

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-021257
Article Type:	Research
Date Submitted by the Author:	19-Dec-2017
Complete List of Authors:	Nightingale, C; St George's University London, Division of Population Health Sciences and Education Rudnicka, Alicja; SGUL University of London Ram, Bina; St George's, University of London, Population Health Research Institute Shankar, Aparna; St. Geoege's, University of London, Population Health Research Institute Procter, Duncan; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Cooper, Ashley; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Glasgow, MRC/SCO Social and Public Health Sciences Unit Giles-Corti, Billie; RMIT University, NHMRC Centre of Research Excellence in Healthy Liveable Communities Clary, Christelle; London School of Hygiene and Tropical Medicine, Social And Environmental Health Research Lewis, Daniel; London School of Hygiene and Tropical Medicine, Department of Social and Environmental Health Research Whincup, Peter; St Georges, University of London Cook, Derek; St George's University, Division of Population Health Sciences Owen, C; St George's, University London, Population Health Research Institute
Keywords:	Physical activity, Adiposity, Housing, Perceived neighbourhood environment, ENABLE-London

SCHOLARONE[™] Manuscripts

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

CM Nightingale¹, AR Rudnicka¹, B Ram¹, A Shankar¹, D Procter^{2,3}, AR Cooper^{2,3}, AS Page^{2,3}, A Ellaway⁴, B Giles-Corti⁵, C Clary⁶, D Lewis⁶, S Cummins⁶, PH Whincup¹, DG Cook¹, CG Owen¹

¹ Population Health Research Institute, St George's, University of London, London, UK.

² Centre for Exercise, Nutrition and Health Sciences, University of Bristol, Bristol, UK.

³ National Institute for Health Research Bristol Biomedical Research Centre (Nutrition Theme)

⁴ MRC/SCO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK.

⁵ NHMRC Centre of Research Excellence in Healthy Liveable Communities, RMIT University, Melbourne, Australia.

⁶ London School of Hygiene and Tropical Medicine, London, UK.

Corresponding Author:-

Dr Claire M Nightingale

Population Health Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 ORE. Email: <u>cnightin@sgul.ac.uk.</u>Phone: +44 (0) 208 725 2342

Total word count: 3996 excluding abstract (300 words) Tables and figures: 3 tables, 1 figure, 5 supplementary tables References: 48

Abstract

Objectives: The neighbourhood environment is increasingly shown to be an important correlate of health. We assessed associations between housing tenure, neighbourhood perceptions, sociodemographic factors, and levels of physical activity (PA) and adiposity among adults seeking housing in East Village (formerly London 2012 Olympic/Paralympic Games Athletes' Village).

Setting: Cross-sectional analysis of adults seeking social, intermediate and market-rent housing in East Village.

Participants: 1278 participants took part in the study (58% female). Complete data on adiposity (body mass index [BMI] and fat mass %) were available for 1240 participants (97%); of these a subset of 1107 participants (89%) met the inclusion criteria for analyses of accelerometer-based measurements of PA. We examined associations between housing sector sought, neighbourhood perceptions (covariates) and PA and adiposity (dependent variables) adjusted for household clustering, sex, age group, ethnic group, and limiting longstanding illness.

Results: Participants seeking social housing had the fewest steps (8304, 95%CI 7959,8648) and highest BMI (26.0kg/m² 95%CI 25.5,26.5kg/m²) compared with those seeking intermediate (steps 9417, 95%CI 9106,9731; BMI 24.8kg/m² 95%CI 24.4,25.2kg/m²) or market-rent housing (steps 9313, 95%CI 8858,9768; BMI 24.6kg/m² 95%CI 24.0,25.2kg/m²). Those seeking social housing had lower levels of PA (by 19-42%) at weekends vs weekdays, compared with other housing groups. Positive perceptions of neighbourhood quality were associated with higher steps and lower BMI, with differences between social and

BMJ Open

2	
3	
Δ	
2	
6	
7	
8	
0	
9	
10	
11	
10	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	
23	
2/	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
32 33	
22	
34	
35	
36	
37	
20	
38	
32 33 34 35 36 37 38 39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	

58

59

60

intermediate groups reduced by ~10% following adjustment, equivalent to a reduction of 111 for steps and 0.5kg/m² for BMI.

Conclusions: The social housing group undertook less PA than other housing sectors, with weekend PA offering the greatest scope for increasing PA, and tackling adiposity in this group. Perceptions of neighbourhood quality were associated with PA and adiposity and reduced differences in steps and BMI between housing sectors. Moving to East Village may provide scope to encourage PA and reduce adiposity amongst the most disadvantaged.

Strengths and limitations of this study

- Large sample with representation of three different aspirational housing groups, providing a wide range of socioeconomic backgrounds
- Objective measurements of physical activity and adiposity outcomes using accelerometry and bioelectrical impedance respectively
- Lower number of participants studied seeking market-rent housing compared with those seeking intermediate or social housing

Keywords

Physical activity; Adiposity; Housing; Perceived neighbourhood environment; ENABLE-

London

Introduction

Physical inactivity and adiposity are associated with an increased risk of type 2 diabetes and cardiovascular disease (1-4) and constitute a serious public health problem in the UK and globally (5). Evidence suggests that levels of physical activity (PA) are lower among those who are socioeconomically disadvantaged (6), who experience greater economic, access and health related barriers to being physically active (7). Socioeconomic status is also associated with differences in types of PA, in particular higher socioeconomic status is associated with more vigorous leisure time PA (8). Previous research has found variation in PA by day of the week with studies showing lower levels of activity on Sundays compared with weekdays in young adults (9), parents and their children (10).

There is emerging evidence suggesting that housing tenure is an important determinant of health. In particular, UK-based studies have shown that housing tenure (owner vs. private renter vs. public sector renter) is associated with illness and mortality (15;16). Amongst particular groups including those who are economically inactive or unemployed, housing tenure might provide a better indication of socioeconomic status compared with measures based on occupation or income (11). Indeed, in several studies housing tenure remained associated with health outcomes following adjustment for conventional measures of socioeconomic status such as income or education (12;13). A more nuanced approach is therefore required with respect to measures of socioeconomic status, and they should not be simply regarded as interchangeable (14;15). Despite this, there has been limited research examining the direct effect of housing tenure on PA, and existing evidence is equivocal. Harrison and colleagues found no association between housing tenure and meeting recommended levels of PA among community dwelling healthy adults in the North-East of

BMJ Open

England (16). Similarly housing tenure was not associated with self-reported energetic PA among older Australians (17). Ogilvie and colleagues found overall levels of PA to be higher among individuals living in social rented accommodation compared with owner-occupiers (18). The authors suggest that may capture occupational PA levels which are likely to be higher among social renters (18). In contrast, living in private rental accommodation was associated with a greater likelihood of taking up exercise over a 9-year period among men aged 18-49 at baseline, compared with those in local authority accommodation (19).

Housing tenure may affect health and health behaviours in part through characteristics of the home or neighbourhood itself (20;21) or psychological factors such as self-efficacy or self-esteem (22). Social housing estates which are common in the UK may be associated with specific cultures and norms, which in turn shape residents' behaviours (13). Subjective characteristics of the neighbourhood environment including higher perceived access to recreational facilities and shops in local proximity have been shown to be associated with higher levels of PA (23;24). Residents who perceive their neighbourhood more positively, have been shown to have better mental health and are less likely to relocate (25). Conversely, real and perceived crime, has the potential to constrain resident's PA (26). However, a recent systematic review suggested a lack of association between PA and perceptions of safety from crime; highlighting the need for high quality evidence, including prospective studies and natural experiments (27), to examine this issue further. In particular, high quality evidence is needed to understand the potentially multifactorial influence of residential location on health and health behaviours; effects which are likely to extend beyond simple measures of socioeconomic status (27).

The Examining Neighbourhood Activities and Built Living Environments in London (ENABLE London) study is a longitudinal study evaluating how active urban design influences the health and wellbeing of people moving in to the former Athletes' Village of the London 2012 Olympic and Paralympic Games now known as 'East Village' (28). East Village is a new highdensity neighbourhood development built on active design principles containing a mix of social housing, intermediate (including affordable rent, shared ownership and shared equity) housing, and market-rent housing. This paper draws on baseline data (prior to any potential move to East Village) to first, examine predictors of PA and adiposity (measured objectively using accelerometry and bioelectrical impedance), including the housing sector to which they are applying and perceptions of their neighbourhood. Second, to examine whether PA patterns across the week vary by housing sector and third, to examine whether adjustment for perceptions of the neighbourhood environment reduce housing sector differences in PA and adiposity.

Methods

Study participants were recruited from those seeking new accommodation in East Village and were classified by the type of housing tenure sought; social, intermediate or marketrent. Current housing status was strongly linked to aspirational housing status, where those seeking social accommodation were currently in social housing or on social housing waiting lists, and those seeking intermediate and market-rent accommodation were largely in privately rented housing. Recruitment of participants in the different housing sectors was carried out between January 2013 and December 2015 in three phases determined by the order of availability of housing in East Village (social, intermediate, and market-rent respectively). Social housing is provided by the local authority or housing association at

Page 6 of 28

BMJ Open

subsidised rates. Baseline assessments of participants were carried out in their place of residence before any potential move to East Village. Full details of the recruitment process can be found elsewhere (28).

Independent variables

A team of trained fieldworkers administered self-complete questionnaires on a laptop during home visits. Data on age, sex, self-defined ethnicity, work status, occupation and whether the participant had a limiting longstanding illness or disability (lasting or expected to last at least 12 months) were collected. Participants self-defined as 'White', 'Asian', 'Black', 'Mixed', or 'Other'; the latter two categories were combined for analyses. Socioeconomic status based on occupation was coded using the National Statistics Social-Economic Coding (NS-SEC) to categorise participants into 'higher managerial or professional occupations', 'intermediate occupations', 'routine or manual' (28). An additional 'economically inactive' category included those seeking employment, unable to work due to disability or illness, retired, looking after home and family, and students. We sought information on educational attainment; participants were categorised into "Degree or equivalent / Higher", "Intermediate qualifications" (including A levels and GSCEs), and "Other / None" (including work-based or foreign gualifications). Participants completed questionnaires assessing neighbourhood perceptions. Five items assessed perceived crime (e.g "There is a lot of crime in my neighbourhood"; Cronbach's $\alpha = 0.87$) and six items assessed neighbourhood quality (e.g. "This area is a place I enjoy living in"; Cronbach's α =0.78). Responses on items were summed and scores ranged from -10 to +10 for perceived crime and -12 to +12 for perceived quality, such that positive scores indicate less perceived crime and better neighbourhood quality while negative scores indicate more perceived

crime and poorer quality. The scales were derived following an exploratory factor analysis of 14 questions regarding neighbourhood (Supplementary Table 1).

Dependent variables

Height was measured to the last complete millimetre using a portable stadiometer; weight was measured to the nearest kilogram using a Tanita SC-240 Body Composition Analyzer (Tanita, Tokyo, Japan); body mass index (BMI) was derived as weight(kg)/height(m)². The Tanita SC-240 Body Composition Analyzer also measured leg-to-leg bioelectrical impedance from which fat free mass and fat mass were estimated. Fat mass percentage was calculated as fat mass(kg)/weight(kg)*100.

Participants wore a hip-mounted ActiGraph GT3X+ accelerometer during waking hours over a consecutive period of 7 days (ActiGraph LLC, Florida, USA). These accelerometers provided daily measures of steps, counts and time spent in moderate and vigorous PA (MVPA) using established cut-offs. Daily time spent in MVPA both overall and in 10 minute bouts in accordance with UK recommendations for PA (30) were assessed. The cut-point for moderate PA was defined as 5724 counts per minute (31). We excluded any days of recording where the amount of registered time accumulated was below 540 minutes (32). Non-wear periods were defined as a minimum length of 60 minutes, allowing for a 2-minute spike tolerance. Participants with at least one day of recording were retained in analyses. We fitted a multilevel linear model for each outcome to allow for repeated measurements of daily PA, by fitting participant as a random effect and adjusting for day of the week, day order of recording and month as fixed effects. Raw level one residuals were obtained from the model and a within person average value of each outcome variable was obtained by

BMJ Open

averaging these raw residuals. The average of these raw residuals for each participant was added to the sample mean for that particular PA variable to derive an unbiased average level of each PA variable for each person.

Statistical analysis

All analyses were carried out using STATA/SE software (Stata/SE 14 for Windows; StataCorp LP, College Station, TX, USA). Outcome variables were inspected for normality and BMI was log transformed due to its skewed distribution. Multilevel linear regression models were fitted, mutually adjusted for housing sector and participant characteristics (sex, age group, ethnic group, and limiting longstanding illness) as fixed effects and a random effect to allow for household clustering. Absolute differences or percentage differences for are presented by sex, age group, ethnic group, limiting longstanding illness and housing sector. Sensitivity analyses examined whether associations remained when the sample was restricted to 931 participants (84%) with at least four days of 540 or more minutes per day of recording.

To assess differences in PA by day of the week as opposed to overall levels of PA we took the following approach. Daily PA data were examined using multilevel models with random effects to allow for multiple days of recording within person and household clustering. An interaction between housing sector and day of the week was fitted and models were adjusted for sex, age group, ethnic group, limiting longstanding illness, day order of recording and month of measurement as fixed effects.

Associations between perceptions of neighbourhood crime and quality with adiposity/PA outcomes were assessed. The effect of adjustment for neighbourhood perceptions in

addition to adjustment for participant characteristics using multilevel models as described above on differences in outcomes between housing sector groups was also examined.

Results

Of 1819 households who consented to initial contact by the study team, 1278 participants from 1006 households (55%) were enrolled in the study and completed a questionnaire. Participation rates for those seeking market-rent and intermediate housing were 58% and 57% respectively and were slightly lower in the social group (52%). Complete data on adiposity were available for 1240 participants (97%); of these a sub-set of 1107 participants (89%) met the inclusion criteria for analyses of objectively measured PA. Participant characteristics (age, sex) and levels of adiposity were similar among those who did and did not provide PA data; however, participants from black and Asian ethnic groups were less likely to provide PA data. Supplementary Table 2 shows participants characteristics at baseline for the 1240 adults with measurements of adiposity at baseline. Those seeking social housing were more likely to be female, of older age, of non-white ethnicity, to have limiting longstanding illness, and be in routine / manual occupations or economically inactive compared to those seeking intermediate or market-rent housing.

Adjusted mean levels of adiposity and PA outcomes by housing sector and participant characteristics are shown in Supplementary Table 3. Table 1 shows housing sector and other participant characteristics associations with adiposity markers (BMI, fat mass %) and objectively measured PA (steps, time spent in MVPA, time spent in MVPA in 10 minute bouts). Participants seeking social housing had markedly higher levels of BMI and fat mass % and markedly lower levels of steps, MVPA and MVPA in 10 minute bouts compared with

BMJ Open

those seeking intermediate housing, though there were no differences between those seeking market-rent and intermediate accommodation.

Fat mass % was higher in females than males though there was no difference in BMI (Table 1). BMI and fat mass % were higher among all older age groups compared with 16-24 year olds. Participants of black ethnicity had higher levels of BMI and fat mass % compared with whites; there were no differences in adiposity between Asian or other/mixed ethnic groups and whites. Those with a limiting longstanding illness had higher levels of both BMI and fat mass %. All PA measures were lower among females. Steps and MVPA were slightly higher in 25-34 year olds and steps were also higher among 35-49 year olds compared with 16-24 year olds; however, there were no age group differences for MVPA in 10 minute bouts. Participants of black and Asian ethnicities had lower levels of steps, MVPA and MVPA in 10 minute bouts compared to whites. Participants who reported having a limiting longstanding illness had lower levels of steps and MVPA, but not MVPA in 10 minute bouts. Educational attainment level was not associated with any of the outcomes once housing sector had been adjusted for and adjustment for educational attainment did not materially alter housing sector differences in adiposity or PA outcomes (data available from authors).

Sensitivity analyses for PA outcomes were carried out in 931 participants who wore an ActiGraph for at least four days with at least 540 minutes of recording per day (Supplementary Table 4). There were no differences between market-rent and intermediate groups (consistent with the main analysis presented in Table 1). Differences between social and intermediate groups were broadly similar with the results presented in Table 1 for the main analysis.

Differences in PA variables between housing groups were examined by day of the week to explore whether differences between groups were consistent across the week (Figure 1A-D). Levels of PA (steps (panel A), MVPA (panel B) and MVPA in 10 minute bouts (panel C)) were generally consistent across weekdays (Monday – Friday) among all groups. In the intermediate group, steps were higher on Saturdays and lower on Sundays; MVPA and MVPA in 10 minute bouts were lower on Sundays but there was no difference on Saturdays compared to weekday activity. In the market-rent group, steps, MVPA and MVPA in 10 minute bouts were higher on Saturdays and similar to weekdays on Sundays. In the social group, steps, MVPA and MVPA in 10 minute bouts were on average lower on Saturdays and lower still on Sundays. Registered time (panel D) was lowest on average in the social group during weekdays, decreasing on Saturdays and Sundays. The intermediate and market-rent groups had higher levels of registered time during weekdays compared with the social group which decreased on average on Saturdays and Sundays (despite recording more steps and minutes in MVPA suggesting a higher intensity of activity). Mean levels of steps, MVPA, and MVPA in 10 minute bouts on weekdays and differences on Saturday and Sunday compared to weekdays are shown by housing sector in Supplementary Table 5. The marked differences in activity between weekdays and weekend days in the social group are not explained by differences in registered time (data available from authors).

Associations between perceived neighbourhood quality and crime scales and adiposity and PA outcomes are shown in Table 2, adjusted for the participant characteristics shown in Table 1. All associations between perceived neighbourhood quality and crime and outcome variables were approximately linear and were therefore fitted as continuous variables in the model. In addition, associations between perceived neighbourhood quality and crime and

BMJ Open

outcome variables were similar across the three housing groups (all p>0.05). The differences between the highest and lowest quintile of each scale are presented for perceptions of neighbourhood quality (median: 4, IQR: 0, 7) and neighbourhood crime (median: 2, IQR: -1, 5). Participants with the most positive perceptions of neighbourhood quality (highest quintile) had lower BMI, higher steps and recorded longer durations of MVPA compared with those who had the most negative perceptions of neighbourhood quality (lowest quintile). There were no significant associations between perceptions of neighbourhood crime and adiposity or PA.

The effect of adjustment for perceived neighbourhood quality on differences in adiposity and PA between housing sector groups is presented in Table 3. Adjustment for perceptions of neighbourhood quality reduced differences in BMI, fat mass %, steps, MVPA and MVPA in 10 minute bouts between the social and intermediate groups by 10%, 6%, 10%, 10% and 7% respectively. Differences between market-rent and intermediate groups in adiposity and PA variables were not statistically significant before or after adjustment. A larger proportion of the social-intermediate group differences in steps, MVPA and MVPA in 10 minute bouts on weekends was explained by adjustment for perceptions of neighbourhood quality (11%, 16% and 17% respectively) compared to the differences in steps, MVPA and MVPA in 10 minute bouts on weekdays which were reduced by 10%, 8% and 3% respectively.

Discussion

The results of this study showed that participants seeking social housing in East Village had lower levels of PA and higher levels of adiposity compared with those seeking intermediate and market-rent housing, even when adjusted for demographic factors. In the social

housing group, levels of PA were particularly low on weekends compared with weekdays possibly reflecting higher occupational PA and lower leisure time PA; weekday-weekend differences in PA were less marked among those seeking intermediate and market-rent housing. However, the lower registered time at weekends but higher MVPA and steps suggests more intense activity at weekends in the intermediate and market-rent housing groups. These findings may inform targeted interventions to increase PA and reduce adiposity in different socioeconomic groups.

Positive associations between perceived neighbourhood quality and PA and adiposity were also shown. Adjustment for differences in perceived neighbourhood quality reduced differences in PA and adiposity by approximately 10% between social and intermediate housing groups; equivalent to a reduction of 111 for daily steps, 0.5 minutes for MVPA and 0.5kg/m² for BMI. However, a larger proportion of the difference in PA was apparent at weekends; equivalent to a reduction of 222 for daily steps and 2.2 minutes for MVPA.

Relation to previous studies

Studies have shown that lower socioeconomic status is associated with lower levels of PA (33;34), and that those from more socially deprived backgrounds have the most barriers to being physically active (7). Previous research examining the role of housing tenure is limited. Findings from this study showed marked differences in PA and adiposity between those seeking social, intermediate and market-rent housing. In particular, lower PA and higher adiposity in participants seeking social housing, a group which comprises a high proportion of people from more socioeconomically disadvantaged backgrounds (28). The higher levels of adiposity in those seeking social housing compared with those seeking intermediate or

Page 15 of 36

1 2

BMJ Open

2 3 4	
5 6	
7 8 9	
10 11	
12 13 14	
15 16	
17 18 19	
20 21	
22 23 24	
24 25 26	
27 28 29	
30 31	
32 33 34	
35 36 37	
37 38 39	
40 41	
42 43 44	
45 46	
47 48 49	
50 51	
52 53 54	
55 56	
57 58 59	
60	

market-rent housing is consistent with systematic reviews which have found an association between lower socioeconomic status and higher levels of adiposity, particularly in higher income countries and among women (35). While socioeconomic status is a strong determinant of housing status, to our knowledge this is the first study to explicitly examine housing sector differences in objective PA and adiposity levels. However, it is important to consider more broadly what these aspirational housing sector differences might represent. Related studies have shown that those in social housing are less likely to use active travel compared with owner occupiers (18), and that those in social housing and home owners with a mortgage are more likely to be obese and have higher levels of illness and disability compared to outright home owners, even after adjustment for other socioeconomic status markers (36). These latter findings suggest that the effect of home ownership may be more complex and cannot be simply explained by socioeconomic status. Neighbourhood quality may offer a potential partial explanation for these findings (37). In the present study perceptions of better neighbourhood quality were associated with PA whereas perceptions of crime were not. In contrast, a large UK-based study found that perceptions of feeling safe in the neighbourhood had the largest effect on levels of PA compared with perceptions of leisure facilities, sense of belonging or access to public transport or amenities (38). Another study in the US found that low perceived safety from crime was associated with lower levels of MVPA (39). However, a recent review concluded that higher quality evidence is needed, including prospective studies and natural experiments in areas of wide crime variability, in order to further understand the effect of crime on physical and mental health (27). Moreover, effects of perceived and objective measures of neighbourhood quality may have differing and potentially independent effects on health behaviours including PA (40).

Our findings showed that PA levels were particularly low on the weekend among those seeking social housing, which is consistent with findings from a systematic review which found that leisure-time PA (which may be more likely to occur on weekends) was lower amongst those from lower socioeconomic groups (8). This suggests that low-cost strategies to increase weekend PA may be particularly beneficial to more disadvantaged households. A free community-based program in Bogata Colombia, temporarily closed streets on Sundays to encourage PA amongst more disadvantaged local residents (41). A similar program has been trialled in the United States (42), however the effectiveness, longevity and generalisability of these programs to other socioeconomically deprived areas is yet to be established.

Strengths and limitations

Strengths of this study include the representation of three different aspirational housing groups which provides a wide range of socioeconomic backgrounds. Of those seeking social housing, two-thirds (67%) were currently living in social housing accommodation provided by the local authority or housing association; the remainder were largely currently living in privately rented accommodation with many on social housing waiting lists. Of those seeking intermediate or market-rent accommodation, almost two-thirds were living in privately rented accommodation (both 64%); the remainder were largely living with relatives or friends. The study sample is large with good representation from a 'hard to reach' group of social housing participants. Participation rates were high given the target group, with between 50-60% of those who initially agreed to be contacted taking part in the study. The ActiGraph GT3X+ accelerometer provided validated objective measures of PA (43) and the use of bioelectrical impedance to provide more direct measurements of adiposity including

BMJ Open

fat mass %, which may provide a more valid marker of adiposity than BMI, particularly in a multi-ethnic population (44;45). Reassuringly the patterns of PA by sex, ethnic group and health status were consistent with those published previously (46-48). A limitation of the study is the lower number of participants in the market-rent sector compared with the other groups. This was due to restrictions imposed on the study team on the extent and duration of access to potential applicants seeking market-rent accommodation. While the study is longitudinal, these analyses are cross-sectional limiting the degree to which causal inferences can be made. Moreover, there is the possibility of selection amongst study participants, where those who are more active seek to move to East Village, may be more likely to participate in the study and may perceive their environment differently, which may limit the generalisability of the findings to neighbourhoods outside of East London.

Conclusions and future work

The findings presented in this paper suggest that perceived neighbourhood quality is associated with PA and that there are substantial differences in PA and adiposity levels between the three housing groups studied. In particular the very low levels of PA in the social housing group during the weekend could provide a target for intervention to increase levels of PA. Perceptions of neighbourhood quality reduced differences in PA and adiposity between housing sector groups, and the possibility of measuring more objective markers of neighbourhood quality within this study has the potential to explain more (40). The future follow-up of the ENABLE London cohort will allow us to examine whether moving to 'East Village', a neighbourhood designed for healthy active living, will have a positive impact on PA and/or adiposity levels. A major aim of the study is to identify features of the local built environment that increase levels PA which could potentially help to reduce socioeconomic

inequalities in health. It will be of particular interest to determine whether an increase in PA is more apparent in the social housing group whose neighbourhood characteristics should improve. Furthermore, we will be in a position to examine whether any potential effects of the built environment on PA are modified by housing sector type.

<text><text><text>

Ethical approval

Full ethical approval was obtained from the relevant Multi-Centre Research Ethics Committee (REC Reference 12/LO/1031). All participants provided written informed consent.

Availability of data and material

Further details of the ENABLE London study are available from the study website (http://www.enable.sgul.ac.uk/). The ongoing collection and management of data has been made possible through grant funding from the Medical Research Council and the National Institute of Health Research. We welcome proposals for collaborative projects. For general data sharing inquiries, contact Professor Owen (<u>cowen@sgul.ac.uk</u>).

Competing interests

We declare that we have no competing interests.

Funding

This research is being supported by project grants from the Medical Research Council National Prevention Research Initiative (MR/J000345/1) and National Institute for Health Research (12/211/69). Diabetes and obesity prevention research at St George's, University of London is supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London. AE is funded by the UK Medical Research Council as part of the Neighbourhoods and Communities Programme (MC_UU_12017-10). BG-C is supported by an NHMRC Principal Research Fellowship (#1107672). ARC is supported by National Institute for Health Research (NIHR) Bristol Nutrition Biomedical Research Unit based at University Hospitals Bristol NHS Foundation Trust and the University of Bristol.

Authorship statement

CGO, ARR, AE, ARC, DL, SC, BG-C, DGC and PHW designed the study and raised funding. BR, ARR, CC, DP and CGO collected data for the study; BR, ARR and CGO enrolled participants. CMN, BR, ARR, CC, DP and CGO undertook data management. CMN analysed the data and wrote the first draft of the report. ARR, BR, AS, DP, ARC, ASP, AE, BG-C, CC, DL, SC, PHW, DGC and CGO critically appraised the manuscript and approved the final draft. CGO is responsible for data integrity.

Acknowledgements

The authors thank the East Thames Group, Triathlon Homes and Get Living London who have assisted in recruiting participants into the ENABLE London study. The ENABLE London study is advised by a Steering Committee chaired by Professor Hazel Inskip (University of Southampton), with Dr David Ogilvie (University of Cambridge) and Professor Andy Jones (University of East Anglia) as academic advisors and Mrs Kate Worley (formerly East Thames Group Assistant Director for Strategic Housing) as the lay/stakeholder member. The authors are grateful to the members of the ENABLE London study team (in particular Aine Hogan, Katrin Peuker, Cathy McKay) and to participating households, without whom this study would not be possible.

References

- (1) Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol 1997;146:214-22.
- (2) Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and metaanalysis. Eur J Cardiovasc Prev Rehabil 2008;15:239-46.
- (3) Shaper AG, Wannamethee SG, Walker M. Body weight: implications for the prevention of coronary heart disease, stroke, and diabetes mellitus in a cohort study of middle aged men. BMJ 1997;314:1311-7.
- (4) Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009;373:1083-96.
- (5) Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
- (6) Health Survey for England. Health Survey for England 2012: Health, social care and lifestyles. The Information Centre; 2013 Dec.
- (7) Chinn DJ, White M, Harland J, Drinkwater C, Raybould S. Barriers to physical activity and socioeconomic position: implications for health promotion. J Epidemiol Community Health 1999;53:191-2.
- (8) Beenackers MA, Kamphuis CB, Giskes K, Brug J, Kunst AE, Burdorf A, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act 2012;9:116.
- (9) McVeigh JA, Winkler EA, Howie EK, Tremblay MS, Smith A, Abbott RA, et al. Objectively measured patterns of sedentary time and physical activity in young adults of the Raine study cohort. Int J Behav Nutr Phys Act 2016;13:41.
- (10) Sigmundova D, Sigmund E, Vokacova J, Kopkova J. Parent-child associations in pedometerdetermined physical activity and sedentary behaviour on weekdays and weekends in random samples of families in the Czech Republic. Int J Environ Res Public Health 2014;11:7163-81.
- (11) Smith GD, Egger M. Socioeconomic differences in mortality in Britain and the United States. Am J Public Health 1992;82:1079-81.
- (12) Dalstra JA, Kunst AE, Mackenbach JP. A comparative appraisal of the relationship of education, income and housing tenure with less than good health among the elderly in Europe. Soc Sci Med 2006;62:2046-60.
- (13) Ellaway A, Macdonald L, Kearns A. Are housing tenure and car access still associated with health? A repeat cross-sectional study of UK adults over a 13-year period. BMJ Open 2016;6:e012268.

(14) Macintyre S, Hiscock R, Kearns A, Ellaway A. Housing tenure and car access: further exploration of the nature of their relations with health in a UK setting. J Epidemiol Community Health 2001;55:330-1.

- (15) Macintyre S, McKay L, Der G, Hiscock R. Socio-economic position and health: what you observe depends on how you measure it. J Public Health Med 2003;25:288-94.
- (16) Harrison RA, McElduff P, Edwards R. Planning to win: Health and lifestyles associated with physical activity amongst 15,423 adults. Public Health 2006;120:206-12.
- (17) Kendig H, Browning C, Teshuva K. Health actions and social class among older Australians. Aust N Z J Public Health 1998;22:808-13.
- (18) Ogilvie D, Mitchell R, Mutrie N, Petticrew M, Platt S. Personal and environmental correlates of active travel and physical activity in a deprived urban population. Int J Behav Nutr Phys Act 2008;5:43.
- (19) Boniface DR, Cottee MJ, Neal D, Skinner A. Social and demographic factors predictive of change over seven years in CHD-related behaviours in men aged 18-49 years. Public Health 2001;115:246-52.
- (20) Macintyre S, Ellaway A, Hiscock R, Kearns A, Der G, McKay L. What features of the home and the area might help to explain observed relationships between housing tenure and health? Evidence from the west of Scotland. Health Place 2003;9:207-18.
- (21) Ellaway A, Macintyre S. Does housing tenure predict health in the UK because it exposes people to different levels of housing related hazards in the home or its surroundings? Health Place 1998;4:141-50.
- (22) Macintyre S, Ellaway A, Der G, Ford G, Hunt K. Do housing tenure and car access predict health because they are simply markers of income or self esteem? A Scottish study. J Epidemiol Community Health 1998;52:657-64.
- (23) Hoehner CM, Brennan Ramirez LK, Elliott MB, Handy SL, Brownson RC. Perceived and objective environmental measures and physical activity among urban adults. Am J Prev Med 2005;28:105-16.
- (24) Sallis JF, Bowles HR, Bauman A, Ainsworth BE, Bull FC, Craig CL, et al. Neighborhood environments and physical activity among adults in 11 countries. Am J Prev Med 2009;36:484-90.
- (25) Giles-Corti B, Ryan K, Foster S. Increasing density in Australia: Maximising the benefits and minimising the harm. National Heart Foundation of Australia; 2012.
- (26) Foster S, Giles-Corti B. The built environment, neighborhood crime and constrained physical activity: an exploration of inconsistent findings. Prev Med 2008;47:241-51.
- (27) da Silva IC, Payne VL, Hino AA, Varela AR, Reis RS, Ekelund U, et al. Physical Activity and Safety From Crime Among Adults: A Systematic Review. J Phys Act Health 2016;13:663-70.
- (28) Ram B, Nightingale CM, Hudda MT, Kapetanakis VV, Ellaway A, Cooper AR, et al. Cohort profile: Examining Neighbourhood Activities in Built Living Environments in London: the ENABLE London-Olympic Park cohort. BMJ Open 2016;6:e012643.

(29)	Office for National Statistics. The National Statistics Socio-economic Classification User Manual. 2005.
(30)	Department of Health. Start active, stay active: a report on physical activity from the four home countries Chief Medical Officers. Department of Health; 2011.
(31)	Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 1998;30:777-81.
(32)	Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, et al. Effect of a Primary Care Walking Intervention with and without Nurse Support on Physical Activity Levels in 45- to 75- Year-Olds: The Pedometer And Consultation Evaluation (PACE-UP) Cluster Randomised Clinical Trial. PLoS Med 2017;14:e1002210.
(33)	Allen MS, Vella SA. Longitudinal determinants of walking, moderate, and vigorous physical activity in Australian adults. Prev Med 2015;78:101-4.
(34)	Juneau CE, Sullivan A, Dodgeon B, Cote S, Ploubidis GB, Potvin L. Social class across the life course and physical activity at age 34 years in the 1970 British birth cohort. Ann Epidemiol 2014;24:641-7, 647.
(35)	McLaren L. Socioeconomic status and obesity. Epidemiol Rev 2007;29:29-48.
(36)	Tranter B, Donoghue J. Housing tenure, body mass index and health in Australia. International Journal of Housing Policy 2016;1:1-20.
(37)	Turrell G, Haynes M, Wilson LA, Giles-Corti B. Can the built environment reduce health inequalities? A study of neighbourhood socioeconomic disadvantage and walking for transport. Health Place 2013;19:89-98.
(38)	Harrison RA, Gemmell I, Heller RF. The population effect of crime and neighbourhood on physical activity: an analysis of 15,461 adults. J Epidemiol Community Health 2007;61:34-9.
(39)	Brown BB, Werner CM, Smith KR, Tribby CP, Miller HJ. Physical activity mediates the relationship between perceived crime safety and obesity. Prev Med 2014;66:140-4.
(40)	McGinn AP, Evenson KR, Herring AH, Huston SL, Rodriguez DA. Exploring associations between physical activity and perceived and objective measures of the built environment. J Urban Health 2007;84:162-84.
(41)	Sarmiento O, Torres A, Jacoby E, Pratt M, Schmid TL, Stierling G. The Ciclovia-Recreativa: A mass-recreational program with public health potential. J Phys Act Health 2010;7 Suppl 2:S163-S180.
(42)	Hipp JA, Eyler AA, Zieff SG, Samuelson MA. Taking physical activity to the streets: the popularity of Ciclovia and Open Streets initiatives in the United States. Am J Health Promot 2014;28:S114-S115.
(43)	Santos-Lozano A, Santin-Medeiros F, Cardon G, Torres-Luque G, Bailon R, Bergmeir C, et al. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med 2013;34:975-82.

(44) Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 1998;22:1164-71.

- (45) Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1996;143:228-39.
- (46) Hayes L, White M, Unwin N, Bhopal R, Fischbacher C, Harland J, et al. Patterns of physical activity and relationship with risk markers for cardiovascular disease and diabetes in Indian, Pakistani, Bangladeshi and European adults in a UK population. J Public Health Med 2002;24:170-8.
- (47) Health and Social Care Information Centre. Health Survey for England 2004: The health of ethnic minority groups. The Information Centre; 2006.
- (48) Health and Social Care Information Centre. Health Survey for England 2008: Physical activity and fitness. NHS Digital; 2009.

Page 24 of 28 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

							Differenc	e/% diffe	rence* in adipos	ity/physica	activity					
	n		BMI (kg/m ²)*			Fat mass %			Steps†			nutes spent in M	VPA†	Min	utes spent in MV minute bouts ⁻	
Sex																
Male (Ref)	522			-			-			-			-			
Female	718	-1.16	(-3.17, 0.89)	0.26	11.11	(10.25, 11.98)	<0.0001	-570	(-946, -194)	0.003	-9.29	(-12.21, -6.36)	<0.0001	-4.06	(-6.12, -2.01)	<0.00
Age group Age 16-24 (Ref)	269			í Q	-		-			-			-			
Age 25-34	531	6.26	(3.51, 9.08)	<0.0001	3.20	(2.10, 4.31)	<0.0001	502	(11, 992)	0.04	4.03	(0.19, 7.87)	0.04	0.95	(-1.87, 3.77)	0.5
Age 35-49	358	13.35	(10.16, 16.63)	<0.0001	6.36	(5.16, 7.56)	<0.0001	699	(173, 1,224)	0.01	3.85	(-0.25, 7.95)	0.07	-1.11	(-4.05, 1.83)	0.4
Age 50+	82	17.61	(12.55, 22.89)	<0.0001	9.18	(7.33, 11.03)	<0.0001	-9	(-832, 813)	0.98	-5.98	(-12.43, 0.47)	0.07	-2.04	(-6.79, 2.72)	0.4
Ethnic group																
White (Ref)	595			-						-			-			
Black	314	6.23	(3.26, 9.28)	<0.0001	3.63	(2.44, 4.83)	<0.0001	-1,116	(-1,657, -575)	<0.0001	-7.42	(-11.68, -3.17)	<0.001	-6.61	(-9.82, -3.41)	<0.000
Asian	210	-0.28	(-3.14, 2.67)	0.85	0.02	(-1.20, 1.25)	0.97	-1,409	(-1,972, -845)	<0.0001	-11.46	(-15.89, -7.03)	<0.0001	-8.11	(-11.43, -4.79)	<0.000
Other/Mixed Limiting illness	121 108	1.29	(-2.27, 4.98)	0.48	1.04	(-0.47, 2.55)	0.18	-430	(-1,100, 239)	0.21	-4.57	(-9.83, 0.69)	0.09	-3.95	(-7.86, -0.04)	0.0
No (Ref)	7			-			-			-			-			
Yes Housing sector	153	4.29	(1.13, 7.55)	0.01	1.63	(0.33, 2.92)	0.01	-1,081	(-1,666, -496)	<0.001	-5.69	(-10.27, -1.12)	0.01	-2.78	(-6.10, 0.55)	0.1
Social Intermediate (Ref)	512 503	4.96	(2.21, 7.78)	<0.001	2.66	(1.54, 3.78)	<0.0001	-1,125	(-1,629, -620)	<0.0001	-7.53	(-11.50, -3.55)	<0.001	-6.49	(-9.50, -3.48)	<0.000
Market-rent	225	-0.81	(-3.56, 2.02)	0.57	-0.23	(-1.42, 0.96)	0.70	-104	(-633, 424)	0.70	2.26	(-1.90, 6.42)	0.29	2.82	(-0.35, 5.98)	0.0

* Percentage differences are presented for log transformed variables

All differences/% differences are mutually adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level

+ Missing data for 133 participants

Table 2: Associations between neighbourhood perceptions scales and adiposity and physical activity

Adiposity (N = 1240)		Difference / % difference in outcome between the highest and lowest quintiles for each neighbourhood factor (95% CI), p-value Perceptions of NH quality scale Perceptions of NH crime scale							
Body mass index (kg/m ²)*	-3.58	(-6.47, -0.60)	0.02	-2.15	(-5.45, 1.26)	0.21			
Fat mass %	-1.23	(-2.51, 0.06)	0.06	-0.76	(-2.20, 0.69)	0.30			
Physical activity (N = 1107)									
Steps	677.49	(107.99, 1,246.99)	0.02	- 63.05	(-713.40, 587.31)	0.85			
MVPA (minutes)	4.49	(0.02, 8.95)	0.05	1.06	(-4.03, 6.16)	0.68			
MVPA in 10 minute bouts									
(minutes)	2.67	(-0.63, 5.97)	0.11	2.37	(-1.39, 6.13)	0.22			

* % differences are shown for log transformed variables

All differences/% differences are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household ; group, limiting ione level.

Abbreviations: NH, neighbourhood

BMJ Open

		Diffe	rence / % difference co	* compared nfidence int			oup (95%
	Housing				Mode	l 2 (Additionally ad	justed for
Adiposity (N = 1240)	sector group		Model 1		nei	ghbourhood quality	/ scale)
	Social	4.96	(2.21, 7.78)	<0.001	4.45	(1.67, 7.31)	0.002
Body mass index (kg/m ²)*	Intermediate			Referen	ce group		
	Market rent	-0.81	(-3.56, 2.02)	0.57	-0.85	(-3.60, 1.98)	0.55
	Social	2.66	(1.54, 3.78)	<0.0001	2.49	(1.35, 3.63)	<0.0001
Fat mass %	Intermediate			Referen	ce group		
	Market rent	-0.23	(-1.42, 0.96)	0.70	-0.25	(-1.43, 0.94)	0.68
Physical activity (N = 1107)							
	Social	-1,125	(-1,629, -620)	< 0.0001	-1,016	(-1,531, -501)	<0.001
Steps	Intermediate			Referen	ce group		
	Market rent	-104	(-633, 424)	0.70	-96	(-624, 431)	0.72
	Social	-7.53	(-11.50, -3.55)	<0.001	-6.76	(-10.81, -2.71)	0.001
MVPA (minutes)	Intermediate			Referen	e group		
	Market rent	2.26	(-1.90, 6.42)	0.29	2.32	(-1.84, 6.47)	0.27
	Social	-6.49	(-9.50 <i>,</i> -3.48)	<0.0001	-6.03	(-9.10, -2.95)	<0.001
MVPA in 10 minute bouts (minutes)	Intermediate			Referen	ce group		
	Market rent	2.82	(-0.35 <i>,</i> 5.98)	0.08	2.85	(-0.31, 6.01)	0.08

* % differences are shown for log transformed variables

Model 1 is adjusted for sex, age group, ethnic group, limiting longstanding illness and clustering at household level (random effect)

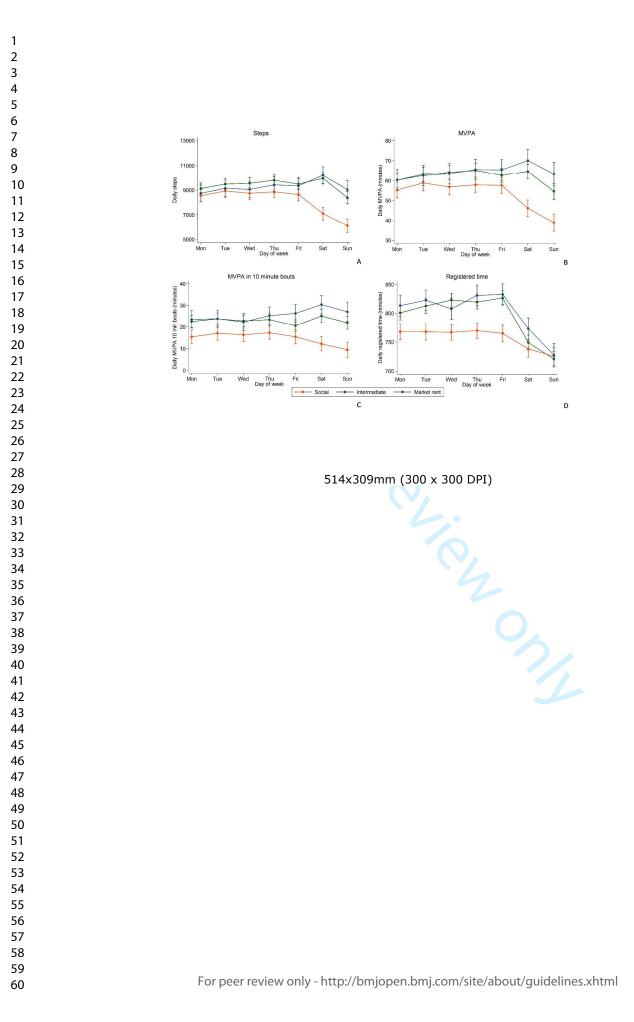

Model 2: Adjusted for Model 1 plus perceived neighbourhood quality

Figure 1: Daily physical activity by day of the week and housing sector group: N = 6206 days from 1107 participants

 Means and 95% confidence intervals are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day order of recording, day of week, housing sector, an interaction between housing sector and day of week and random effects to allow for multiple days of measurement and clustering of participants within households

Page 29 of 36

BMJ Open

Supplementary material

Supplementary Table 1: Questionnaire items included the factor analysis on perceptions of the neighbourhood

Perceptions of neighbourhood crime iten		
There is a lot of crime in my neighbourhoo		
	nakes it unsafe to walk on the streets at night.	
There are threatening groups of young pe		
	nakes it unsafe to walk on the streets during the day.	
Vandalism, graffiti or deliberate damage t	o property is a problem in my local area.	
Perceptions of neighbourhood quality ite	ems	
I enjoy walking in my neighbourhood.		
This area is a place I enjoy living in.		
My neighbourhood is attractive to look at	(e.g. there are attractive buildings, green space. Landscaping views).	
This area has good leisure things for peop	le like myself, leisure centres or community centres for example.	
You often see people out on walks or ridir	ng their bicycles in my neighbourhood.	
This area has good local transport.		
Additional items included in the factor a	nalysis with factor loadings below 0.4 and were therefore not included in the solution	
My neighbourhood is generally free from	litter.	
There is too much traffic in my neighbour	hood	
Our neighbourhood streets have good ligh		
Our neighbourhood streets have good ligh Participants were asked to select a response fro		nor disagree, Disagree,
Our neighbourhood streets have good ligh	nting at night.	nor disagree, Disagree, Page

Page 31 of 36

 BMJ Open

			Hc	ousing sector					
		Social	Intermediate		Private		Total		
		(n = 512)		(n = 503)	((n = 225)	(N	= 1240)	р (X²)
Sex									
Male	137	(26.8%)	259	(51.5%)	126	(56.0%)	522	(42.1%)	
Female	375	(73.2%)	244	(48.5%)	99	(44.0%)	718	(57.9%)	<0.0001
Age group									
16-24	107	(20.9%)	92	(18.3%)	70	(31.1%)	269	(21.7%)	
25-34	129	(25.2%)	291	(57.9%)	111	(49.3%)	531	(42.8%)	
35-49	233	(45.5%)	102	(20.3%)	23	(10.2%)	358	(28.9%)	
50+	43	(8.4%)	18	(3.6%)	21	(9.3%)	82	(6.6%)	<0.0001
Ethnic group									
White	96	(18.8%)	342	(68.0%)	157	(69.8%)	595	(48.0%)	
Black	245	(47.9%)	53	(10.5%)	16	(7.1%)	314	(25.3%)	
Asian	107	(20.9%)	75	(14.9%)	28	(12.4%)	210	(16.9%)	
Mixed/Other	64	(12.5%)	33	(6.6%)	24	(10.7%)	121	(9.8%)	<0.0001
NS-SEC*									
Higher Managerial / Professional	60	(11.9%)	357	(71.4%)	150	(66.7%)	567	(46.1%)	
Intermediate Occupations	62	(12.3%)	77	(15.4%)	38	(16.9%)	177	(14.4%)	
Routine / Manual	125	(24.8%)	34	(6.8%)	10	(4.4%)	169	(13.7%)	
Economically inactive	258	(51.1%)	32	(6.4%)	27	(12.0%)	317	(25.8%)	<0.0001
Limiting illness									
Yes	102	(19.9%)	40	(8.0%)	11	(4.9%)	153	(12.3%)	
No	410	(80.1%)	463	(92.0%)	214	(95.1%)	1087	(87.7%)	<0.0001

Table - 1- -c 1. .

 $p\left(\chi^2\right)\!:$ p-value for Chi-squared test

* 10 responses missing for NS-SEC group

Sunnlamontar	u Tahla 2. Maar	lovals of adinasi	ty and physica	l activity by partic	inant characteristics
Supplementar	y Table 5. Weat	i levels ul aulpusi	ty and physica	activity by partic	ipant characteristics

					Mean/Geomet	tric mean* levels adiposity and physical activity						
	n	В	3MI (kg/m²)*		Fat mass %		Steps†		nutes spent in MVPA†		nutes spent in PA in 10 minute bouts†	
Sex												
Male	522	25.4	(25.0, 25.8)	20.4	(19.7, 21.0)	9,279	(8,991, 9,568)	64.8	(62.6, 67.1)	22.8	(21.1, 24.4)	
Female	718	25.1	(24.8, 25.5)	31.5	(30.9, 32.0)	8,709	(8,464, 8,954)	55.6	(53.6, 57.5)	18.7	(17.3, 20.1)	
Age group												
Age 16-24	269	23.5	(23.0, 24.0)	23.0	(22.1, 23.9)	8,534	(8,136, 8,932)	57.0	(53.9, 60.2)	20.5	(18.2, 22.8)	
Age 25-34	531	25.0	(24.6, 25.3)	26.2	(25.5, 26.8)	9,035	(8,744, 9,326)	61.1	(58.8, 63.3)	21.4	(19.7, 23.1)	
Age 35-49	358	26.6	(26.1, 27.1)	29.3	(28.5, 30.1)	9,232	(8,879, 9,585)	60.9	(58.1, 63.6)	19.4	(17.3, 21.4)	
Age 50+	82	27.6	(26.6, 28.7)	32.2	(30.5, 33.8)	8,525	(7,800, 9,249)	51.1	(45.4, 56.7)	18.4	(14.2, 22.7)	
Ethnic group												
White	595	24.9	(24.5, 25.2)	25.8	(25.1, 26.4)	9,491	(9,203, 9,779)	63.6	(61.3, 65.8)	23.7	(22.0, 25.4)	
Black	314	26.4	(25.8, 27.0)	29.4	(28.5, 30.3)	8,375	(7,961, 8,789)	56.2	(52.9, 59.4)	17.1	(14.7, 19.6)	
Asian	210	24.8	(24.2, 25.4)	25.8	(24.8, 26.8)	8,082	(7,608, 8,556)	52.1	(48.4, 55.8)	15.6	(12.8, 18.4)	
Other/Mixed	121	25.2	(24.4, 26.0)	26.8	(25.5, 28.1)	9,060	(8,465, 9,656)	59.0	(54.3, 63.7)	19.8	(16.3, 23.3)	
Limiting illness												
No	1087	25.1	(24.9, 25.4)	26.6	(26.1, 27.0)	9,077	(8,877, 9,277)	60.1	(58.6, 61.7)	20.8	(19.6, 21.9)	
Yes	153	26.2	(25.5, 27.0)	28.2	(27.0, 29.4)	7,996	(7,447, 8,545)	54.4	(50.1, 58.7)	18.0	(14.8, 21.1)	
Housing sector												
Social	512	26.0	(25.6, 26.5)	28.4	(27.6, 29.1)	8,298	(7,953, 8,642)	54.6	(51.8 <i>,</i> 57.3)	16.0	(14.0, 18.1)	
Intermediate	503	24.8	(24.4, 25.2)	25.7	(25.0, 26.4)	9,422	(9,110, 9,735)	62.1	(59.6 <i>,</i> 64.5)	22.5	(20.6, 24.4)	
Market-rent	225	24.6	(24.0, 25.2)	25.5	(24.5, 26.5)	9,318	(8,863, 9,773)	64.3	(60.8, 67.9)	25.3	(22.6, 28.1)	

* Geometric means are presented for log transformed variables

All means/geometric means are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level

⁺ Missing data for 133 participants

 BMJ Open

Supplementary Table 4: Associations between participant characteristics and physical activity variables in participants with at least 4 days of recording of physical
activity data

		Difference/% difference* in physical activity variable								
	n	Steps			Minutes spent in MVPA			Minutes spent in MVPA in 10 minute bouts		
Sex										
Male (Ref)	402		-			-			-	
Female	529	-559.1	(-946.6, -171.7)	0.005	-9.73	(-12.75, -6.71)	<0.0001	-4.65	(-6.78 <i>,</i> -2.53)	<0.0001
Age group										
Age 16-24 (Ref)	180		_			-			-	
Age 25-34	412	409.9	(-115.7, 935.6)	0.13	3.01	(-1.15, 7.16)	0.16	-0.26	(-3.28, 2.77)	0.87
Age 35-49	276	520.2	(-45.2, 1,085.6)	0.07	2.48	(-1.96, 6.92)	0.27	-2.50	(-5.67, 0.68)	0.12
Age 50+	63	-25.5	(-889.1, 838.1)	0.95	-7.94	(-14.78, -1.10)	0.02	-3.23	(-8.22, 1.76)	0.20
Ethnic group										
White (Ref)	482		-			$\mathbf{Q}_{\mathbf{I}}$			-	
Black	214	-1,213.5	(-1,788.9, -638.0)	<0.0001	-7.08	(-11.67, -2.49)	0.002	-6.46	(-9.87, -3.06)	<0.001
Asian	142	-1,128.3	(-1,718.8, -537.7)	<0.001	-10.29	(-14.99, -5.59)	<0.0001	-7.79	(-11.26, -4.32)	<0.0001
Other/Mixed	93	-581.5	(-1,273.4, 110.4)	0.10	-4.73	(-10.21, 0.76)	0.09	-4.20	(-8.21, -0.18)	0.04
Limiting illness										
No (Ref)	834		-			-		25	-	
Yes	97	-976.1	(-1,611.5, -340.6)	0.003	-4.63	(-9.63, 0.37)	0.07	-1.98	(-5.59, 1.63)	0.28
Housing sector										
Social	332	-977.5	(-1,514.6, -440.5)	<0.001	-6.87	(-11.16, -2.58)	0.002	-7.21	(-10.40, -4.01)	<0.0001
Intermediate (Ref)	410		-			-			-	
Market-rent	189	-358.7	(-888.8, 171.4)	0.18	0.24	(-4.00, 4.48)	0.91	0.94	(-2.23, 4.12)	0.56

All differences are mutually adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

Supplementary Table 5: Physical Activity differences between weekday (Monday-Friday) and weekend (Saturday, Sunday) activity: by	ousing sector
--	---------------

Physical activity variable	Housing sector group	Mean (95% CI) weekday (Mon-Fri) activity		Difference in PA outcome compared to weekdays (95% confidence interval), p-value						
(N = 1107)	Sector group				Saturday - weekda	iy	Sunday - weekday			
Steps	Social	8,733	(8,364, 9,103)	-1,643	(-2,078, -1,207)	<0.0001	-2,629	(-3,093, -2,164)	<0.0001	
	Intermediate	9,497	(9,178, 9,817)	460	(59 <i>,</i> 862)	0.02	-1,104	(-1,528, -680)	<0.0001	
	Market-rent	9,146	(8,673, 9,619)	1,055	(467, 1,642)	< 0.001	-102	(-734, 531)	0.75	
MVPA (minutes)	Social	57.2	(54.3, 60.1)	-11.2	(-14.7, -7.7)	<0.0001	-18.4	(-22.1, -14.7)	<0.0001	
	Intermediate	63.1	(60.6, 65.7)	1.5	(-1.8, 4.7)	0.37	-8.5	(-11.9, -5.1)	<0.0001	
	Market-rent	63.5	(59.8, 67.3)	6.6	(1.9, 11.3)	0.01	-0.1	(-5.2 <i>,</i> 5.0)	0.97	
MVPA in 10 minute bouts (minutes)	Social	16.3	(14.0, 18.5)	-4.1	(-6.9, -1.3)	0.004	-6.8	(-9.8 <i>,</i> -3.9)	<0.0001	
	Intermediate	22.6	(20.7, 24.6)	2.5	(-0.1, 5.1)	0.06	-0.7	(-3.4, 2.0)	0.62	
	Market-rent	24.2	(21.3, 27.1)	6.1	(2.4, 9.9)	0.001	2.8	(-1.2, 6.9)	0.17	
					6					

Means and differences (95% CIs) are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day order of recording, day of the week, housing sector, an interaction between housing sector and day of week and random effects to allow for multiple days of measurement and clustering of participants within household.

$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 20 \\ 21 \\ 22 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 30 \\ 31 \\ 32 \\ 33 \\ 4 \\ 5 \\ 33 \\ 34 \\ 5 \\ 33 \\ 34 \\ 5 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 $	
31 32 33 34 35 36 37 38 39 40 41	
42 43 44 45 46 47	- 5 5

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cross-sectional studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4-5
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6-7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6-7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	6-7
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7-8
Bias	9	Describe any efforts to address potential sources of bias	9
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	9
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	9-10
		(c) Explain how missing data were addressed	N/A
		(d) If applicable, describe analytical methods taking account of sampling strategy	9-10
		(e) Describe any sensitivity analyses	9
Results			

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility,	10
		confirmed eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	10
		(c) Consider use of a flow diagram	N/A
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	10-11
		(b) Indicate number of participants with missing data for each variable of interest	10
Outcome data	15*	Report numbers of outcome events or summary measures	10-11
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	10-11
		(b) Report category boundaries when continuous variables were categorized	11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	N/A
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	11
Discussion			
Key results	18	Summarise key results with reference to study objectives	13-14
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	16-17
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	17
Generalisability	21	Discuss the generalisability (external validity) of the study results	17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	19-20

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-021257.R1
Article Type:	Research
Date Submitted by the Author:	16-May-2018
Complete List of Authors:	Nightingale, C; St George's University London, Division of Population Health Sciences and Education Rudnicka, Alicja; SGUL University of London Ram, Bina; St George's, University of London, Population Health Research Institute Shankar, Aparna; St. Geoege's, University of London, Population Health Research Institute Limb, Elizabeth; St George's University, Population Health Research Institute Procter, Duncan; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Cooper, Ashley; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Glasgow, MRC/SCO Social and Public Health Sciences Unit Giles-Corti, Billie; RMIT University, NHMRC Centre of Research Excellence in Healthy Liveable Communities Clary, Christelle; London School of Hygiene and Tropical Medicine, Social And Environmental Health Research Lewis, Daniel; London School of Hygiene and Tropical Medicine, Cummins, Steven; London School of Hygiene and Tropical Medicine, Department of Social and Environmental Health Research Whincup, Peter; St George's University of London Cook, Derek; St George's University, Division of Population Health Sciences Owen, C; St George's, University London, Population Health Research Institute
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Physical activity, Adiposity, Housing, Perceived neighbourhood environment, ENABLE-London

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

CM Nightingale¹, AR Rudnicka¹, B Ram¹, A Shankar¹, ES Limb¹, D Procter^{2,3}, AR Cooper^{2, 3}, AS Page^{2, 3}, A Ellaway⁴, B Giles-Corti⁵, C Clary⁶, D Lewis⁶, S Cummins⁶, PH Whincup¹, DG Cook¹, CG Owen¹

¹ Population Health Research Institute, St George's, University of London, London, UK.

² Centre for Exercise, Nutrition and Health Sciences, University of Bristol, Bristol, UK.

³ National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, UK.

⁴ MRC/SCO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK.

⁵ NHMRC Centre of Research Excellence in Healthy Liveable Communities, RMIT University, Melbourne, Australia.

⁶ London School of Hygiene and Tropical Medicine, London, UK.

Corresponding Author:-

Dr Claire M Nightingale

Population Health Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 ORE. Email: <u>cnightin@sgul.ac.uk.</u> Phone: +44 (0) 208 725 2342

Total word count: 4551 excluding abstract (311 words) Tables and figures: 3 tables, 1 figure, 5 supplementary tables References: 53

Abstract

Objectives: The neighbourhood environment is increasingly shown to be an important correlate of health. We assessed associations between housing tenure, neighbourhood perceptions, sociodemographic factors, and levels of physical activity (PA) and adiposity among adults seeking housing in East Village (formerly London 2012 Olympic/Paralympic Games Athletes' Village).

Setting: Cross-sectional analysis of adults seeking social, intermediate and market-rent housing in East Village.

Participants: 1278 participants took part in the study (58% female). Complete data on adiposity (body mass index [BMI] and fat mass %) were available for 1240 participants (97%); of these a sub-set of 1107 participants (89%) met the inclusion criteria for analyses of accelerometer-based measurements of PA. We examined associations between housing sector sought, neighbourhood perceptions (covariates) and PA and adiposity (dependent variables) adjusted for household clustering, sex, age group, ethnic group, and limiting longstanding illness.

Results: Participants seeking social housing had the fewest daily steps (8304, 95%Cl 7959,8648) and highest BMI (26.0kg/m² 95%Cl 25.5,26.5kg/m²) compared with those seeking intermediate (daily steps 9417, 95%Cl 9106,9731; BMI 24.8kg/m² 95%Cl 24.4,25.2kg/m²) or market-rent housing (daily steps 9313, 95%Cl 8858,9768; BMI 24.6kg/m² 95%Cl 24.0,25.2kg/m²). Those seeking social housing had lower levels of PA (by 19-42%) at weekends vs weekdays, compared with other housing groups. Positive perceptions of neighbourhood quality were associated with higher steps and lower BMI, with differences between social and intermediate groups reduced by ~10% following adjustment, equivalent to a reduction of 111 for steps and 0.5kg/m² for BMI.

Conclusions: The social housing group undertook less PA than other housing sectors, with weekend PA offering the greatest scope for increasing PA, and tackling adiposity in this group. Perceptions of neighbourhood quality were associated with PA and adiposity and reduced differences in steps and BMI between housing sectors. Interventions to encourage physical activity at weekends and improve neighbourhood quality, especially amongst the most disadvantaged, may provide scope to reduce inequalities in health behaviour.

Strengths and limitations of this study

- Large sample with representation of three different aspirational housing groups, providing a wide range of socioeconomic backgrounds
- Objective measurements of physical activity and adiposity outcomes using accelerometry and bioelectrical impedance respectively
- Lower number of participants studied seeking market-rent housing compared with those seeking intermediate or social housing

Keywords

Physical activity; Adiposity; Housing; Perceived neighbourhood environment; ENABLE-

London

BMJ Open

Introduction

Physical inactivity and adiposity are associated with an increased risk of type 2 diabetes and cardiovascular disease (1-4) and constitute a serious public health problem in the UK and globally (5). Evidence suggests that levels of physical activity (PA) are lower among those who are socioeconomically disadvantaged (6), who experience greater economic, access and health related barriers to being physically active (7). Socioeconomic status is also associated with differences in types of PA, in particular higher socioeconomic status is associated with more vigorous leisure time PA (8). Previous research has found variation in PA by day of the week with studies showing lower levels of activity on Sundays compared with weekdays in young adults (9), parents and their children (10).

There is emerging evidence suggesting that housing tenure is an important determinant of health. In particular, UK-based studies have shown that housing tenure (owner vs. private renter vs. public sector renter) is associated with illness and mortality (15;16). Amongst particular groups including those who are economically inactive or unemployed, housing tenure might provide a better indication of socioeconomic status compared with measures based on occupation or income (11). Indeed, in several studies housing tenure remained associated with health outcomes following adjustment for conventional measures of socioeconomic status such as income or education (12;13). A more nuanced approach is therefore required with respect to measures of socioeconomic status, and they should not be simply regarded as interchangeable (14;15). Despite this, there has been limited research examining the direct effect of housing tenure on PA, and existing evidence is equivocal. Harrison and colleagues found no association between housing tenure and meeting recommended levels of PA among community dwelling healthy adults in the North-East of

Page 4 of 30

England (16). Similarly housing tenure was not associated with self-reported energetic PA among older Australians (17). Ogilvie and colleagues found overall levels of PA to be higher among individuals living in social housing compared with owner-occupiers (18). The authors suggest that may capture occupational PA levels which are likely to be higher among those in social housing (18). In contrast, living in private rental accommodation was associated with a greater likelihood of taking up exercise over a 9-year period among men aged 18-49 at baseline, compared with those in local authority accommodation (19).

Housing tenure may affect health and health behaviours in part through characteristics of the home or neighbourhood itself (20;21) or psychological factors such as self-efficacy or self-esteem (22). Social housing estates which are common in the UK may be associated with specific cultures and norms, which in turn shape residents' behaviours (13). Subjective characteristics of the neighbourhood environment including higher perceived access to recreational facilities and shops in local proximity have been shown to be associated with higher levels of PA (23;24). Residents who perceive their neighbourhood more positively, have been shown to have better mental health and are less likely to relocate (25). Conversely, real and perceived crime, has the potential to constrain residents' PA (26). However, a recent systematic review suggested a lack of association between PA and perceptions of safety from crime; highlighting the need for high quality evidence, including prospective studies and natural experiments (27), to examine this issue further. In particular, high quality evidence is needed to understand the potentially multifactorial influence of residential location on health and health behaviours; effects which are likely to extend beyond simple measures of socioeconomic status (27).

BMJ Open

The Examining Neighbourhood Activities and Built Living Environments in London (ENABLE London) study is a longitudinal study evaluating how active urban design influences the health and wellbeing of people moving into the former Athletes' Village of the London 2012 Olympic and Paralympic Games now known as 'East Village' (28). East Village is a new highdensity neighbourhood development built on active design principles containing a mix of social housing, intermediate (including affordable rent, shared ownership and shared equity) housing, and market-rent housing. This paper draws on baseline data (prior to any potential move to East Village) to first, examine predictors of PA and adiposity (measured objectively using accelerometry and bioelectrical impedance), including the housing sector to which they are applying and perceptions of their neighbourhood. Second, to examine whether PA patterns across the week vary by housing sector and third, to examine whether adjustment for perceptions of the neighbourhood environment reduce housing sector differences in PA and adiposity.

Methods

Study participants were recruited from those seeking or who had applied for new accommodation in East Village and were classified by the type of housing tenure sought based on level of income; i.e. social, intermediate or market-rent. The inclusion criteria was broad and included anyone interested / applying for single or multiple occupancy accommodation in East Village. There was no explicit exclusion criteria; adults of any age, gender, ethnic group, with or without handicap, were invited to participate. Current housing status was strongly linked to aspirational housing status, where those seeking social accommodation were currently in social housing or on social housing waiting lists, and those seeking intermediate and market-rent accommodation were largely in privately rented

Page 8 of 36

housing. Recruitment of participants in the different housing sectors was carried out between January 2013 and December 2015 in three phases determined by the order of availability of housing in East Village (social, intermediate, and market-rent respectively). Those applying for social housing in East Village were initially recruited between January 2013 and May 2014, households seeking intermediate accommodation between July 2013 and November 2014 and those seeking market rent accommodation between September 2014 and December 2015. Recruitment processes for those applying for social housing were slightly different compared with other housing sectors. The East Thames Group housing association was primarily responsible for recruiting participants in social housing, whereas the ENABLE London team (in association with Triathlon Homes and Get Living London) recruited participants from the other housing sectors (28). Aspirational housing tenure is integral to the design of ENABLE London, and we have shown that this provides a clear socioeconomic marker of study participants. For example, those seeking social housing in East Village are more likely to be unemployed, less educated and more likely to represent ethnic minorities (a classic marker of socioeconomic vulnerability), compared to those seeking affordable and market-rent accommodation (29). We have also shown key differences in mental health and well-being between housing groups, where those seeking social housing were more likely to be depressed, anxious and have poorer well-being, compared to other housing groups (30). Moreover, this is entirely consistent with earlier studies which found that both current housing tenure and aspirational housing tenure are associated with a variety of health outcomes, including mental health and measures of general health (31;32).

BMJ Open

Baseline assessments of participants were carried out in their place of residence before any potential move to East Village. Full details of the recruitment process can be found elsewhere (28).

Independent variables

A team of trained fieldworkers administered self-complete questionnaires on a laptop during home visits. Data on age, sex, self-defined ethnicity, work status, occupation and whether the participant had a limiting longstanding illness or disability (lasting or expected to last at least 12 months) were collected. Participants self-defined as 'White', 'Asian', 'Black', 'Mixed', or 'Other'; the latter two categories were combined for analyses. Socioeconomic status based on occupation was coded using the National Statistics Social-Economic Coding (NS-SEC) to categorise participants into 'higher managerial or professional occupations', 'intermediate occupations', 'routine or manual' (33). An additional 'economically inactive' category included those seeking employment, unable to work due to disability or illness, retired, looking after home and family, and students. We sought information on educational attainment; participants were categorised into "Degree or equivalent / Higher", "Intermediate qualifications" (including A levels and GSCEs), and "Other / None" (including work-based or foreign gualifications). Participants completed questionnaires assessing neighbourhood perceptions (30). Five items assessed perceived crime (e.g., "There is a lot of crime in my neighbourhood"; Cronbach's $\alpha = 0.87$) and six items assessed neighbourhood quality (e.g. "This area is a place I enjoy living in"; Cronbach's α =0.78). Responses on items were summed and scores ranged from -10 to +10 for perceived crime and -12 to +12 for perceived quality, such that positive scores indicate less perceived crime and better neighbourhood quality while negative scores indicate more

perceived crime and poorer quality. The scales were derived following an exploratory factor analysis of 14 questions regarding neighbourhood (Supplementary Table 1).

Dependent variables

Height was measured to the last complete millimetre using a portable stadiometer; weight was measured to the nearest kilogram using a Tanita SC-240 Body Composition Analyzer (Tanita, Tokyo, Japan); body mass index (BMI) was derived as weight(kg)/height(m)². The Tanita SC-240 Body Composition Analyzer also measured leg-to-leg bioelectrical impedance from which fat free mass and fat mass were estimated. Fat mass percentage was calculated as fat mass (kg)/weight (kg)*100.

Participants wore a hip-mounted ActiGraph GT3X+ accelerometer during waking hours over a consecutive period of 7 days (ActiGraph LLC, Florida, USA). These accelerometers provided daily measures of steps, counts and time spent in moderate and vigorous PA (MVPA) using established cut-offs. Daily time spent in MVPA both overall and in ≥10 minute bouts in accordance with UK recommendations for PA (34) were assessed. The cut-point for moderate PA was defined as ≥1952 counts per minute (35). We excluded any days of recording where the amount of registered time accumulated was below 540 minutes (36). Non-wear periods were defined as a minimum length of 60 minutes, allowing for a 2-minute spike tolerance. Participants with at least one day of recording were retained in analyses. We fitted a multilevel linear model for each outcome to allow for repeated measurements of daily PA, by fitting participant as a random effect and adjusting for day of the week, day order of recording and month as fixed effects. Raw level one residuals were obtained from the model and a within person average value of each outcome variable was obtained by

BMJ Open

averaging these raw residuals. The average of these raw residuals for each participant was added to the sample mean for that particular PA variable to derive an unbiased average level of each PA variable for each person.

Statistical analysis

All analyses were carried out using STATA/SE software (Stata/SE 14 for Windows; StataCorp LP, College Station, TX, USA). Outcome variables were inspected for normality and BMI was log transformed due to its skewed distribution. Multilevel linear regression models were fitted, mutually adjusted for housing sector and participant characteristics (sex, age group, ethnic group, and limiting longstanding illness) as fixed effects, with a random effect to allow for household clustering. Residuals did not show departure from linearity, suggesting that the model assumptions were appropriate. Absolute differences or percentage differences for log transformed outcomes (i.e. BMI) are presented by sex, age group, ethnic group, limiting longstanding illness and housing sector. Sensitivity analyses examined whether associations remained when the sample was restricted to 931 participants (84%) with at least four days of 540 or more minutes per day of recording.

To assess differences in PA by day of the week as opposed to overall levels of PA we took the following approach. Daily PA data were examined using multilevel models with random effects to allow for multiple days of recording within person and household clustering. An interaction between housing sector and day of the week was fitted and models were adjusted for sex, age group, ethnic group, limiting longstanding illness, day order of recording and month of measurement as fixed effects.

The associations between neighbourhood perception scales and adiposity and PA outcomes were examined. Each of the neighbourhood quality and crime scores were included in the models as quintiles, to examine the differences in outcomes between the top and bottom quintile. Finally, the effect of adjustment for neighbourhood perception on differences in adiposity and PA between housing sectors was examined. If associations between outcomes and neighbourhood perceptions appeared linear, models examining housing sector differences were additionally adjusted for neighbourhood perceptions as a continuous variable.

Patient and Public Involvement

The ENABLE London study was developed in partnership with a network of both local and regional stakeholders identified through our collaborator links to agencies, involved with the design, planning and management of large-scale accommodation developments. Locally these included local authorities (particularly Newham) and a number of housing associations, in particular Triathlon Homes, a partner organisation of housing associations, which manages social and intermediate homes in East Village. Participants have been involved in the study from an early stage to ensure assessments and participation remain relevant and enjoyable, to ensure the continued significance and potential generalisability of the work.

Results

Of 1819 households who agreed to be contacted by the study team in order to receive further information about the ENABLE London study, 1278 adults from 1006 households (55%) participated in the study and completed a questionnaire. Participation rates for those

BMJ Open

seeking market-rent and intermediate housing were 58% and 57% respectively and were slightly lower in the social group (52%). Complete data on adiposity were available for 1240 participants (97%); of these a sub-set of 1107 participants (89%) met the inclusion criteria for analyses of objectively measured PA. Participant characteristics (age, sex) and levels of adiposity were similar among those who did and did not provide PA data; however, participants from black and Asian ethnic groups were less likely to provide PA data. Supplementary Table 2 shows participants characteristics at baseline for the 1240 adults with measurements of adiposity at baseline. Those seeking social housing were more likely to be female, of older age, of non-white ethnicity, to have limiting longstanding illness, and be in routine / manual occupations or economically inactive compared to those seeking intermediate or market-rent housing.

Adjusted mean levels of adiposity and PA outcomes by housing sector and participant characteristics are shown in Supplementary Table 3. Table 1 shows housing sector and other participant characteristics associations with BMI and fat mass %, and objectively measured PA (steps, time spent in MVPA, time spent in MVPA in ≥10 minute bouts). Participants seeking social housing had markedly higher levels of BMI and fat mass % and markedly lower levels of steps, MVPA and MVPA in ≥10 minute bouts compared with those seeking intermediate housing, though there were no differences between those seeking market-rent and intermediate accommodation.

Fat mass % was higher in females than males though there was no difference in BMI (Table 1). BMI and fat mass % were higher among all older age groups compared with 16-24 year olds. Participants of black ethnicity had higher levels of BMI and fat mass % compared with

> whites; there were no differences in BMI and fat mass % between Asian or other/mixed ethnic groups and whites. Those with a limiting longstanding illness had higher levels of both BMI and fat mass %. All PA measures were lower among females. Steps and MVPA were slightly higher in 25-34 year olds and steps were also higher among 35-49 year olds compared with 16-24 year olds; however, there were no age group differences for MVPA in ≥10 minute bouts. Participants of black and Asian ethnicities had lower levels of steps, MVPA and MVPA in ≥10 minute bouts compared to whites. Participants who reported having a limiting longstanding illness had lower levels of steps and MVPA, but not MVPA in ≥10 minute bouts. Educational attainment level was not associated with any of the outcomes once housing sector had been adjusted for and adjustment for educational attainment did not materially alter housing sector differences in adiposity or PA outcomes (data available from authors).

> Sensitivity analyses for PA outcomes were carried out in 931 participants who wore an ActiGraph for at least four days with at least 540 minutes of recording per day (Supplementary Table 4). There were no differences between market-rent and intermediate groups (consistent with the main analysis presented in Table 1). Differences between social and intermediate groups were broadly similar with the results presented in Table 1 for the main analysis.

> Differences in PA variables between housing groups were examined by day of the week to explore whether differences between groups were consistent across the week (Figure 1A-D). Levels of PA (steps (panel A), MVPA (panel B) and MVPA in ≥10 minute bouts (panel C)) were generally consistent across weekdays (Monday – Friday) among all groups. In the

Page 15 of 36

1

BMJ Open

2 3
4
5 6
7
8 9
10
11 12
13
14 15
16 17
16 17 18
19 20
21
22 23
24
25 26
27
28 29
30
31 32
33
34 35
36 37
38
39 40
41
42 43
44
45 46
47
48 49
50
51 52
53 54
55
56 57
58
59 60
00

intermediate group, steps were higher on Saturdays and lower on Sundays; MVPA and MVPA in ≥10 minute bouts were lower on Sundays but there was no difference on Saturdays compared to weekday activity. In the market-rent group, steps, MVPA and MVPA in \geq 10 minute bouts were higher on Saturdays and similar to weekdays on Sundays. In the social group, steps, MVPA and MVPA in \geq 10 minute bouts were on average lower on Saturdays and lower still on Sundays. Registered time (panel D) was lowest on average in the social group during weekdays, decreasing on Saturdays and Sundays. The intermediate and market-rent groups had higher levels of registered time during weekdays compared with the social group which decreased on average on Saturdays and Sundays (despite recording more steps and minutes in MVPA suggesting a higher intensity of activity). Mean levels of steps, MVPA, and MVPA in ≥10 minute bouts on weekdays and differences on Saturday and Sunday compared to weekdays are shown by housing sector in Supplementary Table 5. The marked differences in activity between weekdays and weekend days in the social group are not explained by differences in registered time (data available from authors).

Associations between perceived neighbourhood quality and crime scales and adiposity and PA outcomes are shown in Table 2, adjusted for the participant characteristics shown in Table 1. Participants with the most positive perceptions of neighbourhood quality (highest quintile) had lower BMI, higher steps and recorded longer durations of MVPA compared with those who had the most negative perceptions of neighbourhood quality (lowest quintile). There were no significant associations between perceptions of neighbourhood crime and adiposity or PA.

The effect of adjustment for perceived neighbourhood quality on differences in adjosity and PA between housing sector groups is presented in Table 3. All associations between perceived neighbourhood quality and crime and outcome variables were approximately linear and were therefore fitted as continuous variables in the model. In addition, associations between perceived neighbourhood quality and crime and outcome variables were similar across the three housing groups (all p>0.05). Adjustment for perceptions of neighbourhood quality reduced differences in BMI, fat mass %, steps, MVPA and MVPA in ≥10 minute bouts between the social and intermediate groups by 10%, 6%, 10%, 10% and 7% respectively. Differences between market-rent and intermediate groups in adiposity and PA variables were not statistically significant before or after adjustment. A larger proportion of the social-intermediate group differences in steps, MVPA and MVPA in ≥ 10 minute bouts on weekends was explained by adjustment for perceptions of neighbourhood quality (10%, 16% and 16% respectively) compared to the differences in steps, MVPA and MVPA in ≥ 10 minute bouts on weekdays which were reduced by 10%, 8% and 3% respectively (data not shown).

Discussion

The results of this study showed that participants seeking social housing in East Village had lower levels of PA and higher levels of BMI and fat mass % compared with those seeking intermediate and market-rent housing, even when adjusted for demographic factors. In the social housing group, levels of PA were particularly low on weekends compared with weekdays possibly reflecting higher occupational PA and lower leisure time PA; weekdayweekend differences in PA were less marked among those seeking intermediate and market-rent housing. However, the lower registered time at weekends but higher MVPA

> Page 15 of 30 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

and steps suggests more intense activity at weekends in the intermediate and market-rent housing groups. These findings may inform targeted interventions to increase PA and reduce adiposity in different socioeconomic groups.

Positive associations between perceived neighbourhood quality and PA, BMI and fat mass % were also shown. Adjustment for differences in perceived neighbourhood quality reduced differences in PA and BMI by approximately 10% between social and intermediate housing groups; equivalent to a reduction of 111 for daily steps, 0.5 minutes for MVPA and 0.5kg/m² for BMI. However, a larger proportion of the difference in PA was apparent at weekends; equivalent to a reduction of 222 for daily steps and 2.2 minutes for MVPA.

Relation to previous studies

Studies have shown that lower socioeconomic status is associated with lower levels of PA (37;38), and that those from more socially deprived backgrounds have the most barriers to being physically active (7). Previous research examining the role of housing tenure is limited. Findings from this study showed marked differences in PA and adiposity between those seeking social, intermediate and market-rent housing. In particular, lower PA and higher adiposity in participants seeking social housing, a group which comprises a high proportion of people from more socioeconomically disadvantaged backgrounds (28). The higher levels of BMI and fat mass % in those seeking social housing compared with those seeking intermediate or market-rent housing is consistent with systematic reviews which have found an association between lower socioeconomic status and higher levels of adiposity, particularly in higher income countries and among women (39). While socioeconomic status is a strong determinant of housing status, to our knowledge this is the first study to

explicitly examine housing sector differences in objective PA and markers of adiposity levels (i.e. BMI and fat mass %). However, it is important to consider more broadly what these aspirational housing sector differences might represent. Related studies have shown that those in social housing are less likely to use active travel compared with owner occupiers (18), and that those in social housing and home owners with a mortgage are more likely to be obese and have higher levels of illness and disability compared to outright home owners, even after adjustment for other socioeconomic status markers (40). These latter findings suggest that the effect of home ownership may be more complex and cannot be simply explained by socioeconomic status. Neighbourhood quality may offer a potential partial explanation for these findings (41). In the present study perceptions of better neighbourhood quality were associated with PA whereas perceptions of crime were not. In contrast, a large UK-based study found that perceptions of feeling safe in the neighbourhood had the largest effect on levels of PA compared with perceptions of leisure facilities, sense of belonging or access to public transport or amenities (42). Another study in the US found that low perceived safety from crime was associated with lower levels of MVPA (43). However, a recent review concluded that higher quality evidence is needed, including prospective studies and natural experiments in areas of wide crime variability, in order to further understand the effect of crime on physical and mental health (27). Moreover, previous work has suggested that objective and perceived measures of the built environment correlate differently with physical activity levels, suggesting that these measures are assessing different dimensions of the built environment which relate differently to health behaviour (44).

BMJ Open

Our findings showed that PA levels were particularly low on the weekend among those seeking social housing, which is consistent with findings from a systematic review which found that leisure-time PA (which may be more likely to occur on weekends) was lower amongst those from lower socioeconomic groups (8). This suggests that low-cost strategies to increase weekend PA may be particularly beneficial to more disadvantaged households. A free community-based program in Bogata Colombia, temporarily closed streets on Sundays to encourage PA amongst more disadvantaged local residents (45). A similar program has been trialled in the United States (46), however the effectiveness, longevity and generalisability of these programs to other socioeconomically deprived areas is yet to be established.

Strengths and limitations

Strengths of this study include the representation of three different aspirational housing groups which provides a wide range of socioeconomic backgrounds. Of those seeking social housing, two-thirds (67%) were currently living in social housing accommodation provided by the local authority or housing association; the remainder were largely currently living in privately rented accommodation with many on social housing waiting lists. Of those seeking intermediate or market-rent accommodation, almost two-thirds were living in privately rented accommodation (both 64%); the remainder were largely living with relatives or friends. The study sample is large with good representation from a 'hard to reach' group of social housing participants. Participation rates were high given the target group, with between 50-60% of those who initially agreed to be contacted taking part in the study. The ActiGraph GT3X+ accelerometer provided validated objective measures of PA (47) and the use of bioelectrical impedance to provide more direct measurements of adiposity including

fat mass %, which may provide a more valid marker of adiposity than BMI, particularly in a multi-ethnic population (48;49). Reassuringly the patterns of PA by sex, ethnic group and health status were consistent with those published previously (50-52). A limitation of the study is the lower number of participants in the market-rent sector compared with the other groups. This was due to restrictions imposed on the study team on the extent and duration of access to potential applicants seeking market-rent accommodation. While the study is longitudinal, these analyses are cross-sectional limiting the degree to which causal inferences can be made. Moreover, there is the possibility of selection amongst study participants, where those who are more active seek to move to East Village, may be more likely to participate in the study and may perceive their environment differently, which may limit the generalisability of the findings to neighbourhoods outside of East London.

Conclusions and future work

The findings presented in this paper suggest that perceived neighbourhood quality is associated with meaningful differences in PA and markers of adiposity. Differences in steps (680 steps) and BMI (3.6kg/m²) between the lowest and highest quintiles of perceived neighbourhood quality should be considered in the context of an average 10,000 steps per day, where a 5% increase (500 steps) would be a worthwhile population level increase and a 5kg/m² increase in BMI is associated with a 31% increase in all-cause mortality (53). Hence, improvements in neighbourhood quality could be associated with health benefits of public health importance. There were also substantial differences in PA, BMI and fat mass % between the three housing groups studied. In particular the very low levels of PA in the social housing group during the weekend could provide a target for intervention to increase levels of PA; again these differences should be considered in relation to 500 steps per day,

BMJ Open

which can be considered as an increase of population importance. Perceptions of neighbourhood quality reduced differences in PA and adiposity between housing sector groups, and the possibility of measuring more objective markers of neighbourhood quality within this study has the potential to explain more (44). The future follow-up of the ENABLE London cohort will allow us to examine whether moving to 'East Village', a neighbourhood designed for healthy active living, will have a positive impact on PA and/or adiposity levels. A major aim of the study is to identify features of the local built environment that increase levels of PA which could potentially help to reduce socioeconomic inequalities in health. It will be of particular interest to determine whether an increase in PA is more apparent in the social housing group whose neighbourhood characteristics should improve. Furthermore, we will be in a position to examine whether any potential effects of the built environment type. on PA are modified by housing sector type.

Ethical approval

Full ethical approval was obtained from the relevant Multi-Centre Research Ethics Committee (REC Reference 12/LO/1031). All participants provided written informed consent.

Data sharing statement

Further details of the ENABLE London study are available from the study website (http://www.enable.sgul.ac.uk/). The ongoing collection and management of data has been made possible through grant funding from the Medical Research Council and the National Institute of Health Research. We welcome proposals for collaborative projects. For general data sharing inquiries, contact Professor Owen (<u>cowen@sgul.ac.uk</u>).

Competing interests

We declare that we have no competing interests.

<u>Funding</u>

This research is being supported by project grants from the Medical Research Council National Prevention Research Initiative (MR/J000345/1) and National Institute for Health Research (12/211/69). Diabetes and obesity prevention research at St George's, University of London is supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London. AE is funded by the UK Medical Research Council as part of the Neighbourhoods and Communities Programme (MC_UU_12017-10). BG-C is supported by an NHMRC Principal Research Fellowship (#1107672). ARC and ASP are supported by NIHR Biomedical Research Centre at

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
13 14 15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
25	
26	
 20 21 22 23 24 25 26 27 28 20 	
28	
29	
29 30	
21	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
48 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Authorship statement

CGO, ARR, AE, ARC, DL, SC, BG-C, DGC and PHW designed the study and raised funding. BR, ARR, CC, DP and CGO collected data for the study; BR, ARR and CGO enrolled participants. CMN, BR, ESL, ARR, CC, DP and CGO undertook data management. CMN, ESL analysed the data; CMN wrote the first draft of the report. ARR, BR, ESL, AS, DP, ARC, ASP, AE, BG-C, CC, DL, SC, PHW, DGC and CGO critically appraised the manuscript and approved the final draft. CGO is responsible for data integrity.

Acknowledgements

The authors thank the East Thames Group, Triathlon Homes and Get Living London who have assisted in recruiting participants into the ENABLE London study. The ENABLE London study is advised by a Steering Committee chaired by Professor Hazel Inskip (University of Southampton), with Dr David Ogilvie (University of Cambridge) and Professor Andy Jones (University of East Anglia) as academic advisors and Mrs Kate Worley (formerly East Thames Group Assistant Director for Strategic Housing) as the lay/stakeholder member. The authors are grateful to the members of the ENABLE London study team (in particular Aine Hogan, Katrin Peuker, Cathy McKay) and to participating households, without whom this study would not be possible.

Reference List

- 1. Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national cohort of US adults. Am J Epidemiol 1997;146:214-22.
- 2. Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and metaanalysis. Eur J Cardiovasc Prev Rehabil 2008;15:239-46.
- Shaper AG, Wannamethee SG, Walker M. Body weight: implications for the prevention of coronary heart disease, stroke, and diabetes mellitus in a cohort study of middle aged men. BMJ 1997;314:1311-7.
- 4. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R, Peto R. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 2009;373:1083-96.
- 5. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
- 6. Health Survey for England. Health Survey for England 2012: Health, social care and lifestyles. Craig, R. and Mindell, J. 2013. The Information Centre.
- 7. Chinn DJ, White M, Harland J, Drinkwater C, Raybould S. Barriers to physical activity and socioeconomic position: implications for health promotion. J Epidemiol Community Health 1999;53:191-2.
- 8. Beenackers MA, Kamphuis CB, Giskes K, Brug J, Kunst AE, Burdorf A, van Lenthe FJ. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act 2012;9:116.
- 9. McVeigh JA, Winkler EA, Howie EK, Tremblay MS, Smith A, Abbott RA, Eastwood PR, Healy GN, Straker LM. Objectively measured patterns of sedentary time and physical activity in young adults of the Raine study cohort. Int J Behav Nutr Phys Act 2016;13:41.
- 10. Sigmundova D, Sigmund E, Vokacova J, Kopkova J. Parent-child associations in pedometerdetermined physical activity and sedentary behaviour on weekdays and weekends in random samples of families in the Czech Republic. Int J Environ Res Public Health 2014;11:7163-81.
- 11. Smith GD, Egger M. Socioeconomic differences in mortality in Britain and the United States. Am J Public Health 1992;82:1079-81.
- 12. Dalstra JA, Kunst AE, Mackenbach JP. A comparative appraisal of the relationship of education, income and housing tenure with less than good health among the elderly in Europe. Soc Sci Med 2006;62:2046-60.
- 13. Ellaway A, Macdonald L, Kearns A. Are housing tenure and car access still associated with health? A repeat cross-sectional study of UK adults over a 13-year period. BMJ Open 2016;6:e012268.

1		
2 3	14	Macintyre S, Hiscock R, Kearns A, Ellaway A. Housing tenure and car access: further
4	14.	exploration of the nature of their relations with health in a UK setting. J Epidemiol Community
5		Health 2001;55:330-1.
6		
7	15.	Macintyre S, McKay L, Der G, Hiscock R. Socio-economic position and health: what you observe
8		depends on how you measure it. J Public Health Med 2003;25:288-94.
9		
10	16.	Harrison RA, McElduff P, Edwards R. Planning to win: Health and lifestyles associated with
11		physical activity amongst 15,423 adults. Public Health 2006;120:206-12.
12		
13	17.	Kendig H, Browning C, Teshuva K. Health actions and social class among older Australians. Aust
14 15		N Z J Public Health 1998;22:808-13.
16	10	Ogilvie D, Mitchell R, Mutrie N, Petticrew M, Platt S. Personal and environmental correlates of
17	10.	active travel and physical activity in a deprived urban population. Int J Behav Nutr Phys Act
18		2008;5:43.
19		2000,5.45.
20	19.	Boniface DR, Cottee MJ, Neal D, Skinner A. Social and demographic factors predictive of
21		change over seven years in CHD-related behaviours in men aged 18-49 years. Public Health
22		2001;115:246-52.
23		
24	20.	Macintyre S, Ellaway A, Hiscock R, Kearns A, Der G, McKay L. What features of the home and
25		the area might help to explain observed relationships between housing tenure and health?
26 27		Evidence from the west of Scotland. Health Place 2003;9:207-18.
28		
29	21.	Ellaway A, Macintyre S. Does housing tenure predict health in the UK because it exposes
30		people to different levels of housing related hazards in the home or its surroundings? Health
31		Place 1998;4:141-50.
32	22	Macintyre S, Ellaway A, Der G, Ford G, Hunt K. Do housing tenure and car access predict health
33	22.	because they are simply markers of income or self esteem? A Scottish study. J Epidemiol
34		Community Health 1998;52:657-64.
35		
36	23.	Hoehner CM, Brennan Ramirez LK, Elliott MB, Handy SL, Brownson RC. Perceived and objective
37 38		environmental measures and physical activity among urban adults. Am J Prev Med
39		2005;28:105-16.
40		
41	24.	Sallis JF, Bowles HR, Bauman A, Ainsworth BE, Bull FC, Craig CL, Sjostrom M, De B, I, Lefevre J,
42		Matsudo V et al. Neighborhood environments and physical activity among adults in 11
43		countries. Am J Prev Med 2009;36:484-90.
44		
45	25.	Giles-Corti, B, Ryan, K, and Foster, S. Increasing density in Australia: Maximising the
46		benefits and minimising the harm. 2012. National Heart Foundation of Australia. 16-8-
47		2017.
48 49	20	Factor C. Cilco Conti D. The built an incompany princh and entry and entry in a built of the
50	26.	Foster S, Giles-Corti B. The built environment, neighborhood crime and constrained physical
51		activity: an exploration of inconsistent findings. Prev Med 2008;47:241-51.
52	27.	da Silva IC, Payne VL, Hino AA, Varela AR, Reis RS, Ekelund U, Hallal PC. Physical Activity and
53	_/.	Safety From Crime Among Adults: A Systematic Review. J Phys Act Health 2016;13:663-70.
54		
55	28.	Ram B, Nightingale CM, Hudda MT, Kapetanakis VV, Ellaway A, Cooper AR, Page A, Lewis D,
56		Cummins S, Giles-Corti B et al. Cohort profile: Examining Neighbourhood Activities in Built
57		
58		Page 24 of 30
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
00		

Living Environments in London: the ENABLE London-Olympic Park cohort. BMJ Open 2016;6:e012643.

- 29. Ram B, Nightingale CM, Hudda MT, Kapetanakis VV, Ellaway A, Cooper AR, Page A, Lewis D, Cummins S, Giles-Corti B et al. Cohort profile: Examining Neighbourhood Activities in Built Living Environments in London: the ENABLE London-Olympic Park cohort. BMJ Open 2016;6:e012643.
- 30. Ram B, Shankar A, Nightingale CM, Giles-Corti B, Ellaway A, Cooper AR, Page A, Cummins S, Lewis D, Whincup PH et al. Comparisons of depression, anxiety, well-being, and perceptions of the built environment amongst adults seeking social, intermediate and market-rent accommodation in the former London Olympic Athletes' Village. Health Place 2017;48:31-9.
- 31. Macintyre S, Ellaway A, Hiscock R, Kearns A, Der G, McKay L. What features of the home and the area might help to explain observed relationships between housing tenure and health? Evidence from the west of Scotland. Health Place 2003;9:207-18.
- 32. Mason KE, Baker E, Blakely T, Bentley RJ. Housing affordability and mental health: does the relationship differ for renters and home purchasers? Soc Sci Med 2013;94:91-7.
- 33. Office for National Statistics. The National Statistics Socio-economic Classification User Manual. 2005.
- 34. Department of Health. Start active, stay active: a report on physical activity from the four home countries Chief Medical Officers. 2011. Department of Health.
- 35. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 1998;30:777-81.
- 36. Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, Whincup PH, Ekelund U, Fox-Rushby J, Furness C et al. Effect of a Primary Care Walking Intervention with and without Nurse Support on Physical Activity Levels in 45- to 75-Year-Olds: The Pedometer And Consultation Evaluation (PACE-UP) Cluster Randomised Clinical Trial. PLoS Med 2017;14:e1002210.
- 37. Allen MS, Vella SA. Longitudinal determinants of walking, moderate, and vigorous physical activity in Australian adults. Prev Med 2015;78:101-4.
- 38. Juneau CE, Sullivan A, Dodgeon B, Cote S, Ploubidis GB, Potvin L. Social class across the life course and physical activity at age 34 years in the 1970 British birth cohort. Ann Epidemiol 2014;24:641-7, 647.
- 39. McLaren L. Socioeconomic status and obesity. Epidemiol Rev 2007;29:29-48.
- 40. Tranter B, Donoghue J. Housing tenure, body mass index and health in Australia. International Journal of Housing Policy 2016;1:1-20.
- 41. Turrell G, Haynes M, Wilson LA, Giles-Corti B. Can the built environment reduce health inequalities? A study of neighbourhood socioeconomic disadvantage and walking for transport. Health Place 2013;19:89-98.
- 42. Harrison RA, Gemmell I, Heller RF. The population effect of crime and neighbourhood on physical activity: an analysis of 15,461 adults. J Epidemiol Community Health 2007;61:34-9.

1		
2		
2		
5		
4		
2 3 4 5		
6		
6 7 8		
/		
8		
9		
10		
11 12		
12		
13		
14		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
24		
25		
26		
27		
20		
20 21 22 23 24 25 26 27 28 29		
29		
30		
31		
21		
32		
33		
34		
35		
22		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50		
51		
52		
53		
54		
55		
56		
57		
58		

- 43. Brown BB, Werner CM, Smith KR, Tribby CP, Miller HJ. Physical activity mediates the relationship between perceived crime safety and obesity. Prev Med 2014;66:140-4.
- 44. McGinn AP, Evenson KR, Herring AH, Huston SL, Rodriguez DA. Exploring associations between physical activity and perceived and objective measures of the built environment. J Urban Health 2007;84:162-84.
- 45. Sarmiento O, Torres A, Jacoby E, Pratt M, Schmid TL, Stierling G. The Ciclovia-Recreativa: A mass-recreational program with public health potential. J Phys Act Health 2010;7 Suppl 2:S163-S180.
- 46. Hipp JA, Eyler AA, Zieff SG, Samuelson MA. Taking physical activity to the streets: the popularity of Ciclovia and Open Streets initiatives in the United States. Am J Health Promot 2014;28:S114-S115.
- 47. Santos-Lozano A, Santin-Medeiros F, Cardon G, Torres-Luque G, Bailon R, Bergmeir C, Ruiz JR, Lucia A, Garatachea N. Actigraph GT3X: validation and determination of physical activity intensity cut points. Int J Sports Med 2013;34:975-82.
- 48. Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 1998;22:1164-71.
- 49. Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 1996;143:228-39.
- 50. Hayes L, White M, Unwin N, Bhopal R, Fischbacher C, Harland J, Alberti KG. Patterns of physical activity and relationship with risk markers for cardiovascular disease and diabetes in Indian, Pakistani, Bangladeshi and European adults in a UK population. J Public Health Med 2002;24:170-8.
- 51. Health and Social Care Information Centre. Health Survey for England 2004: The health of ethnic minority groups. Sproston, K. and Mindell, J. 2006. The Information Centre.
- 52. Health and Social Care Information Centre. Health Survey for England 2008: Physical activity and fitness. Craig R, Mindell J, and Hirani V. 2009. NHS Digital.
- 53. Global BMI MC, Di AE, Bhupathiraju S, Wormser D, Gao P, Kaptoge S, Berrington de GA, Cairns BJ, Huxley R, Jackson C et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016;388:776-86.

						Diffe	erence or %	differend	ce* in adiposity/	physical ac	tivity (95	5% CI), p-value				
			BMI (kg/m ²)	*		Fat mass % Daily steps†			Daily minutes spent in MVPA ⁺			Daily minutes spent in MVPA in ≥10 minute bouts†				
Sex									, ,			•				
Male (Ref)	522			-			-			-			-			
Female	718	-1.2	(-3.2, 0.9)	0.26	11.1	(10.3, 12.0)	<0.0001	-570	(-946, -194)	0.003	-9.3	(-12.2, -6.4)	<0.0001	-4.1	(-6.1, -2.0)	<0.002
Age group																
Age 16-24 (Ref)	269						-			-			-			
Age 25-34	531	6.3	(3.5, 9.1)	<0.0001	3.2	(2.1, 4.3)	<0.0001	502	(11, 992)	0.04	4.0	(0.2, 7.9)	0.04	1.0	(-1.9, 3.8)	0.53
Age 35-49	358	13.4	(10.2, 16.6)	<0.0001	6.4	(5.2, 7.6)	<0.0001	699	(173, 1224)	0.01	3.9	(-0.2, 8.0)	0.07	-1.1	(-4.0, 1.8)	0.46
Age 50+	82	17.6	(12.6, 22.9)	<0.0001	9.2	(7.3, 11.0)	< 0.0001	-9	(-832, 813)	0.98	-6.0	(-12.4, 0.5)	0.07	-2.0	(-6.8, 2.7)	0.40
Ethnic group																
White (Ref)	595			-						-			-			
Black	314	6.2	(3.3, 9.3)	<0.0001	3.6	(2.4, 4.8)	<0.0001	-1116	(-1657, -575)	<0.0001	-7.4	(-11.7, -3.2)	<0.001	-6.6	(-9.8, -3.4)	<0.000
Asian	210	-0.3	(-3.1, 2.7)	0.85	0.02	(-1.2, 1.3)	0.97	-1409	(-1972, -845)	<0.0001	-11.5	(-15.9, -7.0)	<0.0001	-8.1	(-11.4, -4.8)	<0.000
Other/Mixed	121	1.3	(-2.3, 5.0)	0.48	1.0	(-0.5, 2.5)	0.18	-430	(-1100, 239)	0.21	-4.6	(-9.8, 0.7)	0.09	-4.0	(-7.9, -0.04)	0.05
Limiting illness																
No (Ref)	1087			-			-						-			
Yes	153	4.3	(1.1, 7.5)	0.01	1.6	(0.3, 2.9)	0.01	-1081	(-1666, -496)	<0.001	-5.7	(-10.3, -1.1)	0.01	-2.8	(-6.1, 0.5)	0.10
Housing sector																
Social	512	5.0	(2.2, 7.8)	<0.001	2.7	(1.5, 3.8)	<0.0001	-1125	(-1629, -620)	<0.0001	-7.5	(-11.5, -3.6)	<0.001	-6.5	(-9.5, -3.5)	<0.0001
Intermediate																
(Ref)	503			-			-			-			-			
Market-rent	225	-0.8	(-3.6, 2.0)	0.57	-0.2	(-1.4, 1.0)	0.70	-104	(-633, 424)	0.70	2.3	(-1.9, 6.4)	0.29	2.8	(-0.3 <i>,</i> 6.0)	0.08

Table 1: Associations between adinesity and physical activity outcomes and nations characteristics

 BMJ Open

Table 2: Associations between adiposity and physical activity outcomes and neighbourhood perceptions scales

	Difference or % difference* in outcome between the highest and lowest quintiles for each neighbourhood scale (95% CI), p-value								
	Pe	erceptions of NH qua	ality	Perce	9				
Adiposity (N = 1240)									
Body mass index (kg/m ²)*	-3.6	(-6.5, -0.6)	0.02	-2.1	(-5.4, 1.3)	0.21			
Fat mass %	-1.2	(-2.5, 0.06)	0.06	-0.8	(-2.2, 0.7)	0.30			
Physical activity (N = 1107)	$\mathbf{\Theta}$								
Daily steps	677	(108, 1247)	0.02	-63	(-713 <i>,</i> 587)	0.85			
Daily MVPA (minutes)	4.5	(0.02, 9.0)	0.05	1.1	(-4.0, 6.2)	0.68			
Daily MVPA in ≥10 minute bouts (minutes)	2.7	(-0.6, 6.0)	0.11	2.4	(-1.4, 6.1)	0.22			

* Percentage differences are presented for BMI, which was log-transformed for analysis

All differences and % differences are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

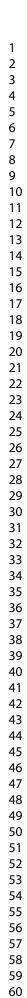
Abbreviations: NH, neighbourhood

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

Table 3: Adiposity and physical act	tivity differences	between	housing sectors:	adjustment for	perceptions of r	neighbourhood (quality			
	Difference or % difference* compared to intermediate housing gr (95% confidence interval), p-value									
	Housing				•	litionally adjuste				
	sector group		Model 1		neighbour	hood quality sca	le)			
Adiposity (N = 1240)										
	Social	5.0	(2.2, 7.8)	<0.001	4.5	(1.7, 7.3)	0.002			
Body mass index (kg/m ²)*	Intermediate	Reference group								
	Market rent	-0.8	(-3.6, 2.0)	0.57	-0.9	(-3.6, 2.0)	0.55			
	Social	2.7	(1.5, 3.8)	< 0.0001	2.5	(1.4, 3.6)	<0.0001			
Fat mass %	Intermediate	Reference group								
	Market rent	-0.2	(-1.4, 1.0)	0.70	-0.2	(-1.4, 0.9)	0.68			
Physical activity (N = 1107)										
	Social	-1125	(-1629, -620)	<0.0001	-1016	(-1531, -501)	< 0.001			
Daily steps	Intermediate			Referer	nce group					
	Market rent	-104	(-633, 424)	0.70	-96	(-624, 431)	0.72			
	Social	-7.5	(-11.5, -3.6)	<0.001	-6.8	(-10.8, -2.7)	0.001			
Daily MVPA (minutes)	Intermediate			Referer	nce group					
	Market rent	2.3	(-1.9, 6.4)	0.29	2.3	(-1.8, 6.5)	0.27			
	Social	-6.5	(-9.5, -3.5)	<0.0001	-6.0	(-9.1, -3.0)	< 0.001			
Daily MVPA in ≥10 minute bouts (minutes)	Intermediate			Referer	nce group					
(initiates)	Market rent	2.8	(-0.3, 6.0)	0.08	2.8	(-0.3, 6.0)	0.08			

* Percentage differences are presented for BMI, which was log-transformed for analysis

 Model 1: Adjusted for sex, age group, ethnic group, limiting longstanding illness and clustering at household level (random effect)


Model 2: Adjusted as Model 1 plus neighbourhood quality scale (added as a continuous variable)

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

 BMJ Open

Figure	1: Daily physical	activity by day	of the week and	d housing sector g	roup: N = 62	206 days from :	1107 participants
--------	-------------------	-----------------	-----------------	--------------------	--------------	-----------------	-------------------

Means and 95% confidence intervals are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day order of recording, day of week, housing sector, an interaction between housing sector and day of week and random effects to allow for multiple days of measurement and clustering of participants within households

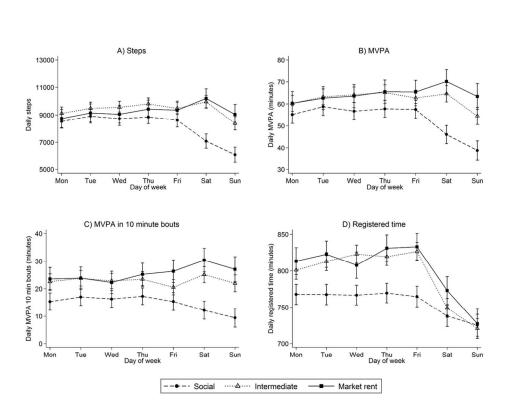


Figure 1: Daily physical activity by day of the week and housing sector group: N = 6206 days from 1107 participants

119x90mm (300 x 300 DPI)

BMJ Open

Perceptions of neighbourhoo	d crime items
There is a lot of crime in my n	eighbourhood.
The level of crime in my neigh	bourhood makes it unsafe to walk on the streets at night.
There are threatening groups	of young people in my neighbourhood.
The level of crime in my neigh	bourhood makes it unsafe to walk on the streets during the day.
Vandalism, graffiti or delibera	te damage to property is a problem in my local area.
Perceptions of neighbourhoo	d quality items
I enjoy walking in my neighbo	urhood.
This area is a place I enjoy livi	ng in.
My neighbourhood is attractiv	ve to look at (e.g. there are attractive buildings, green space. Landscaping views).
	ngs for people like myself, leisure centres or community centres for example.
	valks or riding their bicycles in my neighbourhood.
This area has good local trans	
Additional items included in t	the factor analysis with factor loadings below 0.4 and were therefore not included in the solution
My neighbourhood is general	ly free from litter.
There is too much traffic in m	y neighbourhood.
Our neighbourhood streets ha	ave good lighting at night.
	lect a response from the following for all questionnaire items stated in the table: Strongly agree, Agree, Neither ag
Disagree, Strongly disagree	

			Ηοι	using sector					
		Social	Int	ermediate	M	arket rent		Total	
	(n = 512)		(n = 503)	(n = 225)	(N	= 1240)	р (X ²)
Sex									
Male	137	(26.8%)	259	(51.5%)	126	(56.0%)	522	(42.1%)	
Female	375	(73.2%)	244	(48.5%)	99	(44.0%)	718	(57.9%)	<0.0002
Age group									
16-24	107	(20.9%)	92	(18.3%)	70	(31.1%)	269	(21.7%)	
25-34	129	(25.2%)	291	(57.9%)	111	(49.3%)	531	(42.8%)	
35-49	233	(45.5%)	102	(20.3%)	23	(10.2%)	358	(28.9%)	
50+	43	(8.4%)	18	(3.6%)	21	(9.3%)	82	(6.6%)	<0.0002
Ethnic group									
White	96	(18.8%)	342	(68.0%)	157	(69.8%)	595	(48.0%)	
Black	245	(47.9%)	53	(10.5%)	16	(7.1%)	314	(25.3%)	
Asian	107	(20.9%)	75	(14.9%)	28	(12.4%)	210	(16.9%)	
Mixed/Other	64	(12.5%)	33	(6.6%)	24	(10.7%)	121	(9.8%)	<0.0001
NS-SEC*									
Higher Managerial / Professional	60	(11.9%)	357	(71.4%)	150	(66.7%)	567	(46.1%)	
Intermediate Occupations	62	(12.3%)	77	(15.4%)	38	(16.9%)	177	(14.4%)	
Routine / Manual	125	(24.8%)	34	(6.8%)	10	(4.4%)	169	(13.7%)	
Economically inactive	258	(51.1%)	32	(6.4%)	27	(12.0%)	317	(25.8%)	<0.0001
Limiting illness									
Yes	102	(19.9%)	40	(8.0%)	11	(4.9%)	153	(12.3%)	
No	410	(80.1%)	463	(92.0%)	214	(95.1%)	1087	(87.7%)	<0.0002

Supplementary Table 2: Participant characteristics for 1240 adults with measurements of adiposity at baseline

p (\mathcal{X}^2): p-value for Chi-squared test

 * 10 responses missing for NS-SEC group

Page 35 of 36

 BMJ Open

			Mean/Geometric mean* levels adiposity and physical activity (95% confidence intervals)									
	n	В	BMI (kg/m²)*		Fat mass %		Daily steps†		Daily minutes of MVPA ⁺		minutes of MVPA 10 minute bouts†	
Sex												
Male	522	25.4	(25.0, 25.8)	20.4	(19.7, 21.0)	9279	(8991 <i>,</i> 9568)	64.8	(62.6, 67.1)	22.8	(21.1, 24.4)	
Female	718	25.1	(24.8, 25.5)	31.5	(30.9, 32.0)	8709	(8464 <i>,</i> 8954)	55.6	(53.6, 57.5)	18.7	(17.3, 20.1)	
Age group												
Age 16-24	269	23.5	(23.0, 24.0)	23.0	(22.1, 23.9)	8534	(8136 <i>,</i> 8932)	57.0	(53.9 <i>,</i> 60.2)	20.5	(18.2, 22.8)	
Age 25-34	531	25.0	(24.6 <i>,</i> 25.3)	26.2	(25.5, 26.8)	9035	(8744 <i>,</i> 9326)	61.1	(58.8 <i>,</i> 63.3)	21.4	(19.7, 23.1)	
Age 35-49	358	26.6	(26.1, 27.1)	29.3	(28.5, 30.1)	9232	(8879 <i>,</i> 9585)	60.9	(58.1 <i>,</i> 63.6)	19.4	(17.3, 21.4)	
Age 50+	82	27.6	(26.6 <i>,</i> 28.7)	32.2	(30.5, 33.8)	8525	(7800 <i>,</i> 9249)	51.1	(45.4 <i>,</i> 56.7)	18.4	(14.2, 22.7)	
Ethnic group												
White	595	24.9	(24.5 <i>,</i> 25.2)	25.8	(25.1, 26.4)	9491	(9203, 9779)	63.6	(61.3 <i>,</i> 65.8)	23.7	(22.0, 25.4)	
Black	314	26.4	(25.8 <i>,</i> 27.0)	29.4	(28.5, 30.3)	8375	(7961, 8789)	56.2	(52.9 <i>,</i> 59.4)	17.1	(14.7, 19.6)	
Asian	210	24.8	(24.2 <i>,</i> 25.4)	25.8	(24.8, 26.8)	8082	(7608, 8556)	52.1	(48.4 <i>,</i> 55.8)	15.6	(12.8, 18.4)	
Other/Mixed	121	25.2	(24.4, 26.0)	26.8	(25.5, 28.1)	9060	(8465, 9656)	59.0	(54.3 <i>,</i> 63.7)	19.8	(16.3, 23.3)	
Limiting illness												
No	1087	25.1	(24.9 <i>,</i> 25.4)	26.6	(26.1, 27.0)	9077	(8877, 9277)	60.1	(58.6, 61.7)	20.8	(19.6, 21.9)	
Yes	153	26.2	(25.5 <i>,</i> 27.0)	28.2	(27.0, 29.4)	7996	(7447 <i>,</i> 8545)	54.4	(50.1, 58.7)	18.0	(14.8, 21.1)	
Housing sector												
Social	512	26.0	(25.6, 26.5)	28.4	(27.6, 29.1)	8298	(7953, 8642)	54.6	(51.8, 57.3)	16.0	(14.0, 18.1)	
Intermediate	503	24.8	(24.4, 25.2)	25.7	(25.0, 26.4)	9422	(9110, 9735)	62.1	(59.6, 64.5)	22.5	(20.6, 24.4)	
Market-rent	225	24.6	(24.0, 25.2)	25.5	(24.5, 26.5)	9318	(8863, 9773)	64.3	(60.8, 67.9)	25.3	(22.6, 28.1)	

Supplementary Table 3: Mean levels of adiposity and physical activity by patient characteristics

* Geometric means are presented for BMI

All means/geometric means are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

⁺ Data missing for 133 participants for average daily steps, MVPA and MVPA in bouts

Supplementary Table 4: Associations between participant characteristics and physical activity variables in participants with at least 4 days of recording of physical activity data

								Daily	minutes spent i	n MVPA in
	n		Daily steps		Daily	y minutes sper	nt in MVPA		≥10 minute bo	outs
Sex										
Male (Ref)	402		-			-			-	
Female	529	-559	(-947, -172)	0.005	-9.7	(-12.7, -6.7)	<0.0001	-4.7	(-6.8, -2.5)	<0.0001
Age group										
Age 16-24 (Ref)	180			F		-			-	
Age 25-34	412	410	(-116, 936) 🧹	0.13	3.0	(-1.2, 7.2)	0.16	-0.3	(-3.3, 2.8)	0.87
Age 35-49	276	520	(-45, 1086)	0.07	2.5	(-2.0 <i>,</i> 6.9)	0.27	-2.5	(-5.7, 0.7)	0.12
Age 50+	63	-25	(-889, 838)	0.95	-7.9	(-14.8, -1.1)	0.02	-3.2	(-8.2 <i>,</i> 1.8)	0.20
Ethnic group										
White (Ref)	482		-						-	
Black	214	-1213	(-1789, -638)	<0.0001	-7.1	(-11.7, -2.5)	0.002	-6.5	(-9.9, -3.1)	<0.001
Asian	142	-1128	(-1719, -538)	<0.001	-10.3	(-15.0 <i>,</i> -5.6)	< 0.0001	-7.8	(-11.3, -4.3)	<0.0001
Other/Mixed	93	-582	(-1273, 110)	0.10	-4.7	(-10.2, 0.8)	0.09	-4.2	(-8.2 <i>,</i> -0.2)	0.04
Limiting illness										
No (Ref)	834		-			-			-	
Yes	97	-976	(-1612, -341)	0.003	-4.6	(-9.6 <i>,</i> 0.4)	0.07	-2.0	(-5.6, 1.6)	0.28
Housing sector										
Social	332	-978	(-1515, -440)	<0.001	-6.9	(-11.2, -2.6)	0.002	-7.2	(-10.4, -4.0)	<0.0001
Intermediate (Ref)	410		-			-				
Market-rent	189	-359	(-889, 171)	0.185	0.2	(-4.0, 4.3)	0.91	0.9	(-2.2, 4.1)	0.56

All differences are mutually adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

BMJ Open

Physical activity variable (N = 1107)	Housing sector	· · ·		Difference in PA outcome compared to weekdays (95% confidence interval), p-value						
	group	(101	(Mon-Fri) activity		Saturday - weekday			Sunday - weekday		
	Social	8733	(8364, 9103)	-1643	(-2078, -1207)	<0.0001	-2629	(-3093, -2164)	<0.0001	
Daily steps	Intermediate	9497	(9178, 9817)	460	(59 <i>,</i> 862)	0.02	-1104	(-1528, -680)	<0.0001	
	Market-rent	9146	(8673, 9619)	1055	(467, 1642)	<0.001	-102	(-734, 531)	0.75	
	Social	57.2	(54.3, 60.1)	-11.2	(-14.7, -7.7)	<0.0001	-18.4	(-22.1, -14.7)	<0.0001	
MVPA (minutes)	Intermediate	63.1	(60.6, 65.7)	1.5	(-1.8, 4.7)	0.37	-8.5	(-11.9, -5.1)	<0.0001	
	Market-rent	63.5	(59.8, 67.3)	6.6	(1.9, 11.3)	0.01	-0.1	(-5.2 <i>,</i> 5.0)	0.97	
	Social	16.3	(14.0, 18.5)	-4.1	(-6.9, -1.3)	0.004	-6.8	(-9.8, -3.9)	<0.0001	
MVPA in ≥10 minute bouts (minutes)	Intermediate	22.6	(20.7, 24.6)	2.5	(-0.06, 5.1)	0.06	-0.7	(-3.4, 2.0)	0.62	
bouts (minutes)	Market-rent	24.2	(21.3, 27.1)	6.1	(2.4, 9.9)	0.001	2.8	(-1.2, 6.9)	0.17	

Supplementary Table 5: Physical activity differences between weekday (Monday-Friday) and weekend (Saturday, Sunday) activity by housing sector.

Means and differences (95% confidence intervals) are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day of the week, housing sector, an interaction between housing sector and day of week, and random effects to allow for multiple days of measurement and clustering of participants within household.

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

BMJ Open

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-021257.R2
Article Type:	Research
Date Submitted by the Author:	11-Jul-2018
Complete List of Authors:	Nightingale, C; St George's University London, Division of Population Health Sciences and Education Rudnicka, Alicja; SGUL University of London Ram, Bina; St George's, University of London, Population Health Research Institute Shankar, Aparna; St. Geoege's, University of London, Population Health Research Institute Limb, Elizabeth; St George's University, Population Health Research Institute Procter, Duncan; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Cooper, Ashley; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Bristol, Centre for Exercise, Nutrition and Health Sciences Ellaway, Anne; University of Glasgow, MRC/SCO Social and Public Health Sciences Unit Giles-Corti, Billie; RMIT University, NHMRC Centre of Research Excellence in Healthy Liveable Communities Clary, Christelle; London School of Hygiene and Tropical Medicine, Social And Environmental Health Research Lewis, Daniel; London School of Hygiene and Tropical Medicine, Cummins, Steven; London School of Hygiene and Tropical Medicine, Department of Social and Environmental Health Research Whincup, Peter; St Georges, University of London Cook, Derek; St George's University, Division of Population Health Sciences Owen, C; St George's, University London, Population Health Research Institute
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Cardiovascular medicine
Keywords:	Physical activity, Adiposity, Housing, Perceived neighbourhood environment, ENABLE-London

60

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Housing, neighbourhood and sociodemographic associations with adult levels of physical activity and adiposity: baseline findings from the ENABLE London Study

CM Nightingale¹, AR Rudnicka¹, B Ram¹, A Shankar¹, ES Limb¹, D Procter^{2,3}, AR Cooper^{2, 3}, AS Page^{2, 3}, A Ellaway⁴, B Giles-Corti⁵, C Clary⁶, D Lewis⁶, S Cummins⁶, PH Whincup¹, DG Cook¹, CG Owen¹

¹ Population Health Research Institute, St George's, University of London, London, UK.

² Centre for Exercise, Nutrition and Health Sciences, University of Bristol, Bristol, UK.

³ National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, UK.

⁴ MRC/SCO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK.

⁵ NHMRC Centre of Research Excellence in Healthy Liveable Communities, RMIT University, Melbourne, Australia.

⁶ London School of Hygiene and Tropical Medicine, London, UK.

Corresponding Author:-

Dr Claire M Nightingale

Population Health Research Institute, St. George's, University of London, Cranmer Terrace, London SW17 ORE. Email: <u>cnightin@sgul.ac.uk.</u>Phone: +44 (0) 208 725 2342

Total word count: 4550 excluding abstract (311 words) Tables and figures: 3 tables, 1 figure, 5 supplementary tables References: 51

	1	Abstract
	2	Objectives: The neighbourhood environment is increasingly shown to be an important
	3	correlate of health. We assessed associations between housing tenure, neighbourhood
I	4	perceptions, sociodemographic factors, and levels of physical activity (PA) and adiposity
	5	among adults seeking housing in East Village (formerly London 2012 Olympic/Paralympic
	6	Games Athletes' Village).
	7	Setting: Cross-sectional analysis of adults seeking social, intermediate and market-rent
	8	housing in East Village.
	9	Participants: 1278 participants took part in the study (58% female). Complete data on
	10	adiposity (body mass index [BMI] and fat mass %) were available for 1240 participants
1	11	(97%); of these a sub-set of 1107 participants (89%) met the inclusion criteria for analyses of
1	12	accelerometer-based measurements of PA. We examined associations between housing
	13	sector sought, neighbourhood perceptions (covariates) and PA and adiposity (dependent
•	14	variables) adjusted for household clustering, sex, age group, ethnic group, and limiting
1	15	longstanding illness.
	16	Results: Participants seeking social housing had the fewest daily steps (8304, 95%Cl
1	17	7959,8648) and highest BMI (26.0kg/m ² 95%Cl 25.5,26.5kg/m ²) compared with those
	18	seeking intermediate (daily steps 9417, 95%Cl 9106,9731; BMI 24.8kg/m ² 95%Cl
	19	24.4,25.2kg/m ²) or market-rent housing (daily steps 9313, 95%Cl 8858,9768; BMI 24.6kg/m ²
	20	95%Cl 24.0,25.2kg/m ²). Those seeking social housing had lower levels of PA (by 19-42%) at
1	21	weekends vs weekdays, compared with other housing groups. Positive perceptions of
	22	neighbourhood quality were associated with higher steps and lower BMI, with differences
	23	between social and intermediate groups reduced by ~10% following adjustment, equivalent
	24	to a reduction of 111 for steps and 0.5kg/m ² for BMI.
1		Page 2 of 31
		For peer review only - $ntto'/nmionen hmi com/site/about/duideubes votmi$

	BMJ Open
1	Conclusions: The social housing group undertook less PA than other housing sectors, with
2	weekend PA offering the greatest scope for increasing PA, and tackling adiposity in this
3	group. Perceptions of neighbourhood quality were associated with PA and adiposity and
4	reduced differences in steps and BMI between housing sectors. Interventions to encourage
5	physical activity at weekends and improve neighbourhood quality, especially amongst the
6	most disadvantaged, may provide scope to reduce inequalities in health behaviour.
7	
8	Strengths and limitations of this study
9	• Large sample with representation of three different aspirational housing groups,
10	providing a wide range of socioeconomic backgrounds
11	 Objective measurements of physical activity and adiposity outcomes using
12	accelerometry and bioelectrical impedance respectively
13	Lower number of participants studied seeking market-rent housing compared with
14	those seeking intermediate or social housing
15	
16	Keywords
17	Physical activity; Adiposity; Housing; Perceived neighbourhood environment; ENABLE-
18	London
19	London
	Page 3 of 3 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3
4 5
6
7 8
8 9
10
11 12
13
14 15
16
17 18
19
20 21
22
23 24
24 25
26 27
27 28
29
30 31
32
33 34
35
36 37
38
39 40
41
42 43
44
45 46
47
48 49
50
51 52
53
54 55
56
57 58
58 59
60

1	Introduction
2	Physical inactivity and adiposity are associated with an increased risk of type 2 diabetes and
3	cardiovascular disease (1-4) and constitute a serious public health problem in the UK and
4	globally (5). Evidence suggests that levels of physical activity (PA) are lower among those
5	who are socioeconomically disadvantaged (6), who experience greater economic, access
6	and health related barriers to being physically active (7). Socioeconomic status is also
7	associated with differences in types of PA, in particular higher socioeconomic status is
8	associated with more vigorous leisure time PA (8). Previous research has found variation in
9	PA by day of the week with studies showing lower levels of activity on Sundays compared
10	with weekdays in young adults (9), parents and their children (10).
11	
12	There is emerging evidence suggesting that housing tenure is an important determinant of
13	health. In particular, UK-based studies have shown that housing tenure (owner vs. private
14	renter vs. public sector renter) is associated with poor health (11;12). Amongst particular
15	groups including those who are economically inactive or unemployed, housing tenure might
16	provide a better indication of socioeconomic status compared with measures based on
17	occupation or income (13). Indeed, in several studies housing tenure remained associated
18	with health outcomes following adjustment for conventional measures of socioeconomic
19	status such as income or education (11;14). A more nuanced approach is therefore required
20	with respect to measures of socioeconomic status, and they should not be simply regarded
21	as interchangeable (12;15). Despite this, there has been limited research examining the
22	direct effect of housing tenure on PA, and existing evidence is equivocal. Harrison and
23	colleagues found no association between housing tenure and meeting recommended levels
24	of PA among community dwelling healthy adults in the North-East of England (16). Similarly
	Page 4 of 31

2 3	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
15 16	
17	
18	
19	
20	
21	
22 23	
24	
25	
26	
27	
28 29	
30	
31	
32	
33	
34 35	
35 36	
37	
38	
39	
40	
41 42	
43	
44	
45	
46 47	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59 60	
00	

1	housing tenure was not associated with self-reported energetic PA among older Australians
2	(17). Ogilvie and colleagues found overall levels of PA to be higher among individuals living
3	in social housing compared with owner-occupiers (18). The authors suggest that may
4	capture occupational PA levels which are likely to be higher among those in social housing
5	(18). In contrast, living in private rental accommodation was associated with a greater
6	likelihood of taking up exercise over a 9-year period among men aged 18-49 at baseline,
7	compared with those in local authority accommodation (19).
8	
9	Housing tenure may affect health and health behaviours in part through characteristics of
10	the home or neighbourhood itself (20;21) or psychological factors such as self-efficacy or
11	self-esteem (22). Social housing estates which are common in the UK may be associated
12	with specific cultures and norms, which in turn shape residents' behaviours (11). Subjective
13	characteristics of the neighbourhood environment including higher perceived access to
14	recreational facilities and shops in local proximity have been shown to be associated with
15	higher levels of PA (23;24). Residents who perceive their neighbourhood more positively,
16	have been shown to have better mental health and are less likely to relocate (25).
17	Conversely, real and perceived crime, has the potential to constrain residents' PA (26).
18	However, a recent systematic review suggested a lack of association between PA and
19	perceptions of safety from crime; highlighting the need for high quality evidence, including
20	prospective studies and natural experiments (27), to examine this issue further. In
21	particular, high quality evidence is needed to understand the potentially multifactorial
22	influence of residential location on health and health behaviours; effects which are likely to
23	extend beyond simple measures of socioeconomic status (27).

Page 7 of 40

BMJ Open

1	The Examining Neighbourhood Activities and Built Living Environments in London (ENABLE
2	London) study is a longitudinal study evaluating how active urban design influences the
3	health and wellbeing of people moving into the former Athletes' Village of the London 2012
4	Olympic and Paralympic Games now known as 'East Village' (28). East Village is a new high-
5	density neighbourhood development built on active design principles containing a mix of
6	social housing, intermediate (including affordable rent, shared ownership and shared
7	equity) housing, and market-rent housing. This paper draws on baseline data (prior to any
8	potential move to East Village) to first, examine predictors of PA and adiposity (measured
9	objectively using accelerometry and bioelectrical impedance), including the housing sector
10	to which they are applying and perceptions of their neighbourhood. Second, to examine
11	whether PA patterns across the week vary by housing sector and third, to examine whether
	adjustment for perceptions of the neighbourhood environment reduce housing sector
	differences in PA and adiposity.
	Mathada
15	Methods
16	Study participants were recruited from those seeking or who had applied for new
17	accommodation in East Village and were classified by the type of housing tenure sought
18	based on level of income; i.e. social, intermediate or market-rent. The inclusion criteria was
19	broad and included anyone interested / applying for single or multiple occupancy
20	accommodation in East Village. There was no explicit exclusion criteria; adults of any age,
21	gender, ethnic group, with or without handicap, were invited to participate. Current
22	housing status was strongly linked to aspirational housing status, where those seeking social
23	accommodation were currently in social housing or on social housing waiting lists, and those
24	seeking intermediate and market-rent accommodation were largely in privately rented
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23

Page 6 of 31

Page 8 of 40

1 2 3	
4 5 6 7 8	
9 10 11 12	
13 14 15	
16 17 18 19 20	
21 22 23	
24 25 26 27	
28 29 30 31	
32 33 34 35	
36 37 38 39	
40 41 42 43	
44 45 46 47	
48 49 50 51	
52 53 54 55	
56 57 58 59	
60	

1	housing. Recruitment of participants in the different housing sectors was carried out
2	between January 2013 and December 2015 in three phases determined by the order of
3	availability of housing in East Village (social, intermediate, and market-rent respectively).
4	Those applying for social housing in East Village were initially recruited between January
5	2013 and May 2014, households seeking intermediate accommodation between July 2013
6	and November 2014 and those seeking market rent accommodation between September
7	2014 and December 2015. Recruitment processes for those applying for social housing
8	were slightly different compared with other housing sectors. The East Thames Group
9	housing association was primarily responsible for recruiting participants in social housing,
10	whereas the ENABLE London team (in association with Triathlon Homes and Get Living
11	London) recruited participants from the other housing sectors (28). Aspirational housing
12	tenure is integral to the design of ENABLE London, and we have shown that this provides a
13	clear socioeconomic marker of study participants. For example, those seeking social housing
14	in East Village are more likely to be unemployed, less educated and more likely to represent
15	ethnic minorities (a classic marker of socioeconomic vulnerability), compared to those
16	seeking affordable and market-rent accommodation (28). We have also shown key
17	differences in mental health and well-being between housing groups, where those seeking
18	social housing were more likely to be depressed, anxious and have poorer well-being,
19	compared to other housing groups (29). Moreover, this is entirely consistent with earlier
20	studies which found that both current housing tenure and aspirational housing tenure are
21	associated with a variety of health outcomes, including mental health and measures of
22	general health (20;30).
23	
24	

1	Baseline assessments of participants were carried out in their place of residence before any
2	potential move to East Village. Full details of the recruitment process can be found
3	elsewhere (28).
4	
5	Independent variables
6	A team of trained fieldworkers administered self-complete questionnaires on a laptop
7	during home visits. Data on age, sex, self-defined ethnicity, work status, occupation and
8	whether the participant had a limiting longstanding illness or disability (lasting or expected
9	to last at least 12 months) were collected. Participants self-defined as 'White', 'Asian',
10	'Black', 'Mixed', or 'Other'; the latter two categories were combined for analyses.
11	Socioeconomic status based on occupation was coded using the National Statistics Social-
12	Economic Coding (NS-SEC) to categorise participants into 'higher managerial or professional
13	occupations', 'intermediate occupations', 'routine or manual' (31). An additional
14	'economically inactive' category included those seeking employment, unable to work due to
15	disability or illness, retired, looking after home and family, and students. We sought
16	information on educational attainment; participants were categorised into "Degree or
17	equivalent / Higher", "Intermediate qualifications" (including A levels and GSCEs), and
18	"Other / None" (including work-based or foreign qualifications). Participants completed
19	questionnaires assessing neighbourhood perceptions (29). Five items assessed perceived
20	crime (e.g., "There is a lot of crime in my neighbourhood"; Cronbach's α = 0.87) and six
21	items assessed neighbourhood quality (e.g. "This area is a place I enjoy living in"; Cronbach's
22	α =0.78). Responses on items were summed and scores ranged from -10 to +10 for
23	perceived crime and -12 to +12 for perceived quality, such that positive scores indicate less
24	perceived crime and better neighbourhood quality while negative scores indicate more
	Page 8 of 31

1	perceived crime and poorer quality. The scales were derived following an exploratory factor
2	analysis of 14 questions regarding neighbourhood (Supplementary Table 1).
3	
4	Dependent variables
5	Height was measured to the last complete millimetre using a portable stadiometer; weight
6	was measured to the nearest kilogram using a Tanita SC-240 Body Composition Analyzer
7	(Tanita, Tokyo, Japan); body mass index (BMI) was derived as weight(kg)/height(m) ² . The
8	Tanita SC-240 Body Composition Analyzer also measured leg-to-leg bioelectrical impedance
9	from which fat free mass and fat mass were estimated. Fat mass percentage was calculated
10	as fat mass (kg)/weight (kg)*100.
11	
12	Participants wore a hip-mounted ActiGraph GT3X+ accelerometer during waking hours over
13	a consecutive period of 7 days (ActiGraph LLC, Florida, USA). These accelerometers
14	provided daily measures of steps, counts and time spent in moderate and vigorous PA
15	(MVPA) using established cut-offs. Daily time spent in MVPA both overall and in \ge 10 minute
16	bouts in accordance with UK recommendations for PA (32) were assessed. The cut-point for
17	moderate PA was defined as \geq 1952 counts per minute (33). We excluded any days of
18	recording where the amount of registered time accumulated was below 540 minutes (34).
19	Non-wear periods were defined as a minimum length of 60 minutes, allowing for a 2-minute
20	spike tolerance. Participants with at least one day of recording were retained in analyses.
21	We fitted a multilevel linear model for each outcome to allow for repeated measurements
22	of daily PA, by fitting participant as a random effect and adjusting for day of the week, day
23	order of recording and month as fixed effects. Raw level one residuals were obtained from
24	the model and a within person average value of each outcome variable was obtained by
	Page 9 of 31

1	averaging these raw residuals. The average of these raw residuals for each participant was
2	added to the sample mean for that particular PA variable to derive an unbiased average
3	level of each PA variable for each person.
4	
5	Statistical analysis
6	All analyses were carried out using STATA/SE software (Stata/SE 14 for Windows; StataCorp
7	LP, College Station, TX, USA). Outcome variables were inspected for normality and BMI was
8	log transformed due to its skewed distribution. Multilevel linear regression models were
9	fitted, mutually adjusted for housing sector and participant characteristics (sex, age group,
10	ethnic group, and limiting longstanding illness) as fixed effects, with a random effect to
11	allow for household clustering. Residuals did not show departure from linearity, suggesting
12	that the model assumptions were appropriate. Absolute differences or percentage
13	differences for log transformed outcomes (i.e. BMI) are presented by sex, age group, ethnic
14	group, limiting longstanding illness and housing sector. Sensitivity analyses examined
15	whether associations remained when the sample was restricted to 931 participants (84%)
16	with at least four days of 540 or more minutes per day of recording.
17	
18	To assess differences in PA by day of the week as opposed to overall levels of PA we took
19	the following approach. Daily PA data were examined using multilevel models with random
20	effects to allow for multiple days of recording within person and household clustering. An
21	interaction between housing sector and day of the week was fitted and models were
22	adjusted for sex, age group, ethnic group, limiting longstanding illness, day order of
23	recording and month of measurement as fixed effects.
24	

2	
3	
4	
5 6	
07	
7 8	
8 9	
9 10	
11	
12	
13	
14	
15	
13 14 15 16 17	
17	
18	
19	
20	
21	
22	
23	
20 21 22 23 24 25 26 27 28 29 30 31	
25	
26	
27	
28	
29	
30	
32	
33 24	
34 35	
36	
36 37 38	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51 52	
52	
53 54	
54 55	
55 56	
50 57	
58	
59	
60	

1	The associations between neighbourhood perception scales and adiposity and PA outcomes
2	were examined. Each of the neighbourhood quality and crime scores were included in the
3	models as quintiles, to examine the differences in outcomes between the top and bottom
4	quintile. Finally, the effect of adjustment for neighbourhood perception on differences in
5	adiposity and PA between housing sectors was examined. If associations between outcomes
6	and neighbourhood perceptions appeared linear, models examining housing sector
7	differences were additionally adjusted for neighbourhood perceptions as a continuous
8	variable.
9	
10	Patient and Public Involvement
11	The ENABLE London study was developed in partnership with a network of both local and
12	regional stakeholders identified through our collaborator links to agencies, involved with the
13	design, planning and management of large-scale accommodation developments. Locally
14	these included local authorities (particularly Newham) and a number of housing
15	associations, in particular Triathlon Homes, a partner organisation of housing associations,
16	which manages social and intermediate homes in East Village. Participants have been
17	involved in the study from an early stage to ensure assessments and participation remain
18	relevant and enjoyable, to ensure the continued significance and potential generalisability
19	of the work.
20	
21	Results
22	Of 1819 households who agreed to be contacted by the study team in order to receive
23	further information about the ENABLE London study, 1278 adults from 1006 households
24	(55%) participated in the study and completed a questionnaire. Participation rates for those
	Page 11 of 31 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 13 of 40

	1	seeking market-rent and intermediate housing were 58% and 57% respectively and were
	2	slightly lower in the social group (52%). Complete data on adiposity were available for 1240
	3	participants (97%); of these a sub-set of 1107 participants (89%) met the inclusion criteria
)	4	for analyses of objectively measured PA. Participant characteristics (age, sex) and levels of
 <u>2</u> 8	5	adiposity were similar among those who did and did not provide PA data; however,
5 1 5	6	participants from black and Asian ethnic groups were less likely to provide PA data.
5	7	Supplementary Table 2 shows participants characteristics at baseline for the 1240 adults
3 9	8	with measurements of adiposity at baseline. Those seeking social housing were more likely
) <u>2</u>	9	to be female, of older age, of non-white ethnicity, to have limiting longstanding illness, and
3 1	10	be in routine / manual occupations or economically inactive compared to those seeking
5	11	intermediate or market-rent housing.
, 3 9	12	
)	13	Adjusted mean levels of adiposity and PA outcomes by housing sector and participant
<u>2</u> 3	14	characteristics are shown in Supplementary Table 3. Table 1 shows housing sector and
+ 5 5	15	other participant characteristics associations with BMI and fat mass %, and objectively
3	16	measured PA (steps, time spent in MVPA, time spent in MVPA in \geq 10 minute bouts).
))	17	Participants seeking social housing had markedly higher levels of BMI and fat mass % and
 <u>2</u>	18	markedly lower levels of steps, MVPA and MVPA in \geq 10 minute bouts compared with those
5 1 5	19	seeking intermediate housing, though there were no differences between those seeking
5 7	20	market-rent and intermediate accommodation.
3	21	
))	22	Fat mass % was higher in females than males though there was no difference in BMI (Table
3 1	23	1). BMI and fat mass % were higher among all older age groups compared with 16-24 year
5	24	olds. Participants of black ethnicity had higher levels of BMI and fat mass % compared with
, 3 9		Page 12 of 31
·		For near review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

3	
4	
5	
6	
7	
8 9	
9 10	
11	
12	
13	
14	
15	
16	
17 18	
19	
20	
21	
22	
23	
24	
25 26	
26 27	
27 28	
29	
30	
31	
32	
33 24	
34 35	
36	
37	
38	
39	
40	
41	
42 43	
45 44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
53	
54	
55	
56	
57	
58 59	
59 60	
50	

1	whites; there were no differences in BMI and fat mass % between Asian or other/mixed
2	ethnic groups and whites. Those with a limiting longstanding illness had higher levels of
3	both BMI and fat mass %. All PA measures were lower among females. Steps and MVPA
4	were slightly higher in 25-34 year olds and steps were also higher among 35-49 year olds
5	compared with 16-24 year olds; however, there were no age group differences for MVPA in
6	≥10 minute bouts. Participants of black and Asian ethnicities had lower levels of steps,
7	MVPA and MVPA in \geq 10 minute bouts compared to whites. Participants who reported
8	having a limiting longstanding illness had lower levels of steps and MVPA, but not MVPA in
9	\geq 10 minute bouts. Educational attainment level was not associated with any of the
10	outcomes once housing sector had been adjusted for and adjustment for educational
11	attainment did not materially alter housing sector differences in adiposity or PA outcomes
12	(data available from authors).
13	
14	Sensitivity analyses for PA outcomes were carried out in 931 participants who wore an
15	ActiGraph for at least four days with at least 540 minutes of recording per day
16	(Supplementary Table 4). There were no differences between market-rent and
17	intermediate groups (consistent with the main analysis presented in Table 1). Differences
18	between social and intermediate groups were broadly similar with the results presented in
19	Table 1 for the main analysis.
20	
21	Differences in PA variables between housing groups were examined by day of the week to
21 22	Differences in PA variables between housing groups were examined by day of the week to explore whether differences between groups were consistent across the week (Figure 1A-
22	explore whether differences between groups were consistent across the week (Figure 1A-
22 23	explore whether differences between groups were consistent across the week (Figure 1A- D). Levels of PA (steps (panel A), MVPA (panel B) and MVPA in ≥10 minute bouts (panel C))

Page 15 of 40

1

BMJ Open

2	
2 3 4 5 6 7 8 9	
4	
5	
6	
7	
, 8	
9	
10	
11	
12 13	
13	
14	
15	
16	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
19 20 21 22 23 24 25 26 27 28 29	
28	
29	
30 31	
27	
32 33 34	
34	
35	
35 36	
37	
37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
55 54	
54 55	
56	
57	
58	
59	
60	
-	

1	intermediate group, steps were higher on Saturdays and lower on Sundays; MVPA and
2	MVPA in ≥10 minute bouts were lower on Sundays but there was no difference on
3	Saturdays compared to weekday activity. In the market-rent group, steps, MVPA and MVPA
4	in ≥10 minute bouts were higher on Saturdays and similar to weekdays on Sundays. In the
5	social group, steps, MVPA and MVPA in ≥10 minute bouts were on average lower on
6	Saturdays and lower still on Sundays. Registered time (panel D) was lowest on average in
7	the social group during weekdays, decreasing on Saturdays and Sundays. The intermediate
8	and market-rent groups had higher levels of registered time during weekdays compared
9	with the social group which decreased on average on Saturdays and Sundays (despite
10	recording more steps and minutes in MVPA suggesting a higher intensity of activity). Mean
11	levels of steps, MVPA, and MVPA in ≥10 minute bouts on weekdays and differences on
12	Saturday and Sunday compared to weekdays are shown by housing sector in Supplementary
13	Table 5. The marked differences in activity between weekdays and weekend days in the
14	social group are not explained by differences in registered time (data available from
15	authors).
16	
17	Associations between perceived neighbourhood quality and crime scales and adiposity and
18	PA outcomes are shown in Table 2, adjusted for the participant characteristics shown in
19	Table 1. Participants with the most positive perceptions of neighbourhood quality (highest
20	quintile) had lower BMI, higher steps and recorded longer durations of MVPA compared
21	with those who had the most negative perceptions of neighbourhood quality (lowest
22	quintile). There were no significant associations between perceptions of neighbourhood

crime and adiposity or PA. 23

24

2	
3 4	
4 5	
5 6	
7	
/ 8	
o 9	
9 10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 43	
43 44	
44 45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1 2

1	The effect of adjustment for perceived neighbourhood quality on differences in adiposity
2	and PA between housing sector groups is presented in Table 3. All associations between
3	perceived neighbourhood quality and crime and outcome variables were approximately
4	linear and were therefore fitted as continuous variables in the model. In addition,
5	associations between perceived neighbourhood quality and crime and outcome variables
6	were similar across the three housing groups (all p>0.05). Adjustment for perceptions of
7	neighbourhood quality reduced differences in BMI, fat mass %, steps, MVPA and MVPA in
8	≥10 minute bouts between the social and intermediate groups by 10%, 6%, 10%, 10% and
9	7% respectively. Differences between market-rent and intermediate groups in adiposity and
10	PA variables were not statistically significant before or after adjustment. A larger
11	proportion of the social-intermediate group differences in steps, MVPA and MVPA in \geq 10
12	minute bouts on weekends was explained by adjustment for perceptions of neighbourhood
13	quality (10%, 16% and 16% respectively) compared to the differences in steps, MVPA and
14	MVPA in \geq 10 minute bouts on weekdays which were reduced by 10%, 8% and 3%
15	respectively (data not shown).
16	
17	
	Discussion
18	Discussion The results of this study showed that participants seeking social housing in East Village had
18 19	
	The results of this study showed that participants seeking social housing in East Village had
19	The results of this study showed that participants seeking social housing in East Village had lower levels of PA and higher levels of BMI and fat mass % compared with those seeking
19 20	The results of this study showed that participants seeking social housing in East Village had lower levels of PA and higher levels of BMI and fat mass % compared with those seeking intermediate and market-rent housing, even when adjusted for demographic factors. In the
19 20 21	The results of this study showed that participants seeking social housing in East Village had lower levels of PA and higher levels of BMI and fat mass % compared with those seeking intermediate and market-rent housing, even when adjusted for demographic factors. In the social housing group, levels of PA were particularly low on weekends compared with

Page 15 of 31

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 17 of 40)	BMJ Open
1		
2 3	1	and steps suggests more intense activity at weekends in the intermediate and market-rent
4 5 6	2	housing groups. These findings may inform targeted interventions to increase PA and
6 7 8	3	reduce adiposity in different socioeconomic groups.
9 10	4	
11 12	5	Positive associations between perceived neighbourhood quality and PA, BMI and fat mass %
13 14	6	were also shown. Adjustment for differences in perceived neighbourhood quality reduced
15 16 17	7	differences in PA and BMI by approximately 10% between social and intermediate housing
18 19	8	groups; equivalent to a reduction of 111 for daily steps, 0.5 minutes for MVPA and 0.5kg/m ²
20 21	9	for BMI. However, a larger proportion of the difference in PA was apparent at weekends;
22 23	10	equivalent to a reduction of 222 for daily steps and 2.2 minutes for MVPA.
24 25 26	11	
20 27 28	11	Relation to previous studies
29 30		
31 32	13	Studies have shown that lower socioeconomic status is associated with lower levels of PA
33 34	14	(35;36), and that those from more socially deprived backgrounds have the most barriers to
35 36	15	being physically active (7). Previous research examining the role of housing tenure is limited.
37 38	16	Findings from this study showed marked differences in PA and adiposity between those
39 40	17	seeking social, intermediate and market-rent housing. In particular, lower PA and higher
41 42 43	18	adiposity in participants seeking social housing, a group which comprises a high proportion
43 44 45	19	of people from more socioeconomically disadvantaged backgrounds (28). The higher levels
46 47	20	of BMI and fat mass % in those seeking social housing compared with those seeking
48 49	21	intermediate or market-rent housing is consistent with systematic reviews which have
50 51	22	found an association between lower socioeconomic status and higher levels of adiposity,
52 53	23	particularly in higher income countries and among women (37). While socioeconomic
54 55 56	24	status is a strong determinant of housing status, to our knowledge this is the first study to
57 58		
50 59 60		Page 16 of 31 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

-	explicitly examine housing sector differences in objective PA and markers of adiposity levels
2	2 (i.e. BMI and fat mass %). However, it is important to consider more broadly what these
3	aspirational housing sector differences might represent. Related studies have shown that
2	those in social housing are less likely to use active travel compared with owner occupiers
ţ	(18), and that those in social housing and home owners with a mortgage are more likely to
(be obese and have higher levels of illness and disability compared to outright home owners,
7	even after adjustment for other socioeconomic status markers (38). These latter findings
8	suggest that the effect of home ownership may be more complex and cannot be simply
Q	explained by socioeconomic status. Neighbourhood quality may offer a potential partial
10	explanation for these findings (39). In the present study perceptions of better
11	neighbourhood quality were associated with PA whereas perceptions of crime were not. In
12	2 contrast, a large UK-based study found that perceptions of feeling safe in the
13	neighbourhood had the largest effect on levels of PA compared with perceptions of leisure
14	facilities, sense of belonging or access to public transport or amenities (40). Another study
15	in the US found that low perceived safety from crime was associated with lower levels of
16	5 MVPA (41). However, a recent review concluded that higher quality evidence is needed,
17	including prospective studies and natural experiments in areas of wide crime variability, in
18	order to further understand the effect of crime on physical and mental health (27).
19	Moreover, previous work has suggested that objective and perceived measures of the built
20	environment correlate differently with physical activity levels, suggesting that these
22	measures are assessing different dimensions of the built environment which relate
22	2 differently to health behaviour (42).
23	3

2	
_	
3	
4	
5	
6 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
16 17	
18	
19	
20	
21	
22	
23	
24	
25	
26 27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1	Our findings showed that PA levels were particularly low on the weekend among those
2	seeking social housing, which is consistent with findings from a systematic review which
3	found that leisure-time PA (which may be more likely to occur on weekends) was lower
4	amongst those from lower socioeconomic groups (8). This suggests that low-cost strategies
5	to increase weekend PA may be particularly beneficial to more disadvantaged households.
6	A free community-based program in Bogata Colombia, temporarily closed streets on
7	Sundays to encourage PA amongst more disadvantaged local residents (43). A similar
8	program has been trialled in the United States (44), however the effectiveness, longevity
9	and generalisability of these programs to other socioeconomically deprived areas is yet to
10	be established.
11	
12	Strengths and limitations
13	Strengths of this study include the representation of three different aspirational housing
14	groups which provides a wide range of socioeconomic backgrounds. Of those seeking social
15	housing, two-thirds (67%) were currently living in social housing accommodation provided
16	by the local authority or housing association; the remainder were largely currently living in
17	privately rented accommodation with many on social housing waiting lists. Of those seeking
18	intermediate or market-rent accommodation, almost two-thirds were living in privately
19	rented accommodation (both 64%); the remainder were largely living with relatives or
20	friends. The study sample is large with good representation from a 'hard to reach' group of
21	social housing participants. Participation rates were high given the target group, with
22	between 50-60% of those who initially agreed to be contacted taking part in the study. The
23	ActiGraph GT3X+ accelerometer provided validated objective measures of PA (45) and the
24	use of bioelectrical impedance to provide more direct measurements of adiposity including
	Page 18 of 31
	For neer review only - http://bmionen.hmi.com/site/about/quidelines.yhtml

1	fat mass %, which may provide a more valid marker of adiposity than BMI, particularly in a
2	multi-ethnic population (46;47). Reassuringly the patterns of PA by sex, ethnic group and
3	health status were consistent with those published previously (48-50). A limitation of the
4	study is the lower number of participants in the market-rent sector compared with the
5	other groups. This was due to restrictions imposed on the study team on the extent and
6	duration of access to potential applicants seeking market-rent accommodation. While the
7	study is longitudinal, these analyses are cross-sectional limiting the degree to which causal
8	inferences can be made. Moreover, there is the possibility of selection amongst study
9	participants, where those who are more active seek to move to East Village, may be more
10	likely to participate in the study and may perceive their environment differently, which may
11	limit the generalisability of the findings to neighbourhoods outside of East London.
12	
13	Conclusions and future work
14	The findings presented in this paper suggest that perceived neighbourhood quality is
15	associated with meaningful differences in PA and markers of adiposity. Differences in steps
16	(680 steps) and BMI (3.6kg/m ²) between the lowest and highest quintiles of perceived
17	neighbourhood quality should be considered in the context of an average 10,000 steps per
18	day, where a 5% increase (500 steps) would be a worthwhile population level increase and a
19	5kg/m ² increase in BMI is associated with a 31% increase in all-cause mortality (51). Hence,
20	improvements in neighbourhood quality could be associated with health benefits of public
21	health importance. There were also substantial differences in PA, BMI and fat mass $\%$
22	between the three housing groups studied. In particular the very low levels of PA in the
23	social housing group during the weekend could provide a target for intervention to increase
24	levels of PA; again these differences should be considered in relation to 500 steps per day,

BMJ Open

which can be considered as an increase of population importance. Perceptions of neighbourhood quality reduced differences in PA and adiposity between housing sector groups, and the possibility of measuring more objective markers of neighbourhood quality within this study has the potential to explain more (42). The future follow-up of the ENABLE London cohort will allow us to examine whether moving to 'East Village', a neighbourhood designed for healthy active living, will have a positive impact on PA and/or adiposity levels. A major aim of the study is to identify features of the local built environment that increase levels of PA which could potentially help to reduce socioeconomic inequalities in health. It will be of particular interest to determine whether an increase in PA is more apparent in the social housing group whose neighbourhood characteristics should improve. Furthermore, we will be in a position to examine whether any potential effects of the built environment type. on PA are modified by housing sector type.

1	Ethical approval
2	Full ethical approval was obtained from the relevant Multi-Centre Research Ethics
3	Committee (REC Reference 12/LO/1031). All participants provided written informed
4	consent.
5	
6	Data sharing statement
7	Further details of the ENABLE London study are available from the study website
8	(http://www.enable.sgul.ac.uk/). We welcome proposals for collaborative projects. For
9	general data sharing inquiries, contact Professor Owen (<u>cowen@sgul.ac.uk</u>).
10	
11	<u>Competing interests</u>
12	We declare that we have no competing interests.
13	
14	Funding
15	This research is being supported by project grants from the Medical Research Council
16	National Prevention Research Initiative (MR/J000345/1) and National Institute for Health
17	Research (12/211/69). Diabetes and obesity prevention research at St George's, University
18	of London is supported by the National Institute for Health Research (NIHR) Collaboration
19	for Leadership in Applied Health Research and Care (CLAHRC) South London. AE is funded by
20	the UK Medical Research Council as part of the Neighbourhoods and Communities
21	Programme (MC_UU_12017-10). BG-C is supported by an NHMRC Principal Research
22	Fellowship (#1107672). ARC and ASP are supported by NIHR Biomedical Research Centre at
23	University Hospitals Bristol NHS Foundation Trust and the University of Bristol. The views

e 23 of 40	BMJ Open
	expressed in this publication are those of the author(s) and not necessarily those of the
	2 NHS, the National Institute for Health Research or the Department of Health.
	3 <u>Authorship statement</u>
	4 CGO, ARR, AE, ARC, DL, SC, BG-C, DGC and PHW designed the study and raised funding. BR,
	5 ARR, CC, DP and CGO collected data for the study; BR, ARR and CGO enrolled participants.
	6 CMN, BR, ESL, ARR, CC, DP and CGO undertook data management. CMN, ESL analysed the
	7 data; CMN wrote the first draft of the report. ARR, BR, ESL, AS, DP, ARC, ASP, AE, BG-C, CC,
	8 DL, SC, PHW, DGC and CGO critically appraised the manuscript and approved the final draft.
	9 CGO is responsible for data integrity.
1	D
1	1 <u>Acknowledgements</u>
1	2 The authors thank the East Thames Group, Triathlon Homes and Get Living London who
1	have assisted in recruiting participants into the ENABLE London study. The ENABLE London
1	4 study is advised by a Steering Committee chaired by Professor Hazel Inskip (University of
1	5 Southampton), with Dr David Ogilvie (University of Cambridge) and Professor Andy Jones
1	6 (University of East Anglia) as academic advisors and Mrs Kate Worley (formerly East Thames
1	7 Group Assistant Director for Strategic Housing) as the lay/stakeholder member. The authors
1	are grateful to the members of the ENABLE London study team (in particular Aine Hogan,
1	9 Katrin Peuker, Cathy McKay) and to participating households, without whom this study
2	0 would not be possible.
2	1
	Page 22 of 31
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
2	1		Reference List
4			
5	2	1.	Ford ES, Williamson DF, Liu S. Weight change and diabetes incidence: findings from a national
6	3		cohort of US adults. Am J Epidemiol 1997;146:214-22.
7	4	2	Neces M. Hiemann T. Muller Dismonschreider F. Theley F. Dell C. Willich CN. Acceptation of
8	4	Ζ.	Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of
9	5		physical activity with all-cause and cardiovascular mortality: a systematic review and meta-
10	6		analysis. Eur J Cardiovasc Prev Rehabil 2008;15:239-46.
11	7	2	Shaper AG, Wannamethee SG, Walker M. Body weight: implications for the prevention of
12	8	5.	coronary heart disease, stroke, and diabetes mellitus in a cohort study of middle aged men.
13	9		BMJ 1997;314:1311-7.
14	5		Divij 1997,514.1511-7.
15	10	4.	Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, Qizilbash N, Collins R,
16 17	11		Peto R. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses
17	12		of 57 prospective studies. Lancet 2009;373:1083-96.
10			
20	13	5.	Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR,
20	14	-	Andrews KG, Aryee M et al. A comparative risk assessment of burden of disease and injury
22	15		attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic
23	16		analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
24			
25	17	6.	Craig R, Mindell J. Health Survey for England 2012: Health, social care and lifestyles. Health
26	18		and Social Care Information Centre, Leeds, 2013, 2013.
27			
28	19	7.	Chinn DJ, White M, Harland J, Drinkwater C, Raybould S. Barriers to physical activity and
29	20		socioeconomic position: implications for health promotion. J Epidemiol Community Health
30	21		1999;53:191-2.
31			
32	22	8.	Beenackers MA, Kamphuis CB, Giskes K, Brug J, Kunst AE, Burdorf A, van Lenthe FJ.
33	23		Socioeconomic inequalities in occupational, leisure-time, and transport related physical
34 25	24		activity among European adults: a systematic review. Int J Behav Nutr Phys Act 2012;9:116.
35 36			
37	25	9.	McVeigh JA, Winkler EA, Howie EK, Tremblay MS, Smith A, Abbott RA, Eastwood PR, Healy GN,
38	26		Straker LM. Objectively measured patterns of sedentary time and physical activity in young
39	27		adults of the Raine study cohort. Int J Behav Nutr Phys Act 2016;13:41.
40	28	10.	Sigmundova D, Sigmund E, Vokacova J, Kopkova J. Parent-child associations in pedometer-
41	28	10.	determined physical activity and sedentary behaviour on weekdays and weekends in random
42	30		samples of families in the Czech Republic. Int J Environ Res Public Health 2014;11:7163-81.
43	30		samples of families in the czech Republic. Int J LIWI of Res Public fleatin 2014,11.7105-81.
44	31	11.	Ellaway A, Macdonald L, Kearns A. Are housing tenure and car access still associated with
45	32		health? A repeat cross-sectional study of UK adults over a 13-year period. BMJ Open
46	33		2016;6:e012268.
47			
48	34	12.	Macintyre S, Hiscock R, Kearns A, Ellaway A. Housing tenure and car access: further
49	35		exploration of the nature of their relations with health in a UK setting. J Epidemiol Community
50	36		Health 2001;55:330-1.
51 52			
52 53	37	13.	Smith GD, Egger M. Socioeconomic differences in mortality in Britain and the United States.
53 54	38		Am J Public Health 1992;82:1079-81.
54 55			
56			
57			
58			
59			Page 23 of 31
~~			For peer review only - http://bmiopen.hmi.com/site/about/guidelines.yhtml

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	1	14.	Dalstra JA, Kunst AE, Mackenbach JP. A comparative appraisal of the relationship of education,
4	2		income and housing tenure with less than good health among the elderly in Europe. Soc Sci
5	3		Med 2006;62:2046-60.
	5		Wed 2000,02.2040-00.
6	4	4 5	Manistra C. Mallou I. Day C. Hissard, D. Casia and saiting and backtow shows a
7	4	15.	Macintyre S, McKay L, Der G, Hiscock R. Socio-economic position and health: what you observe
8	5		depends on how you measure it. J Public Health Med 2003;25:288-94.
9			
10	6	16.	Harrison RA, McElduff P, Edwards R. Planning to win: Health and lifestyles associated with
11	7		physical activity amongst 15,423 adults. Public Health 2006;120:206-12.
12			
13	8	17.	Kendig H, Browning C, Teshuva K. Health actions and social class among older Australians. Aust
14	9		N Z J Public Health 1998;22:808-13.
15	-		
16	10	18.	Ogilvie D, Mitchell R, Mutrie N, Petticrew M, Platt S. Personal and environmental correlates of
17	11	10.	active travel and physical activity in a deprived urban population. Int J Behav Nutr Phys Act
18			
19	12		2008;5:43.
20	13	19.	Boniface DR, Cottee MJ, Neal D, Skinner A. Social and demographic factors predictive of
21	14		change over seven years in CHD-related behaviours in men aged 18-49 years. Public Health
22	15		2001;115:246-52.
23			
24	16	20.	Macintyre S, Ellaway A, Hiscock R, Kearns A, Der G, McKay L. What features of the home and
25	17		the area might help to explain observed relationships between housing tenure and health?
26	18		Evidence from the west of Scotland. Health Place 2003;9:207-18.
27	10		
28	10	24	Fileway A. Masint wa C. Dava have in a travelation handline handline in the LIK handway it average
29	19	21.	Ellaway A, Macintyre S. Does housing tenure predict health in the UK because it exposes
30	20		people to different levels of housing related hazards in the home or its surroundings? Health
31	21		Place 1998;4:141-50.
32			
	22	22.	Macintyre S, Ellaway A, Der G, Ford G, Hunt K. Do housing tenure and car access predict health
33	23		because they are simply markers of income or self esteem? A Scottish study. J Epidemiol
34	24		Community Health 1998;52:657-64.
35			
36	25	23.	Hoehner CM, Brennan Ramirez LK, Elliott MB, Handy SL, Brownson RC. Perceived and objective
37	26	25.	environmental measures and physical activity among urban adults. Am J Prev Med
38			
39	27		2005;28:105-16.
40	20	~ 4	
41	28	24.	Sallis JF, Bowles HR, Bauman A, Ainsworth BE, Bull FC, Craig CL, Sjostrom M, De B, I, Lefevre J,
42	29		Matsudo V et al. Neighborhood environments and physical activity among adults in 11
43	30		countries. Am J Prev Med 2009;36:484-90.
44			
45	31	25.	Giles-Corti B, Ryan K, Foster S. Increasing density in Australia: maximising the health benefits
46	32		and minimising harm.
47	33		https://www.heartfoundation.org.au/images/uploads/publications/Increasing-density-in-
48	34		Australia-Evidence-Review-2012-trevor.pdf [Accessed August 2017], 2012.
	54		
49	25	20	Factor C. Ciles Carti D. The built environment neighborhood guine and constrained abusical
50	35	20.	Foster S, Giles-Corti B. The built environment, neighborhood crime and constrained physical
51	36		activity: an exploration of inconsistent findings. Prev Med 2008;47:241-51.
52			
53	37	27.	da Silva IC, Payne VL, Hino AA, Varela AR, Reis RS, Ekelund U, Hallal PC. Physical Activity and
54	38		Safety From Crime Among Adults: A Systematic Review. J Phys Act Health 2016;13:663-70.
55			
56			
57			
58			
59			Page 24 of 31
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1			
2 3	1	28	Ram B, Nightingale CM, Hudda MT, Kapetanakis VV, Ellaway A, Cooper AR, Page A, Lewis D,
3 4	2	20.	Cummins S, Giles-Corti B et al. Cohort profile: Examining Neighbourhood Activities in Built
4 5	3		Living Environments in London: the ENABLE London-Olympic Park cohort. BMJ Open
6 7	4		2016;6:e012643.
8	-	20	Ram B, Shankar A, Nightingale CM, Giles-Corti B, Ellaway A, Cooper AR, Page A, Cummins S,
8 9	5	29.	
9 10	6		Lewis D, Whincup PH et al. Comparisons of depression, anxiety, well-being, and perceptions of
10	7		the built environment amongst adults seeking social, intermediate and market-rent
12	8		accommodation in the former London Olympic Athletes' Village. Health Place 2017;48:31-9.
12	•	20	
13	9	30.	Mason KE, Baker E, Blakely T, Bentley RJ. Housing affordability and mental health: does the
14	10		relationship differ for renters and home purchasers? Soc Sci Med 2013;94:91-7.
16		24	
17	11	31.	Office for National Statistics. The National Statistics Socio-economic Classification User
18	12		Manual. 2005.
19			
20	13	32.	Department of Health. Start active, stay active: a report on physical activity from the four
20	14		home countries Chief Medical Officers. 2011. Department of Health.
21	4 -	22	
23	15	33.	Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc.
24	16		accelerometer. Med Sci Sports Exerc 1998;30:777-81.
25			
26	17	34.	Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, Whincup PH, Ekelund U, Fox-Rushby J,
27	18		Furness C et al. Effect of a Primary Care Walking Intervention with and without Nurse Support
28	19		on Physical Activity Levels in 45- to 75-Year-Olds: The Pedometer And Consultation Evaluation
29	20		(PACE-UP) Cluster Randomised Clinical Trial. PLoS Med 2017;14:e1002210.
30			
31	21	35.	Allen MS, Vella SA. Longitudinal determinants of walking, moderate, and vigorous physical
32	22		activity in Australian adults. Prev Med 2015;78:101-4.
33			
34	23	36.	Juneau CE, Sullivan A, Dodgeon B, Cote S, Ploubidis GB, Potvin L. Social class across the life
35	24		course and physical activity at age 34 years in the 1970 British birth cohort. Ann Epidemiol
36	25		2014;24:641-7, 647.
37			
38	26	37.	McLaren L. Socioeconomic status and obesity. Epidemiol Rev 2007;29:29-48.
39			
40	27	38.	Tranter B, Donoghue J. Housing tenure, body mass index and health in Australia. International
41	28		Journal of Housing Policy 2016;1:1-20.
42			
43	29	39.	Turrell G, Haynes M, Wilson LA, Giles-Corti B. Can the built environment reduce health
44	30		inequalities? A study of neighbourhood socioeconomic disadvantage and walking for
45	31		transport. Health Place 2013;19:89-98.
46			
47	32	40.	Harrison RA, Gemmell I, Heller RF. The population effect of crime and neighbourhood on
48	33		physical activity: an analysis of 15,461 adults. J Epidemiol Community Health 2007;61:34-9.
49			
50	34	41.	Brown BB, Werner CM, Smith KR, Tribby CP, Miller HJ. Physical activity mediates the
51	35		relationship between perceived crime safety and obesity. Prev Med 2014;66:140-4.
52			
53	36	42.	McGinn AP, Evenson KR, Herring AH, Huston SL, Rodriguez DA. Exploring associations between
54	37		physical activity and perceived and objective measures of the built environment. J Urban
55	38		Health 2007;84:162-84.
56			
57			
58			
59			Page 25 of 31
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2			
3	1	43.	Sarmiento O, Torres A, Jacoby E, Pratt M, Schmid TL, Stierling G. The Ciclovia-Recreativa: A
4	2		mass-recreational program with public health potential. J Phys Act Health 2010;7 Suppl
5	3		2:S163-S180.
	5		2.3103-3160.
6	_		
7	4	44.	Hipp JA, Eyler AA, Zieff SG, Samuelson MA. Taking physical activity to the streets: the
8	5		popularity of Ciclovia and Open Streets initiatives in the United States. Am J Health Promot
9	6		2014;28:S114-S115.
10			
11	7	45	Santos-Lozano A, Santin-Medeiros F, Cardon G, Torres-Luque G, Bailon R, Bergmeir C, Ruiz JR,
12		15.	· _
13	8		Lucia A, Garatachea N. Actigraph GT3X: validation and determination of physical activity
	9		intensity cut points. Int J Sports Med 2013;34:975-82.
14			
15	10	46.	Deurenberg P, Yap M, van Staveren WA. Body mass index and percent body fat: a meta
16	11		analysis among different ethnic groups. Int J Obes Relat Metab Disord 1998;22:1164-71.
17			
18	12	47.	Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body
19		47.	
20	13		mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol
	14		1996;143:228-39.
21			
22	15	48.	Hayes L, White M, Unwin N, Bhopal R, Fischbacher C, Harland J, Alberti KG. Patterns of physical
23	16		activity and relationship with risk markers for cardiovascular disease and diabetes in Indian,
24	10		
25			Pakistani, Bangladeshi and European adults in a UK population. J Public Health Med
26	18		2002;24:170-8.
27			
	19	49.	Health and Social Care Information Centre. Health Survey for England 2004: The health of
28	20		ethnic minority groups. Sproston, K. and Mindell, J. 2006. The Information Centre.
29			
30	21	FO	Health and Social Care Information Centre. Health Survey for England - 2008: Physical activity
31		50.	
32	22		and fitness. Craig R, Mindell J, and Hirani V. 2009. NHS Digital.
33			
34	23	51.	Global BMI Mortality Collaboration, Di AE, Bhupathiraju S, Wormser D, Gao P, Kaptoge S,
	24		Berrington de GA, Cairns BJ, Huxley R, Jackson C et al. Body-mass index and all-cause mortality:
35	25		individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet
36	26		2016;388:776-86.
37			2010,588.770-80.
38	27		
39			
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
49 50			
51			
52			
53			
54			
55			
56			
57			
58			
59			Page 26 of 31
60			For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

						Diffe	erence or %	differend	e* in adiposity/	physical act	tivity (95	5% CI), p-value				
	n		BMI (kg/m ²)*		Fat mass %	6		Daily steps ⁺		Daily minutes spent in MVPA ⁺			Daily minutes spent in MVPA in ≥10 minute bouts†		
ex																
/lale (Ref)	522			-			-			-			-			-
emale	718	-1.2	(-3.2, 0.9)	0.26	11.1	(10.3, 12.0)	<0.0001	-570	(-946, -194)	0.003	-9.3	(-12.2, -6.4)	<0.0001	-4.1	(-6.1, -2.0)	<0.001
Age group																
Age 16-24 (Ref)	269						-			-			-			-
Age 25-34	531	6.3	(3.5, 9.1)	<0.0001	3.2	(2.1, 4.3)	<0.0001	502	(11, 992)	0.04	4.0	(0.2, 7.9)	0.04	1.0	(-1.9, 3.8)	0.51
Age 35-49	358	13.4	(10.2, 16.6)	<0.0001	6.4	(5.2, 7.6)	<0.0001	699	(173, 1224)	0.01	3.9	(-0.2, 8.0)	0.07	-1.1	(-4.0, 1.8)	0.46
Age 50+	82	17.6	(12.6, 22.9)	<0.0001	9.2	(7.3, 11.0)	<0.0001	-9	(-832, 813)	0.98	-6.0	(-12.4, 0.5)	0.07	-2.0	(-6.8, 2.7)	0.40
thnic group																
Vhite (Ref)	595			-						-			-			-
Black	314	6.2	(3.3, 9.3)	<0.0001	3.6	(2.4, 4.8)	<0.0001	-1116	(-1657, -575)	<0.0001	-7.4	(-11.7, -3.2)	<0.001	-6.6	(-9.8, -3.4)	<0.0001
Asian	210	-0.3	(-3.1, 2.7)	0.85	0.02	(-1.2, 1.3)	0.97	-1409	(-1972, -845)	<0.0001	-11.5	(-15.9, -7.0)	<0.0001	-8.1	(-11.4, -4.8)	<0.0001
Dther/Mixed	121	1.3	(-2.3, 5.0)	0.48	1.0	(-0.5, 2.5)	0.18	-430	(-1100, 239)	0.21	-4.6	(-9.8, 0.7)	0.09	-4.0	(-7.9, -0.04)	0.05
imiting illness																
lo (Ref)	1087			-			-			1 -			-			-
'es	153	4.3	(1.1, 7.5)	0.01	1.6	(0.3, 2.9)	0.01	-1081	(-1666, -496)	<0.001	-5.7	(-10.3, -1.1)	0.01	-2.8	(-6.1, 0.5)	0.10
lousing sector																
ocial	512	5.0	(2.2, 7.8)	<0.001	2.7	(1.5, 3.8)	<0.0001	-1125	(-1629, -620)	<0.0001	-7.5	(-11.5, -3.6)	<0.001	-6.5	(-9.5, -3.5)	<0.0001
ntermediate Ref)	503			_			_			_			_			_
Narket-rent	225	-0.8	(-3.6, 2.0)	0.57	-0.2	(-1.4, 1.0)	0.70	-104	(-633, 424)	0.70	2.3	(-1.9, 6.4)	0.29	20	(-0.3, 6.0)	0.08
Viai Ket-Terrt	225	-0.8	(-3.0, 2.0)	0.57	-0.2	(-1.4, 1.0)	0.70	-104	(-033, 424)	0.70	2.5	(-1.3, 0.4)	0.29	2.0	(-0.3, 0.0)	0.08
⁶ Percentage dif All differences an nousehold level [†] Missing data fo MVPA and MVPA	nd % diff or 133 pa	ference	es are mutual ants	lly adjuste	d for se	ex, age group	o, ethnic gr	oup, lim		-		ng sector and	l a random	effect to	allow for clus	tering at
															Pag	e 27 of 31

BMJ Open

Table 2: Associations between adiposity and physical activity outcomes and neighbourhood perceptions scales

5 7		Difference or % difference* in outcome between the highest and lowest quintiles for each neighbourhood scale (95% CI), p-value										
3		Pe	erceptions of NH qu	ality	Perceptions of NH crime							
9	Adiposity (N = 1240)											
10 11	Body mass index (kg/m ²)*	-3.6	(-6.5 <i>,</i> -0.6)	0.02	-2.1	(-5.4, 1.3)	0.21					
12 13	Fat mass %	-1.2	(-2.5, 0.06)	0.06	-0.8	(-2.2, 0.7)	0.30					
4	Physical activity (N = 1107)											
5	Daily steps	677	(108, 1247)	0.02	-63	(-713, 587)	0.85					
6 7	Daily MVPA (minutes)	4.5	(0.02, 9.0)	0.05	1.1	(-4.0, 6.2)	0.68					
18	Daily MVPA in ≥10 minute bouts (minutes)	2.7	(-0.6, 6.0)	0.11	2.4	(-1.4, 6.1)	0.22					

* Percentage differences are presented for BMI, which was log-transformed for analysis

All differences and % differences are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at

household level.

> Abbreviations: NH, neighbourhood

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

Table 3: Adiposity and physical ac	tivity differences	between	nousing sectors:	adjustment for	perceptions of r	leignbournood	quality
		C	ifference or % d		pared to interme e interval), p-val	00	roup
	Housing sector group		Model 1		•	litionally adjuste hood quality sca	
Adiposity (N = 1240)							
	Social	5.0	(2.2, 7.8)	<0.001	4.5	(1.7, 7.3)	0.002
Body mass index (kg/m ²)*	Intermediate			Refere	ence group		
	Market rent	-0.8	(-3.6, 2.0)	0.57	-0.9	(-3.6, 2.0)	0.55
	Social	2.7	(1.5, 3.8)	<0.0001	2.5	(1.4, 3.6)	<0.0001
Fat mass %	Intermediate			Refere	ence group		
	Market rent	-0.2	(-1.4, 1.0)	0.70	-0.2	(-1.4, 0.9)	0.68
Physical activity (N = 1107)				6			
	Social	-1125	(-1629, -620)	<0.0001	-1016	(-1531, -501)	<0.001
Daily steps	Intermediate						
	Market rent	-104	(-633, 424)	0.70	-96	(-624, 431)	0.72
	Social	-7.5	(-11.5, -3.6)	<0.001	-6.8	(-10.8, -2.7)	0.001
Daily MVPA (minutes)	Intermediate			Refere	ence group		
	Market rent	2.3	(-1.9, 6.4)	0.29	2.3	(-1.8, 6.5)	0.27
Daily MAYDA in >10 minute houte	Social	-6.5	(-9.5, -3.5)	<0.0001	-6.0	(-9.1, -3.0)	<0.001
Daily MVPA in ≥10 minute bouts (minutes)	Intermediate			Refere	ence group		
	Market rent	2.8	(-0.3, 6.0)	0.08	2.8	(-0.3, 6.0)	0.08

Table 3: Adiposity and physical activity differences between housing sectors: adjustment for perceptions of neighbourhood quality

* Percentage differences are presented for BMI, which was log-transformed for analysis

 Model 1: Adjusted for sex, age group, ethnic group, limiting longstanding illness and clustering at household level (random effect)

Model 2: Adjusted as Model 1 plus neighbourhood quality scale (added as a continuous variable)

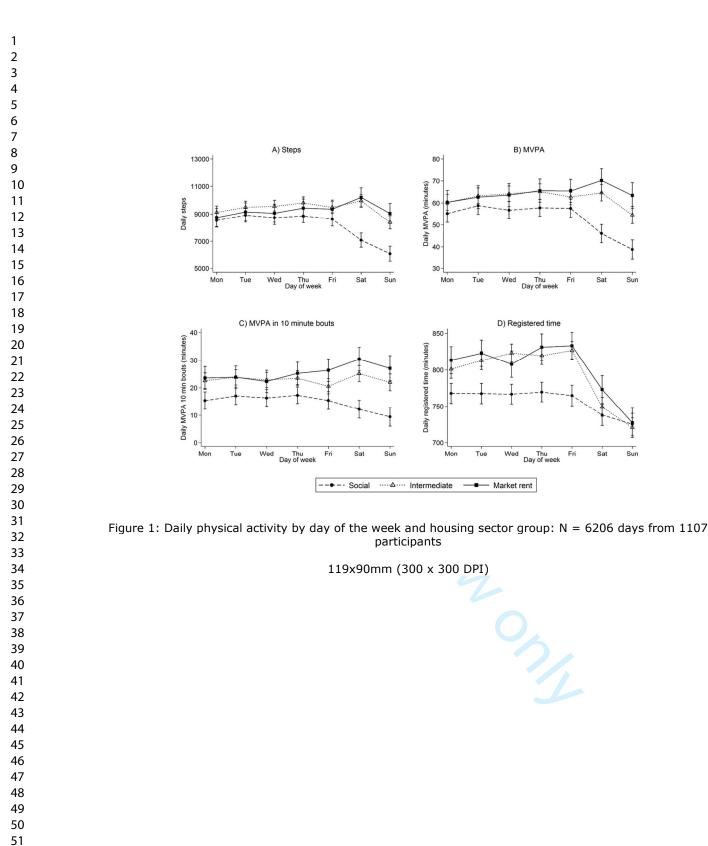
 $\mathsf{MVPA} \text{ and } \mathsf{MVPA} \text{ in } \geq 10 \text{ minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.}$

12 7

 BMJ Open

1	Figure 1: Daily physical activity by day of the week and housing sector group: N = 6206 days from 1107 participants
2	

Means and 95% confidence intervals are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day order of recording, day of week, housing
 sector, an interaction between housing sector and day of week and random effects to allow for multiple days of measurement and clustering of participants within households


For beer review only

For beer review only Page 31 of 31

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Sun

Sun

Supplementary Table 1: Questionnaire items included in the factor analysis on perceptions of the neighbourhood

There is a lot of crime in my neighbourhood. The level of crime in my neighbourhood makes it unsafe to walk on the streets at night. There are threatening groups of young people in my neighbourhood. The level of crime in my neighbourhood makes it unsafe to walk on the streets during the day. Vandalism, graffiti or deliberate damage to property is a problem in my local area. Perceptions of neighbourhood quality items I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree Disagree, Strongly disagree	Perceptions of neighbourhood crime items	
There are threatening groups of young people in my neighbourhood. The level of crime in my neighbourhood makes it unsafe to walk on the streets during the day. Vandalism, graffiti or deliberate damage to property is a problem in my local area. Perceptions of neighbourhood quality items I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night.	There is a lot of crime in my neighbourhood.	
The level of crime in my neighbourhood makes it unsafe to walk on the streets during the day. Vandalism, graffiti or deliberate damage to property is a problem in my local area. Perceptions of neighbourhood quality items I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night.	The level of crime in my neighbourhood makes it unsafe to walk on the streets at night.	
Vandalism, graffiti or deliberate damage to property is a problem in my local area. Perceptions of neighbourhood quality items I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. articipants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	There are threatening groups of young people in my neighbourhood.	
Perceptions of neighbourhood quality items I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	The level of crime in my neighbourhood makes it unsafe to walk on the streets during the day.	
I enjoy walking in my neighbourhood. This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	Vandalism, graffiti or deliberate damage to property is a problem in my local area.	
This area is a place I enjoy living in. My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	Perceptions of neighbourhood quality items	
My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views). This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	I enjoy walking in my neighbourhood.	
This area has good leisure things for people like myself, leisure centres or community centres for example. You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night.	This area is a place I enjoy living in.	
You often see people out on walks or riding their bicycles in my neighbourhood. This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	My neighbourhood is attractive to look at (e.g. there are attractive buildings, green space. Landscaping views).	
This area has good local transport. Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	This area has good leisure things for people like myself, leisure centres or community centres for example.	
Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the solution My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night.	You often see people out on walks or riding their bicycles in my neighbourhood.	
My neighbourhood is generally free from litter. There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	This area has good local transport.	
There is too much traffic in my neighbourhood. Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	Additional items included in the factor analysis with factor loadings below 0.4 and were therefore not included in the s	olution
Our neighbourhood streets have good lighting at night. Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	My neighbourhood is generally free from litter.	
Participants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agree, Agree	There is too much traffic in my neighbourhood.	
	Our a sight south and stars to have an ad lighting at sight	
	Our neighbournood streets have good lighting at night.	
	articipants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agr	e, Agree,
	articipants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agr	e, Agree,
	articipants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agr	e, Agree,
	articipants were asked to select a response from the following for all questionnaire items stated in the table: Strongly agr	≥e, Agree,

BMJ Open

Supplementary Table 2: Participant characteristics for 1240 adults with measurements of adiposity at baseline

			Ηοι	ising secto	r				
		Social	Int	ermediate	M	arket rent		Total	
	(n = 512)		(n = 503)	(n = 225)	(N	= 1240)	р (X ²
Sex									
Male	137	(26.8%)	259	(51.5%)	126	(56.0%)	522	(42.1%)	
Female	375	(73.2%)	244	(48.5%)	99	(44.0%)	718	(57.9%)	<0.000
Age group									
16-24	107	(20.9%)	92	(18.3%)	70	(31.1%)	269	(21.7%)	
25-34	129	(25.2%)	291	(57.9%)	111	(49.3%)	531	(42.8%)	
35-49	233	(45.5%)	102	(20.3%)	23	(10.2%)	358	(28.9%)	
50+	43	(8.4%)	18	(3.6%)	21	(9.3%)	82	(6.6%)	<0.000
Ethnic group									
White	96	(18.8%)	342	(68.0%)	157	(69.8%)	595	(48.0%)	
Black	245	(47.9%)	53	(10.5%)	16	(7.1%)	314	(25.3%)	
Asian	107	(20.9%)	75	(14.9%)	28	(12.4%)	210	(16.9%)	
Mixed/Other	64	(12.5%)	33	(6.6%)	24	(10.7%)	121	(9.8%)	<0.000
NS-SEC*									
Higher Managerial / Professional	60	(11.9%)	357	(71.4%)	150	(66.7%)	567	(46.1%)	
Intermediate Occupations	62	(12.3%)	77	(15.4%)	38	(16.9%)	177	(14.4%)	
Routine / Manual	125	(24.8%)	34	(6.8%)	10	(4.4%)	169	(13.7%)	
Economically inactive	258	(51.1%)	32	(6.4%)	27	(12.0%)	317	(25.8%)	<0.000
Limiting illness									
Yes	102	(19.9%)	40	(8.0%)	11	(4.9%)	153	(12.3%)	
No	410	(80.1%)	463	(92.0%)	214	(95.1%)	1087	(87.7%)	<0.000

p (\mathcal{R}^2): p-value for Chi-squared test

* 10 responses missing for NS-SEC group

Supplementar	v Table 3: Mean lev	els of adiposity and	physical activity by	y patient characteristics
ouppienienien	,			

			Mea	n/Geoi	metric mean* lev	els adipo	osity and physical ac	tivity (9	5% confidence ir	ntervals)
	n	В	BMI (kg/m²)*		Fat mass %		Daily steps ⁺		Daily minutes of MVPA†		, minutes of MVPA 10 minute bouts†
Sex											
Male	522	25.4	(25.0, 25.8)	20.4	(19.7, 21.0)	9279	(8991 <i>,</i> 9568)	64.8	(62.6 <i>,</i> 67.1)	22.8	(21.1, 24.4)
Female	718	25.1	(24.8, 25.5)	31.5	(30.9, 32.0)	8709	(8464 <i>,</i> 8954)	55.6	(53.6 <i>,</i> 57.5)	18.7	(17.3, 20.1)
Age group				Ο.							
Age 16-24	269	23.5	(23.0, 24.0)	23.0	(22.1, 23.9)	8534	(8136 <i>,</i> 8932)	57.0	(53.9 <i>,</i> 60.2)	20.5	(18.2, 22.8)
Age 25-34	531	25.0	(24.6 <i>,</i> 25.3)	26.2	(25.5 <i>,</i> 26.8)	9035	(8744 <i>,</i> 9326)	61.1	(58.8 <i>,</i> 63.3)	21.4	(19.7, 23.1)
Age 35-49	358	26.6	(26.1, 27.1)	29.3	(28.5, 30.1)	9232	(8879 <i>,</i> 9585)	60.9	(58.1 <i>,</i> 63.6)	19.4	(17.3, 21.4)
Age 50+	82	27.6	(26.6 <i>,</i> 28.7)	32.2	(30.5, 33.8)	8525	(7800 <i>,</i> 9249)	51.1	(45.4 <i>,</i> 56.7)	18.4	(14.2, 22.7)
Ethnic group											
White	595	24.9	(24.5 <i>,</i> 25.2)	25.8	(25.1, 26.4)	9491	(9203 <i>,</i> 9779)	63.6	(61.3 <i>,</i> 65.8)	23.7	(22.0 <i>,</i> 25.4)
Black	314	26.4	(25.8 <i>,</i> 27.0)	29.4	(28.5, 30.3)	8375	(7961, 8789)	56.2	(52.9 <i>,</i> 59.4)	17.1	(14.7 <i>,</i> 19.6)
Asian	210	24.8	(24.2 <i>,</i> 25.4)	25.8	(24.8, 26.8)	8082	(7608, 8556)	52.1	(48.4 <i>,</i> 55.8)	15.6	(12.8, 18.4)
Other/Mixed	121	25.2	(24.4, 26.0)	26.8	(25.5, 28.1)	9060	(8465, 9656)	59.0	(54.3 <i>,</i> 63.7)	19.8	(16.3, 23.3)
Limiting illness											
No	1087	25.1	(24.9, 25.4)	26.6	(26.1, 27.0)	9077	(8877, 9277)	60.1	(58.6, 61.7)	20.8	(19.6, 21.9)
Yes	153	26.2	(25.5 <i>,</i> 27.0)	28.2	(27.0, 29.4)	7996	(7447 <i>,</i> 8545)	54.4	(50.1, 58.7)	18.0	(14.8, 21.1)
Housing sector											
Social	512	26.0	(25.6, 26.5)	28.4	(27.6, 29.1)	8298	(7953, 8642)	54.6	(51.8, 57.3)	16.0	(14.0, 18.1)
Intermediate	503	24.8	(24.4, 25.2)	25.7	(25.0, 26.4)	9422	(9110, 9735)	62.1	(59.6, 64.5)	22.5	(20.6, 24.4)
Market-rent	225	24.6	(24.0, 25.2)	25.5	(24.5, 26.5)	9318	(8863, 9773)	64.3	(60.8, 67.9)	25.3	(22.6, 28.1)

* Geometric means are presented for BMI

 All means/geometric means are adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

⁺ Data missing for 133 participants for average daily steps, MVPA and MVPA in bouts

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

			Difference or	% differenc	e* in phys	sical activity varia	ble (95% conf	idence ir	nterval), p-value			
	n		Daily steps		Daily	y minutes spent i	n MVPA	Daily minutes spent in MVPA in ≥10 minute bouts				
Sex												
Male (Ref)	402		-			-			-			
Female	529	-559	(-947, -172)	0.005	-9.7	(-12.7, -6.7)	<0.0001	-4.7	(-6.8, -2.5)	<0.0001		
Age group												
Age 16-24 (Ref)	180					-			-			
Age 25-34	412	410	(-116, 936)	0.13	3.0	(-1.2, 7.2)	0.16	-0.3	(-3.3, 2.8)	0.87		
Age 35-49	276	520	(-45, 1086)	0.07	2.5	(-2.0, 6.9)	0.27	-2.5	(-5.7 <i>,</i> 0.7)	0.12		
Age 50+	63	-25	(-889, 838)	0.95	-7.9	(-14.8, -1.1)	0.02	-3.2	(-8.2, 1.8)	0.20		
Ethnic group												
White (Ref)	482		-						-			
Black	214	-1213	(-1789 <i>,</i> -638)	<0.0001	-7.1	(-11.7, -2.5)	0.002	-6.5	(-9.9, -3.1)	<0.001		
Asian	142	-1128	(-1719 <i>,</i> -538)	<0.001	-10.3	(-15.0, -5.6)	<0.0001	-7.8	(-11.3, -4.3)	<0.0001		
Other/Mixed	93	-582	(-1273, 110)	0.10	-4.7	(-10.2, 0.8)	0.09	-4.2	(-8.2, -0.2)	0.04		
Limiting illness												
No (Ref)	834		-			-			-			
Yes	97	-976	(-1612, -341)	0.003	-4.6	(-9.6, 0.4)	0.07	-2.0	(-5.6 <i>,</i> 1.6)	0.28		
Housing sector												
Social	332	-978	(-1515 <i>,</i> -440)	<0.001	-6.9	(-11.2, -2.6)	0.002	-7.2	(-10.4, -4.0)	<0.0001		
Intermediate (Ref)	410		-			-			-			
Market-rent	189	-359	(-889 <i>,</i> 171)	0.185	0.2	(-4.0, 4.3)	0.91	0.9	(-2.2, 4.1)	0.56		

Supplementary Table 4: Associations between participant characteristics and physical activity variables in participants with at least 4 days of recording of physical activity data

All differences are mutually adjusted for sex, age group, ethnic group, limiting longstanding illness, housing sector and a random effect to allow for clustering at household level.

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

Physical activity	Housing sector	Mean (95% CI) weekday (Mon-Fri) activity		Difference in PA outcome compared to weekdays (95% confidence interval), p-value								
variable (N = 1107)	group	(171	ON-Fri) activity	S	aturday - weekda	У	Sunday - weekday					
	Social	8733	(8364, 9103)	-1643	(-2078, -1207)	< 0.0001	-2629	(-3093, -2164)	< 0.0001			
Daily steps	Intermediate	9497	(9178, 9817)	460	(59 <i>,</i> 862)	0.02	-1104	(-1528, -680)	<0.0001			
	Market-rent	9146	(8673, 9619)	1055	(467, 1642)	<0.001	-102	(-734, 531)	0.75			
	Social	57.2	(54.3, 60.1)	-11.2	(-14.7, -7.7)	<0.0001	-18.4	(-22.1, -14.7)	< 0.0001			
MVPA (minutes)	Intermediate	63.1	(60.6, 65.7)	1.5	(-1.8, 4.7)	0.37	-8.5	(-11.9 <i>,</i> -5.1)	<0.0001			
	Market-rent	63.5	(59.8, 67.3)	6.6	(1.9, 11.3)	0.01	-0.1	(-5.2 <i>,</i> 5.0)	0.97			
	Social	16.3	(14.0, 18.5)	-4.1	(-6.9, -1.3)	0.004	-6.8	(-9.8, -3.9)	< 0.0001			
MVPA in ≥10 minute	Intermediate	22.6	(20.7, 24.6)	2.5	(-0.06, 5.1)	0.06	-0.7	(-3.4, 2.0)	0.62			
outs (minutes)	Market-rent	24.2	(21.3, 27.1)	6.1	(2.4, 9.9)	0.001	2.8	(-1.2, 6.9)	0.17			

Supplementary Table 5: Physical activity differences between weekday (Monday-Friday) and weekend (Saturday, Sunday) activity by housing sector.

Means and differences (95% confidence intervals) are adjusted for sex, age group, ethnic group, limiting longstanding illness, month of recording, day of the week, housing sector, an interaction between housing sector and day of week, and random effects to allow for multiple days of measurement and clustering of participants within household.

MVPA and MVPA in ≥10 minute bouts are an average daily estimate, obtained from averaging a participant's weekly total.

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Page / line number at first call ou
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the	2 / 7
	1	title or the abstract	211
	-	(b) Provide in the abstract an informative and balanced summary	2 / 2
		of what was done and what was found	212
Introduction		of what was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the	5/9
		investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	6 / 7
Methods			
Study design	4	Present key elements of study design early in the paper	6 / 16
Setting	5	Describe the setting, locations, and relevant dates, including	7 / 4
		periods of recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources	6 / 18
		and methods of selection of participants. Describe methods of	
		follow-up	
		<i>Case-control study</i> —Give the eligibility criteria, and the sources	
		and methods of case ascertainment and control selection. Give the	
		rationale for the choice of cases and controls	
		<i>Cross-sectional study</i> —Give the eligibility criteria, and the	
		sources and methods of selection of participants	
	-	(b) Cohort study—For matched studies, give matching criteria	
		and number of exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria	
		and the number of controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential	8 / 5
variables	/	confounders, and effect modifiers. Give diagnostic criteria, if	075
		applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of	8/5
	0	methods of assessment (measurement). Describe comparability of	075
measurement		assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10 / 14
Study size	10	Explain how the study size was arrived at	11 / 22
Quantitative variables	11	Explain how quantitative variables were handled in the analyses.	8/6
		If applicable, describe which groupings were chosen and why	0,0
Statistical methods	12	(a) Describe all statistical methods, including those used to	10 / 8
Statistical methods		control for confounding	10,0
	-	(b) Describe any methods used to examine subgroups and	10 / 12
		interactions	
	-	(c) Explain how missing data were addressed	Table 1
	-	(d) Cohort study—If applicable, explain how loss to follow-up	10 / 8
		was addressed	10/0
		<i>Case-control study</i> —If applicable, explain how matching of cases	
		case common strong. In approache, explain now matering of cases	

For peer review only - http://bmjopen!bmj.com/site/about/guidelines.xhtml

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40	
47 48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

		and controls was addressed	
		<i>Cross-sectional study</i> —If applicable, describe analytical methods	
		taking account of sampling strategy	10/14
		(<u>e</u>) Describe any sensitivity analyses	10 / 14
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	11 / 22
		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	19 / 8
_		(c) Consider use of a flow diagram	N / A
Descriptive data 14	14*	(a) Give characteristics of study participants (eg demographic, clinical,	12 / 7
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	Table 1
		interest	
		(c) Cohort study—Summarise follow-up time (eg, average and total	
		amount)	
Outcome data 15	15*	Cohort study—Report numbers of outcome events or summary measures	
		over time	
		Case-control study-Report numbers in each exposure category, or	
		summary measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary	12/2
		measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	12/13
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were	12/13
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	N/A
		risk for a meaningful time period	
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions,	13 / 14
	1,	and sensitivity analyses	15 / 11
D:			
Discussion Key results	18	Summarise key results with reference to study objectives	15 / 18
			19/3
Limitations 19	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential	19/3
Intomatotion	20	bias	10 / 14
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	19 / 14
		limitations, multiplicity of analyses, results from similar studies, and other	
<u> </u>	01	relevant evidence	10 / 10
Generalisability	21	Discuss the generalisability (external validity) of the study results	19 / 19
Other informatio			01 / 1 -
Funding	22	Give the source of funding and the role of the funders for the present study	21 / 16
		and, if applicable, for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

BMJ Open

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For beer terien only