · · · · · · · · · · · · · · · · · ·	1.49 (1.13-1.97)
Turkish	0.55 (0.36-0.84)	1.96 (1.27-3.01)
Indonesia	uns 0.76 (0.65-0.89)	0.99 (0.84-1.16)
5	for age, year of admission and type per of cardiovascular mortality for t	of breast cancer he Antilleans and Moroccan women were too

		Checklist for cohort, case-control, and cross-sectional studies (combined)	
Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1 and 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5 and 6
Bias	9	Describe any efforts to address potential sources of bias	6 and 7
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6 and 7
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	-

Page	24	of	25
		•••	

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	-
Results		·	
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7 and 21 (table 1)
		(b) Indicate number of participants with missing data for each variable of interest	-
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	21 (table 1)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7 and 21 (table 1)
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7,8, and 22 (table 2 3,4)
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12 - 13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information	·		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

 BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients in the Netherlands: a register-based cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021509.R1
Article Type:	Research
Date Submitted by the Author:	13-Apr-2018
Complete List of Authors:	Deen, Laura; University of Amsterdam, Department of Public Health, Academic Medical Centre; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Buddeke, Josefien; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Vaartjes, Ilonca; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Bots, Michiel; University Medical Center Utrecht, Julius Centre for Health Sciences and Primary Care Nørredam, Marie; University of Copenhagen, Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services Research, Department of Public Health; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Agyemang, Charles; University of Amsterdam, Department of Public Health, Academic Medical Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Oncology, Cardiovascular medicine
Keywords:	Ethnicity, breast cancer, migrant, cardiovascular disease, cardiovascular mortality

SCHOLARONE[™] Manuscripts Page 1 of 26

1 2							
3 4	1	Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients					
5 6	2	in the Netherlands: a register-based cohort study.					
7 8	3						
9 10 11	4	Laura Deen, MSC ^{1,2} ; Josefien Buddeke, MSC ³ ; Ilonca Vaartjes, PhD ³ ; Michiel L. Bots, MD					
12 13	5	PhD ³ ; Marie Norredam, MD PhD ^{2,4} ; Charles Agyemang, MPH, PhD ¹					
14 15	6	¹ Department of Public Health, Academic Medical Centre, University of Amsterdam, Amsterdam					
16 17	7	Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands					
18 19 20	8	² Section of Immigrant Medicine, Department of Infectious Diseases, Copenhagen University					
21 22	9	Hospital, Kettegård allé 30, 2650 Hvidovre, Denmark					
23 24	10	³ Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht,					
25 26 27	11	Heidelberglaan 100, 3584 CX Utrecht, The Netherlands					
27 28 29	12	⁴ Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services					
30 31	13	Research, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014					
32 33	14	København K, Denmark					
34 35 36	15						
37 38	16	Corresponding author:					
39 40	17	Laura Deen, Department of Public Health, Academic Medical Centre, University of Amsterdam,					
41 42 43	18	Amsterdam Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands					
43 44 45	19	e-mail: <u>nhq382@alumni.ku.dk</u> , telephone.: +4527514559					
46 47	20						
48 49	21	Word count:					
50 51 52	22	Abstract: 250.					
53 54	23	Total manuscript (excluding references, tables and figures): 3214.					
55 56	24						
57 58	-	1					
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml					

25 Abstract

Objectives: Cardiovascular disease (CVD) is of increasing concern among breast cancer survivors. However, evidence on ethnic differences in CVD among women with breast cancer is sparse. We assessed ethnic differences in cardiovascular morbidity and mortality among breast cancer patients in the Netherlands.

Methods: A nationwide register-based cohort study comprising all women with a first admission for breast cancer (n=127,714) between 1996 and 2010 in the Netherlands was conducted. Differences in CVD admission, CVD mortality and overall CVD event, which comprised a CVD admission and/or CVD mortality, between the largest ethnic minority groups (Surinamese, Moroccan, Turkish, Antillean, and Indonesian) and the Dutch general population (henceforth, Dutch) were investigated using Cox proportional hazard models.

Results: The incidence of cardiovascular outcomes varied by ethnic group. The incidence of an overall cardiovascular event was significantly higher for women with breast cancer from Suriname (HR=1.46;95% CI 1.29–1.64) and Turkey (HR=1.25;95% CI 1.03–1.51), compared with Dutch women with breast cancer. In contrast, Indonesian women with breast cancer had a significantly lower risk (HR=0.88; 95% CI 0.81–0.96) of a cardiovascular event compared with Dutch women with breast cancer. The risk of a cardiovascular event did not differ between Moroccan and Dutch women with breast cancer, whereas for Antillean women the risk was not significantly higher.

Page 3 of 26

1		
2 3 4	47	Conclusions: Our findings suggest that Surinamese and Turkish women with breast cancer are
5 6	48	disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breast
7 8 9	49	cancer. More work is needed to unravel the potential factors contributing to these differences.
9 10 11	50	
12 13 14	51 52	Strengths and limitations of this study:The study builds on data from nationwide registries which resulted in a large sample size.
15 16 17	53	• The validity of the linkage of the included registries has proved to be high.
17 18 19	54	• Although the study is based on a nationwide cohort of breast cancer patients, absolute
20 21	55	numbers are somewhat small when divided into different ethnic groups.
22 23	56	• Data on CVD risk factors, such as smoking, alcohol and obesity were not available since the
24 25 26	57	study builds on registry data.
27 28 29	58	
30 31	59	
32 33	60	
34 35 36	61	
37 38	62	
39 40 41	63	
41 42 43	64	
44 45	65	
46 47	66	
48 49 50	67	
50 51 52	68	
53 54	69	
55 56	70	
57 58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1. Introduction

Due to earlier diagnosis and more effective treatment, the survival rate among breast cancer patients has now improved resulting in a growing population of breast cancer survivors. In The Netherlands, the 5-year-age-standardized survival rate has increased from 80% in 1995-99 to 85% in 2005-09 [1]. With breast cancer becoming a curable disease, comorbidities and death from other conditions among breast cancer survivors are of increasing concern.

One of the most important comorbidities to consider in women with breast cancer is cardiovascular disease (CVD), and with the growing number of breast cancer survivors, a better understanding of the risk of CVD in this group is crucial. Studies show that women surviving breast cancer have an increased risk of CVD morbidity and CVD-specific mortality compared with women without breast cancer [2,3]. Moreover, among breast cancer survivors, CVD-related mortality is becoming more common than breast cancer-specific mortality [4,5]. This is attributable to improvements in breast cancer survival due to early detection by screening programs and improved treatments [6,7]. Additionally, cardiotoxic effects of breast cancer therapy play a role [8,9]. Further, survivors are typically older than the general population and may be more likely to develop CVD because of risk factors common to both cancer and CVD [10].

90 Evidence suggests ethnic inequalities in the prognosis of breast cancer with a higher risk of breast 91 cancer-specific and overall mortality among some ethnic minority groups [11,12]. However, 92 although ethnic variation in cardiovascular outcomes in the general population exists [13,14], the 93 evidence among breast cancer patients is limited. Data from the US show that African American 94 and Pacific Islander women with breast cancer had an increased risk of dying from CVD

BMJ Open

95 compared with White American breast cancer patients [4,15]. However, ethnic compositions and 96 the national context vary across countries and, to our knowledge, no European study has 97 examined the risk of CVD related outcomes in different ethnic groups among breast cancer 98 patients. Hence, the aim of this study was to explore differences in overall CVD event, CVD 99 admission and CVD mortality following a diagnosis of breast cancer between the largest ethnic 100 minority groups in the Netherlands compared with ethnic Dutch.

- **2. Methods**
- *Study sample*

This register-based cohort study builds on data from different Dutch nationwide registers. The registries and linkage procedures used in this cohort study have previously been described in detail [16]. In brief, we linked data between the national Dutch hospital discharge register, the population register and the cause of death register using a record identification number. This number is assigned to each resident in the Netherlands with a unique combination of birth date, sex and postal code (84% of the Dutch population). The Dutch national hospital discharge register and cause of death register were linked to identify all women with a first admission for breast cancer between 1996 and 2010, using the International Classification of Diseases (ICD) 9th revision and ICD 10th revision. Both patients with invasive (ICD-9: 174 and ICD-10: C50) and in situ breast cancer (ICD-9: 233 and ICD-10: D05) were identified and men were excluded. Data from the population register and the cause of death register were available until 2012 and data from the Dutch hospital discharge register were available until 2010. Individuals were followed from the date of their first breast cancer admission until (a) CVD admission, (b) CVD death, (c) death due to other causes, (d) first emigration or (d) study end (31.12.2012), whichever came first. Linkage of data from the different registries was performed in agreement with the privacy

legislation in The Netherlands. All linkages and analysis were performed in a secured environment of Statistics Netherlands. The data set was made available and analysed in an anonymous form in a secured environment of Statistics Netherlands. Prior to publication, Statistics Netherlands made sure that none of the analysis results showed potential reducibility to the individual level.

Ethnic group

Ethnic groups were constructed based on the country of birth of the resident and her parents, according to the definition of Statistics Netherlands [17]. A woman was considered a migrant if she was born abroad or at least one of the parents was born abroad. Women with both parents born in the Netherlands were indicated as being Dutch. The major migrant groups residing in the Netherlands were included, which are those born in Turkey, Suriname, Morocco, Indonesia, and Liez. the Netherlands Antilles.

> Outcomes

CVD admission after a diagnosis of breast cancer was defined as all admissions with either the primary or secondary cause of admission coded as ICD-9: 017.2, 093, 228, 289.1-289.3, 390-459, 557,745-747, 780.2, 782.3, 7825, 7826, 785, 786.50-786.59, 789.2, 794.30-794.39. Cardiovascular mortality was defined as dying from a cardiovascular cause after a diagnosis of breast cancer.

Overall cardiovascular event combined the two outcomes and comprised a hospital admission for CVD, and/or a dying from a cardiovascular cause.

Data analyses

BMJ Open

We first presented baseline characteristics as absolute numbers and percentages according to ethnic group. Continuous variables were summarized as mean and standard deviation or as median and interguartile range where appropriate. Subsequently, we calculated hazard ratios (HR) and corresponding 95% confidence intervals (95% CI) using cox proportional hazard regression analyses to assess ethnic differences in overall cardiovascular events, and separately for hospital admission for CVD and cardiovascular mortality between ethnic minority groups and the Dutch (reference group) with adjustment for age as a continuous variable, year of admission and type of breast cancer. Cox proportional hazard assumptions were tested by plotting the log minus log functions for the continuous variable age. The assumptions were met in all analyses. All analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Patient and Public Involvement No patient or public were involved in this study.

3. Results

Table 1 presents the characteristics of the study population by ethnic group. In total, 127,714 women with a first admission for breast cancer between 01.01.1996 and 31.12.2010 were included in the study, of which 5% belonged to an ethnic minority group (table 1). Women with more adverse outcomes were in general followed for a shorter period. Among migrants, the Antilleans presented the smallest group and the Indonesians the largest group. In general, the ethnic minority groups were younger than the Dutch population when diagnosed. During follow-up, 19% of the Dutch population experienced a hospital admission due to CVD, whereas among the ethnic minorities the proportion of CVD admission ranged from 9% for Moroccans to 19%

166 for Surinamese women. 31,203 women with breast cancer died during follow-up, of which 25%
167 were due to a cardiovascular cause.

Table 2 shows the incidence of a CVD event, which comprises a hospital admission for CVD, and/or dving from a cardiovascular cause, among breast cancer patients by ethnic group. Compared with Dutch women with breast cancer, both Surinamese (HR=1.46;95% CI 1.29–1.64) and Turkish (HR=1.25;95% CI 1.03–1.51) women with breast cancer had a higher incidence of CVD event after adjustment for breast cancer diagnosis, period of breast cancer diagnosis and age. In contrast, Indonesian women with breast cancer had a significantly lower risk (HR=0.88; 95% CI 0.81–0.96) of cardiovascular event compared with Dutch women. Although not significant, the Antillean women had a higher incidence of CVD event compared with Dutch women. For Moroccans, there were no significantly differences from Dutch women.

Subsequently, we assessed cardiovascular admission and cardiovascular mortality separately. Table 3 shows the unadjusted and adjusted hazard ratios for a cardiovascular admission. Only women from Suriname had a significantly higher risk (HR=1.45; 95% CI 1.28-1.64) of cardiovascular admission compared with Dutch women with breast cancer, whereas women from Indonesia had a significantly lower risk of a cardiovascular admission (HR=0.85; 95% CI 0.78– 0.93). The unadjusted and adjusted hazard ratios for cardiovascular mortality for the different ethnic groups are shown in table 4. The adjusted hazard ratios for cardiovascular mortality were significantly higher for women from Suriname (HR=1.49; 95% CI 1.13-1.97) and Turkey (HR=1.96; 95% CI 1.28-3.01), compared with Dutch women, whereas there were no significantly differences between women from Indonesia and Dutch women. For Moroccan and Antillean women the numbers of deaths due to CVD were too small to perform analyses. In order to determine the impact of breast cancer treatment on the observed differences in CVD outcomes a sensitivity analysis was performed excluding all women with in situ breast cancer. This did not

change the results significantly, suggesting that cancer status and treatment of cancer is not stronglyrelated to CVD outcomes in our study.

8 192

- 10 193 **4. Discussion**
 - 194 Key findings

In this population-based cohort study of women with breast cancer in the Netherlands, the risk of cardiovascular outcomes varied by ethnic group. Women from Suriname and Turkey had a higher risk of a CVD event compared with Dutch women with breast cancer. When separating cardiovascular admission and cardiovascular mortality, Surinamese and Turkish women had a higher risk of both cardiovascular admission and cardiovascular mortality compared with Dutch women, though in Turkish women the results for CVD admission was not significant. In contrast. women from Indonesia with breast cancer had a lower risk of cardiovascular event, and cardiovascular admission, but similar risk of cardiovascular mortality compared with ethnic Dutch women with breast cancer. For Moroccan women, the risk of a cardiovascular event did not differ from Dutch women with breast cancer, whereas for Antillean women the risk was not significantly higher.

40 206

207 Discussion of key findings

Evidence shows that ethnic minority and migrant groups in general have a lower risk of breast cancer compared with the majority population [18,19]. However, the results of this study indicate that among breast cancer patients, some ethnic minority groups are disadvantaged in terms of cardiovascular outcomes compared with Dutch women. The results of this study are in line with the sparse evidence on ethnic differences in CVD mortality among breast cancer patients in the US, which also found some ethnic minority groups to be disadvantaged in terms of

cardiovascular mortality [4,15]. For example, African America women with ductal carcinoma in situ of the breast were found to have a higher risk of CVD death compared with White American women diagnosed with ductal carcinoma in situ of the breast [4]. However, even though CVD have been shown to vary by ethnic group [13,20] data among breast cancer patients in Europe have been lacking. Previous European studies on ethnic disparities in breast cancer prognosis have mostly focused on mortality after breast cancer diagnosis, and found that some ethnic minority groups have higher overall and breast cancer-specific mortality [11,12,21]. Our results thereby add a great value to the existing literature by showing that women with breast cancer from Suriname and Turkey are disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breast cancer. The higher incidence of CVD event among Surinamese women with breast cancer reflects the pattern of CVD among Surinamese women in the general Dutch population. Previous studies of the general population in the Netherlands showed that Surinamese women have a higher risk of both AMI and stroke compared with Dutch women [22,23], as well as a higher 5-year CVD mortality after initial admission for CVD [24]. Turkish women with breast cancer were in the present study found to have a higher incidence of CVD event, compared with Dutch women with breast cancer. However, this only partly reflects on the pattern among Turkish women in the general population in the Netherlands. Previous studies of the general population in the Netherlands did not find differences in the incidence of stroke or AMI among Turkish women compared with the Dutch majority women [22,23]. However, when stratifying on age, a higher incidence of AMI were observed in 50- to 70-year-old Turkish women compared with the Dutch majority women [22].

236 The relatively low risk of CVD outcomes among Indonesian women with breast cancer are in 237 contrast to previous studies of the general Dutch population that found no differences in

BMJ Open

incidence of AMI and a slightly higher risk of stroke among Indonesians compared with Dutch women [22,23]. The reasons for the better CVD prognosis among Indonesian breast cancer patients are unclear. However, Indonesians are well integrated in the Dutch society with respect to language and culture and have similar income levels and are employed at equal rates as the Dutch general population [25]. This possibly results in better access to health care services than other minority groups and may underlie the better cardiovascular health outcomes among Indonesian women with breast cancer.

Possible explanations for the higher risk of cardiovascular events among Surinamese and Turkish breast cancer patients may include disparities in access to health care services and a high risk factor burden among these ethnic minorities in the Netherlands. Regular health visits are important for early diagnosis of risk factors that can lead to CVD progression and it is possible that differences in health service utilisation may contribute to the observed ethnic differences in CVD risk among breast cancer patients. Evidence on health care utilization among breast cancer patients is scarce, but previous evidence of the general population in the Netherlands suggests that some ethnic minority populations use more general practitioner care than Dutch people do, but that they are less likely to use specialised care [26]. Moreover, ethnic differences in use of cardiac rehabilitation and lower adherence to medication therapy have been shown [27-30]. A Danish study found that immigrants from Pakistan and Turkey did not receive adequate medical treatment with beta-blockers after a first AMI compared with Danish-born residents [28]. In addition, in the Netherlands, Surinamese people have been found to have poor blood pressure control compared with their Dutch counterparts [30].

260 The relatively high incidence of CVD admission and mortality among Turkish and Surinamese261 breast cancer women may be explained by the high prevalence of cardiovascular risk factors in

these populations. The current study lacked information on CVD risk factor and we were therefore not able to address the possible contribution of these to the observed ethnic differences. However, previous studies of Surinamese and Turkish populations in the Netherlands showed that hypertension, diabetes mellitus and obesity are more common among these populations compared with the Dutch general population [30-33]. As an example, a previous Dutch study showed that the prevalence of hypertension, the leading risk factor for CVD worldwide, was higher in both Turkish and Surinamese people than in Dutch people [30]. A previous study found that Antillean women have higher risk of certain CVD risk factors then Dutch women [34]. Further, since Antilleans resemble other ethnic groups who have been found to have higher risk of some CVD risk factors, such as Surinamese women with African background, this might be the case for Antillean women as well and suggests the need for further study among this population in the Netherlands. In addition, a study from the US, found that African American breast cancer patients have higher prevalence of certain CVD risk factors, such as hypertension, diabetes and obesity, prior to initiating aromatase inhibitory therapy, compared with White American breast cancer patients of the same age [35]. Although the ethnic groups are not directly comparable, this may also be the case for some of the ethnic groups in the current study, such as the African Surinamese and Antillean women. Evidence suggests that the presence of CVD risk factors among breast cancer patients at diagnosis is a strong predictive factor for the development of cardiovascular damage associated with breast cancer therapy [36]. The higher risk factor burden in some ethnic minority groups may therefore contribute to the higher incidence of CVD in these groups.

Additionally, since the risk of CVD has been shown to vary according to breast cancer therapy [9,37], the observed differences may be explained by variation in the treatment received by different ethnic groups. In the current study, data on treatment was not available. However, Page 13 of 26

BMJ Open

studies from the US and UK have reported that ethnic minority women were more likely to receive chemotherapy, which was largely explained by more advanced stage and higher grade tumours [38,39].

Our findings have important clinical and public health implications because identifying breast cancer patients who are most vulnerable to cardiovascular outcomes is important in order to guide strategies among breast cancer patients. The findings suggest the need to increase attention for these women in the cardiovascular risk factor management guidelines in the Netherlands and awareness of the observed ethnic differences in the risk of cardiovascular outcomes among breast cancer patients should be raised among clinicians and incorporated into oncology practices. The observed differences suggest the need for further studies to identify factors explaining these differences. More specific, studies addressing the potential contribution of both CVD risk factors and type of treatment to the observed ethnic differences found in this study are needed. This will help to tailor appropriate public health and clinical interventions to improve outcomes among breast cancer patients most at risk of adverse CVD outcomes.

Strength and limitations:

The strength of the current study is the validity of the registries, the linkage methods, and the lack of selection of the cohorts. A high validity of both the Dutch National Hospital Discharge Register and the Dutch Population Register has been demonstrated. In a random sample of the Hospital Discharge Register, 99% of the personal, admission and discharge data and 84% of the principal diagnoses (validated through medical record review by medical specialists) were correctly registered [40]. In addition, over 97% of the uniquely linked hospital admissions

309 resulting from linkage of the Hospital Discharge Register with the Population Register were310 shown to be correctly linked [41].

Nonetheless, some limitations must be considered. First, although the study is based on a nationwide cohort of breast cancer patients, absolute numbers are somewhat small when divided into different ethnic groups. Consequently, the numbers were too small to investigate different kinds of CVD, which could have afforded a more nuanced picture. Second, inherent to many national-level databases, we lack detailed data on CVD risk factors, such as smoking, alcohol, cholesterol and obesity, and therefore we were unable to do additional analyses to assess the contribution of these to the observed ethnic differences. However, we were able to shed light on the potential contributing risk factors to the observed differences due to previous studies on ethnic differences in risk factors in the Netherlands [30–33]. Additionally, the study lack data on treatment of breast cancer. Since, CVD risk has been shown to vary according to type of treatment [9,37], adjustment for treatment would have been preferable in order to assess the potential impact of differences in treatment to the observed ethnic differences in CVD. Finally, as in numerous studies, the classifications of the various ethnic groups were based on country of birth. Country of birth may reflect ethnicity reasonably well among some ethnic groups but is likely to be an unreliable proxy measure of ethnicity for other groups such as Surinamese [17]. The results may be generalised to other European settings with similar health care services and composition of ethnic groups.

7 328

5. Conclusion

The results of the current study suggest that the risk of CVD related outcomes among breast cancer patients vary by ethnicity. Surinamese and Turkey breast cancer patients experienced a higher risk, whereas Indonesian patients had a slightly lower risk of CVD event compared with

Page 15 of 26

1 2		
2 3 4	333	their Dutch counterparts. More extensive cohort studies are needed to identify the forms of CVD
5 6	334	that are most common in these groups as well as the potential factors contributing to these
7 8 9	335	differences.
10 11	336	
12 13	337	Competing interest: None declared.
14 15 16	338	Funding
17 18	339	This work was supported by the Dutch Heart Foundation (grant number 2010B296).
19 20	340	
21 22 23	341	Contributor ship statement
23 24 25 26 27 28 29 30 31 32 33 34 35 36 27	342	LD, JB, IV, MLB, MN, CA were involved in the study design. LD and CA wrote the paper. JB
	343	analysed the data. JB, IV, MLB and MN critically revised the manuscript. All Authors approved
	344	the final version of the manuscript.
	345	
	346	Data sharing statement
	347	No additional data are available.
37 38 39	348	
40 41	349	
42 43	350	
44 45 46	351	
47 48	352	
49 50	353	
51 52 53	354	
55 54 55	355	
56 57	356	
58 59 60		15 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

1 2			
3 4	357	Refe	rences
5 6	358	[1]	C. Allemani, H.K. Weir, H. Carreira, R. Harewood, D. Spika, X.S. Wang, F. Bannon, J. V.
7 8	359		Ahn, C.J. Johnson, A. Bonaventure, R. Marcos-Gragera, C. Stiller, G. Azevedo E Silva,
9 10 11	360		W.Q. Chen, O.J. Ogunbiyi, B. Rachet, M.J. Soeberg, H. You, T. Matsuda, M. Bielska-
12 13	361		Lasota, H. Storm, T.C. Tucker, M.P. Coleman, Global surveillance of cancer survival
14 15	362		1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based
16 17 18	363		registries in 67 countries (CONCORD-2), Lancet. 385 (2015) 977-1010.
19 20	364	[2]	S.H. Armenian, L. Xu, B. Ky, C. Sun, L.T. Farol, S.K. Pal, P.S. Douglas, S. Bhatia, C.
21 22	365		Chao, Cardiovascular disease among survivors of adult-onset cancer: A community-based
23 24 25	366		retrospective cohort study, J. Clin. Oncol. 34 (2016) 1122-1130.
25 26 27	367	[3]	P.T. Bradshaw, J. Stevens, N. Khankari, S.L. Teitelbaum, A.I. Neugut, M.D. Gammon,
28 29	368		Cardiovascular Disease Mortality Among Breast Cancer Survivors, Epidemiology. 27
30 31	369		(2016) 6–13.
32 33 34	370	[4]	A. Berkman, B. F. Cole, P.A. Ades, S. Dickey, S.T. Higgins, A. Trentham-Dietz, B.L.
35 36	371		Sprague, S.G. Lakoski, Racial differences in breast cancer, cardiovascular disease, and all-
37 38	372		cause mortality among women with ductal carcinoma in situ of the breast, Breast Cancer
39 40 41	373		Res. Treat. 148 (2014) 407–413.
42 43	374	[5]	J.L. Patnaik, T. Byers, C. DiGuiseppi, D. Dabelea, T.D. Denberg, Cardiovascular disease
44 45	375		competes with breast cancer as the leading cause of death for older females diagnosed with
46 47 48	376		breast cancer: a retrospective cohort study, Breast Cancer Res. 13 (2011) R64.
48 49 50	377	[6]	D. Berry, K. Cronin, S. Plevritis, D. Fryback, L. Clarke, M. Zelen, J. Mandelblatt, A.
51 52	378		Yakovlev, D. Habbema, E. Feuer, Effect of screening and adjuvant therapy on mortality
53 54	379		from breast cancer, N. Engl. J. Med. 353 (2005) 1784–92.
55 56 57	380		http://www.nejm.org/doi/full/10.1056/nejmoa050518.
58 59			16
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3 4	381	[7]	E.R. Myers, P. Moorman, J.M. Gierisch, L.J. Havrilesky, L.J. Grimm, S. Ghate, B.
5 6	382		Davidson, R.C. Mongtomery, M.J. Crowley, D.C. McCrory, A. Kendrick, G.D. Sanders,
7 8	383		Benefits and harms of breast cancer screening: A systematic review, JAMA - J. Am. Med.
9 10 11	384		Assoc. 314 (2015) 1615–1634. doi:10.1001/jama.2015.13183.
12 13	385	[8]	S.C. Darby, M. Ewertz, P. McGale, A.M. Bennet, U. Blom-Goldman, D. Brønnum, C.
14 15	386		Correa, D. Cutter, G. Gagliardi, B. Gigante, MB. Jensen, A. Nisbet, R. Peto, K. Rahimi,
16 17 18	387		C. Taylor, P. Hall, Risk of ischemic heart disease in women after radiotherapy for breast
18 19 20	388		cancer., N. Engl. J. Med. 368 (2013) 987–98.
21 22	389	[9]	P. Thavendiranathan, H. Abdel-Qadir, H.D. Fischer, X. Camacho, E. Amir, P.C. Austin,
23 24	390		D.S. Lee, Breast Cancer Therapy-Related Cardiac Dysfunction in Adult Women Treated in
25 26 27	391		Routine Clinical Practice: A Population-Based Cohort Study., J. Clin. Oncol. 34 (2016)
28 29	392		JCO.2015.65.1505
30 31	393	[10]	K.E. Weaver, R.E. Foraker, C.M. Alfano, J.H. Rowland, N.K. Arora, K.M. Bellizzi, A.S.
32 33 34	394		Hamilton, I. Oakley-Girvan, G. Keel, N.M. Aziz, Cardiovascular risk factors among long-
35 36	395		term survivors of breast, prostate, colorectal, and gynecologic cancers: A gap in
37 38	396		survivorship care?, J. Cancer Surviv. 7 (2013) 253–261.
39 40 41	397	[11]	H. Møller, K. Henson, M. Lüchtenborg, J. Broggio, J. Charman, V.H. Coupland, E.
41 42 43	398		Davies, R.H. Jack, R. Sullivan, P. Vedsted, K. Horgan, N. Pearce, A. Purushotham, Short-
44 45	399		term breast cancer survival in relation to ethnicity, stage, grade and receptor status:
46 47	400		national cohort study in England, Br. J. Cancer. (2016) 1-8.
48 49 50	401	[12]	F. Latif, J. Helgeland, G. Bukholm, I.R.K. Bukholm, Ethnicity differences in breast cancer
51 52	402		stage at the time of diagnosis in Norway, Scand. J. Surg. 104 (2015) 248-253.
53 54	403	[13]	A.A.M. Van Oeffelen, I. Vaartjes, K. Stronks, M.L. Bots, C. Agyemang, Incidence of
55 56 57	404		acute myocardial infarction in first and second generation minority groups: Does the
58			17
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	405		second generation converge towards the majority population?, Int. J. Cardiol. 168 (2013)
- 5 6	406		5422–5429.
7 8	407	[14]	R.S. Bhopal, N. Bansal, C.M. Fischbacher, H. Brown, S. Capewell, Ethnic variations in
9 10 11	408		heart failure: Scottish Health and Ethnicity Linkage Study (SHELS)., Heart. 98 (2012)
12 13	409		468–73.
14 15	410	[15]	P.A. Solanki, N.Y. Ko, D.M. Qato, G.S. Calip, Risk of cancer-specific, cardiovascular, and
16 17 19	411		all-cause mortality among Asian and Pacific Islander breast cancer survivors in the United
18 19 20	412		States, 1991-2011., Springerplus. 5 (2016) 82.
21 22	413	[16]	H.L. Koek, A. de Bruin, A. Gast, E. Gevers, J.W.P.F. Kardaun, J.B. Reistma, D.E.
23 24 25	414		Grobbee, M.L. Bots, Incidenc of first acute myocardial infarction in the Netherlands, Neth.
25 26 27	415		J. Med. 65 (2007) 434–441.
28 29 30 31	416	[17]	K. Stronks, I. Kulu-Glasgow, C. Agyemang, The utility of "country of birth" for the
	417		classification of ethnic groups in health research: the Dutch experience., Ethn. Health. 14
32 33 34	418		(2009) 255–269.
35 36	419	[18]	M. Arnold, M.J. Aarts, S. Siesling, M. Van Der Aa, O. Visser, J.W. Coebergh, Diverging
37 38	420		breast and stomach cancer incidence and survival in migrants in The Netherlands, 1996-
39 40 41	421		2009., Acta Oncol. 52 (2013) 1195–1201.
42 43	422	[19]	T. Gathani, R. Ali, A. Balkwill, J. Green, G. Reeves, V. Beral, K.A. Moser, Million
44 45	423		Women Study Collaborators, Ethnic differences in breast cancer incidence in England are
46 47 48	424		due to differences in known risk factors for the disease: prospective study., Br. J. Cancer.
48 49 50	425		110 (2014) 224–9.
51 52	426	[20]	N.F. Hempler, F.B. Larsen, S.S. Nielsen, F. Diderichsen, A.H. Andreasen, T. Jørgensen, A
53 54	427		registry-based follow-up study, comparing the incidence of cardiovascular disease in
55 56 57	428		native Danes and immigrants born in Turkey, Pakistan and the former Yugoslavia: do
57 58 59			18
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	429		social inequalities play a role?, BMC Public Health. 11 (2011) 662.
4 5 6	430	[21]	E. Copson, T. Maishman, S. Gerty, B. Eccles, L. Stanton, R.I. Cutress, D.G. Altman, L.
7 8	431		Durcan, P. Simmonds, L. Jones, W. Tapper, D. Eccles, Ethnicity and outcome of young
9 10 11	432		breast cancer patients in the United Kingdom: the POSH study., Br. J. Cancer. 110 (2014)
12 13	433		230–41.
14 15	434	[22]	A.A.M. Van Oeffelen, C. Agyemang, K. Stronks, M.L. Bots, I. Vaartjes, Incidence of first
16 17 18	435		acute myocardial infarction over time specific for age , sex , and country of birth, (2014)
19 20	436		20–27.
21 22	437	[23]	C. Agyemang, A.A.M. Van Oeffelen, M. Norredam, L.J. Kappelle, C.J.M. Klijn, M.L.
23 24 25	438		Bots, K. Stronks, I. Vaartjes, Ethnic disparities in ischemic stroke, intracerebral
25 26 27	439		hemorrhage, and subarachnoid hemorrhage incidence in the Netherlands, Stroke. 45 (2014)
28 29	440		3236–3242.
30 31 22	441	[24]	C. Agyemang, I. Vaartjes, M.L. Bots, I.G. van Valkengoed, J.S. de Munter, A. de Bruin,
32 33 34	442		M. Berger-van Sijl, J.B. Reitsma, K. Stronks, Risk of death after first admission for
35 36	443		cardiovascular diseases by country of birth in The Netherlands: a nationwide record-linked
37 38	444		retrospective cohort study., Heart. 95 (2009) 747–753.
39 40 41	445	[25]	L. Ho, V. Bos, A.E. Kunst, Differences in cause-of-death patterns between the native
42 43	446		Dutch and persons of Indonesian descent in the Netherlands, Am. J. Public Health. 97
44 45	447		(2007) 1616–1618.
46 47 48	448	[26]	K. Stronks, a C. Ravelli, S. a Reijneveld, Immigrants in the Netherlands: equal access for
48 49 50	449		equal needs?, J. Epidemiol. Community Health. 55 (2001) 701-707.
51 52	450	[27]	O. Cortes, H.M. Arthur, Determinants of referral to cardiac rehabilitation programs in
53 54	451		patients with coronary artery disease: A systematic review, Am. Heart J. 151 (2006) 249-
55 56 57	452		256.
57 58 59			19
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3	453	[28]	N.F. Hempler, F. Diderichsen, F.B. Larsen, S. Ladelund, T. Jørgensen, Do immigrants
4 5 6	454		from Turkey, Pakistan and Yugoslavia receive adequate medical treatment with beta-
7 8	455		blockers and statins after acute myocardial infarction compared with Danish-born
9 10	456		residents? A register-based follow-up study, Eur. J. Clin. Pharmacol. 66 (2010) 735-742.
11 12 13	457	[29]	G. Feder, A.M. Crook, P. Magee, S. Banerjee, A.D. Timmis, H. Hemingway, Ethnic
14 15	458		differences in invasive management of coronary disease: Prospective cohort study of
16 17	459		patients undergoing angiography, BMJ Br. Med. J. 324 (2002) 511-516.
18 19 20	460	[30]	C. Agyemang, S. Kieft, M.B. Snijder, E.J. Beune, B.J. Van Den Born, L.M. Brewster, J.J.
21 22	461		Ujcic-Voortman, N. Bindraban, G. Van Montfrans, R.J. Peters, K. Stronks, Hypertension
23 24	462		control in a large multi-ethnic cohort in Amsterdam, The Netherlands: The HELIUS study,
25 26 27	463		Int. J. Cardiol. 183 (2015) 180-189.
28 29	464	[31]	J.K. Ujcic-Voortman, M.T. Schram, M.A. Jacobs-Van Der Bruggen, A.P. Verhoeff, C.A.
30 31	465		Baan, Diabetes prevalence and risk factors among ethnic minorities, Eur. J. Public Health.
32 33 34	466		19 (2009) 511–515.
35 36	467	[32]	N.R. Bindraban, I.G.M. van Valkengoed, G. Mairuhu, F. Holleman, J.B.L. Hoekstra,
37 38	468		B.P.J. Michels, R.P. Koopmans, K. Stronks, Prevalence of diabetes mellitus and the
39 40 41	469		performance of a risk score among Hindustani Surinamese, African Surinamese and ethnic
42 43	470		Dutch: a cross-sectional population-based study., BMC Public Health. 8 (2008) 271.
44 45	471	[33]	J.K. Ujcic-Voortman, G. Bos, C.A. Baan, A.P. Verhoeff, J.C. Seidell, Obesity and body fat
46 47 48	472		distribution: Ethnic differences and the role of socio-economic status, Obes. Facts. 4
49 50	473		(2011) 53–60.
51 52	474	[34]	F. El Fakiri, M.A. Bruijnzeels, M.M.E. Foets, A.W. Hoes, Different distribution of
53 54 55	475		cardiovascular risk factors according to ethnicity: A study in a high risk population, J.
55 56 57	476		Immigr. Minor. Heal. 10 (2008) 559-565. doi:10.1007/s10903-008-9144-4.
58 59			20 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60			r or peer review only - http://binjopen.binj.com/site/about/guidelines.kittini

1 2			
- 3 4	477	[35]	L. Gallicchio, C. Calhoun, K. Helzlsouer, Cardiovascular Health among Black and White
5 6	478		Breast Cancer Patients Initiating Aromatase Inhibitor Therapy, Clin. Breast Cancer. 16
7 8 0	479		(2016) e23–e31.
9 10 11	480	[36]	N. Maurea, C. Coppola, G. Ragone, G. Frasci, A. Bonelli, C. Romano, R.V. Iaffaioli,
12 13	481		Women survive breast cancer but fall victim to heart failure: the shadows and lights of
14 15	482		targeted therapy., J. Cardiovasc. Med. (Hagerstown). 11 (2010) 861-868.
16 17 18	483	[37]	E.J. Bowles, R. Wellman, H.S. Feigelson, A.A. Onitilo, A.N. Freedman, T. Delate, L.A.
18 19 20	484		Allen, L. Nekhlyudov, K.A. Goddard, R.L. Davis, L.A. Habel, M.U. Yood, C. McCarty,
21 22	485		D.J. Magid, E.H. Wagner, P.S. Team, Risk of heart failure in breast cancer patients after
23 24	486		anthracycline and trastuzumab treatment: a retrospective cohort study, J. Natl. Cancer Inst.
25 26 27	487		104 (2012) 1293–1305.
28 29	488	[38]	R.H. Jack, E.A. Davies, H. Møller, Breast cancer incidence , stage , treatment and survival
30 31	489		in ethnic groups in South East England, (2009) 545-550.
32 33 34	490	[39]	B.K. Killelea, V.Q. Yang, S. Wang, B. Hayse, S. Mougalian, N.R. Horowitz, A.B.
35 36	491		Chagpar, L. Pusztai, D.R. Lannin, N.R. Horowitz, B. Anees, Racial Differences in the Use
37 38	492		and Outcome of Neoadjuvant Chemotherapy for Breast Cancer : Results From the National
39 40	493		Cancer Data Base, 33 (2017) 4267–4276.
41 42 43	494	[40]	G. Paas, K. Veenhuizem, Research on the validity of the LMR (in Dutch), Prismant.
44 45	495		(2002).
46 47	496	[41]	A. De Bruin, J. Kardaun, F. Gast, E. De Bruin, M. Van Sijl, G. Verweij, Record linkage of
48 49 50	497		hospital discharge register with population register : Experiences at Statistics Netherlands,
50 51 52	498		Stat. Bruin A De, Kardaun J, Gast F, Bruin E De, Sijl M Van, Verweij G. Rec. Link. Hosp.
53 54	499		Disch. Regist. with Popul. Regist. Exp. Stat. Netherlands. Stat. (Ber). 2004;2123-32. S.
55 56	500		21 (2004) 23–32.
57 58 59			21
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1 Demographic and disease characteristics of women admitted for breast cancer between

1 2 3

60

No. of patients $120,809(100)$ $454(100)$ $3,457(100)$ $919(100)$ $1,351(100)$ Mean age at diagnosis $60.4(13.3)$ $52.8(11.8)$ $57.0(13.1)$ $47.0(10.7)$ $52.8(12.7)$ (y), sdAttained age (y) end of follow-up $50.29(4.2)$ $53(11.7)$ $206(6.0)$ $230(25.0)$ $172(12.7)$ 45.59 $31,731(26.3)$ $197(43.4)$ $1,262(36.5)$ $476(51.8)$ $582(43.1)$ 60.74 $46,671(38.6)$ $169(37.2)$ $1,199(34.7)$ $185(20.1)$ $421(31.2)$ ≥ 75 $37.378(30.9)$ $35(7.7)$ $790(22.9)$ $28(3.0)$ $176(13.0)$ Follow-up time (y), median (IQR) $4.5(6.5)$ $3.6(5.8)$ $4.6(5.5)$ $3.6(6.0)$ $3.8(??)$ Breast cancer diagnosis In situ nuvsive $9,774(8.1)$ $111,035(91.9)$ $490(90.1)$ $3,121(90.3)$ $828(90.1).1$ $1,220(90.3)$ Period of breast cancer diagnosis (y) $2000-2003$ $28,869(23.9)$ $33,385(27.6)$ $66(14.5)$ $139(30.6)$ $743(21.5)$ $912(26.4)$ $201(21.9)$ $201(21.9)$ $326(24.1)$ $2004-2007$ $26,359(21.8)$ $128(28.2)$ $812(23.5)$ $314(34.2)$ $375(27.8)$ $2008-2010$ Marital status Single/ widowed/ divorced $53,860(44.6)$ $23,431(19.4)$ $68(15.0)$ $136(41.0)$ $515(14.9)$ $85(9.2)$ $820(60.7)$ $23,431(19.4)$ $68(15.0)$ $136(41.0)$ $515(14.9)$ $85(9.2)$ $820(60.7)$ $259(19.2)$ Heart failure $43,426(2.8)$ $11(2.4)$ $66(1.9)$ $66(1.9)$ $13(1.4)$ $30(2.2)$ Partied $23,431(19.4)$ <th>Mean age at diagnosis (y), sd Attained age (y) end of</th> <th> ,</th> <th>454(100)</th> <th>N %</th> <th>N %</th> <th>N %</th> <th>N %</th>	Mean age at diagnosis (y), sd Attained age (y) end of	,	454(100)	N %	N %	N %	N %
(y), sdAttained age (y) end of follow-up ≤ 44 5,029 (4.2)53 (11.7)206 (6.0)230 (25.0)172 (12.7)45-5931,731 (26.3)197 (43.4)1,262 (36.5)476 (51.8)582 (43.1)60-7446,671 (38.6)169 (37.2)1,199 (34.7)185 (20.1)421 (31.2) ≥ 75 37.378 (30.9)35 (7.7)790 (22.9)28 (3.0)176 (13.0)Follow-up time (y), median (IQR)Hsitu9,774 (8.1)45 (9.9)336 (9.7)91 (9.9)131 (9.7)In situ9,774 (8.1)45 (9.9)336 (9.7)91 (9.9)131 (9.7)Invasive111,035 (91.9)46 (14.5)743 (21.5)115 (12.5)230 (17.0)1996 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010Marital status Single/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/ 66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3) <th< td=""><td>(y), sd Attained age (y) end of</td><td>604(133)</td><td>434 (100)</td><td>3,457 (100)</td><td>919 (100)</td><td>1,351 (100)</td><td>724 (10</td></th<>	(y), sd Attained age (y) end of	604(133)	434 (100)	3,457 (100)	919 (100)	1,351 (100)	724 (10
follow-up≤ 445,029 (4.2)53 (11.7)206 (6.0)230 (25.0)172 (12.7)45-5931,731 (26.3)197 (43.4)1,262 (36.5)476 (51.8)582 (43.1)60-7446,671 (38.6)169 (37.2)1,199 (34.7)185 (20.1)421 (31.2)≥ 7537.378 (30.9)35 (7.7)790 (22.9)28 (3.0)176 (13.0)Follow-up time (y),d.5 (6.5)3.6 (5.8)4.6 (5.5)3.6 (6.0)3.8 (??)median (IQR)Breast cancer diagnosisIn situ9,774 (8.1)45 (9.9)336 (9.7)91 (9.9)131 (9.7)Invasive111,035 (91.9)409 (90.1)3,121 (90.3)828 (90.1).11,220 (90.3)Period of breast cancerdiagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010128 (28.2)812 (23.5)314 (34.2)375 (27.8)Marital statusSingle/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)married-112.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)Heart failure <td< td=""><td><u> </u></td><td>00.4 (13.3)</td><td>52.8 (11.8)</td><td>57.0 (13.1)</td><td>47.0 (10.7)</td><td>52.8 (12.7)</td><td>49.5 (1</td></td<>	<u> </u>	00.4 (13.3)	52.8 (11.8)	57.0 (13.1)	47.0 (10.7)	52.8 (12.7)	49.5 (1
45-59 $31,731(26.3)$ $197(43.4)$ $1,262(36.5)$ $476(51.8)$ $582(43.1)$ 60-74 $46,671(38.6)$ $169(37.2)$ $1,199(34.7)$ $185(20.1)$ $421(31.2)$ ≥ 75 $37.378(30.9)$ $35(7.7)$ $790(22.9)$ $28(3.0)$ $176(13.0)$ Follow-up time (y), median (IQR)Breast cancer diagnosis In situIn situ $9,774(8.1)$ $45(9.9)$ $336(9.7)$ $91(9.9)$ $131(9.7)$ Invasive $111,035(91.9)$ $409(90.1)$ $3,121(90.3)$ $828(90.1).1$ $1,220(90.3)$ Period of breast cancer diagnosis (y)28,869(23.9) $66(14.5)$ $743(21.5)$ $115(12.5)$ $230(17.0)$ 1996-1999 $32,196(26.7)$ $121(26.7)$ $912(26.4)$ $201(21.9)$ $326(24.1)$ 2000-2003 $33,385(27.6)$ $139(30.6)$ $990(28.6)$ $289(31.4)$ $420(31.1)$ 2004-2007 $26,359(21.8)$ $128(28.2)$ $812(23.5)$ $314(34.2)$ $375(27.8)$ 2008-2010 $33,486(44.6)$ $268(59.0)$ $1,701(49.2)$ $301(32.8)$ $820(60.7)$ Living with partner/ 	ionow-up						
60-74 ≥ 7546,671 (38.6) 37.378 (30.9)169 (37.2) 35 (7.7)1,199 (34.7) 790 (22.9)185 (20.1) 28 (3.0)421 (31.2) 176 (13.0)Follow-up time (y), median (IQR)4.5 (6.5)3.6 (5.8)4.6 (5.5)3.6 (6.0)3.8 (??)Breast cancer diagnosis In situ nvasive9,774 (8.1) 111,035 (91.9)45 (9.9) 409 (90.1)336 (9.7) 3,121 (90.3)91 (9.9) 828 (90.1).1131 (9.7) 1,220 (90.3)Period of breast cancer diagnosis (y) 1996-199928,869 (23.9) 32,196 (26.7)66 (14.5) 121 (26.7)743 (21.5) 912 (26.4)115 (12.5) 201 (21.9)230 (17.0) 326 (24.1)2000-2003 2008-201033,385 (27.6) 26,359 (21.8)139 (30.6) 128 (28.2)990 (28.6) 812 (23.5)289 (31.4) 314 (34.2)420 (31.1) 375 (27.8)Marital status Single/ widowed/ divorced CVD Living with partner/ 66,949 (55.4)268 (59.0) 186 (41.0)1,701 (49.2) 1,756 (50.8)301 (32.8) 618 (67.2)820 (60.7) 531 (39.3)Heart failure amarried3,426 (2.8)111 (2.4) 468 (15.0)515 (14.9) 85 (9.2)259 (19.2) 259 (19.2)-Heart failure 3,426 (2.8)110 (2.4) 13 (1.4)300 (2.2) 300 (2.2)-Myocardial infarction 3,529 (2.9)<10a <10a 25 (0.7) <10a 82 (2.4)301 (32.8) <10a 34 (2.5)Death during follow-up					· · ·	· /	125 (1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					· · · ·	. ,	336 (4
Follow-up time (y), median (IQR)4.5 (6.5)3.6 (5.8)4.6 (5.5)3.6 (6.0)3.8 (??)Breast cancer diagnosis In situ9,774 (8.1)45 (9.9)336 (9.7)91 (9.9)131 (9.7)Invasive111,035 (91.9)409 (90.1)3,121 (90.3)828 (90.1).11,220 (90.3)Period of breast cancer diagnosis (y) 1996-199928,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1906-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010Marital status Single/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/ 66,949 (55.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction1,482 (1.2)<10a82 (2.4)<10a34 (2.5)-Death during follow-upDeath during follow-up51051034 (2.5)			· /	· · · ·	· · ·	· /	225 (3
median (IQR)Breast cancer diagnosisIn situ9,774 (8.1)45 (9.9) $336 (9.7)$ 91 (9.9)131 (9.7)Invasive111,035 (91.9)409 (90.1) $3,121 (90.3)$ 828 (90.1).11,220 (90.3)Period of breast cancerdiagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-20107008-2010700 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)married711 (2.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Heart failure3,529 (2.9)<10 ^a 82 (2.4)<10 ^a 34 (2.5)Death during follow-up	≥75	37.378 (30.9)	35 (7.7)	790 (22.9)	28 (3.0)	176 (13.0)	38 (5.2
Breast cancer diagnosis In situIn situ9,774 (8.1)45 (9.9) $336 (9.7)$ 91 (9.9)131 (9.7)Invasive111,035 (91.9)409 (90.1) $3,121 (90.3)$ 828 (90.1).11,220 (90.3)Period of breast cancer diagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010Marital statusSingle/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/ 66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)marriedHospital admissions CVD23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)Death during follow-up		4.5 (6.5)	3.6 (5.8)	4.6 (5.5)	3.6 (6.0)	3.8 (??)	4.0 (6.
In situ9,774 (8.1)45 (9.9) $336 (9.7)$ 91 (9.9) $131 (9.7)$ Invasive111,035 (91.9)409 (90.1) $3,121 (90.3)$ 828 (90.1).1 $1,220 (90.3)$ Period of breast cancerdiagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010Marital statusSingle/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)married23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction1,482 (1.2)<10a25 (0.7)<10a34 (2.5)Death during follow-upDeath during follow-up $3,529 (2.9)$ <10a82 (2.4)<10a34 (2.5)							
Invasive111,035 (91.9)409 (90.1) $3,121$ (90.3) 828 (90.1).1 $1,220$ (90.3)Period of breast cancerdiagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010Marital statusSingle/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)marriedCVD23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction1,482 (1.2)<10 ^a 25 (0.7)<10 ^a <10 ^a -Cerebrovascular3,529 (2.9)<10 ^a 82 (2.4)<10 ^a 34 (2.5)Death during follow-upDeath during follow-up	8	9 774 (8 1)	45 (9.9)	336 (97)	91 (9 9)	131 (97)	62 (8.6
Period of breast cancer diagnosis (y)28,869 (23.9)66 (14.5)743 (21.5)115 (12.5)230 (17.0)1996-199932,196 (26.7)121 (26.7)912 (26.4)201 (21.9)326 (24.1)2000-200333,385 (27.6)139 (30.6)990 (28.6)289 (31.4)420 (31.1)2004-200726,359 (21.8)128 (28.2)812 (23.5)314 (34.2)375 (27.8)2008-2010 Marital status Single/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)married Hospital admissions CVD23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction1,482 (1.2)<10 ^a 25 (0.7)<10 ^a <10 ^a -Cerebrovascular3,529 (2.9)<10 ^a 82 (2.4)<10 ^a 34 (2.5) Death during follow-up					· · ·	· · ·	662 (9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		111,000 ()1.))	105 (50.1)	•	020 (90.1).1	1,220 (30.3)	()
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28 860 (22 0)	66 (14 5)	742 (21 5)	115 (12 5)	220(17.0)	104 (1-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· · ·	· /	187 (2
$\begin{array}{c} 2004-2007\\ 2008-2010 \end{array} \qquad \begin{array}{c} 26,359\ (21.8) \\ 2008-2010 \end{array} \qquad \begin{array}{c} 128\ (28.2) \\ 812\ (23.5) \\ 314\ (34.2) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 375\ (27.8) \\ 301\ (32.8) \\ 820\ (60.7) \\ 301\ (32.8) \\ 820\ (60.7) \\ 311\ (32.8) \\ 618\ (67.2) \\ 531\ (39.3) \\ 314\ (34.2) \\ 301\ (32.8) \\ 820\ (60.7) \\ 515\ (14.9) \\ 85\ (9.2) \\ 259\ (19.2) \\ 30\ (2.2) \\ - \\ Heart\ failure \\ 3,426\ (2.8) \\ 11\ (2.4) \\ 66\ (1.9) \\ 13\ (1.4) \\ 30\ (2.2) \\ - \\ Myocardial\ infarction \\ 1,482\ (1.2) \\ - \\ Myocardial\ infarction \\ 1,482\ (1.2) \\ - \\ 3,529\ (2.9) \\ <10^a \\ 82\ (2.4) \\ <10^a \\ 34\ (2.5) \\ \end{array}$					· · ·	· /	222 (3)
2008-2010Marital status Single/ widowed/ divorced53,860 (44.6) 53,860 (44.6)268 (59.0) 1,701 (49.2)1,701 (49.2) 301 (32.8)820 (60.7) 531 (39.3)Living with partner/ married66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)Hospital admissions CVD23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure $3,426$ (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction disease1,482 (1.2)<10 ^a 25 (0.7)<10 ^a <10 ^a Death during follow-up							211 (2)
Single/ widowed/ divorced $53,860 (44.6)$ $268 (59.0)$ $1,701 (49.2)$ $301 (32.8)$ $820 (60.7)$ Living with partner/ $66,949 (55.4)$ $186 (41.0)$ $1,756 (50.8)$ $618 (67.2)$ $531 (39.3)$ married Hospital admissions CVD $23,431 (19.4)$ $68 (15.0)$ $515 (14.9)$ $85 (9.2)$ $259 (19.2)$ -Heart failure $3,426 (2.8)$ $11 (2.4)$ $66 (1.9)$ $13 (1.4)$ $30 (2.2)$ -Myocardial infarction $1,482 (1.2)$ $<10^a$ $25 (0.7)$ $<10^a$ $<10^a$ -Cerebrovascular $3,529 (2.9)$ $<10^a$ $82 (2.4)$ $<10^a$ $34 (2.5)$ Death during follow-up		20,555 (21.0)	120 (20.2)	012 (25.5)	511 (51.2)	575 (27.0)	211 (2
Single/ widowed/ divorced53,860 (44.6)268 (59.0)1,701 (49.2)301 (32.8)820 (60.7)Living with partner/66,949 (55.4)186 (41.0)1,756 (50.8)618 (67.2)531 (39.3)marriedHospital admissionsCVD23,431 (19.4)68 (15.0)515 (14.9)85 (9.2)259 (19.2)-Heart failure3,426 (2.8)11 (2.4)66 (1.9)13 (1.4)30 (2.2)-Myocardial infarction1,482 (1.2)<10 ^a 25 (0.7)<10 ^a <10 ^a -Cerebrovascular3,529 (2.9)<10 ^a 82 (2.4)<10 ^a 34 (2.5)Death during follow-up	Marital status			4			
Living with partner/ married $66,949(55.4)$ $186(41.0)$ $1,756(50.8)$ $618(67.2)$ $531(39.3)$ Hospital admissions CVD $23,431(19.4)$ $68(15.0)$ $515(14.9)$ $85(9.2)$ $259(19.2)$ -Heart failure $3,426(2.8)$ $11(2.4)$ $66(1.9)$ $13(1.4)$ $30(2.2)$ -Myocardial infarction $1,482(1.2)$ $<10^a$ $25(0.7)$ $<10^a$ $<10^a$ -Cerebrovascular $3,529(2.9)$ $<10^a$ $82(2.4)$ $<10^a$ $34(2.5)$ Death during follow-up		53,860 (44,6)	268 (59.0)	1.701 (49.2)	301 (32.8)	820 (60.7)	277 (3
marriedHospital admissions CVD23,431 (19.4) $68 (15.0)$ $515 (14.9)$ $85 (9.2)$ $259 (19.2)$ - Heart failure $3,426 (2.8)$ $11 (2.4)$ $66 (1.9)$ $13 (1.4)$ $30 (2.2)$ - Myocardial infarction $1,482 (1.2)$ $<10^a$ $25 (0.7)$ $<10^a$ $<10^a$ - Cerebrovascular $3,529 (2.9)$ $<10^a$ $82 (2.4)$ $<10^a$ $34 (2.5)$ Death during follow-up			· /			· /	447 (6
CVD $23,431 (19.4)$ $68 (15.0)$ $515 (14.9)$ $85 (9.2)$ $259 (19.2)$ - Heart failure $3,426 (2.8)$ $11 (2.4)$ $66 (1.9)$ $13 (1.4)$ $30 (2.2)$ - Myocardial infarction $1,482 (1.2)$ $<10^{a}$ $25 (0.7)$ $<10^{a}$ $<10^{a}$ - Cerebrovascular $3,529 (2.9)$ $<10^{a}$ $82 (2.4)$ $<10^{a}$ $34 (2.5)$ Death during follow-up	e i	, , ,		, , ,		· · · ·	
CVD $23,431 (19.4)$ $68 (15.0)$ $515 (14.9)$ $85 (9.2)$ $259 (19.2)$ - Heart failure $3,426 (2.8)$ $11 (2.4)$ $66 (1.9)$ $13 (1.4)$ $30 (2.2)$ - Myocardial infarction $1,482 (1.2)$ $<10^{a}$ $25 (0.7)$ $<10^{a}$ $<10^{a}$ - Cerebrovascular $3,529 (2.9)$ $<10^{a}$ $82 (2.4)$ $<10^{a}$ $34 (2.5)$ Death during follow-up	Hospital admissions				\mathcal{O}		
- Heart failure $3,426 (2.8)$ $11 (2.4)$ $66 (1.9)$ $13 (1.4)$ $30 (2.2)$ - Myocardial infarction $1,482 (1.2)$ $<10^a$ $25 (0.7)$ $<10^a$ $<10^a$ - Cerebrovascular $3,529 (2.9)$ $<10^a$ $82 (2.4)$ $<10^a$ $34 (2.5)$ Death during follow-up		23,431 (19.4)	68 (15.0)	515 (14.9)	85 (9.2)	259 (19.2)	101 (14
- Cerebrovascular 3,529 (2.9) <10 ^a 82 (2.4) <10 ^a 34 (2.5) Death during follow-up	- Heart failure		· /	· · ·		30 (2.2)	16 (2.2
disease Death during follow-up	- Myocardial infarction	1,482 (1.2)	<10 ^a	25 (0.7)	<10 ^a	<10 ^a	<10 ^a
Death during follow-up	- Cerebrovascular	3,529 (2.9)	$< 10^{a}$	82 (2.4)	$< 10^{a}$	34 (2.5)	<10 ^a
e i	disease						
	Death during follow-up						
Total deaths $29,966 (24.8)$ $101 (22.2)$ $665 (19.2)$ $124 (13.5)$ $251 (18.6)$	Total deaths	29,966 (24.8)	101 (22.2)	665 (19.2)	124 (13.5)	251 (18.6)	96 (13
Breast cancer cause 12,279 (10.2) 64 (14.1) 301 (8.7) 82 (8.9) 136 (10.1)		· · · · ·	· /		· · ·	· /	51 (7.0
Cardiovascular cause $7,438 (6.2)$ $<10^{a}$ $158 (4.6)$ $11 (1.2)$ $50 (3.7)$. ,	· · ·	21 (2.9
Other causes $10,249 (8.5)$ <10 $206 (6.0)$ $31 (3.4)$ $65 (4.8)$	Other causes	10,249 (8.5)	<10	206 (6.0)	31 (3.4)	65 (4.8)	24 (3.3
Abbreviations: $CVD = cardiovascular disease$, $IQR = Interquartile range$, $y = years$ ^a = Not given in line with the Dutch data protection guideline as the number of cases was less than 10						ess than 10	
503	503						

6 group	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	
Ethnic group Dutch Surinamese	1.00 (Ref.) 1.03 (0.92-1.16)	1.00 (Ref.) 1.46 (1.29-1.64)	
Moroccans	0.51 (0.42-0.63)	1.01 (0.83-1.24)	
Turkish	0.71 (0.59-0.86)	1.25 (1.03-1.51)	
Antilleans	0.83 (0.66-1.04)	1.24 (0.98-1.56)	
Indonesians	0.76 (0.70-0.82)	0.88 (0.81-0.96)	
Adjusted for age,	year of admission and type of b	reast cancer	
	ic group	[95% confidence interval] for	a <u>cardi</u>
	Unadjusted HR (95% CI)	Adjusted HR (95% CI)	
Ethnic group			
Dutch	1.00 (Ref.)	1.00 (Ref.)	
Surinamese	1.09 (0.96-1.23)	1.45 (1.28-1.64)	
Moroccans	0.53 (0.43-0.66)	0.92 (0.75 -1.14)	
Turkish	0.76 (0.63-0.93)	1.21(0.99-1.47)	
Antilleans	0.89 (0.70-1.13)	1.24 (0.98-1.57)	
Indonesians	0.75 (0.69-0.82)	0.85 (0.78-0.93)	
	year of admission and type of b		
Table 4 Unadjuste	Unadjusted hazard ratios fo Unadjusted HR (95% CI)	r <u>cardiovascular mortality</u> by etl Adjusted HR (95% CI)	<u>inic</u> gr
Ethnic group Dutch Surinamese	1.00 (Ref.) 0.70 (0.53-0.93)	1.00 (Ref.) 1.49 (1.13-1.97)	
Turkish	0.55 (0.36-0.84)	1.96 (1.27-3.01)	
Indonesians	0.76 (0.65-0.89)	0.99 (0.84-1.16)	
	year of admission and type of b rdiovascular mortality for the A	reast cancer ntilleans and Moroccan women	were t

Section/Topic	Item #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1 and 2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction		\wedge	
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any pre-specified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case	
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 6		6
Data sources/ measurement 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group		5 and 6	
Bias	9	Describe any efforts to address potential sources of bias	6 and 7
tudy size 10 Explain how the study size was arrived at		7	
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why		6	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6 and 7
		(b) Describe any methods used to examine subgroups and interactions	-
		(c) Explain how missing data were addressed	-
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	-

CTDORE 2007 (...4) shead list of its ين المعامية من مع مع . *

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy		
		(e) Describe any sensitivity analyses	-	
Results				
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7	
		(b) Give reasons for non-participation at each stage	-	
		(c) Consider use of a flow diagram	-	
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7 and 21 (table 1)	
		(b) Indicate number of participants with missing data for each variable of interest	-	
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	21 (table 1)	
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7 and 21 (table 1)	
		Case-control study—Report numbers in each exposure category, or summary measures of exposure		
		Cross-sectional study—Report numbers of outcome events or summary measures		
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7,8, and 22 (table 2 3,4)	
		(b) Report category boundaries when continuous variables were categorized	-	
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-	
Discussion				
Key results	18	Summarise key results with reference to study objectives	8	
Limitations	19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias		12 - 13	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	lts 9-12	
Generalisability 21 Discuss the generalisability (external validity) of the study results		13		
Other information				
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer teview only

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients in The Netherlands: a register-based cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2018-021509.R2
Article Type:	Research
Date Submitted by the Author:	11-May-2018
Complete List of Authors:	Deen, Laura; University of Amsterdam, Department of Public Health, Academic Medical Centre; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Buddeke, Josefien; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Vaartjes, Ilonca; University Medical Centre Utrecht, Julius Centre for Health Sciences and Primary Care Bots, Michiel; University Medical Center Utrecht, Julius Centre for Health Sciences and Primary Care Nørredam, Marie; University of Copenhagen, Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services Research, Department of Public Health; Copenhagen University Hospital, Section of Immigrant Medicine, Department of Infectious Diseases Agyemang, Charles; University of Amsterdam, Department of Public Health, Academic Medical Center
Primary Subject Heading :	Public health
Secondary Subject Heading:	Epidemiology, Oncology, Cardiovascular medicine
Keywords:	Ethnicity, breast cancer, migrant, cardiovascular disease, cardiovascular mortality

SCHOLARONE[™] Manuscripts Page 1 of 26

1 2 3	1	Ethnic differences in cardiovascular morbidity and mortality among breast cancer patients
4 5	2	in The Netherlands: a register-based cohort study.
6 7		in The Accherianus, a register-based conort study.
8 9	3	
10 11	4	Laura Deen, MSC ^{1,2} ; Josefien Buddeke, MSC ³ ; Ilonca Vaartjes, PhD ³ ; Michiel L. Bots, MD
12 13	5	PhD^{3} ; Marie Norredam, MD $PhD^{2,4}$; Charles Agyemang, MPH, PhD^{1}
14 15	6	¹ Department of Public Health, Academic Medical Centre, University of Amsterdam, Amsterdam
16 17	7	Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
18 19 20	8	² Section of Immigrant Medicine, Department of Infectious Diseases, Copenhagen University
21 22	9	Hospital, Kettegård allé 30, 2650 Hvidovre, Denmark
23 24	10	³ Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht,
25 26 27	11	Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
28 29	12	⁴ Danish Research Centre for Migration, Ethnicity and Health, Section of Health Services
30 31	13	Research, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014
32 33 34	14	København K, Denmark
34 35 36	15	
37 38	16	Corresponding author:
39 40	17	Charles Agyemang, Department of Public Health, Amsterdam Public Health Research Institute
41 42 43	18	Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The
44 45	19	Netherlands.
46 47	20	e-mail: <u>c.o.agyemang@amc.uva.nl</u> , telephone.: +31205664885
48 49 50	21	
50 51 52	22	Word count:
53 54	23	Abstract: 250.
55 56	24	Total manuscript (excluding references, tables and figures): 3221.
57 58		1
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

25	
26	Abstract
27	Objectives: Cardiovascular disease (CVD) is of increasing concern among breast cancer
28	survivors. However, evidence on ethnic differences in CVD among women with breast cancer is
29	sparse. We assessed ethnic differences in cardiovascular morbidity and mortality among breast
30	cancer patients in The Netherlands.
31	
32	Methods: A nationwide register-based cohort study comprising all women with a first admission
33	for breast cancer (n=127,714) between 1996 and 2010 in The Netherlands was conducted.
34	Differences in CVD admission, CVD mortality and overall CVD event, which comprised a CVD
35	admission and/or CVD mortality, between the largest ethnic minority groups (Surinamese,
36	Moroccan, Turkish, Antillean, and Indonesian) and the Dutch general population (henceforth,
37	Dutch) were investigated using Cox proportional hazard models.
38	
39	Results: The incidence of cardiovascular outcomes varied by ethnic group. The incidence of an
40	overall cardiovascular event was significantly higher for women with breast cancer from
41	Suriname (HR=1.46;95% CI 1.29-1.64) and Turkey (HR=1.25;95% CI 1.03-1.51), compared
42	with Dutch women with breast cancer. In contrast, Indonesian women with breast cancer had a
43	significantly lower risk (HR=0.88; 95% CI 0.81-0.96) of a cardiovascular event compared with
44	Dutch women with breast cancer. The risk of a cardiovascular event did not differ between
45	Moroccan and Dutch women with breast cancer, whereas for Antillean women the risk was not
46	significantly higher.
47	
	2

Page 3 of 26

1 2

3 4	48	Conclusions: Our findings suggest that Surinamese and Turkish women with breast cancer are
5 6	49	disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breas
7 8 9	50	cancer. More work is needed to unravel the potential factors contributing to these differences.
10 11	51	
12	50	Stunnathe and limitations of this study
13	52	Strengths and limitations of this study:
14 15	53	• The study builds on data from nationwide registries which resulted in a large sample size.
16 17	54	• The validity of the linkage of the included registries has proved to be high.
18 19	55	• Although the study is based on a nationwide cohort of breast cancer patients, absolute
20 21 22	56	numbers are somewhat small when divided into different ethnic groups.
23 24	57	• Data on CVD risk factors, such as smoking, alcohol and obesity were not available since the
25 26 27	58	study builds on registry data.
28 29	59	
30 31 32	60	
33 34	61	
35 36	62	
37 38 39	63	
40 41	64	
42 43 44	65	
45 46	66	
47 48	67	
49 50	68	
51 52 53	69	
54 55	70	
56 57 58	71	
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1. Introduction

Due to earlier diagnosis and more effective treatment, the survival rate among breast cancer patients has now improved resulting in a growing population of breast cancer survivors. In The Netherlands, the 5-year-age-standardized survival rate has increased from 80% in 1995-99 to 85% in 2005-09 [1]. With breast cancer becoming a curable disease, comorbidities and death from other conditions among breast cancer survivors are of increasing concern.

One of the most important comorbidities to consider in women with breast cancer is cardiovascular disease (CVD), and with the growing number of breast cancer survivors, a better understanding of the risk of CVD in this group is crucial. Studies show that women surviving breast cancer have an increased risk of CVD morbidity and CVD-specific mortality compared with women without breast cancer [2,3]. Moreover, among breast cancer survivors, CVD-related mortality is becoming more common than breast cancer-specific mortality [4,5]. This is attributable to improvements in breast cancer survival due to early detection by screening programs and improved treatments [6,7]. Additionally, cardiotoxic effects of breast cancer therapy play a role [8,9]. Further, survivors are typically older than the general population and may be more likely to develop CVD because of risk factors common to both cancer and CVD [10].

91 Evidence suggests ethnic inequalities in the prognosis of breast cancer with a higher risk of breast 92 cancer-specific and overall mortality among some ethnic minority groups [11,12]. However, 93 although ethnic variation in cardiovascular outcomes in the general population exists [13,14], the 94 evidence among breast cancer patients is limited. Data from the US show that African American 95 women with breast cancer had an increased risk of dying from CVD compared with White

BMJ Open

American breast cancer patients [4]. However, ethnic compositions and the national context vary across countries and, to our knowledge, no European study has examined the risk of CVD related outcomes in different ethnic groups among breast cancer patients. Hence, the aim of this study was to explore differences in overall CVD event, CVD admission and CVD mortality following a diagnosis of breast cancer between the largest ethnic minority groups in The Netherlands compared with ethnic Dutch.

2. Methods

- 104 Study sample

This register-based cohort study builds on data from different Dutch nationwide registers. The registries and linkage procedures used in this cohort study have previously been described in detail [15]. In brief, we linked data between the national Dutch hospital discharge register, the population register and the cause of death register using a record identification number. This number is assigned to each resident in The Netherlands with a unique combination of birth date, sex and postal code (84% of the Dutch population). The Dutch national hospital discharge register and cause of death register were linked to identify all women with a first admission for breast cancer between 1996 and 2010, using the International Classification of Diseases (ICD) 9th revision and ICD 10th revision. Both patients with invasive (ICD-9: 174 and ICD-10: C50) and in situ breast cancer (ICD-9: 233 and ICD-10: D05) were identified and men were excluded. Data from the population register and the cause of death register were available until 2012 and data from the Dutch hospital discharge register were available until 2010. Individuals were followed from the date of their first breast cancer admission until (a) CVD admission, (b) CVD death, (c) death due to other causes, (d) first emigration or (d) study end (31.12.2012), whichever came first. Linkage of data from the different registries was performed in agreement with the privacy

legislation in The Netherlands. All linkages and analysis were performed in a secured environment of Statistics Netherlands. The data set was made available and analysed in an anonymous form in a secured environment of Statistics Netherlands. Prior to publication, Statistics Netherlands made sure that none of the analysis results showed potential reducibility to the individual level.

Ethnic group

Ethnic groups were constructed based on the country of birth of the resident and her parents, according to the definition of Statistics Netherlands [16]. A woman was considered a migrant if she was born abroad or at least one of the parents was born abroad. Women with both parents born in The Netherlands were indicated as being Dutch. The major migrant groups residing in The Netherlands were included, which are those born in Turkey, Suriname, Morocco, Indonesia, iler. and The Netherlands Antilles.

> Outcomes

CVD admission after a diagnosis of breast cancer was defined as all admissions with either the primary or secondary cause of admission coded as ICD-9: 017.2, 093, 228, 289.1-289.3, 390-459, 557,745-747, 780.2, 782.3, 7825, 7826, 785, 786.50-786.59, 789.2, 794.30-794.39. Cardiovascular mortality was defined as dying from a cardiovascular cause after a diagnosis of breast cancer.

Overall cardiovascular event combined the two outcomes and comprised a hospital admission for CVD, and/or a dying from a cardiovascular cause.

Data analyses

BMJ Open

We first presented baseline characteristics as absolute numbers and percentages according to ethnic group. Continuous variables were summarized as mean and standard deviation or as median and interguartile range where appropriate. Subsequently, we calculated hazard ratios (HR) and corresponding 95% confidence intervals (95% CI) using cox proportional hazard regression analyses to assess ethnic differences in overall cardiovascular events, and separately for hospital admission for CVD and cardiovascular mortality between ethnic minority groups and the Dutch (reference group) with adjustment for age as a continuous variable, year of admission and type of breast cancer. Cox proportional hazard assumptions were tested by plotting the log minus log functions for the continuous variable age. The assumptions were met in all analyses. All analyses were performed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA). Patient and Public Involvement No patient or public were involved in this study.

3. Results

Table 1 presents the characteristics of the study population by ethnic group. In total, 127,714 women with a first admission for breast cancer between 01.01.1996 and 31.12.2010 were included in the study, of which 5% belonged to an ethnic minority group (table 1). Women with more adverse outcomes were in general followed for a shorter period. Among migrants, the Antilleans presented the smallest group and the Indonesians the largest group. In general, the ethnic minority groups were younger than the Dutch population when diagnosed. During follow-up, 19% of the Dutch population experienced a hospital admission due to CVD, whereas among the ethnic minorities the proportion of CVD admission ranged from 9% for Moroccans to 19%

167 for Surinamese women. 31,203 women with breast cancer died during follow-up, of which168 around 25% were due to a cardiovascular cause.

Table 2 shows the incidence of a CVD event, which comprises a hospital admission for CVD, and/or dving from a cardiovascular cause, among breast cancer patients by ethnic group. Compared with Dutch women with breast cancer, both Surinamese (HR=1.46;95% CI 1.29–1.64) and Turkish (HR=1.25;95% CI 1.03-1.51) women with breast cancer had a higher incidence of CVD event after adjustment for breast cancer diagnosis, period of breast cancer diagnosis and age. In contrast, Indonesian women with breast cancer had a significantly lower risk (HR=0.88; 95% CI 0.81–0.96) of cardiovascular event compared with Dutch women. Although not significant, the Antillean women had a higher incidence of CVD event compared with Dutch women. For Moroccans, there were no differences from Dutch women.

Subsequently, we assessed cardiovascular admission and cardiovascular mortality separately. Table 3 shows the unadjusted and adjusted hazard ratios for a cardiovascular admission. Only women from Suriname had a significantly higher risk (HR=1.45;95% CI 1.28-1.64) of cardiovascular admission compared with Dutch women with breast cancer, whereas women from Indonesia had a significantly lower risk of a cardiovascular admission (HR=0.85:95% CI 0.78– 0.93). The unadjusted and adjusted hazard ratios for cardiovascular mortality for the different ethnic groups are shown in table 4. The adjusted hazard ratios for cardiovascular mortality were significantly higher for women from Suriname (HR=1.49;95% CI 1.13-1.97) and Turkey (HR=1.96; 95% CI 1.27-3.01), compared with Dutch women, whereas there were no significantly differences between women from Indonesia and Dutch women. For Moroccan and Antillean women the numbers of deaths due to CVD were too small to perform analyses. In order to determine the impact of breast cancer treatment on the observed differences in CVD outcomes a sensitivity analysis was performed excluding all women with in situ breast cancer. This did not

191 change the results significantly, suggesting that cancer status and treatment of cancer is not strongly192 related to CVD outcomes in our study.

8 193

- 10 194 **4. Discussion**
 - 195 Key findings

In this population-based cohort study of women with breast cancer in The Netherlands, the risk of cardiovascular outcomes varied by ethnic group. Women from Suriname and Turkey had a higher risk of a CVD event compared with Dutch women with breast cancer. When separating cardiovascular admission and cardiovascular mortality, Surinamese and Turkish women had a higher risk of both cardiovascular admission and cardiovascular mortality compared with Dutch women, though in Turkish women the results for CVD admission was not significant. In contrast. women from Indonesia with breast cancer had a lower risk of cardiovascular event, and cardiovascular admission, but similar risk of cardiovascular mortality compared with ethnic Dutch women with breast cancer. For Moroccan women, the risk of a cardiovascular event did not differ from Dutch women with breast cancer, whereas for Antillean women the risk was not significantly higher.

40 207

208 Discussion of key findings

Evidence shows that ethnic minority and migrant groups in general have a lower risk of breast cancer compared with the majority population [17,18]. However, the results of this study indicate that among breast cancer patients, some ethnic minority groups are disadvantaged in terms of cardiovascular outcomes compared with Dutch women. The results of this study are in line with the sparse evidence on ethnic differences in CVD mortality among breast cancer patients in the US, which also found some ethnic minority groups to be disadvantaged in terms of

cardiovascular mortality [4,19]. For example, African America women with ductal carcinoma in situ of the breast were found to have a higher risk of CVD death compared with White American women diagnosed with ductal carcinoma in situ of the breast [4]. However, even though CVD have been shown to vary by ethnic group [13,20] data among breast cancer patients in Europe have been lacking. Previous European studies on ethnic disparities in breast cancer prognosis have mostly focused on mortality after breast cancer diagnosis, and found that some ethnic minority groups have higher overall and breast cancer-specific mortality [11,12,21]. Our results thereby add a great value to the existing literature by showing that women with breast cancer from Suriname and Turkey are disadvantaged in terms of cardiovascular outcomes compared with Dutch women with breast cancer. The higher incidence of CVD event among Surinamese women with breast cancer reflects the pattern of CVD among Surinamese women in the general Dutch population. Previous studies of the general population in The Netherlands showed that Surinamese women have a higher risk of both AMI and stroke compared with Dutch women [22,23], as well as a higher 5-year CVD mortality after initial admission for CVD [24]. Turkish women with breast cancer were in the present study found to have a higher incidence of CVD event, compared with Dutch women with breast cancer. However, this only partly reflects on the pattern among Turkish women in the general population in The Netherlands. Previous studies of the general population in The Netherlands did not find differences in the incidence of stroke or AMI among Turkish women compared with the Dutch majority women [22,23]. However, when stratifying on age, a higher incidence of AMI were observed in 50- to 70-year-old Turkish women compared with the Dutch majority women [22].

The relatively low risk of CVD outcomes among Indonesian women with breast cancer are incontrast to previous studies of the general Dutch population that found no differences in

BMJ Open

incidence of AMI and a slightly higher risk of stroke among Indonesians compared with Dutch women [22,23]. The reasons for the better CVD prognosis among Indonesian breast cancer patients are unclear. However, Indonesians are well integrated in the Dutch society with respect to language and culture and have similar income levels and are employed at equal rates as the Dutch general population [25]. This possibly results in better access to health care services than other minority groups and may underlie the better cardiovascular health outcomes among Indonesian women with breast cancer.

Possible explanations for the higher risk of cardiovascular events among Surinamese and Turkish breast cancer patients may include disparities in access to health care services and a high risk factor burden among these ethnic minorities in The Netherlands. Regular health visits are important for early diagnosis of risk factors that can lead to CVD progression and it is possible that differences in health service utilisation may contribute to the observed ethnic differences in CVD risk among breast cancer patients. Evidence on health care utilization among breast cancer patients is scarce, but previous evidence of the general population in The Netherlands suggests that some ethnic minority populations use more general practitioner care than Dutch people do, but that they are less likely to use specialised care [26]. Moreover, ethnic differences in use of cardiac rehabilitation and lower adherence to medication therapy have been shown [27-30]. A Danish study found that immigrants from Pakistan and Turkey did not receive adequate medical treatment with beta-blockers after a first AMI compared with Danish-born residents [28]. In addition, in The Netherlands, Surinamese people have been found to have poor blood pressure control compared with their Dutch counterparts [30].

261 The relatively high incidence of CVD admission and mortality among Turkish and Surinamese262 breast cancer women may be explained by the high prevalence of cardiovascular risk factors in

these populations. The current study lacked information on CVD risk factor and we were therefore not able to address the possible contribution of these to the observed ethnic differences. However, previous studies of Surinamese and Turkish populations in The Netherlands showed that hypertension, diabetes mellitus and obesity are more common among these populations compared with the Dutch general population [30-33]. As an example, a previous Dutch study showed that the prevalence of hypertension, the leading risk factor for CVD worldwide, was higher in both Turkish and Surinamese people than in Dutch people [30]. A previous study found that Antillean women have higher risk of certain CVD risk factors then Dutch women [34]. Further, since Antilleans resemble other ethnic groups who have been found to have higher risk of some CVD risk factors, such as Surinamese women with African background, this might be the case for Antillean women as well and suggests the need for further study among this population in The Netherlands. In addition, a study from the US, found that African American breast cancer patients have higher prevalence of certain CVD risk factors, such as hypertension, diabetes and obesity, prior to initiating aromatase inhibitory therapy, compared with White American breast cancer patients of the same age [35]. Although the ethnic groups are not directly comparable, this may also be the case for some of the ethnic groups in the current study, such as the African Surinamese and Antillean women. Evidence suggests that the presence of CVD risk factors among breast cancer patients at diagnosis is a strong predictive factor for the development of cardiovascular damage associated with breast cancer therapy [36]. The higher risk factor burden in some ethnic minority groups may therefore contribute to the higher incidence of CVD in these groups.

Additionally, since the risk of CVD has been shown to vary according to breast cancer therapy [9,37], the observed differences may be explained by variation in the treatment received by different ethnic groups. In the current study, data on treatment was not available. However, Page 13 of 26

BMJ Open

studies from the US and UK have reported that ethnic minority women were more likely to receive chemotherapy, which was largely explained by more advanced stage and higher grade tumours [38,39].

Our findings have important clinical and public health implications because identifying breast cancer patients who are most vulnerable to cardiovascular outcomes is important in order to guide strategies among breast cancer patients. The findings suggest the need to increase attention for these women in the cardiovascular risk factor management guidelines in The Netherlands and awareness of the observed ethnic differences in the risk of cardiovascular outcomes among breast cancer patients should be raised among clinicians and incorporated into oncology practices. The observed differences suggest the need for further studies to identify factors explaining these differences. More specific, studies addressing the potential contribution of both CVD risk factors and type of treatment to the observed ethnic differences found in this study are needed. This will help to tailor appropriate public health and clinical interventions to improve outcomes among breast cancer patients most at risk of adverse CVD outcomes.

[']₈ 302

303 Strength and limitations:

The strength of the current study is the validity of the registries, the linkage methods, and the lack of selection of the cohorts. A high validity of both the Dutch National Hospital Discharge Register and the Dutch Population Register has been demonstrated. In a random sample of the Hospital Discharge Register, 99% of the personal, admission and discharge data and 84% of the principal diagnoses (validated through medical record review by medical specialists) were correctly registered [40]. In addition, over 97% of the uniquely linked hospital admissions

310 resulting from linkage of the Hospital Discharge Register with the Population Register were311 shown to be correctly linked [41].

Nonetheless, some limitations must be considered. First, although the study is based on a nationwide cohort of breast cancer patients, absolute numbers are somewhat small when divided into different ethnic groups. Consequently, the numbers were too small to investigate different kinds of CVD, which could have afforded a more nuanced picture. Second, inherent to many national-level databases, we lack detailed data on CVD risk factors, such as smoking, alcohol, cholesterol and obesity, and therefore we were unable to do additional analyses to assess the contribution of these to the observed ethnic differences. However, we were able to shed light on the potential contributing risk factors to the observed differences due to previous studies on ethnic differences in risk factors in The Netherlands [30–33]. Additionally, the study lack data on treatment of breast cancer. Since, CVD risk has been shown to vary according to type of treatment [9,37], adjustment for treatment would have been preferable in order to assess the potential impact of differences in treatment to the observed ethnic differences in CVD. Finally, as in numerous studies, the classifications of the various ethnic groups were based on country of birth. Country of birth may reflect ethnicity reasonably well among some ethnic groups but is likely to be an unreliable proxy measure of ethnicity for other groups such as Surinamese [16]. The results may be generalised to other European settings with similar health care services and composition of ethnic groups.

y 329

5. Conclusion

The results of the current study suggest that the risk of CVD related outcomes among breast cancer patients vary by ethnicity. Surinamese and Turkey breast cancer patients experienced a higher risk, whereas Indonesian patients had a slightly lower risk of CVD event compared with

Page 15 of 26

1

2 3	334	their Dutch counterparts. More extensive cohort studies are needed to identify the forms of CVD
4 5 6	335	that are most common in these groups as well as the potential factors contributing to these
7 8	336	differences.
9 10 11	337	
12 13	338	Competing interest: None declared.
14 15 16	339	
17 18	340	Funding
19 20	341	This work was supported by the Dutch Heart Foundation (grant number 2010B296).
21 22 23	342	
24 25	343	Contributor ship statement
26 27	344	LD, JB, IV, MLB, MN, CA were involved in the study design. LD and CA wrote the paper. JB
28 29 30	345	analysed the data. JB, IV, MLB and MN critically revised the manuscript. All Authors approved
31 32	346	the final version of the manuscript.
33 34	347	
35 36 37	348	Data sharing statement
38 39	349	No additional data are available.
40 41	350	
42 43 44	351	
45 46	352	
47 48	353	
49 50 51	354	
52 53	355	
54 55	356	
56 57 58	357	15
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2			
2 3 4	358	Refe	rences
5 6	359	[1]	C. Allemani, H.K. Weir, H. Carreira, R. Harewood, D. Spika, X.S. Wang, F. Bannon, J. V.
7 8	360		Ahn, C.J. Johnson, A. Bonaventure, R. Marcos-Gragera, C. Stiller, G. Azevedo E Silva,
9 10 11	361		W.Q. Chen, O.J. Ogunbiyi, B. Rachet, M.J. Soeberg, H. You, T. Matsuda, M. Bielska-
12 13	362		Lasota, H. Storm, T.C. Tucker, M.P. Coleman, Global surveillance of cancer survival
14 15	363		1995-2009: Analysis of individual data for 25 676 887 patients from 279 population-based
16 17 19	364		registries in 67 countries (CONCORD-2), Lancet. 385 (2015) 977-1010.
18 19 20	365	[2]	S.H. Armenian, L. Xu, B. Ky, C. Sun, L.T. Farol, S.K. Pal, P.S. Douglas, S. Bhatia, C.
21 22	366		Chao, Cardiovascular disease among survivors of adult-onset cancer: A community-based
23 24	367		retrospective cohort study, J. Clin. Oncol. 34 (2016) 1122-1130.
25 26 27	368	[3]	P.T. Bradshaw, J. Stevens, N. Khankari, S.L. Teitelbaum, A.I. Neugut, M.D. Gammon,
28 29	369		Cardiovascular Disease Mortality Among Breast Cancer Survivors, Epidemiology. 27
30 31	370		(2016) 6–13.
32 33 34	371	[4]	A. Berkman, B. F. Cole, P.A. Ades, S. Dickey, S.T. Higgins, A. Trentham-Dietz, B.L.
35 36	372		Sprague, S.G. Lakoski, Racial differences in breast cancer, cardiovascular disease, and all-
37 38	373		cause mortality among women with ductal carcinoma in situ of the breast, Breast Cancer
39 40 41	374		Res. Treat. 148 (2014) 407–413.
41 42 43	375	[5]	J.L. Patnaik, T. Byers, C. DiGuiseppi, D. Dabelea, T.D. Denberg, Cardiovascular disease
44 45	376		competes with breast cancer as the leading cause of death for older females diagnosed with
46 47	377		breast cancer: a retrospective cohort study, Breast Cancer Res. 13 (2011) R64.
48 49 50	378	[6]	D. Berry, K. Cronin, S. Plevritis, D. Fryback, L. Clarke, M. Zelen, J. Mandelblatt, A.
51 52	379		Yakovlev, D. Habbema, E. Feuer, Effect of screening and adjuvant therapy on mortality
53 54	380		from breast cancer, N. Engl. J. Med. 353 (2005) 1784-92.
55 56 57	381		http://www.nejm.org/doi/full/10.1056/nejmoa050518.
57 58 59			16
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2					
2 3 4	E.R. Myers, P. Moorman, J.M. Gierisch, L.J. Havrilesky, L.J. Grimm, S. Ghate, B.				
5 6	383		Davidson, R.C. Mongtomery, M.J. Crowley, D.C. McCrory, A. Kendrick, G.D. Sanders,		
7 8	384		Benefits and harms of breast cancer screening: A systematic review, JAMA - J. Am. Med.		
9 10 11	385		Assoc. 314 (2015) 1615–1634. doi:10.1001/jama.2015.13183.		
12 13	386	[8]	S.C. Darby, M. Ewertz, P. McGale, A.M. Bennet, U. Blom-Goldman, D. Brønnum, C.		
14 15	387		Correa, D. Cutter, G. Gagliardi, B. Gigante, MB. Jensen, A. Nisbet, R. Peto, K. Rahimi,		
16 17 18	388		C. Taylor, P. Hall, Risk of ischemic heart disease in women after radiotherapy for breast		
19 20	389		cancer., N. Engl. J. Med. 368 (2013) 987–98.		
21 22	390	[9]	P. Thavendiranathan, H. Abdel-Qadir, H.D. Fischer, X. Camacho, E. Amir, P.C. Austin,		
23 24 25	391		D.S. Lee, Breast Cancer Therapy-Related Cardiac Dysfunction in Adult Women Treated in		
26 27	392		Routine Clinical Practice: A Population-Based Cohort Study., J. Clin. Oncol. 34 (2016)		
28 29	393		JCO.2015.65.1505		
30 31 32	394	[10]	K.E. Weaver, R.E. Foraker, C.M. Alfano, J.H. Rowland, N.K. Arora, K.M. Bellizzi, A.S.		
32 33 34	395		Hamilton, I. Oakley-Girvan, G. Keel, N.M. Aziz, Cardiovascular risk factors among long-		
35 36	396		term survivors of breast, prostate, colorectal, and gynecologic cancers: A gap in		
37 38	397		survivorship care?, J. Cancer Surviv. 7 (2013) 253–261.		
39 40 41	398	[11]	H. Møller, K. Henson, M. Lüchtenborg, J. Broggio, J. Charman, V.H. Coupland, E.		
42 43	399		Davies, R.H. Jack, R. Sullivan, P. Vedsted, K. Horgan, N. Pearce, A. Purushotham, Short-		
44 45	400		term breast cancer survival in relation to ethnicity, stage, grade and receptor status:		
46 47 48	401		national cohort study in England, Br. J. Cancer. (2016) 1-8.		
49 50	402	[12]	F. Latif, J. Helgeland, G. Bukholm, I.R.K. Bukholm, Ethnicity differences in breast cancer		
51 52	403		stage at the time of diagnosis in Norway, Scand. J. Surg. 104 (2015) 248-253.		
53 54 55	404	[13]	A.A.M. Van Oeffelen, I. Vaartjes, K. Stronks, M.L. Bots, C. Agyemang, Incidence of		
55 56 57	405		acute myocardial infarction in first and second generation minority groups: Does the		
58 59			17		
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

1 2			
2 3 4	406		second generation converge towards the majority population?, Int. J. Cardiol. 168 (2013)
5 6	407		5422–5429.
7 8	408	[14]	R.S. Bhopal, N. Bansal, C.M. Fischbacher, H. Brown, S. Capewell, Ethnic variations in
9 10 11	409		heart failure: Scottish Health and Ethnicity Linkage Study (SHELS)., Heart. 98 (2012)
12 13	410		468–73.
14 15	411	[15]	H.L. Koek, A. de Bruin, A. Gast, E. Gevers, J.W.P.F. Kardaun, J.B. Reistma, D.E.
16 17 18	412		Grobbee, M.L. Bots, Incidenc of first acute myocardial infarction in the Netherlands, Neth.
19 20	413		J. Med. 65 (2007) 434–441.
21 22	414	[16]	K. Stronks, I. Kulu-Glasgow, C. Agyemang, The utility of "country of birth" for the
23 24 25	415		classification of ethnic groups in health research: the Dutch experience., Ethn. Health. 14
25 26 27	416		(2009) 255–269.
28 29	417	[17]	M. Arnold, M.J. Aarts, S. Siesling, M. Van Der Aa, O. Visser, J.W. Coebergh, Diverging
30 31	418		breast and stomach cancer incidence and survival in migrants in The Netherlands, 1996-
32 33 34	419		2009., Acta Oncol. 52 (2013) 1195–1201.
35 36	420	[18]	T. Gathani, R. Ali, A. Balkwill, J. Green, G. Reeves, V. Beral, K.A. Moser, Million
37 38	421		Women Study Collaborators, Ethnic differences in breast cancer incidence in England are
39 40 41	422		due to differences in known risk factors for the disease: prospective study., Br. J. Cancer.
41 42 43	423		110 (2014) 224–9.
44 45	424	[19]	P.A. Solanki, N.Y. Ko, D.M. Qato, G.S. Calip, Risk of cancer-specific, cardiovascular, and
46 47	425		all-cause mortality among Asian and Pacific Islander breast cancer survivors in the United
48 49 50	426		States, 1991-2011., Springerplus. 5 (2016) 82.
50 51 52	427	[20]	N.F. Hempler, F.B. Larsen, S.S. Nielsen, F. Diderichsen, A.H. Andreasen, T. Jørgensen, A
53 54	428		registry-based follow-up study, comparing the incidence of cardiovascular disease in
55 56 57	429		native Danes and immigrants born in Turkey, Pakistan and the former Yugoslavia: do
57 58 59			18
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2	120				
3 4	430		social inequalities play a role?, BMC Public Health. 11 (2011) 662.		
5 6	431	[21]	E. Copson, T. Maishman, S. Gerty, B. Eccles, L. Stanton, R.I. Cutress, D.G. Altman, L.		
7 8	432		Durcan, P. Simmonds, L. Jones, W. Tapper, D. Eccles, Ethnicity and outcome of young		
9 10 11	433		breast cancer patients in the United Kingdom: the POSH study., Br. J. Cancer. 110 (2014)		
12 13	434		230–41.		
14 15	435	[22]	A.A.M. Van Oeffelen, C. Agyemang, K. Stronks, M.L. Bots, I. Vaartjes, Incidence of first		
16 17 18	436		acute myocardial infarction over time specific for age , sex , and country of birth, (2014)		
19 20	437		20–27.		
21 22	438	[23]	C. Agyemang, A.A.M. Van Oeffelen, M. Norredam, L.J. Kappelle, C.J.M. Klijn, M.L.		
23 24 25	439		Bots, K. Stronks, I. Vaartjes, Ethnic disparities in ischemic stroke, intracerebral		
25 26 27	440		hemorrhage, and subarachnoid hemorrhage incidence in the Netherlands, Stroke. 45 (2014)		
28 29	441		3236–3242.		
30 31 32	442	[24]	C. Agyemang, I. Vaartjes, M.L. Bots, I.G. van Valkengoed, J.S. de Munter, A. de Bruin,		
32 33 34	443		M. Berger-van Sijl, J.B. Reitsma, K. Stronks, Risk of death after first admission for		
35 36	444		cardiovascular diseases by country of birth in The Netherlands: a nationwide record-linked		
37 38	445		retrospective cohort study., Heart. 95 (2009) 747–753.		
39 40 41	446	46 [25] L. Ho, V. Bos, A.E. Kunst, Differences in cause-of-death patterns between th			
42 43	447		Dutch and persons of Indonesian descent in the Netherlands, Am. J. Public Health. 97		
44 45	448		(2007) 1616–1618.		
46 47 48	449	[26]	K. Stronks, a C. Ravelli, S. a Reijneveld, Immigrants in the Netherlands: equal access for		
48 49 50	450		equal needs?, J. Epidemiol. Community Health. 55 (2001) 701-707.		
51 52	451	[27]	O. Cortes, H.M. Arthur, Determinants of referral to cardiac rehabilitation programs in		
53 54	452		patients with coronary artery disease: A systematic review, Am. Heart J. 151 (2006) 249-		
55 56 57	453		256.		
57 58 59			19		
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		

2 3	454	[28]	N.F. Hempler, F. Diderichsen, F.B. Larsen, S. Ladelund, T. Jørgensen, Do immigrants
4 5 6	455		from Turkey, Pakistan and Yugoslavia receive adequate medical treatment with beta-
7 8	456		blockers and statins after acute myocardial infarction compared with Danish-born
9 10 11	457		residents? A register-based follow-up study, Eur. J. Clin. Pharmacol. 66 (2010) 735-742.
11 12 13	458	[29]	G. Feder, A.M. Crook, P. Magee, S. Banerjee, A.D. Timmis, H. Hemingway, Ethnic
14 15	459		differences in invasive management of coronary disease: Prospective cohort study of
16 17 18	460		patients undergoing angiography, BMJ Br. Med. J. 324 (2002) 511-516.
19 20	461	[30]	C. Agyemang, S. Kieft, M.B. Snijder, E.J. Beune, B.J. Van Den Born, L.M. Brewster, J.J.
21 22	462		Ujcic-Voortman, N. Bindraban, G. Van Montfrans, R.J. Peters, K. Stronks, Hypertension
23 24 25	463		control in a large multi-ethnic cohort in Amsterdam, The Netherlands: The HELIUS study,
25 26 27	464		Int. J. Cardiol. 183 (2015) 180–189.
28 29	465	[31]	J.K. Ujcic-Voortman, M.T. Schram, M.A. Jacobs-Van Der Bruggen, A.P. Verhoeff, C.A.
30 31 22	466		Baan, Diabetes prevalence and risk factors among ethnic minorities, Eur. J. Public Health.
32 33 34	467		19 (2009) 511–515.
35 36	468	[32]	N.R. Bindraban, I.G.M. van Valkengoed, G. Mairuhu, F. Holleman, J.B.L. Hoekstra,
37 38	469		B.P.J. Michels, R.P. Koopmans, K. Stronks, Prevalence of diabetes mellitus and the
39 40 41	470		performance of a risk score among Hindustani Surinamese, African Surinamese and ethnic
42 43	471		Dutch: a cross-sectional population-based study., BMC Public Health. 8 (2008) 271.
44 45	472	[33]	J.K. Ujcic-Voortman, G. Bos, C.A. Baan, A.P. Verhoeff, J.C. Seidell, Obesity and body fat
46 47 48	473		distribution: Ethnic differences and the role of socio-economic status, Obes. Facts. 4
48 49 50	474		(2011) 53–60.
51 52	475	[34]	F. El Fakiri, M.A. Bruijnzeels, M.M.E. Foets, A.W. Hoes, Different distribution of
53 54	476		cardiovascular risk factors according to ethnicity: A study in a high risk population, J.
55 56 57	477		Immigr. Minor. Heal. 10 (2008) 559-565. doi:10.1007/s10903-008-9144-4.
58 59			20
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2				
3 4	478	[35]	L. Gallicchio, C. Calhoun, K. Helzlsouer, Cardiovascular Health among Black and White	
5 6	479		Breast Cancer Patients Initiating Aromatase Inhibitor Therapy, Clin. Breast Cancer. 16	
7 8	480		(2016) e23–e31.	
9 10 11	481	[36]	N. Maurea, C. Coppola, G. Ragone, G. Frasci, A. Bonelli, C. Romano, R.V. Iaffaioli,	
12 13	482		Women survive breast cancer but fall victim to heart failure: the shadows and lights of	
14 15	483		targeted therapy., J. Cardiovasc. Med. (Hagerstown). 11 (2010) 861-868.	
16 17	484	[37]	E.J. Bowles, R. Wellman, H.S. Feigelson, A.A. Onitilo, A.N. Freedman, T. Delate, L.A.	
18 19 20	485		Allen, L. Nekhlyudov, K.A. Goddard, R.L. Davis, L.A. Habel, M.U. Yood, C. McCarty,	
21 22	486		D.J. Magid, E.H. Wagner, P.S. Team, Risk of heart failure in breast cancer patients after	
23 24	487		anthracycline and trastuzumab treatment: a retrospective cohort study, J. Natl. Cancer Inst.	
25 26 27	488		104 (2012) 1293–1305.	
27 28 29	²⁸ ₂₉ 489 [38] R.H. Jack, E.A. Davies, H. Møller, Breast cancer incidence, stage, treatment and			
30 31	490		in ethnic groups in South East England, (2009) 545-550.	
32 33	491	[39]	B.K. Killelea, V.Q. Yang, S. Wang, B. Hayse, S. Mougalian, N.R. Horowitz, A.B.	
34 35 36	492		Chagpar, L. Pusztai, D.R. Lannin, N.R. Horowitz, B. Anees, Racial Differences in the Use	
37 38	493		and Outcome of Neoadjuvant Chemotherapy for Breast Cancer : Results From the National	
39 40	494		Cancer Data Base, 33 (2017) 4267–4276.	
41 42 43	495	[40]	G. Paas, K. Veenhuizem, Research on the validity of the LMR (in Dutch), Prismant.	
44 45	496		(2002).	
46 47	497	[41]	A. De Bruin, J. Kardaun, F. Gast, E. De Bruin, M. Van Sijl, G. Verweij, Record linkage of	
48 49 50	498		hospital discharge register with population register : Experiences at Statistics Netherlands,	
50 51 52	499		Stat. Bruin A De, Kardaun J, Gast F, Bruin E De, Sijl M Van, Verweij G. Rec. Link. Hosp.	
53 54	500		Disch. Regist. with Popul. Regist. Exp. Stat. Netherlands. Stat. (Ber). 2004;2123-32. S.	
55 56	501		21 (2004) 23–32.	
57 58			21	
59 60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml	

Table 1 Demographic and disease characteristics of women admitted for breast cancer between

1 2 3

60

	Ethnic Dutch N %	Antillean N %	Indonesian N %	Moroccan N %	Surinamese N %	Turkis N %
No. of patients	120,809 (100)	454 (100)	3,457 (100)	919 (100)	1,351 (100)	724 (10
Mean age at diagnosis (y), sd	60.4 (13.3)	52.8 (11.8)	57.0 (13.1)	47.0 (10.7)	52.8 (12.7)	49.5 (1
Attained age (y) end of follow-up						
≤ 44	5,029 (4.2)	53 (11.7)	206 (6.0)	230 (25.0)	172 (12.7)	125 (1
45-59	31,731 (26.3)	197 (43.4)	1,262 (36.5)	476 (51.8)	582 (43.1)	336 (4
60-74	46,671 (38.6)	169 (37.2)	1,199 (34.7)	185 (20.1)	421 (31.2)	225 (3
≥75	37,378 (30.9)	35 (7.7)	790 (22.9)	28 (3.0)	176 (13.0)	38 (5.2
Follow-up time (y), median (IQR)	4.5 (6.5)	3.6 (5.8)	4.6 (5.5)	3.6 (6.0)	3.8 (6.0)	4.0 (6.
Breast cancer diagnosis						
In situ	9,774 (8.1)	45 (9.9)	336 (9.7)	91 (9.9)	131 (9.7)	62 (8.6
Invasive	111,035 (91.9)	409 (90.1)	3,121 (90.3)	828 (90.1)	1,220 (90.3)	662 (9
	,(>)				-, (> + + +)	
Period of breast cancer diagnosis (y)	28,869 (23.9)	66 (14.5)	743 (21.5)	115 (12.5)	230 (17.0)	104 (14
1996-1999	32,196 (26.7)	121 (26.7)	912 (26.4)	201 (21.9)	326 (24.1)	187 (2:
2000-2003	33,385 (27.6)	139 (30.6)	990 (28.6)	289 (31.4)	420 (31.1)	222 (3)
2004-2007	26,359 (21.8)	128 (28.2)	812 (23.5)	314 (34.2)	375 (27.8)	211 (2
2008-2010	20,009 (21.0)	120 (20.2)	012 (25.5)	511(51.2)	570 (27.0)	211 (2
Marital status			4			
Single/ widowed/ divorced	53,860 (44.6)	268 (59.0)	1,701 (49.2)	301 (32.8)	820 (60.7)	277 (3
Living with partner/	66,949 (55.4)	186 (41.0)	1,756 (50.8)	618 (67.2)	531 (39.3)	447 (6
married			· · · · · ·			,
Hospital admissions						
CVD	23,431 (19.4)	68 (15.0)	515 (14.9)	85 (9.2)	259 (19.2)	101 (14
- Heart failure	3,426 (2.8)	11 (2.4)	66 (1.9)	13 (1.4)	30 (2.2)	16 (2.2
- Myocardial infarction	1,482 (1.2)	$< 10^{a}$	25 (0.7)	<10 ^a	<10 ^a	<10 ^a
- Cerebrovascular	3,529 (2.9)	<10 ^a	82 (2.4)	<10 ^a	34 (2.5)	$< 10^{a}$
disease						
Death during follow-up						
Total deaths	29,966 (24.8)	101 (22.2)	665 (19.2)	124 (13.5)	251 (18.6)	96 (13
Breast cancer cause	12,279 (10.2)	64 (14.1)	301 (8.7)	82 (8.9)	136 (10.1)	51 (7.0
Cardiovascular cause	7,438 (6.2)	<10 ^a	158 (4.6)	11(1.2)	50 (3.7)	21 (2.9
Other causes	10,249 (8.5)	<10	206 (6.0)	31 (3.4)	65 (4.8)	24 (3.3
Abbreviations: $CVD = card$						
a = Not given in line with the	e Dutch data prot	tection guidelin	ne as the number	r of cases was le	ess than 10	
504						

97 group	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
Ethnic group	1.00 (D. C)	1.00 (D. C)
Dutch Surinamese	1.00 (Ref.) 1.03 (0.92-1.16)	1.00 (Ref.) 1.46 (1.29-1.64)
Moroccans	0.51 (0.42-0.63)	1.01 (0.83-1.24)
Turkish	0.71 (0.59-0.86)	1.25 (1.03-1.51)
Antilleans	0.83 (0.66-1.04)	1.24 (0.98-1.56)
Indonesians	0.76 (0.70-0.82)	0.88 (0.81-0.96)
	ar of admission and type of b	
)		
)		
	and adjusted hazard ratios (9	25% CI) for a <u>cardiovascular admission</u>
<u> </u>	Unadjusted	Adjusted
Ethnia anoun	HR (95% CI)	HR (95% CI)
Ethnic group Dutch	$1.00 (D_{cf})$	$1.00 (P_{c}f)$
Surinamese	1.00 (Ref.) 1.09 (0.96-1.23)	1.00 (Ref.) 1.45 (1.28-1.64)
Moroccans	· · · · · ·	
Turkish	0.53 (0.43-0.66) 0.76 (0.63-0.93)	0.92 (0.75 -1.14) 1.21(0.99-1.47)
Antilleans	0.89 (0.70-1.13)	1.24 (0.98-1.57)
Indonesians	0.75 (0.69-0.82)	0.85 (0.78-0.93)
	$\frac{0.75(0.09-0.82)}{\text{ar of admission and type of b}}$, ,
Aujusteu foi age, ye	at of admission and type of t	icast cancer
-) 7		
Table 4 Unadjusted group	and adjusted hazard ratios	(95% CI) for cardiovascular mortalit
<u></u>	Unadjusted	Adjusted
Ethnic group	HR (95% CI)	HR (95% CI)
Dutch	1.00 (Ref.)	1.00 (Ref.)
Surinamese	0.70 (0.53-0.93)	1.49 (1.13-1.97)
Turkish	0.55 (0.36-0.84)	1.96 (1.27-3.01)
Indonesians	0.76 (0.65-0.89)	0.99 (0.84-1.16)
	ar of admission and type of b ovascular mortality for the A	reast cancer ntilleans and Moroccan women were

	STROE	3E 2007 (v4) checklist of items to be included in reports of observational studies in epidemiology*			
Checklist for cohort, case-control, and cross-sectional studies (combined)					
Section/Topic	Item #	Recommendation	Reported on page #		
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1 and 2		
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2		
Introduction		\sim			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4		
Objectives	3	State specific objectives, including any pre-specified hypotheses	5		
Methods					
Study design	4	Present key elements of study design early in the paper	5		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5		
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants 	5		
		(b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case			
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6		
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5 and 6		
Bias	9	Describe any efforts to address potential sources of bias	6 and 7		
Study size	10	Explain how the study size was arrived at	7		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	6 and 7		
		(b) Describe any methods used to examine subgroups and interactions	-		
		(c) Explain how missing data were addressed	-		
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed	-		

. C . I.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

		Cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	-
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	7
		(b) Give reasons for non-participation at each stage	-
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7 and 21 (table 1)
		(b) Indicate number of participants with missing data for each variable of interest	-
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	21 (table 1)
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	7 and 21 (table 1)
		Case-control study—Report numbers in each exposure category, or summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	7,8, and 22 (table 2 3,4)
		(b) Report category boundaries when continuous variables were categorized	-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	-
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	-
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	12 - 13
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	9-12
Generalisability	21	Discuss the generalisability (external validity) of the study results	13
Other information	·		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	14

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml