

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Effects of Reproductive Period Duration and Number of Pregnancies on Mid-Life Electrocardiographic Indices: A Secondary Analysis from the Women's Health Initiative Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019129
Article Type:	Research
Date Submitted by the Author:	06-Oct-2017
Complete List of Authors:	Parikh, Nisha; University of California San Francisco, Medicine Kapphahn, Kristopher; Stanford University School of Medicine Haley, Haley; Stanford University School of Medicine Olgin, Jeffrey; University of California San Francisco, Medicine Allison, Matthew; UCSD, Magnani, Jared; University of Pittsburgh, Medicine Ryckman, KK; University of Iowa, Epidemiology Waring, Molly; University of Massachusetts Medical School Perez, Marco; Stanford University, Cardiovascular Medicine Howard, Barbara; MedStar Health Research Institute
Keywords:	women, Adult cardiology < CARDIOLOGY, menopause, ECG, pregnancy

SCHOLARONE[™] Manuscripts

1		
2		
3	1	
4 5	2	Effects of Reproductive Period Duration and Number of
6	3	Pregnancies on Mid-Life Electrocardiographic Indices: A
/ 8	4	Secondary Analysis from the Women's Health Initiative Clinical
9 10	5	Trial
10	6	
12	7	
13 14	8	
15	9	
16	10	Authors: Nisha I. Parikh MD MPH (1), Kristopher Kapphahn PhD (2), Haley Hedlin PhD (2),
17	11	Jeffrey E. Olgin MD (1). Matthew A. Allison MD (3). Jared W. Magnani MD (4). MSc. Kelli R.
18	12	Ryckman PhD (5) Molly E Waring PhD (6) Marco V Perez MD (7) Barbara V Howard PhD
19	13	(8)
20	14	
21	15	1) Division of Cardiology University of California San Francisco, San Francisco, CA
22	10	2) Division of Caldidology, University of California San Francisco, San Francisco, CA
23	10	2) Quantitative sciences onit, Department of Medicine, Stanfold Oniversity School of Madicine
24 25	17	
25	18	3) Department of Family Medicine, La Jolia USCD
27	19	4) Division of Cardiology, Boston University School of Medicine, Boston, MA
28	20	5) Department of Epidemiology, College of Public Health, University of Iowa, IO
29	21	6) Division of Epidemiology of Chronic Diseases and Vulnerable Populations,
30	22	Department of Quantitative Health Sciences, University of Massachusetts Medical
31	23	School, Worcester, MA
32	24	7) Department of Medicine, Stanford University School of Medicine, Stanford, CA
33	25	8) MedStar Health Research Institute, Hyattsville, MD and Georgetown and Howard
34	26	Universities Center for Clinical and Translational Science
35	27	
30 37	28	
38	29	
39	30	Corresponding author: Nisha I. Parikh. MD MPH
40	31	E-mail: parikh.nisha@gmail.com
41	32	
42	33	Running Title: Reproductive factors and electrocardiographic intervals
43	34	Rumming The. Reproductive factors and electrocardiographic intervals
44	35	Key Words: endogenous estragen sex harmones pregnancy menarche menonause
45 46	36	reproductive history menarche age at hirth repolarization OTc PR interval electrocardiogram
46 47	27	reproductive instory, menarche, age at onth, repolarization, QTC, TK interval, electrocarchogram
47 48	20	Word Count: 1106
49	30	word Count. 4190
50	39	
51	40	Funding: This work was supported by AHA grant 13CRP1/350002 (NIP), NIH grants
52	41	/K21HL115398 (NIP), KL21K000160 (MEW) and U01HL105268 (MEW), NHLBI/NIH &
53	42	DHHS through contracts, HHSN268201100046C, HHSN268201100001C,
54	43	HHSN268201100002C, HHSN268201100003C, HHSN268201100004C
55	44	
56		
5/		
20 50		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2 3 4 5 6 7 8	45 46 47	Conflict of Interest:	None of the authors have any conflicts of interest in respect to this article
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24			
25 26 27 28 29 30 31 32 33 34 35 36 37 38			
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54			
55 56 57 58 59 60		For p	2 eer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

48 Abstract: (word count=259)

49 Objective: The effects of the hormonal milieu of pregnancy, menses and menopause on cardiac 50 electrical conduction are uncertain. Therefore, we studied the association between number of 51 pregnancies and reproductive period duration (RD, time from menarche to menopause) with 52 electrocardiographic intervals in the Women's Health Initiative Clinical Trial.

53 Methods: We employed multivariable linear regression models relating number of pregnancies
54 and RD with millisecond (ms) changes in PR interval, P wave indices (duration and dispersion)
55 and QTc from enrollment electrocardiogram.

Results: Among 40,687 women (mean age=62 years), 5+ live births versus 0 prior pregnancies was associated with a 1.32 ms increase in PR interval [95% CI (0.25, 2.38)], with a graded association with longer QTc interval (ms) [none= 0.66 (-0.56, 1.88), 1 = 0.15 (-0.71, 1.02), 2 to 4=0.25 (-0.43, 0.94), and 5+ live births=1.15 (0.33, 1.98), p = 0.008]. RD was associated with longer PR interval and maximum P wave duration (but not P-wave dispersion) among never users of HT: [PR (ms) per additional RD year: 0.10 (0.04, 0.16); higher P-wave duration (ms): 0.09 (0.06, 0.12)]. For every year increase in reproductive period, QTc decreased by 0.04 ms (-0.07, -0.01).

Limitations: Potential misclassification of exposure due to participant recall

Conclusions: An increasing number of live births are related to increased ventricular 66 repolarization time whereas RD is related to decreased ventricular repolarization time. Both 67 longer RD and grandmultiparity are related to increased atrial conduction time. The 68 premenopausal hormonal milieu appears to have effects on midlife cardiac electrical conduction 69 system remodeling in women that may modestly influence CVD risk in later life.

71 Article Summary:

3 4	72	Strengths and Limitations of the Study.
5 6 7	73	• A strength is the use of a well characterized multiethnic, large dataset of postmenopausal
/ 8 0	74	women representative of women in the United States.
10 11	75	• A notable limitation is that the exposure variables were acquired retrospectively.
12 13	76	• We were unable to adjust for pregnancy complications such as preeclampsia or
14 15 16	77	gestational diabetes.
10 17 18	78	
19 20	79	What is already known about this subject?
21 22 23	80	Clinical studies with a relatively limited number of participants suggest that there are small but
24 25	81	measureable changes in electrocardiographic intervals during pregnancy.
26 27	82	
28 29 30	83	What does this study add?
30 31 32	84	We demonstrate for the first time in a large cohort of women with systematic research
33 34	85	electrocardiograms that number of livebirths and a longer reproductive period duration (i.e.
35 36	86	longer exposure to menstrual cycling) exerts dynamic and measureable effects on ventricular
37 38 39	87	repolarization and atrial conduction.
40 41	88	
42 43	89	How might this impact on clinical practice?
44 45 46	90	Published normal reference values for electrocardiograms throughout pregnancy and the post-
40 47 48	91	partum period are lacking even though it is widely accepted that pregnancy has material effects
49 50	92	on cardiac electrical conduction resulting to increased risks of arrhythmia.(1) There is a dearth
51 52 53 54	93	of systematic studies assessing p wave parameter changes throughout the menstrual cycle. Such
55 56 57		
58 59		4
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

studies would be important in furthering our dual understanding of cardiac adaptations of pregnancy and in our understanding of pregnancy-related arrhythmia.

Key Words: *endogenous estrogen, sex hormones, pregnancy, menarche, menopause,*

reproductive history, menarche, age at birth, repolarization, *QTc*, *PR* interval,

electrocardiogram

INTRODUCTION:

Electrocardiogram parameters reflect current as well as future CVD risk

Electrocardiographic parameters are reflections of both current as well as future cardiovascular disease risk. For example, in the Framingham Heart Study, a prolonged PR interval (> 200 ms) was related to incident atrial fibrillation, all-cause mortality and to the likelihood of needing a permanent pacemaker.(2) In addition to PR interval, the p wave duration more directly relates to atrial size and is an antecedent of atrial fibrillation.(3) Both PR interval and p wave duration are markers of left atrial size which in turn is a correlate of hypertensive heart disease(4) and incident stroke.(5) It is unclear to what extent PR interval is affected by premenopausal hormonal fluctuations from the menstrual cycle and childbearing.

Pregnancy, cardiac remodeling and the electrocardiogram

Pregnancy and the post-partum period both have substantial physiologic effects on cardiac electrophysiology. Physiologic studies of women during early and late pregnancy as well as early post-partum suggest a shortening of the corrected QT interval (QTc) which partially reverts back to pre-pregnancy values following post-partum.(6, 7) Direct pathophysiologic links connecting

myocardial structural remodeling and cardiac electrical remodeling have been increasingly recognized.(8) With regards to myocardial remodeling, pregnancy induced cardiac remodeling does not completely revert back to pre-pregnancy levels and effects of increasing parity on cardiac remodeling can be detected even in mid-life.(9) However, the extent to which an increasing number of pregnancies exerts long lasting effects on the cardiac electrical conduction system is uncertain.(9)

Estrogen exposure and the electrocardiogram

In addition to the more marked hormonal fluctuations seen during pregnancy, there are also more subtle, cyclic changes in estrogen and progesterone cycling that occur during menstrual cycling in women of reproductive age. Testosterone and progesterone are recognized to decrease the QTc interval.(10) Data from the Women's Health Initiative Hormone Trial (or WHI HT) suggests that estrogen-only therapy modestly prolongs QTc beyond that of both estrogen-progestin therapy and placebo.(11) However, it is uncertain whether the pre-menopausal hormonal milieu (reflected by the length of the interval from menarche to menopause and number of pregnancies) is associated with changes in QTc in the WHI HT.

WHI HT represents a unique resource to study questions related to pregnancy and reproductive history and ECG parameters and thus we sought to determine if there is a positive or negative association between number of pregnancies and reproductive period duration with mid-life electrocardiogram intervals (PR interval and QTc) and p wave parameters (p wave maximum duration, dispersion and index).

141 METHODS AND ANALYSIS PLAN:

142 Our current study design is a secondary analysis of a previously conducted randomized143 controlled trial.

144 Study sample.

The WHI recruitment began in 1991 and consisted of a set of clinical trials on HT, dietary modification and calcium/ vitamin D supplementation on cardiovascular disease, cancer and fractures and an observational study.(12) The clinicaltrial.gov identifier for the WHI is NCT00000611. This analysis drew from the cohort of women enrolled in the clinical trial. Figure 1 shows the creation of the study sample. Of 68,132 women in WHI Studies (hormone therapy, diet and calcium/vitamin D and observational studies), we excluded 5,217 who were missing ECGs and 15,543 who had prevalent CVD. Of these, 47,372 women, 6,685 were further excluded for having missing covariate data, leaving a final sample of 40,687.

153 Ascertainment of Reproductive Exposures.

Information on reproductive factors was collected via questionnaire at the second screening visit in the WHI (between 1993-1998). Participants were asked how many times they had been pregnant (were given choices ranging from 0 to 9+), number of live births and how old they were at the end of the first and at the end of their last pregnancy (<20, 20-24, 25-29, 30-34, 35+ years). Age at menarche (<9, 10,11,12,13,14,15,>16 years) and age at menopause was asked on this screening questionnaire. Reproductive period duration (RD) was defined as the duration between age at menarche to age at menopause (in years). Detailed current and prior hormone therapy usage and hysterectomy/oophorectomy status was collected at enrollment and has been previously described.(13)

163 Ascertainment of Covariates:

Age, income, education, self-reported race/ethnicity, geographic region of United States, history and duration of breastfeeding were collected at participant enrollment and second screening examinations. Body mass index (BMI, kg/m^2) was calculated using height and weight measured by study staff at baseline. Women with hypertension were identified as those with a self-reported history of treated hypertension or blood pressure measurements meeting JNC 7 criteria for hypertension.(14) Diabetes was identified by self-reported use of anti-diabetic medications and hyperlipidemia by use of cholesterol lowering medications. Antianxiety and antidepressant medication use was validated on enrollment by nurse examination of medication bottles.

Electrocardiographic parameters:

Standard 12-lead ECGs were recorded in all women by strictly standardized procedures in all clinical centers as has been described.(15) All ECGs were processed in a central laboratory (EPICARE Center, University of Alberta, Edmonton, Canada, and later Wake Forest University, Winston-Salem, NC), where they were visually inspected for technical errors and inadequate quality. ECGs were processed with the 2001 version of the Marquette 12-SL program (GE Marquette). In additional to PR and QT intervals, we also examined the maximum P wave duration (from all 12 leads of the ECG).(3) The QT interval was corrected using Bazett's formula. The Institutional Review Board of University of California San Francisco approved this study protocol.

182 Statistical Methods:

183 Primary Analysis

Page 9 of 28

BMJ Open

We employed multivariable linear regression to assess the association between reproductive exposures (number of pregnancies and RD) with the dependent variable of ECG parameters (PR interval in milliseconds, QTc in milliseconds). Four primary models were fit: PR regressed on number of live births, QTc regressed on number of live births, PR regressed on RD, and QTc regressed on RD. Multivariable models were adjusted for a priori covariates: age, BMI, hypertension status, diabetes, income, education, race/ethnicity, region, history of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, duration of breastfeeding, oophorectomy status, hormone therapy use, heart rate and QRS duration. In analyses considering categories of livebirths we employed a linear trend test.

We explored effect modification of the primary exposures, number of live births and RD, by hormone therapy usage and hysterectomy status. We classified hormone therapy usage into three categories: women who reported current, prior or no hormone therapy usage. A statistical interaction term between hormone therapy usage and the exposure (RD or number of live births) was used to consider effect modification by reported hormone therapy use. When the statistical interaction term was statistically significant (p < 0.05) according to a likelihood ratio test, we presented the estimates in each of the three categories of hormone therapy use and we presented a single estimate if there was no evidence for effect modification by hormone therapy. A similar approach was employed for studying RD or number of live births and hysterectomy status. To show sensitivity of estimates to confounders, unadjusted associations were reported as well as those associations adjusted for the confounders listed above.

205 Secondary Analyses:

In secondary analyses, we studied our exposures in relation to secondary outcomes, P wave duration and p wave dispersion. In an additional secondary set of analyses, we removed subjects who reported never being pregnant and used multivariable linear regression to model associations between age at first live birth and the five electrocardiogaphic measures. These models used the same covariates to adjust association as those in our primary analyses. Further,. Subjects who had implausible secondary outcome values (i.e. all zero values or all constant values across all electrocardiographic measures) were removed.

214 Multiple Imputation Analyses

We used multiple imputation techniques to impute missing covariates and refit models from primary analyses to explore the sensitivity of our results to missing data. We used the PROC MI in SAS to construct 5 multiply imputed data sets. Missing variables were imputed via fully conditional specification method in PROC MI using all variables from the analytic model. We fit models to each imputed data set and pooled the results. The pooled results from imputation did not differ appreciably from the results of the complete case analysis.

All analyses were performed in SAS 9.4 (SAS Institute, Cary NC, USA).

0 222

223 RESULTS

Table 1 shows the baseline characteristics of our sample by number of pregnancies lasting at
least 6 months. The mean age at enrollment was 62.4 years, while the mean age at menarche was
12.6 and mean age at menopause was 50.0 years. 82.5% of women were White, 9.3% Black, 4%
Hispanic and 2.7% Asian. Forty five percent of the study sample reported never having used
hormone therapy prior to enrollment.

229 230 231	PR interval
230 231	PR interval
231	
	Compared to women reporting never having been pregnant, having 5 or more pregnancies was
232	associated with a 1.3 ms longer PR interval (Table 2). Among women who reported never
233	having used hormones, each additional year of reported reproductive period duration was
234	associated with a 0.1 ms longer PR interval (or atrial conduction velocity). Conversely, there
235	was no significant association between RD and PR interval among women who reported prior or
236	current hormone therapy use (p value for interaction < 0.01) (Table 2). Age at first live birth,
237	was not related to PR interval (data not shown).
238	QTc
239	Compared to never having been pregnant, having 5 or more pregnancies was related to a 1.2 ms
240	longer QTc (Table 3). However, not carrying a pregnancy to term, or having 1 or 2-4 term
241	pregnancies (versus not being pregnant), were not related to QTc. For each additional year in
242	reproductive period duration, there was a 0.4 ms shorter QTc (Table 3). Restricting to women
243	who had at least one live birth did not change our results (data not shown).
244	P wave duration and dispersion
245	P wave dispersion was higher for women with 2-4 live births (ms increase =0.62, 95% CI: 0.01,
246	1.24) and 5 live births (0.94, 95% CI: 0.20, 1.67), compared with those who reported never
247	having been pregnant (Table 4). Reproductive period duration was related to maximum p wave
248	duration among women who reported never having used hormones (0.09, 95% CI: 0.06, 0.13)
249	but not among those who reported prior or current hormone therapy use (p interaction < 0.01)
250	(Table 5).
251	
	11
	For peer review only - http://bmjopen.bmj.com/site/about/quidelines.xhtml
	231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 243 244 245 245 246 247 248 249 250 251

252 DISCUSSION

Summary of Findings

We found that having five or more pregnancies compared to none was associated with a small increase in mid-life atrial conduction time, independent of factors known to be associated with this interval (PR). Number of live births among women with at least one live birth (compared to no prior pregnancies) was associated with increased atrial conduction time. Having 5 or more pregnancies was related to a small increase in ventricular repolarization time as compared to having no prior pregnancies. Among women reporting no prior exogenous hormone use, each additional year of reported RD was related to a very modest (0.1 ms) longer atrial conduction time. RD was related to a very modest increase in p wave duration. RD was related to a shorter ventricular repolarization time.

Mechanisms linking pregnancy and atrial electrical remodeling

The effect of cumulative pregnancies on mid-life electrocardiograms would likely result from both 1) the pregnancy itself and 2) incident cardiometabolic factors that are impacted by pregnancy such as adiposity(16) and vascular stiffness, (17) and premenopausal blood pressure.(18) Adiposity and blood pressure are related to increased P wave indices in a normal healthy population,(19) and these P wave indices are electrocardiographic reflections of increased left atrial pressure, size and potentially fibrosis. The period of pregnancy and the peripartum are characterized by hormonal changes that affect both cardiovascular hemodynamics and adaptive myocardial remodeling. Pregnancy causes increased cardiac output, increased left ventricular mass, and decreased systemic vascular resistance.(20) The uterus and placenta in support of the growing fetus and fetal circulatory system represent a significant vascular shunt

Page 13 of 28

1

BMJ Open

2	
3 4	275
5 6	276
7 8	277
9 10	278
11 12 12	279
13 14 15	280
16 17	281
18	
19 20	282
21 22 22	283
23 24 25	284
26 27	285
28 29	286
30 31	287
32 33 24	288
35 36	289
37 38	290
39 40	291
41 42	292
43 44 45	293
46 47	294
48	201
49 50	295
51 52	296
53 54	297
56	
57	
58 50	
59 60	

which contributes to these hemodynamic adaptations in pregnancy. The sum of these changes result in both left atrial and left ventricular dilation. However, the effects of normal pregnancy on electrographic remodeling during pregnancy are not well described. A prior small clinical study has looked at P wave duration and P wave dispersion among pregnant women compared with controls and found that both of these parameters are increased.(21)

281 *Pregnancy and cumulative effects on ventricular repolarization*

A prior study in 37 women in late pregnancy compared with 18 age matched controls demonstrated that QTc substantially prolongs late in pregnancy and that this only partially corrects back to pre-pregnancy values post-partum.(7) Our finding that having 5 or more pregnancies as compared to no prior pregnancies suggests that QTc prolongation during pregnancy may accumulate across successive pregnancies and will be significantly increased on mid-life ECG. Furthermore, we found evidence for a dose response relationship between number of pregnancies and mid-life QTc.

290 *Reproductive period duration and atrial conduction velocity.*

The menstrual cycle consists of a relatively well described hormone cycling in women consisting of both estrogen and progesterone as well as testosterone production. A longer reproductive period duration reflects the cumulative exposure that a woman has to these endogenous fluctuations in sex hormone levels. Indeed, prior studies have assessed P wave parameters throughout the menstrual cycle and noted that P wave duration is substantialy increased in the luteal phase.(22) Among women who did report taking prior hormone therapy, we observed a very modest but significant increase in mid-life PR interval and in P wave duration. Exogenous

hormone therapy use may obscure the relationship between endogenous hormone exposure from a longer reproductive period duration and P wave parameters, which would explain our findings of effect modification by hormone therapy use. An earlier age at menarche (which would be related to increased reproductive period duration) has been associated with increased adiposity(23) and diabetes,(24) which in turn have been linked with increased p wave duration(3) and, in the case of body mass index, with increased left atrial remodeling(25) and thus may also partially underlie our findings.

Reproductive duration and decrease ventricular repolarization time

The QTc is shortened by the action of progesterone and lengthened by estrogen during normal menstrual cycling. The net effect of these changes during a single menstrual cycle can result in shortening of ventricular repolarization time or QTc.(26) Our finding that an increased reproductive duration was modestly inversely related to QTc in WHI, suggests that an increasing exposure to progesterone, in particular during menstrual cycling, may have cumulative and measurable effects on the mid-life electrocardiogram in women.

, 8 313

Strength and Limitations

The use of a well characterized multiethnic, large dataset of postmenopausal women representative of women in the United States is a strength of our study. A notable limitation is that the exposure variables were acquired retrospectively and some are very distant events (eg age at menarche occurred 40-70 years in the past). We were unable to adjust for pregnancy complications such as preeclampsia or gestational diabetes since these were not collected. We did not adjust for smoking, physical activity, and habitual consumption of alcohol and coffee

BMJ Open

2	
3 4	321
5 6	322
7 8	323
9 10 11	324
12 13	325
14 15	326
16 17 18	327
19 20	328
21 22	329
23 24 25	330
26 27	331
28 29	332
30 31 22	333
32 33 34	334
35 36	335
37	336
38 39	337
40 41	338
42 43	339
44	340
45	341
46 47 48	342
49	343
50	344
51 52	345
53 54	
55	
56	
57 50	
50 59	

60

1 which may have been related to the exposure variables but are not widely known to be related to 22 the ECG dependent variables studied.

24 Conclusions

25 We found that having an increasing number of pregnancies is related to significant changes in 26 atrial conduction time and ventricular repolarization time. A longer reproductive period duration 27 in women not exposed to exogenous hormone therapy is related to a modest increase in atrial conduction time and to a modest decrease in ventricular repolarization. Reproductive health 28 factors reflective of endogenous sex hormone exposure may be significant determinants of 29 cardiac electrical remodeling in mid-life. 80

- 32 Disclosures
- 33 None
- 35 *Author contributorship statement:*
- 86 Nisha I. Parikh conceived of the idea, designed the study, interpreted the analysis, drafted and critically reviewed the manuscript. She provided final approval of the manuscript 37
- Kristopher Kapphahn and Haley Hedlin conducted study design, statistical analysis and critical 88 review of the manuscript. They provided final approval of the manuscript 39

Jeffrey E. Olgin, Matthew A. Allison, Jared W. Magnani, MSc, Kelli R. Ryckman, Molly E. 0 Waring, Marco V. Perez assisted with study design, analysis interpretation, drafting and critical 1

- 2 reviewed the manuscript. They provided final approval of the manuscript
- 3 Barbara V. Howard assisted with study design, interpreted the analysis, drafted and critically reviewed the manuscript. They provided final approval of the manuscript 4

-5 Data sharing statement:

346 This was a secondary analysis of preexisting data and as such, no new data was generated by this

- 347 study. Information about data sharing for the Women's Health Initiative can be found at the
- 348 following website: <u>https://www.whi.org/researchers/data/Pages/Home.aspx</u>
- 7 8 349

1 2 3

4

5

6

9

10 350 References11

¹² 351 1. McAnulty JH. Arrhythmias in pregnancy. Cardiology clinics. 2012 Aug;30(3):425-34.
 ¹³ 352 PubMed PMID: 22813367. Epub 2012/07/21. eng.

- 14 100 2012/01/21. eng.
 15 353 2. Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, et al. Long-term
 16 354 outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA
 17 355 : the journal of the American Medical Association. 2009;301(24):2571-7.
- 356 3. Magnani JW, Williamson MA, Ellinor PT, Monahan KM, Benjamin EJ. P wave indices: current status and future directions in epidemiology, clinical, and research applications. Circulation Arrhythmia and electrophysiology. 2009 Feb;2(1):72-9. PubMed PMID: 19808445.
 359 Pubmed Central PMCID: PMC2760837. Epub 2009/10/08. eng.
- 360 4. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement
 361 in hypertension: a systematic review of recent clinical studies. American journal of hypertension.
 362 2013 Apr;26(4):456-64. PubMed PMID: 23388831. Epub 2013/02/08. eng.
- 363 5. Yaghi S, Moon YP, Mora-McLaughlin C, Willey JZ, Cheung K, Di Tullio MR, et al. Left
 364 atrial enlargement and stroke recurrence: the northern Manhattan stroke study. Stroke; a journal
 365 of cerebral circulation. 2015 Jun;46(6):1488-93. PubMed PMID: 25908460. Pubmed Central
 9366 PMCID: PMC4442058. Epub 2015/04/25. eng.
- 367
 368
 368
 369
 369
 360
 360
 360
 360
 361
 361
 362
 363
 364
 365
 365
 365
 365
 365
 365
 365
 365
 365
 365
 365
 365
 365
 366
 367
 367
 368
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
 369
- 370
 370
 371
 371
 371
 371
 371
 372
 372
 374
 374
 375
 376
 376
 377
 377
 378
 379
 379
 370
 370
 371
 371
 372
 372
 373
 374
 374
 375
 375
 376
 377
 377
 378
 379
 379
 370
 370
 371
 372
 372
 372
 372
 372
 374
 374
 375
 375
 376
 377
 378
 378
 379
 370
 370
 371
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 372
 373
 374
 374
 374
 374
 374
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 375
 376
 376
 376
 376
 376
- 373 8. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1
 374 of 2. Circulation. 2013 Jul 23;128(4):388-400. PubMed PMID: 23877061. Pubmed Central
 40 375 PMCID: PMC3801217. Epub 2013/07/24. eng.
- 376
 42
 377
 378
 43
 378
 44
 379
 379
 9. Parikh NI, Lloyd-Jones DM, Ning H, Ouyang P, Polak JF, Lima JA, et al. Association of number of live births with left ventricular structure and function. The Multi-Ethnic Study of Atherosclerosis (MESA). American heart journal. 2012 Mar;163(3):470-6. PubMed PMID: 22424019. Epub 2012/03/20. eng.
- 380 10. Sedlak T, Shufelt C, Iribarren C, Merz CN. Sex Hormones and the QT Interval: A
 381 Review. J Womens Health. 2012;4:4.
- 48 382 11. Kadish AH, Greenland P, Limacher MC, Frishman WH, Daugherty SA, Schwartz JB.
 49 383 Estrogen and progestin use and the QT interval in postmenopausal women. Annals of 50 384 noninvasive electrocardiology : the official journal of the International Society for Holter and 51 385 Noninvasive Electrocardiology, Inc. 2004;9(4):366-74.
- 386 12. Design of the Women's Health Initiative clinical trial and observational study. The
 387 Women's Health Initiative Study Group. Controlled clinical trials. 1998 Feb;19(1):61-109.
 388 PubMed PMID: 9492970. Epub 1998/03/11. eng.
- 56
- 57

4

5

6

7

8

BMJ Open

	3	
1	4	
1	5	
1	6	
1	7	
1 1	, 0	
1	ð	
1	9	
2	0	
2	1	
2	2	
2	3	
2	Δ	
2 7	 	
2	2	
2	6	
2	7	
2	8	
2	9	
3	0	
ຈ	1	
ר כ	י ר	
כ ר	2	
≾ -	3	
3	4	
3	5	
3	6	
3	7	
2	8	
2	a	
ر م	ء م	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
1 1	7	
+ /	7 0	
+	ð	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
ר ב	s c	
כ -	0	
5	7	
5	8	
5	9	
5	0	

389 13. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et 390 al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA: The Journal of 391 392 the American Medical Association. 2002 07/17/;288(3):321-33. PubMed PMID: 507. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. The 393 14.

9 394 Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and 10 395 Treatment of High Blood Pressure: the JNC 7 report. JAMA: The Journal of the American 11 396 Medical Association. 2003 05/21/;289(19):2560-72. PubMed PMID: 51.

- 12 397 Rautaharju PM, Kooperberg C, Larson JC, LaCroix A. Electrocardiographic 15. abnormalities that predict coronary heart disease events and mortality in postmenopausal 398 women: the Women's Health Initiative. Circulation. 2006 Jan 31;113(4):473-80. PubMed PMID: 399 400 16449726. Epub 2006/02/02. eng.
- 401 Bobrow KL, Quigley MA, Green J, Reeves GK, Beral V. Persistent effects of women's 16. 402 parity and breastfeeding patterns on their body mass index: results from the Million Women Study. International journal of obesity (2005). 2013 May;37(5):712-7. PubMed PMID: 403 404 22777544. Pubmed Central PMCID: PMC3647235. Epub 2012/07/11. eng.
- Vaidya D, Bennett WL, Sibley CT, Polak JF, Herrington DM, Ouyang P. Association of 405 17. 406 parity with carotid diameter and distensibility: multi-ethnic study of atherosclerosis. 407 Hypertension. 2014 Aug;64(2):253-8. PubMed PMID: 24842921. Pubmed Central PMCID: PMC4184976. Epub 2014/05/21. eng. 408
- Giubertoni E, Bertelli L, Bartolacelli Y, Origliani G, Modena MG. Parity as predictor of 409 18. 410 early hypertension during menopausal transition. Journal of hypertension. 2013 Mar;31(3):501-7; discussion 7. PubMed PMID: 23196900. Epub 2012/12/01. eng. 411
- 412 Magnani JW, Johnson VM, Sullivan LM, Lubitz SA, Schnabel RB, Ellinor PT, et al. P-19. 413 wave indices: derivation of reference values from the Framingham Heart Study. Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and 414 Noninvasive Electrocardiology, Inc. 2010 Oct;15(4):344-52. PubMed PMID: 20946557. Pubmed 415 Central PMCID: PMC3394095. Epub 2010/10/16. eng. 416
- 417 20. Ouzounian JG, Elkayam U. Physiologic changes during normal pregnancy and delivery. 418 Cardiology clinics. 2012 Aug;30(3):317-29. PubMed PMID: 22813360. Epub 2012/07/21. eng.
- 419 Ozmen N, Cebeci BS, Yiginer O, Muhcu M, Kardesoglu E, Dincturk M. P-wave 21. 420 dispersion is increased in pregnancy due to shortening of minimum duration of P: does this have 421 clinical significance? The Journal of international medical research. 2006 Sep-Oct;34(5):468-74. 422 PubMed PMID: 17133775. Epub 2006/12/01. eng.
- 423 Karabag T, Hanci V, Aydin M, Dogan SM, Turan IO, Yildirim N, et al. Influence of 22. menstrual cycle on p wave dispersion. International heart journal. 2011;52(1):23-6. PubMed 424 PMID: 21321464. Epub 2011/02/16. eng. 425
- 426 Mueller NT, Pereira MA, Demerath EW, Dreyfus JG, MacLehose RF, Carr JJ, et al. 23. Earlier menarche is associated with fatty liver and abdominal ectopic fat in midlife, independent 427 428 of young adult BMI: The CARDIA study. Obesity (Silver Spring, Md). 2015 Feb;23(2):468-74. PubMed PMID: 25521620. Pubmed Central PMCID: PMC4310794. Epub 2014/12/19. eng. 429
- Janghorbani M, Mansourian M, Hosseini E. Systematic review and meta-analysis of age 430 24. 431 at menarche and risk of type 2 diabetes. Acta diabetologica. 2014 Aug;51(4):519-28. PubMed 432 PMID: 24671509. Epub 2014/03/29. eng.
- McManus DD, Xanthakis V, Sullivan LM, Zachariah J, Aragam J, Larson MG, et al. 433 25. Longitudinal tracking of left atrial diameter over the adult life course: Clinical correlates in the 434

1 2 3 4 5 6 7 8 9 10 11	435 436 437 438 439 440 441	 community. Circulation. 2010 Feb 9;121(5):667-74. PubMed PMID: 20100973. Pubmed Central PMCID: PMC2823068. Epub 2010/01/27. eng. 26. Sedlak T, Shufelt C, Iribarren C, Merz CN. Sex hormones and the QT interval: a review. Journal of women's health (2002). 2012 Sep;21(9):933-41. PubMed PMID: 22663191. Pubmed Central PMCID: PMC3430484. Epub 2012/06/06. eng.
12 13	442	
13		
15 16		
17		
18 19		
20		
21		
23 24		
25 26		
20		
28 29		
30 31		
32		
33 34		
35 36		
37 38		
39		
40 41		
42 43		
44		
45 46		
47 48		
49		
50 51		
52 53		
54 55		
56		
57 58		18
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	443	Figure Legend: Creation of the Study Sample. Clinical Trials include Hormone Trial, Dietary
5 6	444	Modification and Calcium/Vitamin D. ECG=electrocardiogram, CVD=Cardiovascular diseases.
5 7 8 9 10 11 23 14 15 16 17 8 9 20 21 22 32 4 25 26 27 28 9 30 31 23 34 35 36 37 8 9 40 41 23 44 5 46 7 8 9 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	445	tor peer teriew only
58 50		19
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

446	Table 1. Baseline Characteristics of the Study Sampl
440	Table 1. Dasenne Characteristics of the Study Sampi

Table 1: Baseline Character	eristics of the S	Study Sample			
Distribution of Covariates by Number of Live Births	Never pregnant	0	1	2-4	5+
n (%)	3296 (8.1)	1082 (2.7)	3536 (8.7)	26599 (65.4)	6174
Age (y), Mean (SD)	61.95 (7.43)	60.4 (7.36)	61.14 (7.32)	62.23 (6.87)	64.14 (5.97)
BMI, Median (IQR)	27.39 (7.72)	27.74	27.69	27.73	$\frac{(0.57)}{28.78}$ (7.45)
Age at menopause (y), Median (IOR)	48 (8)	49 (7)	49 (8)	50 (7)	50 (8)
Age at menarche (y), Mean (SD)	12.54 (1.48)	12.55 (1.57)	12.58 (1.54)	12.58 (1.47)	12.67 (1.46)
Duration of reproductive period (y), Median (IQR)	36 (8)	36 (8)	36 (8)	37 (8)	37 (7)
Race/Ethnicity, N (%) American Indian/Alaskan Native	3 (0.1)	3 (0.3)	13 (0.4)	96 (0.4)	32 (0.5)
Asian/PI	121 (3.7)	33	102 (2.9)	728 (2.7)	106 (1.7)
African-American	263 (8)	203 (18.8)	604 (17.1)	2126	598 (9.7)
Hispanic	106 (3.2)	50 (4.6)	160 (4.5)	1005 (3.8)	300 (4.9)
White	2767 (84)	780 (72.1)	2601 (73.6)	22352 (84)	5056 (81,9)
Other	36 (1.1)	13 (1.2)	56 (1.6)	292(1.1)	82 (1.3)
No high school diploma	73 (2.2)	41 (3.8)	157 (4.4)	1033 (3.9)	543 (8.8)
High school diploma	1352 (41)	490 (45.3)	1872 (52.9)	15726 (59.1)	4096 (66.3)
Bachelor's degree	802 (24.3)	250 (23.1)	801 (22.7)	5859 (22)	1087 (17.6)
Graduate degree	1069 (32.4)	301 (27.8)	706 (20)	3981 (15)	448 (7.3)
Household Income, N (%) < \$50,000	2071 (62.8)	639 (59.1)	2136	15872	4543
\$50 to 100,000	974 (29.6)	333 (30.8)	1090	8260 (31.1)	(73.0) 1330 (21.5)
> \$100,000	251	110 (10.2)	310 (8.8)	2467 (9.3)	301 (4.9)

BMJ Open

2							
3		Hypertension, N (%)					
4		Treated	712	240 (22.2)	819 (23.2)	6141 (23.1)	1638
5			(21.6)				(26.5)
6 7		Untreated	276	100 (9.2)	278 (7.9)	2045 (7.7)	491
/ Q			(8 A)	100 (7.2)	2,0(1.))	2012(1.1)	(8)
0 9		History of Dishatas N	150	57	170 (5.1)	1277 (5 2)	(0)
ء 10		nistory of Diabetes, in	150	$\frac{3}{5}$	1/9 (3.1)	1377 (3.2)	434
11		(%)	(4.6)	(5.3)	1456	15255	(/)
12		History of Breastfeeding,	6	36	1476	15375	4258 (69)
13		N (%)	(0.2)	(3.3)	(41.7)	(57.8)	
14		History of HT, N (%)					
15		Never used	1520 (46.1)	478 (44.2)	1601	11660	3324
16					(45.3)	(43.8)	(53.8)
17		Past user	561	191 (17.7)	575 (16.3)	4780	1147
18			(17)			(18)	(18.6)
19		Current user	1215 (36.9)	413 (38.2)	1360	10159	1703
20 21				. ,	(38.5)	(38.2)	(27.6)
∠ı 22					()	()	
23	447	1		I	I	I	
24							
25	448						
26							
27							
28							
29							
30							
31 22							
3Z 22							
33							
35							
36							
37							
38							
39							
40							
41							
42							
43							
44 45							
45 46							
40 47							
48							
49							
50							
51							
52							
53							
54							
55							
56							
57							
58				21			
59 60		For neer review	w only - http://bm	iopen hmi com	/site/about/quic	lelines xhtml	
60		i oi peel ievie	w only - nup.//DII	jopen.brij.com/	sic/about/guit		

Table 1: Unadjusted and multivariable-adjusted association of number of pregnancies leading to livebirths and reproductive period duration with PR interval (ms) in N=40,687

	Effect (95% CI)	Adjusted Effect* (95% CI)	
Number of live birt	hs and reproductive	e period duration are ea	ach in their own
separate multivaria	ble models.		
Number of Live Births			p value for linear trend= 0.11
(categorical with never pregnant as	Ö.		
Novor P rogram	Pof	Dof	
Novel Fleghall		1 15	
INDIC	(-0.18306)	(-0.43, 2.74)	
1	1 16	$\left(\begin{array}{c} 0.4 \\ 0.54 \end{array} \right)$	
I	(0.042.28)	(-0.57, 1.66)	
2-4		0.59	
	(0.34.2.05)	(-0.301, 1.48)	
5+	3.06	1.32	
	(2.07,4.06)	(0.25, 2.39)	
Reproductive period			p value for
duration (continuous,			interaction $= 0.009$
years)			
Never HT User	0.05	0.10	
	(-0.01, 0.11)	(0.04, 0.16)	
Past HT use	0.002	0.08	
a	(-0.07, 0.08)	(-0.00,0.15)	
Current HT use	-0.09	-0.02	
+ 0	(-0.15, -0.03)	(-0.08, 0.04)	
education, race/ethnic antidepressant medic use history, heart rate HT=hormone therapy	city, region, history/ ation, lipid medication and QRS duration	duration of breastfeeding on, oophorectomy status	g, antianxiety medicatio , hysterectomy status, ho
		22	

462	Table 3: Unadjusted and	multivariable-adjusted	association of nu	mber of pregnancies
702	Table 5. Unaujusteu anu	munitival labic-aujusicu	association of nu	mote of pregnancies
		v		1 0

463 leading to livebirths and reproductive period duration with QTc interval (ms) in N=40,687

464 women in the Womens Health Initiative and Clinical Trials

8 Unadjusted Multivariable P value 9 Image: Constraint of the second seco	7					
9 Effect (95% CI) Adjusted Effect* (95% CI) 11 Number of live births and reproductive period duration are each in their own multivariable models 11 Number of live births and reproductive period duration are each in their own multivariable models 11 Number of Live Births (categorical with never pregnant as referent category) Never Pregnant p value for linear trend=0.008 12 None 0.54 0.66 12 0.29 0.15 13 (-0.60,1.18) (-0.71, 1.02) 14 0.29 0.15 15 (-0.63, 0.25 16 (-0.59, 1.31) (-0.43, 0.94) 17 (-2.4 0.63 18 (-0.12, -0.06) (-0.07, -0.01) 19 (-0.12, -0.06) (-0.07, -0.01) 10 (-0.29 erroductive period duration (-0.12, -0.06) (-0.07, -0.01) 10 (-0.20 erroductive period (-0.07, -0.01) p value=0.01 10 (-0.20 erroductive period duration analysis include age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS durat	8			Unadjusted	Multivariable	P value
Image: Number of live births and reproductive period duration are each in their own multivariable models Number of live births and reproductive period duration are each in their own multivariable models Number of Live Births p value for linear trend=0.008 Iteration (categorical with never pregnant as referent category) Ref. Ref. Ref. None 0.54 0.66 0.15 0.15 Iteration (control of the state state of the state of the state of the state	9			Effect	Adjusted	
11 (05% CI) 12 Number of live births and reproductive period duration are each in their own multivariable models 13 Number of live births and reproductive period duration are each in their own multivariable models 16 Live Births p value for linear trend=0.008 16 Live Births referent category) 18 never pregnant as referent category) Ref. Ref. 20 referent category) None 0.54 0.66 21 None 0.54 0.66 0.25 22 (-0.06,1.18) (-0.71, 1.02) 0.25 24 1 0.29 0.15 0.25 25 (-0.05,1.31) (-0.43, 0.94) 1.5 26 2.4 0.63 0.25 0.25 28 5+ 2.39 1.15 0.04 p value=0.01 29 5+ 2.39 (-0.12,-0.06) (-0.07, -0.01) 0.04 0.05 30 continuous, years) * Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, a	10			(95% CD)	F ffect*	
12 Number of live births and reproductive period duration are each in their own multivariable models 13 Number of live births and reproductive period duration are each in their own multivariable models 14 Number of live births and reproductive period duration are each in their own multivariable models 15 Number of live Births (categorical with never pregnant as referent category) p value for linear trend=0.008 18 never Pregnant as referent category) Ref. Ref. 22 None 0.54 0.66 23 (-0.76,1.83) (-0.71, 1.02) 24 1 0.29 0.15 25 (-0.60,1.18) (-0.71, 1.02) 0.33 26 2-4 0.63 0.25 27 (-0.05,1.31) (-0.43, 0.94) 1 28 (-0.02, 0.06) (-0.07, -0.01) p value=0.01 29 5+ 2.39 1.15 1 30 (-0.02, -0.06) (-0.07, -0.01) p value=0.01 31 Reproductive period drugton, antidepressant medication, lipid medication, oophorectomy status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy	11			()5/0 (1)	(059/ CD)	
13 Number of live births and reproductive period duration are each in their own 14 multivariable models 15 Number of 16 Live Births p value for linear 17 (categorical with never pregnant as referent category) p value p value for linear 18 never pregnant as referent category) Ref. 0.66 0.66 20 (-0.76,1.83) (-0.76,1.83) (-0.75, 1.88) 0.25 24 1 0.29 0.15 0.25 25 (-0.60,1.18) (-0.71, 1.02) 0.25 26 2-4 0.63 0.25 0.15 27 2.39 1.15 0.33, 1.98) p value=0.01 28 (-0.05, 1.31) (-0.07, -0.01) p value=0.01 29 5+ 2.39 1.15 0.33 30 Reproductive period -0.09 -0.04 p value=0.01 465 *Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hysterec	12				(95% CI)	•
14multivariable models15Number of16Live Births17(categorical with never pregnant as referent category)18never pregnant as referent category)20Never Pregnant21Never Pregnant22None23(-0.76,1.83)24125(-0.60,1.18)262-4272-428(-0.05,1.31)295+295+295+20(-0.0920(-0.07, -0.01)21*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of ophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.24470463Govariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, and QRS duration.4473 4474HT=hormone therapy4475HT=hormone therapy	13		Number of live birth	s and reproductive per	riod duration are each	in their own
15Number of Live Births (categorical with never pregnant as referent category)p value for linear trend=0.00810None0.540.6622None0.540.6623(-0.76,1.83)(-0.56,1.88)2410.290.1525(-0.06,1.18)(-0.71, 1.02)262-40.630.2527(-0.09)(-0.09)(-0.04)285+2.391.15295+(-0.12,-0.06)(-0.07, -0.01)20extraction(-0.12,-0.06)(-0.07, -0.01)21restates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.40470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ much status, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, antidepressant medication, lipid medication, antidepressant medication, antidepressant medication, inpid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history 	14		multivariable models	8	1	
16 17Live Births (categorical with never pregnant as referent category)trend=0.00820 20 21Never Pregnant as referent category)Ref.Ref.22 21None 0.54 0.66 23 241 0.29 0.15 25 25 $(-0.60, 1.18)$ $(-0.71, 1.02)$ 26 252-4 0.63 0.25 27 26 $(-0.05, 1.31)$ $(-0.43, 0.94)$ 29 29 $5+$ 2.39 1.15 30 31Reproductive period -0.09 -0.04 465 36*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.466 470 470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, antidepressant medication, lipid medication, antidepressant medication, anti	15		Number of			p value for linear
$ \begin{array}{c c} (categorical with \\ never pregnant as \\ referent category) \\ Never Pregnant \\ None \\ 0.54 \\ 0.66 \\ (-0.76, 1.83) \\ (-0.56, 1.88) \\ (-0.56, 1.88) \\ (-0.71, 1.02) \\ ($	16		Live Births			trend=0.008
18 19never pregnant as referent category)Ref.Ref. 21 None 0.54 0.66 23 $(-0.76, 1.83)$ $(-0.56, 1.88)$ 24 1 0.29 0.15 25 $(-0.60, 1.18)$ $(-0.71, 1.02)$ 26 $2-4$ 0.63 0.25 27 $(-0.05, 1.31)$ $(-0.43, 0.94)$ 29 $5+$ 2.39 1.15 29 $5+$ 2.39 $(-0.07, -0.01)$ 20 $(-0.12, -0.06)$ $(-0.07, -0.01)$ 20 $(-0.12, -0.06)$ $(-0.07, -0.01)$ 31 *Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. 466 470 breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, antidepressant medication, lipid medication, antidepressant medication, input status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history and QRS duration. 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history and QRS duration. 474 475	17		(categorical with			
190 20 21referent category) Never PregnantRef.Ref. 100 None 0.54 0.66 100 $(-0.76,1.83)$ $(-0.56,1.88)$ 11 0.29 0.15 26 $2-4$ 0.63 $2-4$ 0.63 0.25 26 $2-4$ 0.63 $2-4$ 0.63 0.25 27 $(-0.05,1.31)$ $(-0.43, 0.94)$ 29 $5+$ 2.39 1.15 $(1.59,3.19)$ $(0.33, 1.98)$ Reproductive period -0.09 -0.04 $duration$ $(-0.12,-0.06)$ $(-0.07, -0.01)$ $(continuous, years)$ *Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic 465 *Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic 466 status, history of diabetes, income, education, race/ethnicity, region, history/ duration of 467 breastfeeding, antianxiety medication, antidepressant medication, lipid medication, 468 oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 475 475	18		never pregnant as			
20Never PregnantRef.Ref.21None 0.54 0.66 23 $(-0.76,1.83)$ $(-0.56,1.88)$ 241 0.29 0.15 25 $(-0.60,1.18)$ $(-0.71,1.02)$ 26 $2-4$ 0.63 0.25 27 $(-0.05,1.31)$ $(-0.43,0.94)$ 28 $5+$ 2.39 1.15 30 $(1.59,3.19)$ $(0.33,1.98)$ 31Reproductive period -0.09 -0.04 465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensice34465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensice34465*Covariates for reproductive period duration, antidepressant medication, lipid medication,34466ophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.34470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ duration of35466breastfeeding, antianxiety medication, antidepressant medication, lipid medication,36470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region,471history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant472medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history473and QRS duration.474475475	19		referent category)			
21None 0.54 0.66 231 0.29 0.15 241 0.29 0.15 25 $(-0.60, 1.18)$ $(-0.71, 1.02)$ 262-4 0.63 0.25 27 $(-0.05, 1.31)$ $(-0.43, 0.94)$ 295+ 2.39 1.15 30 $(1.59, 3.19)$ $(0.33, 1.98)$ 31Reproductive period duration (continuous, years) -0.09 -0.04 465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensice status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.34470baseline hypertension status, history of diabetes, income, education analysis include live births, age, baseline BMI, baseline BMI, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history and QRS duration.472473and QRS duration.474HT=hormone therapy464475	20		Never Pregnant	Ref.	Ref.	
22 1 0.29 $(-0.76, 1.83)$ $(-0.56, 1.88)$ 24 1 0.29 0.15 25 $(-0.60, 1.18)$ $(-0.71, 1.02)$ 26 2.4 0.63 0.25 29 $5+$ 2.39 1.15 30 $(-0.05, 1.31)$ $(-0.43, 0.94)$ 29 $5+$ 2.39 1.15 30 $(-0.12, -0.06)$ $(-0.07, -0.01)$ 31 Reproductive period -0.09 $(-0.07, -0.01)$ $(continuous, years)$ $(-0.12, -0.06)$ $(-0.07, -0.01)$ 34 465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic 34 466status, history of diabetes, income, education, race/ethnicity, region, history/ duration of 37 467breastfeeding, antianxiety medication, antidepressant medication, lipid medication, 39 468oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. 39 470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history 474 HT=hormone therapy 474 HT=hormone therapy 475 474	21		None	0.54	0.66	
2410.290.15252-40.63(-0.71, 1.02)282-40.630.25295+2.391.1530(1.59,3.19)(0.33, 1.98)31Reproductive period duration (continuous, years)-0.09-0.04465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, history of diabetes, income, education, race/ethnicity, region, history, duration of breastfeeding, antianxiety medication analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history, feart rate and QRS duration.469Covariates for reproductive period duration of breastfeeding, antianxiety medication, antidepressant medication, ipid medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status	22 22			(-0.761.83)	(-0.56, 1.88)	
2710.270.13262-40.630.25272-40.630.25285+2.39(-0.05,1.31)30(1.59,3.19)(0.33, 1.98)31Reproductive period duration (continuous, years)-0.09-0.0432*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of 	∠3 24		1	0.20	0.15	
26 27 28 292-4(-0.60, 1.18) 	24		1	0.29	(0.13)	
272-40.630.25285+2.39(-0.43, 0.94)295+2.39(0.33, 1.98)30Reproductive period-0.09-0.04p value=0.0133(continuous, years)(-0.12,-0.06)(-0.07, -0.01)p value=0.0134465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic36466status, history of diabetes, income, education, race/ethnicity, region, history/ duration of37467breastfeeding, antianxiety medication, antidepressant medication, lipid medication,38688oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.39469Covariates for reproductive period duration analysis include live births, age, baseline BMI,470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region,41470breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant471history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant472medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history473and QRS duration.474475475475	25			(-0.60,1.18)	(-0./1, 1.02)	
285+(-0.05,1.31)(-0.43, 0.94)305+2.391.1531Reproductive period-0.09-0.04p value=0.0132duration(-0.12,-0.06)(-0.07, -0.01)34465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic36466status, history of diabetes, income, education, race/ethnicity, region, history/ duration of37467breastfeeding, antianxiety medication, antidepressant medication, lipid medication,38468oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.39470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, antidepressant41471history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant42472medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hormone use history medication, antidepressant43472medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history44473and QRS duration.474HT=hormone therapy46475	20		2-4	0.63	0.25	
295+2.391.1530Reproductive period-0.09-0.04p value=0.0131duration(-0.12,-0.06)(-0.07, -0.01)33*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic36465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic36466status, history of diabetes, income, education, race/ethnicity, region, history/ duration of37467breastfeeding, antianxiety medication, antidepressant medication, lipid medication,38468oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.39469Covariates for reproductive period duration analysis include live births, age, baseline BMI,40470baseline hypertension status, history of diabetes, income, education, race/ethnicity, region,41471history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant42472medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hormone use history43473and QRS duration.45474HT=hormone therapy46475	28			(-0.05,1.31)	(-0.43, 0.94)	
30(1.59,3.19)(0.33, 1.98)31Reproductive period duration (continuous, years)-0.09 (-0.12,-0.06)-0.04 (-0.07, -0.01)p value=0.0132465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.39469Covariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, antidepressant medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history and QRS duration.472473 and QRS duration.454474 475	29		5+	2.39	1.15	
31Reproductive period duration (continuous, years)-0.09 (-0.12,-0.06)-0.04 (-0.07, -0.01)p value=0.0133465*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration.39469Covariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hysterectomy status, hysterectomy status, hormone use history and QRS duration.472medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history and QRS duration.473474HT=hormone therapy464475	30			(1.59,3.19)	(0.33, 1.98)	
 duration duration (continuous, years) 465 465 466 466 466 466 467 468 468 468 468 469 469 469 469 460 470 469 470 471 471 471 471 472 473 474 474 475 474 475 475 475 474 475 470 471 471 473 473 474 474 475 475 475 475 475 475 475 475 474 475 475 475 474 475 475 475 475 475 475 474 475 474 475 475 474 475 	31		Reproductive period	-0.09	-0.04	p value=0.01
 and the formation and the formation of the forma	32		duration	(-0.120.06)	(-0.07, -0.01)	F
 465 465 *Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertensic 466 466 467 468 468 468 469 469 470 469 470 470 470 471 471 471 471 471 472 472 473 474 473 474 475 	33		(continuous vears)	(0.12, 0.00)	(0.07, 0.01)	
 465 Covariates for number of invebritis analysis include age, baseline BMI, baseline hypertensic 466 status, history of diabetes, income, education, race/ethnicity, region, history/ duration of 467 breastfeeding, antianxiety medication, antidepressant medication, lipid medication, 468 oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. 469 Covariates for reproductive period duration analysis include live births, age, baseline BMI, 470 baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 	34	465	*Covariatas for numb	or of livebirths analysis	includo ogo bosolino P	ML basalina hyportansia
 status, fistory of diabetes, income, education, face/ethnicity, region, fistory/ duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. Covariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history and QRS duration. 474 HT=hormone therapy 475 	35	400	status history of dish	er of fiveon a duration	menute age, basenne E	history duration of
 breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. Covariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history and QRS duration. HT=hormone therapy 475 	36	400	status, history of diabe	etes, income, education,	race/ethnicity, region,	nistory/ duration of
 468 oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. 469 Covariates for reproductive period duration analysis include live births, age, baseline BMI, 470 baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 475 	37	467	breastfeeding, antianx	iety medication, antidep	pressant medication, lip	id medication,
 469 Covariates for reproductive period duration analysis include live births, age, baseline BMI, 470 baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 475 	38	468	oophorectomy status,	hysterectomy status, ho	rmone use history, hear	t rate and QRS duration.
 470 baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 475 	39	469	Covariates for reprodu	active period duration and	nalysis include live birt	hs, age, baseline BMI,
 471 history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 475 	40	470	baseline hypertension	status, history of diabet	es, income, education,	race/ethnicity, region,
 472 medication, lipid medication, oophorectomy status, hysterectomy status, hormone use history 473 and QRS duration. 474 HT=hormone therapy 46 475 	41	471	history of breastfeedir	ng, duration of breastfee	ding, antianxiety medic	ation, antidepressant
 43 473 and QRS duration. 45 474 HT=hormone therapy 46 475 	42	472	medication. lipid med	ication, oophorectomy s	status, hysterectomy sta	tus, hormone use history.
 474 HT = hormone therapy 46 475 	43	473	and ORS duration	, , , , , , , , , , , , , , , , , , ,	, <u>, , , , , , , , , , , , , , , , , , </u>	
46 475	44	474	HT=hormone therapy			
	45 46	475	iii normone merapy			
47	40	475				
+/ /Q	47 70					
	40 10					
+7 50	49 50					
50 51	50					
57	52					
52	52 53					
55	54					

476 Table 4: Unadjusted and multivariable-adjusted associations between number of

477 pregnancies leading to livebirths with p wave duration and p wave dispersion in N=39,338*

478 women in the Women's Health Initiative and C	linical Trials
--	----------------

•	Number of Live Births	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	
PR wave duration (ms)				p value for linear trend =0.73
	Never Pregnant	Ref.	Ref.	
	None	0.09	0.09	
	1	(-0.73, 0.92) -0.06	(-0.69, 0.87) -0.20	
	2-4	(-0.63, 0.51) -0.03	(-0.76, 0.35) -0.26	
	5+	(-0.47, 0.40) 0.99 (0.49, 1.50)	(-0.70, 0.18) -0.22 (-0.74, 0.31)	
PR wave dispersion (ms)				p for linea trend =0.1
	Never Pregnant	Ref.	Ref.	
	None	0.67	0.64	
	1	0.44	0.34	
		(0.22, 1.20)	$(0.42 \ 1.11)$	
	2-4	(-0.32, 1.20) 0.72	(-0.42, 1.11) 0.62	

47 484 status, hormone use history, heart rate, and QRS duration.

485 *n differs from main analyses due to the exclusion of women with implausible PR wave
486 measures

490	Table 5: Unadjusted and multivariable-adjusted associations between reproductive period
491	duration and PR wave measures and PR dispersion in N= 31,538* Women in the Women's

492 Health Initiative Clinical Trial.

Dependent Variable	Hormone Use Status	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	
PR wave max (ms)	Never User	0.07 (0.03, 0.11)	0.09 (0.06, 0.13)	p value for interaction=
PR wave max (ms)	Past	-0.04 (-0.08, 0.005)	0.01 (-0.03, 0.05)	0.0009
PR wave max (ms)	Current	-0.03 (-0.06, 0.004)	0.01 (-0.02, 0.05)	
PR wave dispersion (ms)	Never User	0.002 (-0.04, 0.05)	0.01 (-0.03, 0.06)	p value for interaction=
PR wave dispersion (ms)	Past	-0.03 (-0.09, 0.02)	-0.01 (-0.06, 0.05)	0.65
PR wave dispersion (ms)	Current	-0.04 (-0.08, 0.003)	-0.02 (-0.06, 0.03)	

Effect estimates correspond to expected ms increase in PR measure. These models contained an interaction term for reproductive period duration hormone use status. Fully adjusted models were adjusted for number of live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication,

31 498 oophorectomy status, hysterectomy status, hormone use history, heart rate, and QRS duration.

499 *n differs from main analyses due to the exclusion of women with implausible PR wave500 measures

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies with page number in manuscript.

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done	3
		and what was found	-
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5-6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	7-8
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	7-8
-		exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	7-8
		selection of participants. Describe methods of follow-up	
		Case-control study-Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases	
		and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	N/A
		exposed and unexposed	
		Case-control study-For matched studies, give matching criteria and the number of	
		controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	7-10
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	7-10
measurement		assessment (measurement). Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	7-10
Study size	10	Explain how the study size was arrived at	7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	7-10
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-10
		(b) Describe any methods used to examine subgroups and interactions	8-10
		(c) Explain how missing data were addressed	10
		(d) Cohort study—If applicable, explain how loss to follow-up was addressed	7
		Case-control study-If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study-If applicable, describe analytical methods taking account of	
		sampling strategy	
		(e) Describe any sensitivity analyses	10
		(<u>c)</u> Describe any sensitivity analyses	

3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
30 27	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
+0 17	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/ 52	
58	
59	
60	

Results			Page number
Participants	13*	(a) Report numbers of individuals at each stage of study-eg numbers potentially eligible,	7
		examined for eligibility, confirmed eligible, included in the study, completing follow-up, and	
		analysed	
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	7
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	7
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	
		Case-control study-Report numbers in each exposure category, or summary measures of	
		exposure	
		Cross-sectional study-Report numbers of outcome events or summary measures	7
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their	20-21
		precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and	
		why they were included	
		(b) Report category boundaries when continuous variables were categorized	20-21
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	10-11
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and sensitivity	10-11
		analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	14-15
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable,	1
		for the original study on which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Effects of Reproductive Period Duration and Number of Pregnancies on Mid-Life Electrocardiographic Indices: A Secondary Analysis from the Women's Health Initiative Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019129.R1
Article Type:	Research
Date Submitted by the Author:	20-Apr-2018
Complete List of Authors:	Parikh, Nisha; University of California San Francisco, Medicine Kapphahn, Kristopher; Stanford University School of Medicine Haley, Haley; Stanford University School of Medicine Olgin, Jeffrey; University of California San Francisco, Medicine Allison, Matthew; UCSD, Magnani, Jared; University of Pittsburgh, Medicine Ryckman, KK; University of Iowa, Epidemiology Waring, Molly; University of Connecticut, Allied Health Sciences Perez, Marco; Stanford University, Cardiovascular Medicine Howard, Barbara; MedStar Health Research Institute
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Reproductive medicine, Epidemiology, Obstetrics and gynaecology
Keywords:	women, Adult cardiology < CARDIOLOGY, menopause, ECG, pregnancy

SCHOLARONE[™] Manuscripts

1				
2				
3	1			
4 5	2	Effects of Reproductive Period Duration and Number of		
6	3	Pregnancies on Mid-Life Electrocardiographic Indices: A		
7	4	Secondary Analysis from the Women's Health Initiative Clinical		
o 9	-	Trial		
10	5	11141		
11 12	6			
13	7			
14	8			
15	9			
16	10	Authors: Nisha I. Parikh MD MPH (1), Kristopher Kapphahn PhD (2), Haley Hedlin PhD (2),		
17	11	Jeffrey E. Olgin MD (1), Matthew A. Allison MD (3), Jared W. Magnani MD (4), MSc, Kelli R.		
18	12	Ryckman PhD (5), Molly E. Waring PhD (6), Marco V. Perez MD (7), Barbara V. Howard PhD		
19	13	(8)		
20	14			
21	15	1) Division of Cardiology, University of California San Francisco, San Francisco, CA		
22	16	2) Ouantitative Sciences Unit, Department of Medicine, Stanford University School of		
23	17	Medicine		
25	18	3) Department of Family Medicine La Jolla USCD		
26	10	4) Division of Cardiology Boston University School of Medicine Boston MA		
27	20	5) Department of Enidemiology, College of Public Health, University of Jowa, IO		
28	20	6) Division of Epidemiology of Chronic Discusses and Vulnerable Dopulations		
29	21	0) Division of Epidemiology of Chlonic Diseases and Vulnerable Populations,		
30	22	Department of Quantitative Health Sciences, University of Massachusetts Medical		
31	23	School, Worcester, MA		
32	24	7) Department of Medicine, Stanford University School of Medicine, Stanford, CA		
33	25	8) MedStar Health Research Institute, Hyattsville, MD and Georgetown and Howard		
24 25	26	Universities Center for Clinical and Translational Science		
36	27			
37	28	Corresponding author: Nisha I. Parikh, MD MPH		
38	29	E-mail: parikh.nisha@gmail.com		
39	30			
40	31	Running Title: Reproductive factors and electrocardiographic intervals		
41	32			
42	33	Key Words: endogenous estrogen sex hormones pregnancy menarche menopause		
43	34	reproductive history menarche age at hirth repolarization OTc PR interval electrocardiogram		
44	35	reproductive instory, menarche, age at onth, repolarization, QTe, TR interval, electrocardiogram		
45	36	Word Count: 1196		
46	27	Word Count. 4150		
47 78	20	Even din as This words was summarized by AUA grout 12CD D17250002 (NID) NULL grouts		
40 49	38	Funding: This work was supported by AHA grant 15CRP1/550002 (NIP), NIH grants		
50	39	$/K_2 I \Pi L I 1000 $ (NIP), KL2 I KUUU I 60 (MEW) and UU I HL I 00268 (MEW), NHL BI/NIH &		
51	40	DHHS through contracts, HHSN268201100046C, HHSN268201100001C,		
52	41	HHSN268201100002C, HHSN268201100003C, HHSN268201100004C		
53	42			
54	43			
55	44	Conflict of Interest: None of the authors have any conflicts of interest in respect to this article		
56	45			
57				
58		1		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml		
<u> </u>				

46 Abstract: (word count=264)

47 Objective: Pregnancy, menses and menopause are related to fluctuations in endogenous sex 48 hormones in women, which cumulatively, may alter cardiac electrical conduction. Therefore, we 49 sought to study the association between number of pregnancies and reproductive period duration 50 (RD, time from menarche to menopause) with electrocardiographic intervals in the Women's 51 Health Initiative Clinical Trials.

52 Methods: In primary analyses, we employed multivariable linear regression models relating
53 number of pregnancies and RD with millisecond (ms) changes in PR interval, P wave indices
54 (duration and dispersion) and QTc from enrollment electrocardiogram.

Results: Among 40,687 women (mean age=62 years), 5+ live births versus 0 prior pregnancies was associated with a 1.32 ms increase in PR interval [95% CI (0.25, 2.38)], with a graded association with longer QTc interval (ms) [none= 0.66 (-0.56, 1.88), 1 = 0.15 (-0.71, 1.02), 2 to 4=0.25 (-0.43, 0.94), and 5+ live births=1.15 (0.33, 1.98), p = 0.008]. RD was associated with longer PR interval and maximum P wave duration (but not P-wave dispersion) among never users of hormone therapy: [PR (ms) per additional RD year: 0.10 (0.04, 0.16); higher P-wave duration (ms): 0.09 (0.06, 0.12)]. For every year increase in reproductive period, QTc decreased by 0.04 ms (-0.07, -0.01).

63 Limitations: Potential misclassification of RD due to participant recall

Conclusions: An increasing number of live births are related to increased ventricular 65 repolarization time whereas RD is related to decreased ventricular repolarization time. Both 66 longer RD and grandmultiparity are related to increased atrial conduction time. Reproductive 67 factors that alter midlife cardiac electrical conduction system remodeling in women may 68 modestly influence CVD risk in later life.

BMJ Open

2	
3 4	70
5 6	71
7 8	72
9 10 11	73
12 13	74
14 15	75
16 17 18	76
18 19 20	77
21 22	78
23 24	79
25 26 27	80
27 28 29	81
30 31	82
32 33	83
34 35 26	84
37 38	85
39 40	86
41 42	87
43 44 45	88
46 47	89
48 49	90
50 51	91
52 53 54	92
55 56	93
57 58	
59 60	

70	Article Summary:		
71	Strengths and Limitations of the Study.		
72	• A strength is the use of a well characterized multiethnic, large dataset of postmenopausal		
73	women representative of women in the United States.		
74	• A notable limitation is that the exposure variables were acquired retrospectively.		
75	• We were unable to adjust for pregnancy complications such as preeclampsia or		
76	gestational diabetes.		
77			
78			
79	Key Words: endogenous estrogen, sex hormones, pregnancy, menarche, menopause,		
80	reproductive history, menarche, age at birth, repolarization, QTc, PR interval,		
81	electrocardiogram		
82			
83			
84	INTRODUCTION:		
85	Electrocardiogram parameters reflect current as well as future CVD risk		
86	Electrocardiographic parameters are reflections of both current as well as future cardiovascular		
87	disease risk. For example, in the Framingham Heart Study, a prolonged PR interval (> 200 ms)		
88	(which is defined as the period, measured in milliseconds, that extends from the beginning of the		

P wave (the onset of atrial depolarization) until the R wave), was related to incident atrial fibrillation, all-cause mortality and to the likelihood of needing a permanent pacemaker.(1) In addition to PR interval, the p wave duration (or the period in milliseconds during which the atrium depolarizes), more directly relates to atrial size and is an antecedent of atrial fibrillation.(2) Both PR interval and p wave duration are markers of left atrial size which in turn

94 is a correlate of hypertensive heart disease(3) and incident stroke.(4) P wave dispersion, defined 95 as the difference between the maximum and the minimum P-wave duration recorded from 96 multiple different-surface ECG leads, is an additional marker of atrial remodeling and antecedent 97 of atrial fibrillation.(5) It is unclear to what extent PR interval, p wave duration or P wave 98 dispersion are affected by premenopausal hormonal fluctuations from the menstrual cycle and 99 childbearing.

Pregnancy, cardiac remodeling and the electrocardiogram

Pregnancy and the post-partum period both have substantial physiologic effects on cardiac electrophysiology. Physiologic studies of women during early and late pregnancy as well as early post-partum suggest a shortening of the corrected QT interval (QTc) which partially reverts back to pre-pregnancy values following post-partum (6, 7) The QT interval is defined as the measure of time between the onset of ventricular depolarization and completion of ventricular repolarization, and because QT interval is strongly related to heart rate, the QTc is corrected for heart rate. Direct pathophysiologic links connecting myocardial structural remodeling and cardiac electrical remodeling have been increasingly recognized.(8) With regards to myocardial remodeling, pregnancy induced cardiac remodeling does not completely revert back to pre-pregnancy levels and effects of increasing parity on cardiac remodeling can be detected even in mid-life.(9) However, the extent to which an increasing number of pregnancies exerts long lasting effects on the cardiac electrical conduction system is uncertain.(9)

- ⁴⁹ 114
 - *Estrogen exposure and the electrocardiogram*

In addition to the more marked hormonal fluctuations seen during pregnancy, there are also more subtle, cyclic changes in estrogen and progesterone cycling that occur during menstrual cycling in women of reproductive age. Testosterone and progesterone are recognized to decrease the QTc interval.(10) Prior data from the Women's Health Initiative (WHI) Hormone Trial suggests that estrogen-only post-menopausal therapy modestly prolongs QTc beyond that of both estrogen-progestin therapy and placebo.(11) However, it is uncertain whether the pre-menopausal endogenous hormonal fluctuations (reflected by the length of the interval from menarche to menopause, and by number of pregnancies) are associated with changes in QTc in the WHI.

WHI represents a unique resource to study questions related to pregnancy and reproductive history and ECG parameters and thus we sought to determine if there is a positive or negative association between number of pregnancies and reproductive period duration with mid-life electrocardiogram intervals (PR interval and QTc) and p wave parameters (p wave maximum duration and dispersion).

3 131

132 METHODS AND ANALYSIS PLAN:

133 Our current study design is a secondary analysis of a previously conducted set of clinical trials.

Study sample.

The WHI recruitment began in 1991 and consisted of a set of clinical trials/ and an
observational study on hormone therapy, dietary modification and calcium/ vitamin D
supplementation on cardiovascular disease, cancer and fractures.(12) The clinicaltrial.gov
identifier for the WHI is NCT00000611. At the time of enrollment, all women enrolled in the
WHI were required to be between 50 and 79 years old, postmenopausal, and intending to reside in the area for at least 3 years. Other enrollment criteria have been previously described.(13) This analysis drew from the cohort of women enrolled in the WHI clinical trials (and not observational study), as WHI clinical trial participants has ECGs performed per protocol. Informed consent was obtained from all participants at study enrollment. Figure 1 shows the creation of the study sample. Of 68,132 women in WHI Studies (post-menopausal hormone therapy, diet and calcium/vitamin D and observational studies), we excluded 5,217 who were missing ECGs and 15,543 who had prevalent CVD. Because number of pregnancies and reproductive period (in particular age at menopause) are known to be associated with later CVD and a history of CVD is related strongly with ECG changes including QTc and certainly increased PR, we sought to exclude women with a history of CVD in order to assess associations between reproductive period duration and number of pregnancies that were not directly mediated through CVD. Of these, 47,372 women, 6,685 were further excluded for having missing covariate data, leaving a final sample of included women =40,687. In a missing imputation sensitivity analysis described below, we additionally analyzed the 6,685 women with missing covariate data (total n=54,057).

155 Patient and Public Involvement

WHI was designed to address the gaps in knowledge about the major health issues in post menopasual women. Patients assisted research staff in recruiting and results for all measures done at the study examinations were explained to each participant. Major study results are communicated to participants via newsletters.

160 Ascertainment of Reproductive Exposures.

BMJ Open

161	Information on reproductive factors was collected via questionnaire at the second screening visit
162	in the WHI (between 1993-1998). Participants were asked how many times they had been
163	pregnant (were given choices ranging from 0 to 8+), number of live births, and how old they
164	were at the end of the first and at the end of their last pregnancy (<20, 20-24, 25-29, 30-34, 35+
165	years). Age at menarche (<9, 10,11,12,13,14,15,>16 years) and age at menopause was asked on
166	this screening questionnaire. Reproductive period duration (RD) was defined as the duration
167	between age at menarche to age at menopause (in years). Detailed current and prior hormone
168	therapy (or post-menopausal hormone replacement therapy) usage and
169	hysterectomy/oophorectomy status was collected at enrollment and has been previously
170	described.(14) Questions regarding the use and duration of oral contraceptive usage was also
171	collected at enrollment.

172 Ascertainment of Covariates:

Age, income, education, self-reported race/ethnicity, geographic region of United States, history and duration of breastfeeding were collected at participant enrollment and second screening examinations. Body mass index (BMI, kg/m²) was calculated using height and weight measured by study staff at baseline. Women with hypertension were identified as those with a self-reported history of treated hypertension or blood pressure measurements meeting JNC 7 criteria for hypertension.(15) Diabetes was identified by self-reported use of anti-diabetic medications and hyperlipidemia by use of cholesterol lowering medications.

Electrocardiographic parameters:

181 Standard 12-lead ECGs were recorded in all women by strictly standardized procedures in all182 clinical centers as has been described.(16) All ECGs were processed in a central laboratory

(EPICARE Center, University of Alberta, Edmonton, Canada, and later Wake Forest University,
Winston-Salem, NC), where they were visually inspected for technical errors and inadequate
quality. ECGs were processed with the 2001 version of the Marquette 12-SL program (GE
Marquette). In addition to PR and QT intervals, we also examined the maximum P wave duration
and dispersion (from all 12 leads of the ECG).(2) The QT interval was corrected using Bazett's
formula. The Institutional Review Board of University of California San Francisco approved this
study protocol.

Statistical Methods:

Primary Analysis

We employed multivariable linear regression to assess the association between reproductive exposures (number of pregnancies and RD) with the dependent variable of ECG parameters (PR interval in milliseconds, p wave duration, p wave dispersion, QTc in milliseconds). Multivariable models were adjusted for a priori covariates: age, BMI, hypertension status, diabetes, income, education, race/ethnicity, region, history of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, duration of breastfeeding, oophorectomy status, hormone therapy use, heart rate and QRS duration. In analyses considering categories of livebirths we employed a linear trend test.

We explored effect modification of the primary exposures, number of live births and RD, by hormone therapy usage and hysterectomy status. We classified hormone therapy usage into three categories: women who reported current, prior or no hormone therapy usage. A statistical interaction term between hormone therapy usage and the exposure (RD or number of live births) was used to consider effect modification by reported hormone therapy use. When the statistical interaction term was statistically significant (p < 0.05) according to a likelihood ratio test, we Page 9 of 31

211

1

BMJ Open

2	
h	
3	
Δ	
т	
5	
-	
6	
7	
/	
Q	
0	
9	
-	
10	
11	
12	
12	
13	
14	
1 -	
15	
16	
10	
17	
.,	
18	
10	
19	
20	
20	
21	
22	
22	
23	
24	
24	
25	
25	
26	
27	
20	
28	
20	
29	
30	
50	
31	
32	
22	
33	
31	
74	
35	
36	
27	
3/	
28	
50	
39	
40	
41	
41	
12	
−τ∠	
43	
44	
45	
40	
16	
-10	
47	
48	
40	
49	
50	
20	
51	
-	
52	
F 2	
53	
51	
54	
55	
56	
5/	
50	

59

60

presented the estimates in each of the three categories of hormone therapy use and we presented a single estimate if there was no evidence for effect modification by hormone therapy. A similar approach was employed for studying RD or number of live births and hysterectomy status. To show sensitivity of estimates to confounders, unadjusted associations were reported as well as those associations adjusted for the confounders listed above.

212 Secondary Analyses:

213 In secondary analyses, we removed subjects who reported never being pregnant and used 214 multivariable linear regression to model associations between age at first live birth and the five 215 electrocardiogaphic measures. These models used the same covariates to adjust association as 216 those in our primary analyses. Subjects who had implausible secondary outcome values (i.e. all 217 zero values or all constant values across all electrocardiographic measures) were removed. We 218 additionally adjusted for covariates that we were concerned may have confounded the 219 associations between exposure and dependent variables in our study. We additionally fit 220 additional models which included both RD and number of pregnancies to ensure that one 221 exposure did not alter the other's association with the dependent variables. Given that anxiety 222 and depression could affect both exposure and dependent variables in our study, we further 223 adjusted for use of these medications. Antianxiety and antidepressant medication use (selective 224 serotonin reuptake inhibitors (or SSRI) and non-SSRI) were recorded on enrollment by nurse examination of medication bottles. Medications were classified according to the National Drug 225 Index classification system. We adjusted for Ca/Vitamin D status, oral contraceptive usage 226 227 (yes/no and duration or usage). We further adjusted for menstrual irregularities/fertility 228 disorders/and endometriosis, which are also related to hormonal fluctuations in women.

229 Multiple Imputation Analyses

There were n=6,685 women in our study with missing covariate data. We used multiple imputation techniques to impute missing covariates and refit models from primary analyses to explore the sensitivity of our results to missing data. We used the PROC MI in SAS to construct 20 multiply imputed data sets. Missing variables were imputed via fully conditional specification method in PROC MI using all variables from the analytic model. We fit models to each imputed data set and pooled the results. The pooled results from imputation did not differ appreciably from the results of the complete case analysis (data not shown).

237 All analyses were performed in SAS 9.4 (SAS Institute, Cary NC, USA).

RESULTS

Table 1 shows the baseline characteristics of our sample including women who were included in our study and those excluded from analysis for missing variables. Data is displayed by number of pregnancies lasting at least 6 months. The mean age at enrollment was 62.4 years, while the mean age at menarche was 12.6 and mean age at menopause was 50.0 years. 82.5% of women were White, 9.3% Black, 4% Hispanic and 2.7% Asian. Forty five percent of the study sample reported never having used hormone therapy prior to enrollment.

247 PR interval

Compared to women reporting never having been pregnant, having 5 or more pregnancies was associated with a 1.3 ms longer PR interval (**Table 2**). Among women who reported never having used hormones, each additional year of reported reproductive period duration was associated with a 0.1 ms longer PR interval (or atrial conduction velocity). Conversely, there Page 11 of 31

1

BMJ Open

2	
3	-
4	4
5	
6	4
7	,
8	4
9 10	
10	4
12	
13	2
14	
15	2
16	
17	2
18	
19	2
20	
22	2
23	
24	2
25	
26	2
27	
28	2
29	
31	2
32	
33	2
34	-
35	2
36	-
3/	2
20	-
40	-
41	4
42	2
43	4
44	,
45	4
46 47	,
47 48	4
49	
50	4
51	,
52	4
53	
54	4
55 56	
50 57	
58	
59	

252 was no significant association between RD and PR interval among women who reported prior or 253 current hormone therapy use (p value for interaction < 0.01) (Table 2). Age at first live birth, 254 was not related to PR interval (data not shown).

255 OTc

Compared to never having been pregnant, having 5 or more pregnancies was related to a 1.2 ms 256 longer QTc (Table 3). However, not carrying a pregnancy to term, or having 1 or 2-4 term 257 258 pregnancies (versus not being pregnant), were not related to QTc. For each additional year in 259 reproductive period duration, there was a 0.4 ms shorter QTc (**Table 3**). Restricting to women who had at least one live birth did not change our results (data not shown). 260

P wave duration and dispersion 261

P wave dispersion was higher for women with 2-4 live births (ms increase =0.62, 95% CI: 0.01, 262 263 1.24) and 5 live births (0.94, 95% CI: 0.20, 1.67), compared with those who reported never 264 having been pregnant (Table 4). Reproductive period duration was related to maximum p wave 265 duration among women who reported never having used hormones (0.09, 95% CI: 0.06, 0.13) 266 but not among those who reported prior or current hormone therapy use (p interaction < 0.01) 267 (Table 5).

268

60

269 Secondary results: Models that contained both RD and number of pregnancies together were not 270 materially different (data not shown). Further adjustment for antidepressants and anti-anxiety medications did not materially affect our results. Further adjustment for Ca and Vitamin D status 271 272 or oral contraceptive use, and/or duration did not materially affect our results. Further adjustment 273 for menstrual irregularities/fertility disorders/and endometriosis did not materially change our 274 results.

2 3 4	275	
5 6	276	
7 8 0	277	DISCUSSION
9 10 11	278	Summary of Findings
12 13	279	We found that having five or more pregnancies compared to none was associated with a small
14 15	280	increase in mid-life atrial conduction time, independent of factors known to be associated with
10 17 18	281	this interval (PR). Number of live births among women with at least one live birth (compared to
19 20	282	no prior pregnancies) was associated with increased atrial conduction time. Having 5 or more
21 22	283	pregnancies was related to a small increase in ventricular repolarization time as compared to
23 24 25	284	having no prior pregnancies. Among women reporting no prior exogenous hormone use, each
26 27	285	additional year of reported RD was related to a very modest (0.1 ms) longer atrial conduction
28 29	286	time. RD was related to a very modest increase in p wave duration. RD was related to a shorter
30 31 32	287	ventricular repolarization time.
33 34	288	
35 36	289	Mechanisms linking pregnancy and atrial electrical remodeling
37 38	290	The effect of cumulative pregnancies on mid-life electrocardiograms would likely result from
39 40 41	291	both 1) the pregnancy itself and 2) incident cardiometabolic factors that are impacted by
42 43	292	pregnancy such as adiposity(17) and vascular stiffness,(18) and premenopausal blood
44 45	293	pressure.(19) Adiposity and blood pressure are related to increased P wave indices in a normal
46 47 48	294	healthy population,(20) and these P wave indices are electrocardiographic reflections of
49 50	295	increased left atrial pressure, size and potentially fibrosis. The period of pregnancy and the
51 52	296	peripartum are characterized by hormonal changes that affect both cardiovascular hemodynamics
53 54 55	297	and adaptive myocardial remodeling.(21) Pregnancy causes increased cardiac output, increased

Page 13 of 31

BMJ Open

left ventricular mass, and decreased systemic vascular resistance.(22) The uterus and placenta in support of the growing fetus and fetal circulatory system represent a significant vascular shunt which contributes to these hemodynamic adaptations in pregnancy.(22) The sum of these changes result in both left atrial and left ventricular dilation. However, the effects of normal pregnancy on electrographic remodeling during pregnancy are not well described. A prior small clinical study has looked at P wave duration and P wave dispersion among pregnant women compared with controls and found that both of these parameters are increased.(23)

Pregnancy and cumulative effects on ventricular repolarization

A prior study in 37 women in late pregnancy compared with 18 age matched controls demonstrated that QTc substantially prolongs late in pregnancy and that this only partially corrects back to pre-pregnancy values post-partum.(7) Our finding that having 5 or more pregnancies as compared to no prior pregnancies suggests that QTc prolongation during pregnancy may accumulate across successive pregnancies and will be significantly increased on mid-life ECG. Furthermore, we found evidence for a dose response relationship between number of pregnancies and mid-life QTc. Cardiac electrical remodeling often reflects myocardial remodeling. We previously demonstrated that an increasing number of pregnancies were related to left ventricular volume increase and increase in left ventricular mass in a multiethnic cohort of women.(9) The increase in cardiac volume and mass were more marked in grandmultipara's or women who had 5 or more pregnancies leading to livebirths.(9) It is important to note that grandmultiparity is less common with declining parity levels in the United States.

Reproductive period duration and atrial conduction.

The menstrual cycle consists of a relatively well described hormone cycling in women consisting of both estrogen and progesterone as well as testosterone production. A longer reproductive period duration reflects the cumulative exposure that a woman has to these endogenous fluctuations in sex hormone levels. Indeed, prior studies have assessed P wave parameters throughout the menstrual cycle and noted that P wave duration is substantially increased in the luteal phase.(24) Among women who did report taking prior hormone therapy, we observed a very modest but significant increase in mid-life PR interval and in P wave duration. Exogenous hormone therapy use may obscure the relationship between endogenous hormone exposure from a longer reproductive period duration and P wave parameters, which would explain our findings of effect modification by hormone therapy use. An earlier age at menarche (which would be related to increased reproductive period duration) has been associated with increased adiposity(25) and diabetes,(26) which in turn have been linked with increased p wave duration(2) and, in the case of body mass index, with increased left atrial remodeling(27) and thus may also partially underlie our findings.

Reproductive duration and decrease ventricular repolarization time

The QTc is shortened by the action of progesterone and lengthened by estrogen during normal menstrual cycling. The net effect of these changes during a single menstrual cycle can result in shortening of ventricular repolarization time or QTc.(28) Our finding that an increased reproductive duration was modestly inversely related to QTc in WHI. Underlying these findings may be that increasing exposure to progesterone, in particular during menstrual cycling, may have cumulative and measurable effects on the mid-life electrocardiogram in women.

344 Strength and Limitations

The use of a well characterized multiethnic, large dataset of postmenopausal women representative of women in the United States is a strength of our study. A notable limitation is potential recall bias since the exposure variables were acquired retrospectively and some are very distant events (eg age at menarche occurred 40-70 years in the past). We were unable to adjust for pregnancy complications such as preeclampsia or gestational diabetes since these were not collected. We did not adjust for smoking, physical activity, and habitual consumption of alcohol and coffee which may have been related to the exposure variables but are not widely known to be related to the ECG dependent variables studied. We studied number of pregnancies in a categorical fashion and were unable, due to data constraints, to look at number of pregnancies as a continuous variables.

Directions for future research:

Future studies that disentangle specific hormonal and molecular mechanisms that underlie the
association demonstrated in our study will help us better understand our study findings.
Understanding which specific fertility factors alter electrical remodeling in women is an
important direction for future research.

362 Conclusions

We found that having five or more pregnancies compared to none is related to small but significant changes in atrial conduction time and ventricular repolarization time. A longer reproductive period duration in women not exposed to exogenous hormone therapy is related to a modest increase in atrial conduction time and to a modest decrease in ventricular repolarization.

1								
2 3 4	367	Reproductive health factors reflective of endogenous sex hormone exposure may be significant						
5 6 7	368	determinants of cardiac electrical remodeling in mid-life.						
/ 8 9	369							
10 11	370	Disclosures						
12 13	371	None						
14 15	372							
16 17	373	Author contributorship statement:						
18 19	374	Nisha I. Parikh conceived of the idea, designed the study, interpreted the analysis, drafted and						
20 21	375	critically reviewed the manuscript. She provided final approval of the manuscript						
22	376	Kristopher Kapphahn and Haley Hedlin conducted study design, statistical analysis and critical						
23	377	review of the manuscript. They provided final approval of the manuscript						
25 26	378	Jeffrey E. Olgin, Matthew A. Allison, Jared W. Magnani, MSc, Kelli R. Ryckman, Molly E.						
27	379	Waring, Marco V. Perez assisted with study design, analysis interpretation, drafting and critical						
28 29	380	reviewed the manuscript. They provided final approval of the manuscript						
30	381	Barbara V. Howard assisted with study design, interpreted the analysis, drafted and critically						
31 32 33	382	reviewed the manuscript. They provided final approval of the manuscript						
33 34 35	383	Data sharing statement:						
36	384	This was a secondary analysis of preexisting data and as such, no new data was generated by this						
37	385	study. Information about data sharing for the Women's Health Initiative can be found at the						
30 39	386	following website: https://www.whi.org/researchers/data/Pages/Home.aspx						
40 41	387							
42 43 44	388	References						
45	389	1. Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, et al. Long-term						
46	390	outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA						
4/ 10	391	: the journal of the American Medical Association. 2009;301(24):2571-7.						
40 49	392	2. Magnani JW, Williamson MA, Ellinor PT, Monahan KM, Benjamin EJ. P wave indices:						
50	393	current status and future directions in epidemiology, clinical, and research applications.						
51	394	Circulation Arrhythmia and electrophysiology. 2009 Feb;2(1):72-9. PubMed PMID: 19808445.						
52	395	Pubmed Central PMCID: PMC2760837. Epub 2009/10/08. eng.						
53	396	3. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement						
54 55	397	in hypertension: a systematic review of recent clinical studies. American journal of hypertension.						
56	398	2013 Apr;26(4):456-64. PubMed PMID: 23388831. Epub 2013/02/08. eng.						
57								
58 50		16						
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml						

59

60

BMJ Open

2		
3	399	4. Yaghi S, Moon YP, Mora-McLaughlin C, Willey JZ, Cheung K, Di Tullio MR, et al. Left
4	400	atrial enlargement and stroke recurrence: the northern Manhattan stroke study. Stroke; a journal
5	401	of cerebral circulation 2015 Jun 46(6) 1488-93 PubMed PMID 25908460 Pubmed Central
6	402	PMCID: PMC4442058 Enub 2015/04/25 eng
/	402	5 Dáraz Diara AD da Abrau IC Barbasa Barras D Grindlar I Farnandas Cardasa A
8	403	5. Felez-Kiela AK, de Ableu LC, Balbosa-Ballos K, Ollidele J, Felilandes-Caldoso A,
9	404	Baranchuk A. P-wave dispersion: an update. Indian Pacing and Electrophysiology Journal. 2016
10	405	Jul-Aug
11	406	10/20
12	407	08/29/received
17	408	10/20/accepted;16(4):126-33. PubMed PMID: PMC5197451.
15	409	6. Baumert M. Seeck A. Faber R. Nalivaiko E. Voss A. Longitudinal changes in OT interval
16	410	variability and rate adaptation in pregnancies with normal and abnormal uterine perfusion
17	411	Hypertens Res 2010:33(6):555-60
18	410	7 Jachmanova M Kittaar O Mlack M Slaviack J Dahnalova A Havranak S at al OT
19	412	7. Lechinanova M, Kitthai O, Micek M, Slavicek J, Dolinalova A, Havianek S, et al. Q1
20	413	dispersion and 1-loop morphology in late pregnancy and after delivery. Physiological research /
21	414	Academia Scientiarum Bohemoslovaca. 2002;51(2):121-9.
22	415	8. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1
23	416	of 2. Circulation. 2013 Jul 23;128(4):388-400. PubMed PMID: 23877061. Pubmed Central
24	417	PMCID: PMC3801217. Epub 2013/07/24. eng.
25	418	9. Parikh NI, Llovd-Jones DM, Ning H, Ouvang P, Polak JF, Lima JA, et al. Association of
26	419	number of live births with left ventricular structure and function. The Multi-Ethnic Study of
27	420	Atherosclerosis (MESA) American heart journal 2012 Mar: 163(3):470-6 PubMed PMID:
28	420	22424010 Epub 2012/02/20 and
29	421	22424019. Epub 2012/05/20. eng.
30	422	10. Sediak I, Shuleli C, Iribarren C, Merz CN. Sex Hormones and the Q1 Interval. A
31	423	Review. J Womens Health. 2012;4:4.
32	424	11. Kadish AH, Greenland P, Limacher MC, Frishman WH, Daugherty SA, Schwartz JB.
33	425	Estrogen and progestin use and the QT interval in postmenopausal women. Annals of
34 25	426	noninvasive electrocardiology : the official journal of the International Society for Holter and
30	427	Noninvasive Electrocardiology, Inc. 2004;9(4):366-74.
27	428	12. Design of the Women's Health Initiative clinical trial and observational study. The
38	429	Women's Health Initiative Study Group Controlled clinical trials 1998 Feb 19(1):61-109
20	430	PubMed PMID: 9492970 Enub 1998/03/11 eng
40	/31	13 Have I Hunt IR Hubbell FA Anderson GL Limacher M Allen C et al. The Women's
41	422	Hoalth Initiative rearritment methods and results. Annals of enidemialogy 2002 Oct.12(0
42	432	Health initiative rectriminent methods and results. Annals of epidemiology. 2005 Oct, 15(9
43	433	Suppl):S18-77. Publied PMID: 14575939. Epub 2003/10/25. eng.
44	434	14. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et
45	435	al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal
46	436	results From the Women's Health Initiative randomized controlled trial. JAMA: The Journal of
47	437	the American Medical Association. 2002 07/17/;288(3):321-33. PubMed PMID: 507.
48	438	15. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. The
49	439	Seventh Report of the Joint National Committee on Prevention Detection Evaluation and
50	440	Treatment of High Blood Pressure: the INC 7 report IAMA: The Journal of the American
51	110	Medical Association 2003 05/21/2289(10):2560-72 PubMed PMID: 51
52	110 110	16 Doutabariu DM Kooparbara C Largon IC LaCroiv A Electrocordiographia
53	44Z	io. Rautanarju rivi, Rooperberg C, Laison JC, LaCloix A. Electrocardiographic
54	443	abnormanues that predict coronary neart disease events and mortality in postmenopausal
55		
20 F7		
5/ E0		47
סכ		1/

444 women: the Women's Health Initiative. Circulation. 2006 Jan 31;113(4):473-80. PubMed PMID:
 445 16449726. Epub 2006/02/02. eng.
 15 Del Marco Charles Control of the Control of

446
446
447
447
447
448
448
448
448
448
449
449
449
449
449
449
449
449
440
440
440
441
441
442
442
443
444
444
444
444
444
445
446
446
447
447
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448
448

450
 18. Vaidya D, Bennett WL, Sibley CT, Polak JF, Herrington DM, Ouyang P. Association of
 451
 451
 452
 452
 453
 453
 454
 455
 455
 455
 456
 457
 458
 459
 459
 450
 450
 453
 454
 455
 455
 455
 456
 457
 458
 459
 459
 450
 450
 451
 453
 453
 454
 455
 455
 456
 457
 457
 458
 459
 459
 450
 451
 453
 453
 454
 455
 455
 456
 457
 457
 458
 459
 459
 450
 451
 451
 452
 453
 453
 454
 455
 455
 456
 457
 457
 458
 458
 459
 459
 450
 451
 453
 453
 454
 455
 455
 456
 457
 458
 458
 459
 459
 450
 450
 451
 451
 452
 453
 453
 454
 454
 455
 455
 456
 457
 458
 458
 459
 459
 450
 450
 451
 452
 452
 453
 453
 454
 454
 454
 454
 455
 456

454 19. Giubertoni E, Bertelli L, Bartolacelli Y, Origliani G, Modena MG. Parity as predictor of
455 early hypertension during menopausal transition. Journal of hypertension. 2013 Mar;31(3):5017; discussion 7. PubMed PMID: 23196900. Epub 2012/12/01. eng.

18 457 20. Magnani JW, Johnson VM, Sullivan LM, Lubitz SA, Schnabel RB, Ellinor PT, et al. P-19 458 wave indices: derivation of reference values from the Framingham Heart Study. Annals of 20 459 noninvasive electrocardiology : the official journal of the International Society for Holter and 21 Noninvasive Electrocardiology, Inc. 2010 Oct; 15(4):344-52. PubMed PMID: 20946557. Pubmed 460 22 Central PMCID: PMC3394095. Epub 2010/10/16. eng. 461 23

- 462
 462
 463
 463
 464
 464
 464
 465
 465
 465
 464
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
 465
- 466 22. Ouzounian JG, Elkayam U. Physiologic changes during normal pregnancy and delivery.
 467 Cardiology clinics. 2012 Aug;30(3):317-29. PubMed PMID: 22813360. Epub 2012/07/21. eng.
- 468
 468
 469
 469
 469
 469
 470
 470
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
- 472
 472
 473
 474
 474
 474
 475
 476
 476
 477
 478
 479
 479
 470
 470
 471
 471
 472
 473
 474
 474
 474
 474
 474
 475
 476
 476
 477
 478
 479
 479
 470
 470
 470
 471
 471
 472
 473
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
 474
- 475 475 25. Mueller NT, Pereira MA, Demerath EW, Dreyfus JG, MacLehose RF, Carr JJ, et al.
 476 476 Earlier menarche is associated with fatty liver and abdominal ectopic fat in midlife, independent of young adult BMI: The CARDIA study. Obesity (Silver Spring, Md). 2015 Feb;23(2):468-74.
- ⁴² 478 PubMed PMID: 25521620. Pubmed Central PMCID: PMC4310794. Epub 2014/12/19. eng.
- 470
 470
 470
 471
 470
 471
 471
 471
 472
 473
 479
 479
 479
 479
 479
 479
 479
 479
 479
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 480
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
 481
- 47 482 27. McManus DD, Xanthakis V, Sullivan LM, Zachariah J, Aragam J, Larson MG, et al.
 483 483 Longitudinal tracking of left atrial diameter over the adult life course: Clinical correlates in the
 484 community. Circulation. 2010 Feb 9;121(5):667-74. PubMed PMID: 20100973. Pubmed Central
 485 PMCID: PMC2823068. Epub 2010/01/27. eng.
- 486
 486
 487
 487
 488
 54
 488
 55
 489
- 55 56

1 2

490	
491	
	490

1 2		
3 4	492	Figure Legend: Creation of the Study Sample. Clinical Trials include Hormone Trial, Dietary
5 6	493	Modification and Calcium/Vitamin D. ECG=electrocardiogram, CVD=Cardiovascular diseases.
6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 0 11 21 3 4 5 6 7 8 9 0 11 22 32 4 5 6 7 8 9 0 31 32 33 4 5 6 7 8 9 0 11 21 3 4 5 6 7 8 9 0 11 22 32 4 5 6 7 8 9 0 11 22 32 4 5 6 7 8 9 0 11 22 32 4 5 6 7 8 9 0 31 32 33 4 5 6 7 8 9 0 11 21 3 4 5 6 7 8 9 0 11 21 3 4 5 6 7 8 9 0 11 22 32 4 5 6 7 8 9 0 31 23 34 5 36 7 8 9 0 4 1 23 44 5 6 7 8 9 0 1 22 3 24 5 6 7 8 9 0 1 22 3 3 4 5 36 7 8 9 0 4 1 23 44 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 3 6 7 8 9 0 4 1 2 3 4 4 5 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 3 6 7 8 9 0 0 1 2 3 3 4 5 6 7 8 9 0 0 1 2 3 3 4 5 5 6 7 8 9 0 0 1 2 3 3 4 5 5 6 7 8 9 0 0 1 2 3 3 4 5 5 6 7 8 9 0 0 1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	493	Modification and Calcium/Vitamin D. ECG=electrocardiogram, CVD=Cardiovascular diseases.
58 50		20
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

495	Table 1: Baselin	e Character	istics of t	he Study	Sample- A	analytic a	nd Exclude	ed
	Distribution of							
	Covariates by	Never	Nono	1	2.4	5.	Analytia	Evoludod
	Number of	pregnant	None	1	2-4	3+	Analytic	Excluded
	Live Births							
	Sample Size	3296	1082	3536	26599	6174	40687	6685
	Age, N (%)							
	50 to 54	598	265	745	3718	329	5655	834
		(18.1)	(24.5)	(21.1)	(14)	(5.3)	(13.9)	(12.5)
	55 to 59	768	295	869	6282	1054	9268	1204 (18)
		(23.3)	(27.3)	(24.6)	(23.6)	(17.1)	(22.8)	
	60 to 69	1323	371	1363	12189	3580	18826	3146
		(40.1)	(34.3)	(38.5)	(45.8)	(58)	(46.3)	(47.1)
	70 to 79	607	151	559	4410	1211	6938	1501
		(18.4)	(14)	(15.8)	(16.6)	(19.6)	(17.1)	(22.5)
	MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
	Race/Ethnicity,	-						
	N (%)							
	American	3 (0.1)	3 (0.3)	13	96 (0.4)	32 (0.5)	147	39 (0.6)
	Indian/Alaskan			(0.4)			(0.4)	
	Native							
	Asian/PI	121 (3.7)	33 (3)	102	728	106	1090	143 (2.1)
				(2.9)	(2.7)	(1.7)	(2.7)	101-
	African-	263 (8)	203	604	2126	598	3794	1017
	American		(18.8)	(17.1)	(8)	(9.7)	(9.3)	(15.2)
	Hispanic	106 (3.2)	50	160	1005	300	1621 (4)	471 (7)
	XX 71 • 4	27(7	(4.6)	(4.5)	(3.8)	(4.9)	22556	1000
	White	2/6/	/80	2601	22352	5056	33556	4808
	Others	(84)	(72.1)	(/3.0)	(84)	(81.9)	(82.3)	(/1.9)
	Other	30 (1.1)	(1 2)	(1.6)	$(1 \ 1)$	82 (1.5)	(1.2)	98 (1.3)
	MISSING	0 (0)	$\frac{(1.2)}{0(0)}$	(1.0)	(1.1)	0 (0)	(1.2)	109 (1.6)
	Education	0(0)	0(0)	0(0)	0(0)	0(0)		107 (1.0)
	Level. N (%)							
	No high school	73 (2.2)	41	157	1033	543	1847	644 (9.6)
	diploma		(3.8)	(4.4)	(3.9)	(8.8)	(4.5)	
	High school	1352	490	1872	15726	4096	23536	3752
	diploma	(41)	(45.3)	(52.9)	(59.1)	(66.3)	(57.8)	(56.1)
	Bachelor's	802	250	801	5859	1087	8799	1171
	degree	(24.3)	(23.1)	(22.7)	(22)	(17.6)	(21.6)	(17.5)
	Graduate	1069	301	706	3981	448	6505	789
	degree	(32.4)	(27.8)	(20)	(15)	(7.3)	(16)	(11.8)
	MISSING	0(0)	0(0)	0(0)	0(0)	0(0)	0 (0)	329 (4.9)
	Household							
	Income, N (%)							

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

<\$50,000	2071	639	2136	15872	4543	25261	2809 (42)
,	(62.8)	(59.1)	(60.4)	(59.7)	(73.6)	(62.1)	
\$50 to 100,000	974	333	1090	8260	1330	11987	874
,	(29.6)	(30.8)	(30.8)	(31.1)	(21.5)	(29.5)	(13.1)
>\$100,000	251 (7.6)	110	310	2467	301	3439	208 (3.1)
,		(10.2)	(8.8)	(9.3)	(4.9)	(8.5)	
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2794
							(41.8)
Region, N (%)							
Northeast	763	202	694	5830	1554	9043	1484
	(23.1)	(18.7)	(19.6)	(21.9)	(25.2)	(22.2)	(22.2)
Midwest	719	192	709	5793	1792	9205	1422
	(21.8)	(17.7)	(20.1)	(21.8)	(29)	(22.6)	(21.3)
South	778	321	1012	6559	1205	9875	2081
	(23.6)	(29.7)	(28.6)	(24.7)	(19.5)	(24.3)	(31.1)
West	1036	367	1121	8417	1623	12564	1698
	(31.4)	(33.9)	(31.7)	(31.6)	(26.3)	(30.9)	(25.4)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
BMI, N (%)							
Underweight	34 (1)	8 (0.7)	26	103	15 (0.2)	186	25 (0.4)
(< 18.5)			(0.7)	(0.4)		(0.5)	
Normal (18.5 -	1001	309	1041	7557	1341	11249	1582
24.9)	(30.4)	(28.6)	(29.4)	(28.4)	(21.7)	(27.6)	(23.7)
Overweight	1118	377	1234	9660	2262	14651	2262
(25.0 - 29.9)	(33.9)	(34.8)	(34.9)	(36.3)	(36.6)	(36)	(33.8)
Obese (30+)	1143	388	1235	9279	2556	14601	2579
	(34.7)	(35.9)	(34.9)	(34.9)	(41.4)	(35.9)	(38.6)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	237 (3.5)
Hypertension,							
N (%)							
Never	2308	742	2439	18413	4045	27947	4236
hypertensive	(70)	(68.6)	(69)	(69.2)	(65.5)	(68.7)	(63.4)
Treated	712	240	819	6141	1638	9550	1684
hypertensive	(21.6)	(22.2)	(23.2)	(23.1)	(26.5)	(23.5)	(25.2)
Untreated	276 (8.4)	100	278	2045	491 (8)	3190	516 (7.7)
hypertensive		(9.2)	(7.9)	(7.7)		(7.8)	• • • • • •
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0(0)	0 (0)	249 (3.7)
History of							
Diabetes, N							
(%)							
Yes	150 (4.6)	57	179	1377	434 (7)	2197	459 (6.9)
		(5.3)	(5.1)	(5.2)		(5.4)	
No	3146	1025	3357	25222	5740	38490	6217 (93)
	(95.4)	(94.7)	(94.9)	(94.8)	(93)	(94.6)	
MISSING	0 (0)	0(0)	0(0)	0 (0)	0(0)	0 (0)	9 (0.1)

1	
2	
2	
2	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
22	
25	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
22	
24	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
13	
44	
45	
46	
47	
48	
<u>10</u>	
72	
50	
51	
52	
53	
54	
54	
22	
56	
57	
58	
59	
~ ~	

History of							
Breastfeeding, N (%)							
Yes	6 (0.2)	36	1476	15375	4258	21151	3309
		(3.3)	(41.7)	(57.8)	(69)	(52)	(49.5)
No	3290	1046	2060	11224	1916	19536	2942 (44)
	(99.8)	(96.7)	(58.3)	(42.2)	(31)	(48)	
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	434 (6.5)
History of							
Oophorectomy,							
N (%)							
No	2253	711	2462	19371	4704	29501	4404
	(68.4)	(65.7)	(69.6)	(72.8)	(76.2)	(72.5)	(65.9)
Yes, part of an	32 (1)	20	42	225	41 (0.7)	360	85 (1.3)
ovary was		(1.8)	(1.2)	(0.8)		(0.9)	
taken out		107	205	1 = 1 0	256	2(00	
Yes, one was	203 (6.2)	(11.7)	285	1718	356	2689	645 (9.6)
taken out	702	(11./)	(8.1)	(6.5)	(5.8)	(6.6)	750
Yes, both were	(22.7)	207	716	5082		(10.0)	(11.4)
taken out	(23.7)	(19.1)	(20.2)	(19.1)	(16.5)	(19.2)	(11.4)
Yes, unknown	26 (0.8)	Γ	31	203	54 (0.9)	331	159 (2.4)
number taken out		(1.6)	(0.9)	(0.8)		(0.8)	
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	633 (9.5)
History of HT,							
N (%)	1520	170	1601	11660	2224	10502	4272
Never used	(1520)	4/8	(45.2)	(11000)	(52.8)	18383 (45.7)	43/2
Doct upon	(40.1)	(44.2)	(43.3)	(43.8)	(33.8)	(43.7)	(03.4)
Past user	301 (17)	191 (177)	(16.2)	(18)	(12.6)	(17.8)	(12.2)
Current uson	1015	(17.7)	(10.5)	(10)	(10.0)	(17.0)	(12.3)
Current user	(26.0)	(28.2)	(38.5)	(28.2)	(27.6)	(26.5)	(21.7)
MISSINC	0.0)	$\frac{(30.2)}{0(0)}$		$\frac{(30.2)}{0(0)}$	$\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 30.3 \end{pmatrix}$	(21.7) 42(0.6)
	61.05	60.4	61 14	62.22	64.14	62.26	42 (0.0) 62 16
Age (y), Mean (SD)	(7 43)	(7.36)	(7 32)	(6.87)	(5.97)	(6.9)	(7.16)
Missing (%)	0	0	0	0	0	0	0
BMI, Median	27.39	27.74	27.69	27.73	28.78	27.85	28.39
(IQR)	(7.72)	(8.02)	(7.56)	(7.34)	(7.45)	(7.46)	(7.86)
Missing (%)	0	0	0	0	0	0	3.55
QTc wave	417.95	418.49	418.24	418.58	420.34	418.76	419.82
duration (ms),	(18.38)	(19.6)	(19.2)	(18.7)	(19.33)	(18.85)	(19.84)
Mean (SD)	. ,	. /	. /	. /		. /	. ,
Missing (%)	0	0	0	0	0	0	0
PR wave	63.86	64.43	64.51	64.79	65.77	64.83	64.87
			• • • • • •				

(ms), Mean							
(SD)		0		0	0		0
Missing (%)	0	159	159	159	0	0	$\frac{0}{159(20)}$
PR Interval	150 (50)	(28)	(20)	(20)	(20)	158 (50)	158 (50)
Median (IOR)		(20)	(30)	(30)	(30)		
Missing (%)	0	0	0	0	0	0	0
P wave	106.81	107.13	106.96	106.88	107.93	107.05	106.61
duration (ms),	(12.85)	(12.33)	(12.18)	(12.34)	(12.44)	(12.39)	(16.09)
Mean (SD)							
Missing (%)	0	0	0	0	0	0	0
Age at	48 (8)	49 (7)	49 (8)	50 (7)	50 (8)	50 (7)	49 (7)
menopause (y),							
$\frac{\text{Median (IQR)}}{\text{Minster = (0())}}$		0		0	0		22.2
Missing (%)	12.54	12.55	12.59	12.59	12.67	12.50	32.3
Age at	(1.48)	(1.57)	(1.54)	(1.47)	(1.46)	(1.48)	(1.53)
Mean (SD)	(1.40)	(1.57)	(1.54)	(1.77)	(1.40)	(1.40)	(1.55)
Missing (%)	0	0	0	0	0	0	1.78
Duration of	36 (8)	36 (8)	36 (8)	37 (8)	37 (7)	37 (8)	36 (8)
reproductive					()		
period (y),							
Median (IQR)							
Missing (%)	0	0	0	0	0	0	33.63

Table 1: Unadjusted and multivariable-adjusted association of number of pregnancies leading to livebirths and reproductive period duration with PR interval (ms) in N=40,687

women in the Womens Health Initiative Clinical Trials

501	women in the wome	ens Health Initiative Cl	linical Trials				
		Unadjusted Effect (95% CI)	Multivariable Adjusted Effect*				
			(95% CI)				
	Number of live births and reproductive period duration are each in their own						
	separate multivarial	ole models.					
	Number of			p value for linear			
	Live Births			trend=0.11			
	(categorical with						
	never pregnant as						
	referent category)	Def	Def				
	Never Pregnant	Ker.	Ker.				
	None	1.44					
	1	(-0.18,3.06)	(-0.43, 2.74)				
	1	1.16	0.54				
		(0.04,2.28)	(-0.57, 1.66)				
	2-4	1.20	0.59				
	_	(0.34,2.05)	(-0.301, 1.48)				
	5+	3.06	1.32				
		(2.07,4.06)	(0.25, 2.39)				
	Reproductive period			p value for			
	duration (continuous,			interaction $= 0.009$			
	years)						
	Never HT User	0.05	0.10				
		(-0.01, 0.11)	(0.04, 0.16)				
	Past HT use	0.002	0.08				
		(-0.07, 0.08)	(-0.00,0.15)				
	Current HT use	-0.09	-0.02				
		(-0.15, -0.03)	(-0.08, 0.04)				
502	*Covariates include a	ge, baseline BMI, basel	ine hypertension status,	history of diabetes, inco			
503	education, race/ethnic	tity, region, history/ dura	ation of breastfeeding, l	ipid medication,			
504	oophorectomy status,	hysterectomy status, ho	ormone use history, hear	t rate and QRS duration			
505	HT=hormone therapy						
506							
507							
508							
509							
510							

- 511 Table 3: Unadjusted and multivariable-adjusted association of number of pregnancies
 - 512 leading to livebirths and reproductive period duration with QTc interval (ms) in N=40,687
- 513 women in the Womens Health Initiative and Clinical Trials

	Unadjusted Effect (95% CI)	Multivariable Adjusted Effect* (95% CI)	P value
Number of live birth	s and reproductive	period duration are e	ach in their own
Number of Live Births			p value for linear trend=0.008
(categorical with never pregnant as referent category)	0		
Never Pregnant	Ref	Ref	
None	0.54	0.66	
	(-0.76.1.83)	(-0.56, 1.88)	
1	0.29	0.15	
	(-0.60,1.18)	(-0.71, 1.02)	
2-4	0.63	0.25	
	(-0.05,1.31)	(-0.43, 0.94)	
5+	2.39	1.15	
	(1.59,3.19)	(0.33, 1.98)	
Reproductive period	-0.09	-0.04	p value=0.01
duration	(-0.12,-0.06)	(-0.07, -0.01)	
(continuous, years)			
*Covariates for numb	er of livebirths analy	sis include age, baselin	e BMI, baseline hyperter
status, history of diab	etes, income, educati	on, race/ethnicity, regio	on, history/ duration of
breastfeeding, lipid m	edication, oophorect	omy status, hysterecton	ny status, hormone use h
heart rate and QRS du	ration. Covariates fo	r reproductive period d	uration analysis include
births, age, baseline B	MI, baseline hyperte	ension status, history of	diabetes, income, educa
race/ethnicity, region,	history of breastfeed	ling, duration of breast	teeding, lipid medication
oophorectomy status,	hysterectomy status,	hormone use history, a	and QRS duration.

⁴² 521 HT=hormone therapy

1		
2		
3	523	Table 4: Unadjusted and multivariable-adjusted associations between number of
4 5	524	pregnancies leading to livebirths with p wave duration and p wave dispersion in N=39,338*
6	525	women in the Women's Health Initiative and Clinical Trials

Dependent Variable	Number of Live Births	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	p-value
P wave duration (ms)				p value for
				=0.73
	Never	Ref.	Ref.	
	Pregnant			
	None	0.09	0.09	
		(-0.73, 0.92)	(-0.69, 0.87)	
	1	-0.06	-0.20	
		(-0.63, 0.51)	(-0.76, 0.35)	
	2-4	-0.03	-0.26	
		(-0.47, 0.40)	(-0.70, 0.18)	
	5+	0.99	-0.22	
		(0.49, 1.50)	(-0.74, 0.31)	
P wave dispersion (ms)				p for linear trend =0.13
	Never	Ref.	Ref.	
	Pregnant			
	None	0.67	0.64	
		(-0.42, 1.77)	(-0.45, 1.72)	
	1	0.44	0.34	
		(-0.32, 1.20)	(-0.42, 1.11)	
	2-4	0.72	0.62	
		(0.15, 1.30)	(0.01, 1.24)	
	5+	1.49	0.94	
		(0.82, 2.17)	(0.20, 1.67)	

Effect estimates correspond to expected ms increase in the specified interval measure for each parity group relative to the never pregnant group. Fully adjusted models were adjusted for age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, antianxiety medication, antidepressant
520 medication linid medication duration of breastfeeding, conhorectomy status hysterectomy.

530 medication, lipid medication, duration of breastfeeding, oophorectomy status, hysterectomy531 status, hormone use history, heart rate, and QRS duration.

*n differs from main analyses due to the exclusion of women with implausible PR wavemeasures

Dependent Variable	Hormone Use Status	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	P value
	Never User	0.07	0.09	p value for
	Dect	(0.03, 0.11)	(0.00, 0.13)	
P wave duration (ms)	rasi	(0.04)	(0.01)	0.0009
	Current	(-0.03, 0.003)	(-0.03, 0.03)	_
	Current	(-0.05)	(-0.02, 0.05)	
	Never User	0.002	0.01	n value for
		(-0.04, 0.05)	(-0.03, 0.06)	interaction=
	Past	-0.03	-0.01	0.65
P wave dispersion (ms)		(-0.09, 0.02)	(-0.06, 0.05)	
	Current	-0.04	-0.02	_
		(-0.08, 0.003)	(-0.06, 0.03)	
diabetes, income, educati	on, race/ethnicity,	region, history of	breastfeeding, d	tatus, history of
breastfeeding, antianxiety oophorectomy status, hys *n differs from main ana measures	y medication, antidesterectomy status, h	epressant medica ormone use histo clusion of women	with implausibl	ation, d QRS duratic e PR wave

Table 5: Reproductive Duration and P wave Duration and Dispersion by hormone use status in N= 31 538* Women in the Women's Health Initiative Clinical Trial E20

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

STROBE Statement—checklist of items that should be included in reports of observational studies with page number in manuscript.

	Item No	Recommendation	Page number
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done	2
		and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	1, 5-10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	5-6
C		exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	5-6
1		selection of participants. Describe methods of follow-up	
		Case-control study—Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases	
		and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	N/A
		exposed and unexposed	
		Case-control study-For matched studies, give matching criteria and the number of	
		controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6-7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-7
measurement		assessment (measurement). Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	6-7
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable,	8-9
		describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	9-10
		(d) Cohort study-If applicable, explain how loss to follow-up was addressed	5-7
		Case-control study-If applicable, explain how matching of cases and controls was	
		addressed	
		Cross-sectional study-If applicable, describe analytical methods taking account of	
		sampling strategy	
		(<u>e</u>) Describe any sensitivity analyses	9-10

BMJ Open

3
1
5 6
0
/
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
20
29
50 21
31
32
33
34
35
36
37
38
39
40
41
<u>⊿</u> ว
42
40 44
44
45
46
47
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

Results			Page number
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5-6
		(b) Give reasons for non-participation at each stage	5-6
		(c) Consider use of a flow diagram	5-6, 19
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	5-6, 20-23
		(b) Indicate number of participants with missing data for each variable of interest	19, 20-23
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	N/A
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	N/A
		Cross-sectional study-Report numbers of outcome events or summary measures	5-7
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	24-27
		(b) Report category boundaries when continuous variables were categorized	20-23
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-11
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision.	14-15
		Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	15
		multiplicity of analyses, results from similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Effects of Reproductive Period Duration and Number of Pregnancies on Mid-Life Electrocardiographic Indices: A Secondary Analysis from the Women's Health Initiative Clinical Trial

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019129.R2
Article Type:	Research
Date Submitted by the Author:	30-May-2018
Complete List of Authors:	Parikh, Nisha; University of California San Francisco, Medicine Kapphahn, Kristopher; Stanford University School of Medicine Haley, Haley; Stanford University School of Medicine Olgin, Jeffrey; University of California San Francisco, Medicine Allison, Matthew; UCSD, Magnani, Jared; University of Pittsburgh, Medicine Ryckman, KK; University of Iowa, Epidemiology Waring, Molly; University of Connecticut, Allied Health Sciences Perez, Marco; Stanford University, Cardiovascular Medicine Howard, Barbara; MedStar Health Research Institute
Primary Subject Heading :	Cardiovascular medicine
Secondary Subject Heading:	Reproductive medicine, Epidemiology, Obstetrics and gynaecology
Keywords:	women, Adult cardiology < CARDIOLOGY, menopause, ECG, pregnancy

SCHOLARONE[™] Manuscripts

1		
2		
3	1	
4		
5	2	Effects of Reproductive Period Duration and Number of
6	З	Pregnancies on Mid-Life Flectrocardiographic Indices. A
7	5	regnancies on who-line Electrocardiographic Indices. A
8	4	Secondary Analysis from the Women's Health Initiative Clinical
9	F	Trial
10	5	1 I I al
11	6	
12	-	
13	1	
14	8	
15	9	
16	10	Authors: Nisha I Parikh MD MPH (1) Kristopher Kapphahn PhD (2) Haley Hedlin PhD (2)
17	11	Leffrey F. Olgin MD (1) Matthew A. Allison MD (3) Jared W. Magnani MD (4) MSc. Kelli R.
18	10	Dividual Marine M. Matthew A. Anison MD (5), Jarea W. Maghani MD (4), Mise, Keni K.
10	12	Ryckman PhD (5), Molly E. waring PhD (6), Marco V. Perez MD (7), Barbara V. Howard PhD
20	13	(8)
20	14	
21	15	1) Division of Cardiology, University of California San Francisco, San Francisco, CA
22	16	2) Ouantitative Sciences Unit Department of Medicine Stanford University School of
23	17	Medicine
27	10	2) Department of Family Medicine La Jolla USCD
25	10	5) Department of Family Medicine, La Joha USCD
20	19	4) Division of Cardiology, Boston University School of Medicine, Boston, MA
27	20	5) Department of Epidemiology, College of Public Health, University of Iowa, IO
20	21	6) Division of Epidemiology of Chronic Diseases and Vulnerable Populations,
20	22	Department of Quantitative Health Sciences, University of Massachusetts Medical
30	23	School Worcester MA
32	24	7) Department of Medicine Stanford University School of Medicine Stanford CA
32	24	 Department of Wedneme, Stanfold Oniversity School of Wedneme, Stanfold, CA MadStar Haalth Bassard Institute Heatth 11 MD and Cases starm and Harrand
31	25	8) MedStar Health Research Institute, Hyattsville, MD and Georgetown and Howard
25	26	Universities Center for Clinical and Translational Science
36	27	
37	28	Corresponding author: Nisha I. Parikh, MD MPH
38	29	E-mail: parikh nisha@email.com
30	30	
40	21	Running Title: Reproductive factors and electropardiagraphic intervals
40 //1	51	Kunning The. Reproductive factors and electrocardiographic intervals
41 42	32	
т <u>∠</u> Д?	33	Key Words: endogenous estrogen, sex hormones, pregnancy, menarche, menopause,
	34	reproductive history, menarche, age at birth, repolarization, QTc, PR interval, electrocardiogram
44 45	35	
46	36	Word Count: 4196
40 47	37	
-+7 /18	20	Evending a This work was suggested by AUA growt 12 CD D17250002 (NID) NULL -
-10 /10	38	running. This work was supported by AHA grant 13CKP1/350002 (NIP), NIH grants
77 50	39	7R21HL115398 (NIP), KL2TR000160 (MEW) and U01HL105268 (MEW), NHLBI/NIH &
50	40	DHHS through contracts, HHSN268201100046C, HHSN268201100001C,
57	41	HHSN268201100002C, HHSN268201100003C, HHSN268201100004C
52 52	42	
22	<u>⊿</u> 3	
54 55	- -	Conflict of Internet. None of the authous have any conflicte of internet in moment to this will
55	44	Conjuct of Interest. Wone of the authors have any conflicts of therest th respect to this article
50	45	
50		4
50 50		1
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract: (word count=297)

47 Objectives: Pregnancy, menses and menopause are related to fluctuations in endogenous sex
48 hormones in women, which cumulatively, may alter cardiac electrical conduction. Therefore, we
49 sought to study the association between number of pregnancies and reproductive period duration
50 (RD, time from menarche to menopause) with electrocardiographic intervals in the Women's
51 Health Initiative Clinical Trials.

- **Design:** Secondary Analysis of Multicenter Clinical Trial.
- 53 Setting: United States.

54 Primary Outcome Measures: Electrocardiographic Intervals: PR interval, P wave duration, P
55 wave dispersion, QTc interval

56 Participants: n=40,687 women (mean age=62 years) participating in the Women's Health
57 Initiative Clinical Trials. 82.5% were White, 9.3% Black, 4% Hispanic and 2.7% Asian.

58 Methods: In primary analysis, we employed multivariable linear regression models relating
59 number of pregnancies and RD with millisecond (ms) changes in intervals from enrollment
60 electrocardiogram. We studied effect modification by hormone therapy use.

Results: Among participants, 5+ live births versus 0 prior pregnancies was associated with a 1.32 ms increase in PR interval [95% CI (0.25, 2.38)], with a graded association with longer QTc interval (ms) [none (prior pregnancy, no livebirths)= 0.66(-0.56, 1.88), 1 = 0.15(-0.71, 1.02), 2 to 4=0.25 (-0.43, 0.94), and 5+ live births=1.15 (0.33, 1.98), p = 0.008]. RD was associated with longer PR interval and maximum P wave duration (but not P-wave dispersion) among never users of hormone therapy: [PR (ms) per additional RD year: 0.10 (0.04, 0.16); higher P-wave duration (ms): 0.09 (0.06, 0.12)]. For every year increase in reproductive period, QTc decreased by 0.04 ms (-0.07, -0.01).

1 2		
- 3 4	69	Conclusions: An increasing number of live births is related to increased and RD to decreased
5 6	70	ventricular repolarization time. Both grandmultiparity and longer RD are related to increased
7 8 9	71	atrial conduction time. Reproductive factors that alter midlife cardiac electrical conduction
10 11	72	system remodeling in women may modestly influence CVD risk in later life.
12 13	73	
14 15 16	74	Article Summary:
17 18	75	Strengths and Limitations of the Study.
19 20	76	• A strength is the use of a well characterized multiethnic, large dataset of postmenopausal
21 22	77	women representative of women in the United States.
23 24 25	78	• A notable limitation is that the exposure variables were acquired retrospectively.
26 27 28 29 30 31 32 33 34	79	• We were unable to adjust for pregnancy complications such as preeclampsia or
	80	gestational diabetes.
	81	
	82	
35 36	83	Key Words: endogenous estrogen, sex hormones, pregnancy, menarche, menopause,
37 38	84	reproductive history, menarche, age at birth, repolarization, QTc, PR interval,
39 40 41	85	electrocardiogram
42 43	86	
44 45	87	
46 47 48	88	INTRODUCTION:
49 50	89	Electrocardiogram parameters reflect current as well as future CVD risk
51 52	90	Electrocardiographic parameters are reflections of both current as well as future cardiovascular
53 54	91	disease risk. For example, in the Framingham Heart Study, a prolonged PR interval (> 200 ms)
55 56 57	92	(which is defined as the period, measured in milliseconds, that extends from the beginning of the
58 59		3
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

> P wave (the onset of atrial depolarization) until the R wave), was related to incident atrial fibrillation, all-cause mortality and to the likelihood of needing a permanent pacemaker.(1) In addition to PR interval, the p wave duration (or the period in milliseconds during which the atrium depolarizes), more directly relates to atrial size and is an antecedent of atrial fibrillation.(2) Both PR interval and p wave duration are markers of left atrial size which in turn is a correlate of hypertensive heart disease(3) and incident stroke.(4) P wave dispersion, defined as the difference between the maximum and the minimum P-wave duration recorded from multiple different-surface ECG leads, is an additional marker of atrial remodeling and antecedent of atrial fibrillation.(5) It is unclear to what extent PR interval, p wave duration or P wave dispersion are affected by premenopausal hormonal fluctuations from the menstrual cycle and childbearing.

Pregnancy, cardiac remodeling and the electrocardiogram

Pregnancy and the post-partum period both have substantial physiologic effects on cardiac electrophysiology. Physiologic studies of women during early and late pregnancy as well as early post-partum suggest a shortening of the corrected QT interval (QTc) which partially reverts back to pre-pregnancy values following post-partum.(6, 7) The QT interval is defined as the measure of time between the onset of ventricular depolarization and completion of ventricular repolarization, and because QT interval is strongly related to heart rate, the QTc is corrected for heart rate. Direct pathophysiologic links connecting myocardial structural remodeling and cardiac electrical remodeling have been increasingly recognized.(8) With regards to myocardial remodeling, pregnancy induced cardiac remodeling does not completely revert back to pre-pregnancy levels and effects of increasing parity on cardiac remodeling can be detected even in

BMJ Open

3
4
5
6
7
8
9
10
10
11
12
13
14
15
16
17
18
19
20
21
22
22 22
23
24
25
26
27
28
29
30
31
37
52 22
33 24
34
35
36
37
38
39
40
41
42
12
4J 44
44 17
45
46
47
48
49
50
51
52
52
57
54 55
55
56
57
58
59
60

116 mid-life.(9) However, the extent to which an increasing number of pregnancies exerts long 117 lasting effects on the cardiac electrical conduction system is uncertain.(9)

118

119 Estrogen exposure and the electrocardiogram

120 In addition to the more marked hormonal fluctuations seen during pregnancy, there are also more 121 subtle, cyclic changes in estrogen and progesterone cycling that occur during menstrual cycling 122 in women of reproductive age. Testosterone and progesterone are recognized to decrease the 123 QTc interval.(10) Prior data from the Women's Health Initiative (WHI) Hormone Trial suggests 124 that estrogen-only post-menopausal therapy modestly prolongs QTc beyond that of both 125 estrogen-progestin therapy and placebo.(11) However, it is uncertain whether the pre-126 menopausal endogenous hormonal fluctuations (reflected by the length of the interval from 127 menarche to menopause, and by number of pregnancies) are associated with changes in QTc in 40 128 the WHI.

129

130 WHI represents a unique resource to study questions related to pregnancy and 131 reproductive history and ECG parameters and thus we sought to determine if there is a positive 132 or negative association between number of pregnancies and reproductive period duration with 133 mid-life electrocardiogram intervals (PR interval and QTc) and p wave parameters (p wave 134 maximum duration and dispersion).

135

136 **METHODS AND ANALYSIS PLAN:**

137 Our current study design is a secondary analysis of a previously conducted set of clinical trials. 138 *Study sample.*

The WHI recruitment began in 1991 and consisted of a set of clinical trials/ and an observational study on hormone therapy, dietary modification and calcium/ vitamin D supplementation on cardiovascular disease, cancer and fractures.(12) The clinicaltrial.gov identifier for the WHI is NCT00000611. At the time of enrollment, all women enrolled in the WHI were required to be between 50 and 79 years old, postmenopausal, and intending to reside in the area for at least 3 years. Other enrollment criteria have been previously described.(13) This analysis drew from the cohort of women enrolled in the WHI clinical trials (and not observational study), as WHI clinical trial participants has ECGs performed per protocol. Informed consent was obtained from all participants at study enrollment. Figure 1 shows the creation of the study sample. Of 68,132 women in WHI Studies (post- menopausal hormone therapy, diet and calcium/vitamin D and observational studies), we excluded 5,217 who were missing ECGs and 15,543 who had prevalent CVD. Because number of pregnancies and reproductive period (in particular age at menopause) are known to be associated with later CVD and a history of CVD is related strongly with ECG changes including QTc and certainly increased PR, we sought to exclude women with a history of CVD in order to assess associations between reproductive period duration and number of pregnancies that were not directly mediated through CVD. Of these, 47,372 women, 6,685 were further excluded for having missing covariate data, leaving a final sample of included women =40,687. In a missing imputation sensitivity analysis described below, we additionally analyzed the 6,685 women with missing covariate data (total n=54,057).

159 Patient and Public Involvement

160 WHI was designed to address the gaps in knowledge about the major health issues in post 161 menopasual women. Patients assisted research staff in recruiting and results for all measures

BMJ Open

done at the study examinations were explained to each participant. Major study results are communicated to participants via newsletters.

Ascertainment of Reproductive Exposures.

Information on reproductive factors was collected via questionnaire at the second screening visit in the WHI (between 1993-1998). Participants were asked how many times they had been pregnant (were given choices ranging from 0 to 8+), number of live births, and how old they were at the end of the first and at the end of their last pregnancy (<20, 20-24, 25-29, 30-34, 35+ years). In order to be able to also study women who had not experienced pregnancy and/or childbirth and in an effort to make our study as representative as possible, we separately categorized women who had had no prior pregnancies and women who had experienced a pregnancy but no livebirths (i.e. due to miscarriage, stillbirth, or abortion) as separate categories. We further categorized women based on our prior work demonstrating that having 5 or more pregnancies was associated with greater cardiac remodeling.(9) Due to small cell sizes we combined women with 5 or more pregnancies leading to livebirths into one category. Preliminary data analysis reflected that 2-4 had similar effects sizes for PR and QTc and thus these categories were collapsed into a single category for ease of interpretation. Therefore the exposure categories for number of pregnancies leading to livebirths were as follows: no pregnancies (referent), none (prior pregnancy, no livebirths), 1, 2-4, 5 or more. Age at menarche (<9, 10,11,12,13,14,15,>16 years) and age at menopause was asked on this screening questionnaire. Reproductive period duration (RD) was defined as the duration between age at menarche to age at menopause (in years). Detailed current and prior hormone therapy (or post-menopausal hormone replacement therapy) usage and hysterectomy/oophorectomy status was collected at enrollment and has been

previously described.(14) Questions regarding the use and duration of oral contraceptive usagewas also collected at enrollment.

186 Ascertainment of Covariates:

Age, income, education, self-reported race/ethnicity, geographic region of United States, history and duration of breastfeeding were collected at participant enrollment and second screening examinations. Body mass index (BMI, kg/m^2) was calculated using height and weight measured by study staff at baseline. Women with hypertension were identified as those with a self-reported history of treated hypertension or blood pressure measurements meeting JNC 7 criteria for hypertension.(15) Diabetes was identified by self-reported use of anti-diabetic medications and hyperlipidemia by use of cholesterol lowering medications.

Electrocardiographic parameters:

Standard 12-lead ECGs were recorded in all women by strictly standardized procedures in all clinical centers as has been described.(16) All ECGs were processed in a central laboratory (EPICARE Center, University of Alberta, Edmonton, Canada, and later Wake Forest University, Winston-Salem, NC), where they were visually inspected for technical errors and inadequate quality. ECGs were processed with the 2001 version of the Marquette 12-SL program (GE Marquette). In addition to PR and QT intervals, we also examined the maximum P wave duration and dispersion (from all 12 leads of the ECG).(2) The QT interval was corrected using Bazett's formula. The Institutional Review Board of University of California San Francisco approved this study protocol.

204 Statistical Methods:

Page 9 of 32

Primary Analysis

1

BMJ Open

2	
3 ⊿	205
4 5 6	206
7 8	207
9 10 11	208
12 13	209
14 15	210
16 17	211
18 19	212
20 21 22	213
22 23 24	214
25 26	215
27 28	216
29 30	210
31 32	217
33 34	218
35 36	219
37 38	220
39 40 41	221
42 43	222
44 45	223
46 47	224
48 49 50	225
50 51 52	226
53	
54 55	
55 56	
57	
58	
59 60	

206 We employed multivariable linear regression to assess the association between reproductive 207 exposures (number of pregnancies and RD) with the dependent variable of ECG parameters (PR 208 interval in milliseconds, p wave duration, p wave dispersion, QTc in milliseconds). Multivariable 209 models were adjusted for a priori covariates: age, BMI, hypertension status, diabetes, income, 210 education, race/ethnicity, region, history of breastfeeding, antianxiety medication, antidepressant 211 medication, lipid medication, duration of breastfeeding, oophorectomy status, hormone therapy 212 use, heart rate and QRS duration. In analyses considering categories of livebirths we employed a 213 linear trend test.

214 We explored effect modification of the primary exposures, number of live births and RD, by 215 hormone therapy usage and hysterectomy status. We classified hormone therapy usage into three 216 categories: women who reported current, prior or no hormone therapy usage. A statistical 217 interaction term between hormone therapy usage and the exposure (RD or number of live births) 218 was used to consider effect modification by reported hormone therapy use. When the statistical 219 interaction term was statistically significant (p < 0.05) according to a likelihood ratio test, we 220 presented the estimates in each of the three categories of hormone therapy use and we presented 221 a single estimate if there was no evidence for effect modification by hormone therapy. A similar 222 approach was employed for studying RD or number of live births and hysterectomy status. To 223 show sensitivity of estimates to confounders, unadjusted associations were reported as well as 224 those associations adjusted for the confounders listed above.

225

226 Secondary Analyses:
In secondary analyses, we removed subjects who reported never being pregnant and used multivariable linear regression to model associations between age at first live birth and the five electrocardiogaphic measures. These models used the same covariates to adjust association as those in our primary analyses. Subjects who had implausible secondary outcome values (i.e. all zero values or all constant values across all electrocardiographic measures) were removed. We additionally adjusted for covariates that we were concerned may have confounded the associations between exposure and dependent variables in our study. We additionally fit additional models which included both RD and number of pregnancies to ensure that one exposure did not alter the other's association with the dependent variables. Given that anxiety and depression could affect both exposure and dependent variables in our study, we further adjusted for use of these medications. Antianxiety and antidepressant medication use (selective serotonin reuptake inhibitors (or SSRI) and non-SSRI) were recorded on enrollment by nurse examination of medication bottles. Medications were classified according to the National Drug Index classification system. We adjusted for Ca/Vitamin D status, oral contraceptive usage (yes/no and duration or usage). We further adjusted for menstrual irregularities/fertility disorders/and endometriosis, which are also related to hormonal fluctuations in women.

Multiple Imputation Analyses

There were n=6,685 women in our study with missing covariate data. We used multiple imputation techniques to impute missing covariates and refit models from primary analyses to explore the sensitivity of our results to missing data. We used the PROC MI in SAS to construct 20 multiply imputed data sets. Missing variables were imputed via fully conditional specification method in PROC MI using all variables from the analytic model. We fit models to each imputed

Page 11 of 32

BMJ Open

ו כ		
2 3 4	249	data set and pooled the results. The pooled results from imputation did not differ appreciably
5 6 7 8	250	from the results of the complete case analysis (data not shown).
	251	All analyses were performed in SAS 9.4 (SAS Institute, Cary NC, USA).
9 10 11	252	
11 12 13	253	RESULTS
14 15	254	Table 1 shows the baseline characteristics of our sample including women who were included in
16 17 18	255	our study and those excluded from analysis for missing variables. Data is displayed by number of
19 20	256	pregnancies lasting at least 6 months. The mean age at enrollment was 62.4 years, while the
21 22	257	mean age at menarche was 12.6 and mean age at menopause was 50.0 years. 82.5% of women
23 24 25	258	were White, 9.3% Black, 4% Hispanic and 2.7% Asian. Forty five percent of the study sample
25 26 27	259	reported never having used hormone therapy prior to enrollment.
28 29	260	
30 31	261	PR interval
32 33 34	262	Compared to women reporting never having been pregnant, having 5 or more pregnancies was
35 36	263	associated with a 1.3 ms longer PR interval (Table 2). Among women who reported never
37 38	264	having used hormones, each additional year of reported reproductive period duration was
39 40 41	265	associated with a 0.1 ms longer PR interval (or atrial conduction velocity). Conversely, there
41 42 43	266	was no significant association between RD and PR interval among women who reported prior or
44 45	267	current hormone therapy use (p value for interaction < 0.01) (Table 2). Age at first live birth,
46 47	268	was not related to PR interval (data not shown).
48 49 50	269	QTc
51 52	270	Compared to never having been pregnant, having 5 or more pregnancies was related to a 1.2 ms
53 54 55	271	longer QTc (Table 3). However, not carrying a pregnancy to term, or having 1 or 2-4 term
56 57		
58 50		11
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

pregnancies (versus not being pregnant), were not related to QTc. For each additional year in
reproductive period duration, there was a 0.4 ms shorter QTc (Table 3). Restricting to women
who had at least one live birth did not change our results (data not shown).

P wave duration and dispersion

P wave dispersion was higher for women with 2-4 live births (ms increase =0.62, 95% CI: 0.01,
1.24) and 5 live births (0.94, 95% CI: 0.20, 1.67), compared with those who reported never
having been pregnant (Table 4). Reproductive period duration was related to maximum p wave
duration among women who reported never having used hormones (0.09, 95% CI: 0.06, 0.13)
but not among those who reported prior or current hormone therapy use (p interaction < 0.01)
(Table 5).

Secondary results: Models that contained both RD and number of pregnancies together were not materially different (data not shown). Further adjustment for antidepressants and anti-anxiety medications did not materially affect our results. Further adjustment for Ca and Vitamin D status or oral contraceptive use, and/or duration did not materially affect our results. Further adjustment for menstrual irregularities/fertility disorders/and endometriosis did not materially change our results.

- ⁴ 290
- 7 291 DISCUSSION
- 292 Summary of Findings

We found that having five or more pregnancies compared to none was associated with a smallincrease in mid-life atrial conduction time, independent of factors known to be associated with

BMJ Open

this interval (PR). Number of live births among women with at least one live birth (compared to no prior pregnancies) was associated with increased atrial conduction time. Having 5 or more pregnancies was related to a small increase in ventricular repolarization time as compared to having no prior pregnancies. Among women reporting no prior exogenous hormone use, each additional year of reported RD was related to a very modest (0.1 ms) longer atrial conduction time. RD was related to a very modest increase in p wave duration. RD was related to a shorter ventricular repolarization time.

303 Mechanisms linking pregnancy and atrial electrical remodeling

The effect of cumulative pregnancies on mid-life electrocardiograms would likely result from both 1) the pregnancy itself and 2) incident cardiometabolic factors that are impacted by pregnancy such as adiposity(17) and vascular stiffness,(18) and premenopausal blood pressure.(19) Adiposity and blood pressure are related to increased P wave indices in a normal healthy population, (20) and these P wave indices are electrocardiographic reflections of increased left atrial pressure, size and potentially fibrosis. The period of pregnancy and the peripartum are characterized by hormonal changes that affect both cardiovascular hemodynamics and adaptive myocardial remodeling.(21) Pregnancy causes increased cardiac output, increased left ventricular mass, and decreased systemic vascular resistance.(22) The uterus and placenta in support of the growing fetus and fetal circulatory system represent a significant vascular shunt which contributes to these hemodynamic adaptations in pregnancy.(22) The sum of these changes result in both left atrial and left ventricular dilation. However, the effects of normal pregnancy on electrographic remodeling during pregnancy are not well described. A prior small

clinical study has looked at P wave duration and P wave dispersion among pregnant womencompared with controls and found that both of these parameters are increased.(23)

Pregnancy and cumulative effects on ventricular repolarization

A prior study in 37 women in late pregnancy compared with 18 age matched controls demonstrated that QTc substantially prolongs late in pregnancy and that this only partially corrects back to pre-pregnancy values post-partum.(7) Our finding that having 5 or more pregnancies as compared to no prior pregnancies suggests that QTc prolongation during pregnancy may accumulate across successive pregnancies and will be significantly increased on mid-life ECG. Furthermore, we found evidence for a dose response relationship between number of pregnancies and mid-life QTc. Cardiac electrical remodeling often reflects myocardial remodeling. We previously demonstrated that an increasing number of pregnancies were related to left ventricular volume increase and increase in left ventricular mass in a multiethnic cohort of women.(9) The increase in cardiac volume and mass were more marked in grandmultipara's or women who had 5 or more pregnancies leading to livebirths.(9) It is important to note that grandmultiparity is less common with declining parity levels in the United States.

Reproductive period duration and atrial conduction.

The menstrual cycle consists of a relatively well described hormone cycling in women consisting of both estrogen and progesterone as well as testosterone production. A longer reproductive period duration reflects the cumulative exposure that a woman has to these endogenous fluctuations in sex hormone levels. Indeed, prior studies have assessed P wave parameters throughout the menstrual cycle and noted that P wave duration is substantially increased in the

BMJ Open

luteal phase. (24) Among women who did report taking prior hormone therapy, we observed a very modest but significant increase in mid-life PR interval and in P wave duration. Exogenous hormone therapy use may obscure the relationship between endogenous hormone exposure from a longer reproductive period duration and P wave parameters, which would explain our findings of effect modification by hormone therapy use. An earlier age at menarche (which would be related to increased reproductive period duration) has been associated with increased adiposity(25) and diabetes, (26) which in turn have been linked with increased p wave duration(2) and, in the case of body mass index, with increased left atrial remodeling(27) and thus may also partially underlie our findings.

Reproductive duration and decrease ventricular repolarization time

The QTc is shortened by the action of progesterone and lengthened by estrogen during normal menstrual cycling. The net effect of these changes during a single menstrual cycle can result in shortening of ventricular repolarization time or QTc.(28) Our finding that an increased reproductive duration was modestly inversely related to QTc in WHI. Underlying these findings may be that increasing exposure to progesterone, in particular during menstrual cycling, may have cumulative and measurable effects on the mid-life electrocardiogram in women.

Clinical relevance of our findings.

The PR interval normally ranges from 120 to 200 ms in duration. Therefore our finding that having 5 or more livebirths versus never having been pregnant was associated with an adjusted increase in PR interval of 1.32 ms, has modest clinical significance. For an individual with a PR interval at the upper limits of normal, 1.32 ms may be more clinically relevant in terms of the

increased risks of later cardiovascular diseases with PR >200 ms. (1) The association of number of pregnancies leading to livebirths with QTc (with 5 or more pregnancies leading to livebirths having a 1.15 ms increase in QTc compared to nulligravid women) is similarly modest with a normal QTc ranging from ~350 to 460 ms in women. The effect sizes for reproductive duration were even more modest in size than those for P wave indices and therefore likely have more relevance in terms of uncovering novel biologic mechanisms related to cardiac electrical remodeling rather than reflecting clinically significant differences among individuals.

Strength and Limitations

The use of a well characterized multiethnic, large dataset of postmenopausal women representative of women in the United States is a strength of our study. A notable limitation is potential recall bias since the exposure variables were acquired retrospectively and some are very distant events (eg age at menarche occurred 40-70 years in the past). We were unable to adjust for pregnancy complications such as preeclampsia or gestational diabetes since these were not collected. We did not adjust for smoking, physical activity, and habitual consumption of alcohol and coffee which may have been related to the exposure variables but are not widely known to be related to the ECG dependent variables studied. We studied number of pregnancies in a categorical fashion and were unable, due to data constraints, to look at number of pregnancies as a continuous variables.

Directions for future research:

Future studies that disentangle specific hormonal and molecular mechanisms that underlie theassociation demonstrated in our study will help us better understand our study findings.

BMJ Open

2	
3	386
4	500
5	~~-
6	387
7	
8	388
9	
10	200
11	209
12	
13	390
14	
15	391
16	
17	202
10	392
10	
20	393
20	
21	394
22	004
23	~~-
24	395
25	
26	396
27	
28	397
29	007
30	200
31	398
32	
33	399
34	
35	400
36	
37	401
38	400
39	402
40	
41	403
42	404
43	
44	405
45	400
46	406
47	407
48	
49	408
50	100
51	409
52	
52	410
54	
55	
56	
50	
57	
50 50	
72	

60

386 Understanding which specific fertility factors alter electrical remodeling in women is an 387 important direction for future research.

389 Conclusions

390 We found that having five or more pregnancies leading to livebirths compared to never having been pregnant is related to small but significant changes in atrial conduction time and ventricular 391 392 repolarization time. A longer reproductive period duration in women not exposed to exogenous hormone therapy is related to a modest increase in atrial conduction time and to a modest 393 394 decrease in ventricular repolarization. Reproductive health factors reflective of endogenous sex hormone exposure may be significant determinants of cardiac electrical remodeling in mid-life. 395

397 Disclosures

398 None

400 *Author contributorship statement:*

- tel.eu 401 Nisha I. Parikh conceived of the idea, designed the study, interpreted the analysis, drafted and 402 critically reviewed the manuscript. She provided final approval of the manuscript
- Kristopher Kapphahn and Haley Hedlin conducted study design, statistical analysis and critical 403 review of the manuscript. They provided final approval of the manuscript 404

405 Jeffrey E. Olgin, Matthew A. Allison, Jared W. Magnani, MSc, Kelli R. Ryckman, Molly E. Waring, Marco V. Perez assisted with study design, analysis interpretation, drafting and critical 406 407 reviewed the manuscript. They provided final approval of the manuscript

Barbara V. Howard assisted with study design, interpreted the analysis, drafted and critically 408 409 reviewed the manuscript. They provided final approval of the manuscript

410 Data sharing statement:

411 This was a secondary analysis of preexisting data and as such, no new data was generated by this

- 412 study. Information about data sharing for the Women's Health Initiative can be found at the
 6 413 following website: https://www.whi.org/researchers/data/Pages/Home.aspx
- 7 8 414

1 2 3

4

9

12

13

14

10 415 **References**

416 1. Cheng S, Keyes MJ, Larson MG, McCabe EL, Newton-Cheh C, Levy D, et al. Long-term
417 outcomes in individuals with prolonged PR interval or first-degree atrioventricular block. JAMA
418 : the journal of the American Medical Association. 2009;301(24):2571-7.

416 The Journal of the American Medical Association. 2009;501(24):2571-7.
419 2. Magnani JW, Williamson MA, Ellinor PT, Monahan KM, Benjamin EJ. P wave indices: current status and future directions in epidemiology, clinical, and research applications. Circulation Arrhythmia and electrophysiology. 2009 Feb;2(1):72-9. PubMed PMID: 19808445.
422 Pubmed Central PMCID: PMC2760837. Epub 2009/10/08. eng.

423 423 3. Cuspidi C, Rescaldani M, Sala C. Prevalence of echocardiographic left-atrial enlargement in hypertension: a systematic review of recent clinical studies. American journal of hypertension. 2013 Apr;26(4):456-64. PubMed PMID: 23388831. Epub 2013/02/08. eng.

426
426
426
427
428
428
428
428
429
429
429
420
420
420
420
420
420
421
421
422
423
424
425
425
425
426
426
427
428
429
429
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420
420

- 430 5. Pérez-Riera AR, de Abreu LC, Barbosa-Barros R, Grindler J, Fernandes-Cardoso A,
 431 Baranchuk A. P-wave dispersion: an update. Indian Pacing and Electrophysiology Journal. 2016
 432 Jul-Aug
- 32 433 10/20
- 33 434 08/29/received
- ³⁴ 435 10/20/accepted;16(4):126-33. PubMed PMID: PMC5197451.
- 436
 436
 436
 437
 438
 438
 436
 437
 438
 438
 438
 439
 439
 430
 430
 430
 431
 432
 433
 434
 435
 435
 436
 437
 438
 438
 439
 439
 430
 430
 430
 430
 430
 430
 430
 431
 432
 433
 434
 435
 435
 436
 437
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
 438
- 439
 439
 440
 440
 440
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
 441
- 42 442 8. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1
 43 443 of 2. Circulation. 2013 Jul 23;128(4):388-400. PubMed PMID: 23877061. Pubmed Central
 444 PMCID: PMC3801217. Epub 2013/07/24. eng.
- 445
 445
 445
 445
 446
 446
 446
 446
 447
 446
 447
 447
 447
 448
 447
 448
 448
 448
 448
 448
 448
 449
 448
 449
 448
 448
 448
 448
 449
 448
 448
 448
 448
 449
 448
 449
 448
 440
 448
 448
 441
 448
 448
 441
 448
 448
 441
 448
 441
 448
 441
 448
 441
 448
 441
 448
 441
 448
 441
 448
 441
 448
 442
 448
 441
 448
 442
 448
 442
 448
 442
 448
 442
 448
 444
 448
 444
 448
 444
 448
 444
 448
 444
 448
 444
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
 448
- 449 10. Sedlak T, Shufelt C, Iribarren C, Merz CN. Sex Hormones and the QT Interval: A
 450 Review. J Womens Health. 2012;4:4.
 451 Health Market Control of the All C
- 451 11. Kadish AH, Greenland P, Limacher MC, Frishman WH, Daugherty SA, Schwartz JB.
 452 453 Estrogen and progestin use and the QT interval in postmenopausal women. Annals of noninvasive electrocardiology : the official journal of the International Society for Holter and Noninvasive Electrocardiology, Inc. 2004;9(4):366-74.
- 59 60

BMJ Open

- 455
 456
 456
 456
 457
 457
 458
 459
 459
 459
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 457
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
 458
- 458 13. Hays J, Hunt JR, Hubbell FA, Anderson GL, Limacher M, Allen C, et al. The Women's
 459 Health Initiative recruitment methods and results. Annals of epidemiology. 2003 Oct;13(9
 460 Suppl):S18-77. PubMed PMID: 14575939. Epub 2003/10/25. eng.
- 461 14. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, et
 462 al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal
 463 results From the Women's Health Initiative randomized controlled trial. JAMA: The Journal of
 464 the American Medical Association. 2002 07/17/;288(3):321-33. PubMed PMID: 507.
- 465
 465
 15. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. The
 466
 466
 467
 467
 467
 468
 468
 468
 468
 468
 469
 469
 469
 460
 460
 460
 460
 460
 461
 462
 463
 464
 464
 465
 465
 465
 466
 466
 467
 467
 467
 468
 468
 468
 468
 468
 469
 469
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 461
 462
 462
 463
 464
 464
 465
 465
 466
 466
 467
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468
 468</
- 469
 469
 469
 470
 470
 471
 471
 471
 471
 472
 472
 472
 473
 474
 474
 475
 475
 476
 476
 477
 477
 477
 478
 479
 479
 470
 470
 470
 471
 471
 471
 472
 472
 473
 474
 474
 474
 475
 475
 476
 476
 477
 477
 477
 478
 478
 479
 479
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
 470
- 473 17. Bobrow KL, Quigley MA, Green J, Reeves GK, Beral V. Persistent effects of women's parity and breastfeeding patterns on their body mass index: results from the Million Women Study. International journal of obesity (2005). 2013 May;37(5):712-7. PubMed PMID: 22777544. Pubmed Central PMCID: PMC3647235. Epub 2012/07/11. eng.
- 477 18. Vaidya D, Bennett WL, Sibley CT, Polak JF, Herrington DM, Ouyang P. Association of
 478 parity with carotid diameter and distensibility: multi-ethnic study of atherosclerosis.
 479 Hypertension. 2014 Aug;64(2):253-8. PubMed PMID: 24842921. Pubmed Central PMCID:
 480 PMC4184976. Epub 2014/05/21. eng.
- 481
 481
 481
 482
 482
 483
 483
 484
 484
 485
 485
 485
 486
 486
 487
 488
 488
 488
 489
 480
 480
 480
 481
 481
 481
 482
 483
 483
 483
 484
 484
 485
 485
 486
 486
 487
 487
 488
 488
 488
 488
 488
 489
 489
 480
 480
 480
 481
 481
 481
 482
 483
 483
 484
 484
 485
 485
 486
 486
 487
 487
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
- Magnani JW, Johnson VM, Sullivan LM, Lubitz SA, Schnabel RB, Ellinor PT, et al. P-484 20. 37 wave indices: derivation of reference values from the Framingham Heart Study. Annals of 485 38 486 noninvasive electrocardiology : the official journal of the International Society for Holter and 39 Noninvasive Electrocardiology, Inc. 2010 Oct;15(4):344-52. PubMed PMID: 20946557. Pubmed 40 487 41 488 Central PMCID: PMC3394095. Epub 2010/10/16. eng.
- 42
 489
 490
 490
 490
 491
 491
 491
 492
 492
 492
 491
 493
 494
 494
 494
 495
 495
 495
 496
 496
 497
 498
 499
 499
 499
 490
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 492
 492
 492
 492
 492
 492
 493
 494
 494
 495
 495
 495
 496
 496
 497
 497
 498
 498
 498
 499
 499
 490
 490
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 491
 <
- 47 493 22. Ouzounian JG, Elkayam U. Physiologic changes during normal pregnancy and delivery.
 48 494 Cardiology clinics. 2012 Aug;30(3):317-29. PubMed PMID: 22813360. Epub 2012/07/21. eng.
- 49
 495
 50
 50
 496
 51
 52
 53
 498
 497
 53
 498
 497
 53
 498
 497
 54
 55
 498
 497
 55
 498
 497
 498
 497
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498
 498</li
- 54
- 55 56
- 57
- 58 59

24. Karabag T, Hanci V, Aydin M, Dogan SM, Turan IO, Yildirim N, et al. Influence of menstrual cycle on p wave dispersion. International heart journal. 2011;52(1):23-6. PubMed PMID: 21321464. Epub 2011/02/16. eng. 25. Mueller NT, Pereira MA, Demerath EW, Dreyfus JG, MacLehose RF, Carr JJ, et al. Earlier menarche is associated with fatty liver and abdominal ectopic fat in midlife, independent of young adult BMI: The CARDIA study. Obesity (Silver Spring, Md). 2015 Feb;23(2):468-74. PubMed PMID: 25521620. Pubmed Central PMCID: PMC4310794. Epub 2014/12/19. eng. 26. Janghorbani M, Mansourian M, Hosseini E. Systematic review and meta-analysis of age at menarche and risk of type 2 diabetes. Acta diabetologica. 2014 Aug;51(4):519-28. PubMed PMID: 24671509. Epub 2014/03/29. eng. McManus DD, Xanthakis V, Sullivan LM, Zachariah J, Aragam J, Larson MG, et al. 27. Longitudinal tracking of left atrial diameter over the adult life course: Clinical correlates in the community. Circulation. 2010 Feb 9;121(5):667-74. PubMed PMID: 20100973. Pubmed Central PMCID: PMC2823068. Epub 2010/01/27. eng. Sedlak T, Shufelt C, Iribarren C, Merz CN. Sex hormones and the QT interval: a review. 28. Journal of women's health (2002). 2012 Sep;21(9):933-41. PubMed PMID: 22663191. Pubmed Central PMCID: PMC3430484. Epub 2012/06/06. eng.

1 2		
3 4	519	Figure Legend: Creation of the Study Sample. Clinical Trials include Hormone Trial, Dietary
5 6	520	Modification and Calcium/Vitamin D. ECG=electrocardiogram, CVD=Cardiovascular diseases.
$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 56\\ 57\\ 58\end{array}$	521	to occur in a second seco
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Distribution of Live Births Never pregnant (prior no) None pregnancy, no) 1 2-4 5+ Analytic Excluded Sample Size 3296 1082 3536 26599 6174 40687 6685 Age, N (%)	522	Table 1. Dasenno		Nono	tuuy Sam	pic- Anai	ytic anu E		
Covariates by Number of Live Births Never pregnant (birbit) Never pregnant (birbit) (pron (birbit) 1 2-4 5+ Analytic Excluded Sample Size 3296 1082 3536 26599 6174 40687 6685 Age, N (%) 329 5655 834 50 to 54 598 265 (24.5) 745 3718 329 5655 834 60 to 69 1323 371 (34.3) 1363 12189 3580 18826 3146 (40.1) (14.4) (51.8) (45.8) (58) (46.3) (47.1) 70 to 79 607 151 (14) 559 4410 1211 6938 1501 MISSING 0 (0) 0 (Distribution of		None					
Number of Live Births pregnant no livebirths pregnant no livebirths Pregnant no livebirths 2-4 no livebirths 5* no livebirths Analytic stress (40, 1) Excluded (40, 1) Sample Size 3296 1082 3536 26599 6174 40687 6685 Age, N (%)		Covariates by	Never	(prior	1	2.4	51	A 1	F
Live Births Ivebirths Image Size 3296 1082 3536 26599 6174 40687 6685 Age, N (%)		Number of	pregnant	pregnancy,	1	<i>Z</i> -4	2+	Analytic	Excluded
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Live Births		no live hivthe)					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Sampla Siza	3206	1092	2526	26500	6174	40697	6695
Age, N (%) 598 265 (24.5) 745 3718 329 5655 834 50 to 54 598 265 (24.5) 745 3718 329 5655 834 (18.1) (21.1) (14) (5.3) (13.9) (12.5) 55 to 59 768 295 (27.3) 869 6282 1054 9268 1204 (18) (23.3) (24.6) (23.6) (17.1) (22.8) 3146 (40.1) (38.5) (45.8) (58) (46.3) (47.1) 70 to 79 607 151 (14) 559 4410 1211 6938 1501 1010 (18.4) (15.8) (46.3) (47.1) (22.5) MISSING 0(0)		Sample Size	5290	1082	5550	20399	01/4	40087	0085
S0 to 54 598 205 (24.5) /45 518 329 5653 834 (18.1) (21.1) (14) (5.3) (13.9) (12.5) 55 to 59 768 295 (27.3) 869 6282 1054 9268 1204 (18) (23.3) (24.6) (23.6) (17.1) (22.8) (46.1) (47.1) 60 to 69 1323 371 (34.3) 1363 12189 3580 18826 3146 (40.1) (18.4) (15.8) (16.6) (19.6) (17.1) (22.5) MISSING 0(0)		Age, N (%)	500	2(5(245))	745	2710	220	<i></i>	024
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		50 to 54	598 (19.1)	265 (24.5)	(21.1)	$\frac{3}{18}$	529 (5-2)	2022 (12 0)	834
55 to 59 .68 29 (27.3) 869 0.282 1034 9.268 1204 (18) 60 to 69 1223 371 (34.3) 1363 12189 3580 18826 3146 (40.1) (38.5) (45.8) (58) (46.3) (47.1) 70 to 79 607 151 (14) 559 4410 1211 6938 1501 (18.4) (15.8) (16.6) (17.1) (22.5) (17.1) (22.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) American 3 (0.1) 3 (0.3) 13 96 (0.4) 32 (0.5) 147 39 (0.6) Mative		55 4 50	(18.1)	205 (27.2)	(21.1)	(14)	(5.3)	(13.9)	(12.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		55 to 59	(22.2)	295 (27.3)	809	6282	1054	9268	1204 (18)
of to 69 1325 3/1 (34.3) 1305 12189 3580 18820 3140 (40.1) (38.5) (45.8) (58) (46.3) (47.1) 70 to 79 607 151 (14) 559 4410 1211 6938 1501 (18.4) (15.8) (16.6) (19.6) (17.1) (22.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) Race/Ethnicity, Missin/Pl 3 (0.1) 3 (0.3) 13 96 (0.4) 32 (0.5) 147 39 (0.6) Main/Pl 121 (3.7) 33 (3) 102 728 106 1090 143 (2.1) Asian/Pl 121 (3.7) 33 (3) 102 728 106 1090 143 (2.1) American (16 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) American <th></th> <th>(0.4- (0</th> <th>(23.3)</th> <th>271 (24.2)</th> <th>(24.6)</th> <th>(23.6)</th> <th>(1/.1)</th> <th>(22.8)</th> <th>2146</th>		(0.4- (0	(23.3)	271 (24.2)	(24.6)	(23.6)	(1/.1)	(22.8)	2146
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		00 10 09	(40, 1)	3/1 (34.3)	(29.5)	12189	5580 (59)	18820	3140
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		70 40 70	(40.1)		(30.3)	(43.8)	(30)	(40.3)	(4/.1)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		10 10 19	00/ (19.4)	131 (14)	339 (15 9)	4410	(10.6)	(17-1)	(22.5)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		MICCINC	(10.4)		$\frac{(13.6)}{0(0)}$	$\begin{pmatrix} 10.0 \end{pmatrix} \\ 0 (0)$	$\begin{pmatrix} 19.0 \end{pmatrix}$	$\begin{pmatrix} 1/.1 \end{pmatrix}$	$\frac{(22.3)}{0(0)}$
Naccionalization N(%) N(%) N(%) N(%) American 3 (0.1) 3 (0.3) 13 96 (0.4) 32 (0.5) 147 39 (0.6) Indian/Alaskan (0.4) (0.4) (0.4) (0.4) (0.4) Asian/PI 121 (3.7) 33 (3) 102 728 106 1090 143 (2.1) (2.9) (2.7) (1.7) (2.7) (1.7) (2.7) (1.7) African- 263 (8) 203 (18.8) 604 2126 598 3794 1017 American (17.1) (8) (9.7) (9.3) (15.2) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) (4.5) (3.8) (4.9) (4.5) (3.8) (4.9) (42.5) (71.9) White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) <th></th> <th>Doco/Ethniaitre</th> <th>0(0)</th> <th>0(0)</th> <th>0(0)</th> <th>0(0)</th> <th>0(0)</th> <th>0(0)</th> <th>0(0)</th>		Doco/Ethniaitre	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)	0(0)
American Indian/Alaskan Native 3 (0.1) 3 (0.3) 13 (0.4) 96 (0.4) 32 (0.5) 147 (0.4) 39 (0.6) Asian/PI 121 (3.7) 33 (3) 102 (2.9) 728 (2.7) 106 (1.7) 1090 (2.7) 143 (2.1) African- American 263 (8) 203 (18.8) 604 (4.5) 2126 598 3794 1017 American (17.1) (8) 9.7) (9.3) (15.2) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) (4.5) (3.8) (4.9) (4.5) (3.8) (4.9) (4.9) White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6)		N (%)							
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		(/0)	3(01)	3(03)	13	96(0.1)	32 (0.5)	147	30(0.6)
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		American Indian/Alaskan	5 (0.1)	5 (0.5)	(0 4)	90 (0.4)	52 (0.5)	(0.4)	39 (0.0)
Asian/PI 121 (3.7) 33 (3) 102 728 106 1090 143 (2.1) African- 263 (8) 203 (18.8) 604 2126 598 3794 1017 American (17.1) (8) (9.7) (2.7) (1.7) (2.7) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education Level, N (%) Intervel, N (%					(0.4)			(0.4)	
African- African- 263 (8) 203 (18.8) 604 604 2126 598 598 3794 3794 1017 107 American (17.1) (8) (9.7) (9.3) (15.2) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) Mite 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) High school 73 (2.2) 41 (3.8) 157 1033 543 1847 644 (9.6) diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.			121 (3.7)	33 (3)	102	728	106	1090	143 (2 1)
African- American 263 (8) 203 (18.8) 604 (17.1) (17.1) (17.1) (17.1) American 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) (4.5) (3.8) (4.9) (4.9) (4.9) (4.9) (4.9) White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) (1.6) (1.1) (1.2) (1.6) (1.1) (1.2) (1.2) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education (4.4) (3.9) (8.8) (4.5) (4.4) (3.9) (8.8) (4.5) High school		1 (Stati / 1 1	121 (5.7)	55 (5)	(2.9)	(2.7)	(17)	(2,7)	145 (2.1)
American 200 (0) 200 (10.0) (17.1) (18) (9.7) (9.3) (15.2) Hispanic 106 (3.2) 50 (4.6) 160 1005 300 1621 (4) 471 (7) White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) (1.6) (1.1) (1.6) (1.1) (1.2) (1.6) (1.1) (1.2) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education		African-	263 (8)	203 (18.8)	604	2126	598	3794	1017
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		American	205 (0)	205 (10.0)	(171)	(8)	(97)	(93)	(152)
White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Mussing 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) Mussing 0 (0) 0		Hispanic	106 (3.2)	50 (4.6)	160	1005	300	1621 (4)	471 (7)
White 2767 780 (72.1) 2601 22352 5056 33556 4808 (84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education (1.6) (1.1) (1.2) (1.2) (1.2) (1.2) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education (4.4) (3.9) (8.8) (4.5) (4.4) (3.9) (8.8) (4.5) High school 1352 490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree					(4.5)	(3.8)	(4.9)		
(84) (73.6) (84) (81.9) (82.5) (71.9) Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education		White	2767	780 (72.1)	2601	22352	5056	33556	4808
Other 36 (1.1) 13 (1.2) 56 292 82 (1.3) 479 98 (1.5) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education Level, N (%) 98 (1.5) Missing 0 (0) 32336 3752 4490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) 1711 degree			(84)		(73.6)	(84)	(81.9)	(82.5)	(71.9)
MISSING 0 (0) <		Other	36 (1.1)	13 (1.2)	56	292	82 (1.3)	479	98 (1.5)
MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 109 (1.6) Education Level, N (%)			, , ,	``´`	(1.6)	(1.1)		(1.2)	` ´
Education Level, N (%) Image: Constraint of the second system of the secon	ĺ	MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	109 (1.6)
Level, N (%) – – – – – No high school diploma 73 (2.2) 41 (3.8) 157 1033 543 1847 644 (9.6) diploma (4.4) (3.9) (8.8) (4.5) – High school 1352 490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9)		Education							
No high school 73 (2.2) 41 (3.8) 157 1033 543 1847 644 (9.6) diploma (4.4) (3.9) (8.8) (4.5) (4.5) High school 1352 490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household Household Household Household Household Household Household Household Household		Level, N (%)							
diploma (4.4) (3.9) (8.8) (4.5) High school 1352 490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9)		No high school	73 (2.2)	41 (3.8)	157	1033	543	1847	644 (9.6)
High school 1352 490 (45.3) 1872 15726 4096 23536 3752 diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		diploma			(4.4)	(3.9)	(8.8)	(4.5)	
diploma (41) (52.9) (59.1) (66.3) (57.8) (56.1) Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		High school	1352	490 (45.3)	1872	15726	4096	23536	3752
Bachelor's 802 250 (23.1) 801 5859 1087 8799 1171 degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		diploma	(41)		(52.9)	(59.1)	(66.3)	(57.8)	(56.1)
degree (24.3) (22.7) (22) (17.6) (21.6) (17.5) Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		Bachelor's	802	250 (23.1)	801	5859	1087	8799	1171
Graduate 1069 301 (27.8) 706 3981 448 6505 789 degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		degree	(24.3)		(22.7)	(22)	(17.6)	(21.6)	(17.5)
degree (32.4) (20) (15) (7.3) (16) (11.8) MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		Graduate	1069	301 (27.8)	706	3981	448	6505	789
MISSING 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 329 (4.9) Household		degree	(32.4)		(20)	(15)	(7.3)	(16)	(11.8)
Household		MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	329 (4.9)
		Household							

522 Table 1: Baseline Characteristics of the Study Sample- Analytic and Excluded

BMJ Open

T							
Income, N (%)	2051	(20 (50 1)	010(1.50.50	15.10	0.50 (1	2000 (12)
<\$50,000	2071	639 (59.1)	2136	15872	4543	25261	2809 (42)
ARA AAAAAAAAAAAAA	(62.8)		(60.4)	(59.7)	(73.6)	(62.1)	0.7.4
\$50 to 100,000	974	333 (30.8)	1090	8260	1330	11987	874
6100 000	(29.6)	110 (10 0)	(30.8)	(31.1)	(21.5)	(29.5)	(13.1)
>\$100,000	251 (7.6)	110 (10.2)	310	2467	301	3439	208 (3.1)
MICONIC	0 (0)	0 (0)	(8.8)	(9.3)	(4.9)	(8.5)	2704
MISSING	0(0)	0(0)	0(0)	0(0)	0(0)	0 (0)	(11.9)
Region N (%)							(41.8)
Northeast	763	202 (18 7)	694	5830	1554	9043	1484
1 (of theast	(23.1)	202 (10.7)	(19.6)	(21.9)	(25, 2)	(22, 2)	(22.2)
Midwest	719	192 (17 7)	709	5793	1792	9205	1422
11111111000	(21.8)		(20.1)	(21.8)	(29)	(22.6)	(21.3)
South	778	321 (29.7)	1012	6559	1205	9875	2081
	(23.6)		(28.6)	(24.7)	(19.5)	(24.3)	(31.1)
West	1036	367 (33.9)	1121	8417	1623	12564	1698
	(31.4)		(31.7)	(31.6)	(26.3)	(30.9)	(25.4)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
BMI, N (%)							
Underweight	34 (1)	8 (0.7)	26	103	15 (0.2)	186	25 (0.4)
(< 18.5)		•	(0.7)	(0.4)		(0.5)	
Normal (18.5 -	1001	309 (28.6)	1041	7557	1341	11249	1582
24.9)	(30.4)		(29.4)	(28.4)	(21.7)	(27.6)	(23.7)
Overweight	1118	377 (34.8)	1234	9660	2262	14651	2262
(25.0 - 29.9)	(33.9)		(34.9)	(36.3)	(36.6)	(36)	(33.8)
Obese (30+)	1143	388 (35.9)	1235	9279	2556	14601	2579
	(34.7)	0 (0)	(34.9)	(34.9)	(41.4)	(35.9)	(38.6)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	237 (3.5)
Hypertension,							
Never	2308	742 (68 6)	2/30	18/13	4045	279/7	1236
hypertensive	(70)	742 (00.0)	(69)	(69.2)	(65.5)	(68.7)	(63.4)
Treated	712	240 (22.2)	819	6141	1638	9550	1684
hypertensive	(21.6))	(23.2)	(23.1)	(26.5)	(23.5)	(25.2)
Untreated	276 (8.4)	100 (9.2)	278	2045	491 (8)	3190	516 (7.7)
hypertensive		()	(7.9)	(7.7)		(7.8)	
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	249 (3.7)
History of							
Diabetes, N							
(%)							
Yes	150 (4.6)	57 (5.3)	179	1377	434 (7)	2197	459 (6.9)
			(5.1)	(5.2)		(5.4)	
No	3146	1025 (94.7)	3357	25222	5740	38490	6217 (93)
	(95.4)		(94.9)	(94.8)	(93)	(94.6)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page	24	of	32
ruge	27	U,	22

			BMJ Open				
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	9(01)
History of Breastfeeding,			0 (0)			0 (0)	, (0.1)
Yes	6 (0.2)	36 (3.3)	1476 (41.7)	15375 (57.8)	4258 (69)	21151 (52)	3309 (49.5)
No	3290 (99.8)	1046 (96.7)	2060 (58.3)	11224 (42.2)	1916 (31)	19536 (48)	2942 (44)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	434 (6.5)
History of Oophorectomy, N (%)							
No	2253 (68.4)	711 (65.7)	2462 (69.6)	19371 (72.8)	4704 (76.2)	29501 (72.5)	4404 (65.9)
Yes, part of an ovary was taken out	32 (1)	20 (1.8)	42 (1.2)	225 (0.8)	41 (0.7)	360 (0.9)	85 (1.3)
Yes, one was taken out	203 (6.2)	127 (11.7)	285 (8.1)	1718 (6.5)	356 (5.8)	2689 (6.6)	645 (9.6)
Yes, both were taken out	782 (23.7)	207 (19.1)	716 (20.2)	5082 (19.1)	1019 (16.5)	7806 (19.2)	759 (11.4)
Yes, unknown number taken out	26 (0.8)	17 (1.6)	31 (0.9)	203 (0.8)	54 (0.9)	331 (0.8)	159 (2.4)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	633 (9.5)
History of HT, N (%)				0			
Never used	1520 (46.1)	478 (44.2)	1601 (45.3)	11660 (43.8)	3324 (53.8)	18583 (45.7)	4372 (65.4)
Past user	561 (17)	191 (17.7)	575 (16.3)	4780 (18)	1147 (18.6)	7254 (17.8)	821 (12.3)
Current user	1215 (36.9)	413 (38.2)	1360 (38.5)	10159 (38.2)	1703 (27.6)	14850 (36.5)	1450 (21.7)
MISSING	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	42 (0.6)
Age (y), Mean (SD)	61.95 (7.43)	60.4 (7.36)	61.14 (7.32)	62.23 (6.87)	64.14 (5.97)	62.36 (6.9)	63.46 (7.16)
Missing (%) BMI, Median	0 27.39 (7.72)	0 27.74	0 27.69	0 27.73 (7.24)	0 28.78 (7.45)	0 27.85	0 28.39
(IQR) Missing (%)	(7.72)	(8.02)	(7.56)	(7.34)	(7.45)	(7.46) 0	(7.86)
QTc wave duration (ms), Mean (SD)	417.95 (18.38)	418.49 (19.6)	418.24 (19.2)	418.58 (18.7)	420.34 (19.33)	418.76 (18.85)	419.82 (19.84)
Missing (%) PR wave	0 63.86	0 64.43	0 64.51	0 64.79	0 65.77	0 64.83	0 64.87
24							
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml							

BMJ Open

	dispersion	(19.42)	(19.43)	(19.43)	(19.57)	(19.57)	(19.55)	(20.56)
	(ms), Mean	× ,	~ /					`
	(SD)							
	Missing (%)	0	0	0	0	0	0	0
	PR interval	156 (30)	158 (28)	158	158	160	158 (30)	158 (30)
	duration (ms),	~ /		(30)	(30)	(30)	× ,	
	Median (IQR)			. ,	~ /	~ /		
	Missing (%)	0	0	0	0	0	0	0
	P wave	106.81	107.13	106.96	106.88	107.93	107.05	106.61
	duration (ms),	(12.85)	(12.33)	(12.18)	(12.34)	(12.44)	(12.39)	(16.09)
	Mean (SD)			Ì.		Ì,	· · ·	
	Missing (%)	0	0	0	0	0	0	0
	Age at	48 (8)	49 (7)	49 (8)	50 (7)	50 (8)	50 (7)	49 (7)
	menopause (y),		•					
	Median (IQR)							
	Missing (%)	0	0	0	0	0	0	32.3
	Age at	12.54	12.55	12.58	12.58	12.67	12.59	12.65
	menarche (y),	(1.48)	(1.57)	(1.54)	(1.47)	(1.46)	(1.48)	(1.53)
	Mean (SD)					Ì,		. ,
	Missing (%)	0	0	0	0	0	0	1.78
	Duration of	36 (8)	36 (8)	36 (8)	37 (8)	37 (7)	37 (8)	36 (8)
	reproductive							
	period (y),			\mathbf{O}				
	Median (IQR)							
	Missing (%)	0	0	0	0	0	0	33.63
524 525	HT=Hormone The	erapy (or ho	rmone replace	ement there	apy)			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Table 1: Unadjusted and multivariable-adjusted association of number of pregnancies leading to livebirths and reproductive period duration with PR interval (ms) in N=40,687 women in the Womens Health Initiative Clinical Trials

	women in the womens Health Initiative Clinical I rials							
		Unadjusted Effect (95% CD	Multivariable Adjusted Effect*					
		(2070 01)	(95% CI)					
	Number of live birth	s and reproductive	period duration are ea	ach in their own				
	Separate multivariat	ble models.		n value for linear				
	Live Dirthe			p value for finear				
	Live Birtins			trend-0.11				
	(calegorical with							
	referent category)							
	Never Pregnant	Ref	Ref					
	None (prior		1 15					
	none (prior	(0.19206)	(0.42, 2.74)					
	livebirths)	(-0.18,5.00)	(-0.43, 2.74)					
	1	1.16	0.54					
		(0.04,2.28)	(-0.57, 1.66)					
	2-4	1.20	0.59					
		(0.34,2.05)	(-0.301, 1.48)					
	5+	3.06	1.32					
		(2.07,4.06)	(0.25, 2.39)					
	Due to the fact that t	here was statistical	ly significant effect mo	dification by HT use				
	upon the association	between reproduct	tive period and PR inte	erval in linear				
	regression models, w	e present the mode	el estimates <i>by</i> strata of	f HT use.				
	Reproductive period			p value for				
	duration (continuous,			interaction $= 0.009$				
	years)							
	Never HT User	0.05	0.10					
		(-0.01, 0.11)	(0.04, 0.16)					
	Past HT use	0.002	0.08					
		(-0.07, 0.08)	(-0.00.0.15)					
	Current HT use	-0.09	-0.02					
		(-0.15 - 0.03)	(-0.08, 0.04)					
529	*Covariates include a	ge baseline BMI ba	seline hypertension stat	us history of diabetes in				
530	education race/ethnic	ity region history/	duration of breastfeedin	σ lipid medication				
531	oonhorectomy status	hysterectomy status	hormone use history h	eart rate and ORS duration				
532	HT=hormone therapy	nystereetonry status	, normone use mistory, n	leart rate and QIUS duration				
533	III normone merapy							
555								
534								
535								
			26					
			20					

2		
3	536	
4	000	
5	527	
6	557	
7		
8	538	Table 3: Unadjusted and multivariable-adjusted association of number of pregnancies
9	539	leading to livebirths and reproductive period duration with QTc interval (ms) in N=40,687
10	540	women in the Womens Health Initiative and Clinical Trials

women in the Womens Health Initiative and Clinical Trials

	Unadjusted Effect (95% CI)	Multivariable Adjusted Effect* (95% CI)	P value
Number of live birth	s and reproductive	period duration are ea	ach in their own
multivariable model	s		1 0 1
Number of			p value for linear
Live Births			trend=0.008
(categorical with			
never pregnant as			
referent category)			
Never Pregnant	Ref.	Ref.	
None (prior	0.54	0.66	
pregnancy, no	(-0.76,1.83)	(-0.56, 1.88)	
livebirths)			
1	0.29	0.15	
	(-0.60, 1.18)	(-0.71, 1.02)	
2-4	0.63	0.25	
	(-0.05.1.31)	(-0.43, 0.94)	
5+	2 39	115	
-	(1.59,3.19)	(0.33, 1.98)	
Reproductive period	-0.09	-0.04	p value=0.01
duration	(-0.12,-0.06)	(-0.07, -0.01)	
(continuous, vears)			

*Covariates for number of livebirths analysis include age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history/ duration of breastfeeding, lipid medication, oophorectomy status, hysterectomy status, hormone use history, heart rate and QRS duration. Covariates for reproductive period duration analysis include live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, lipid medication, oophorectomy status, hysterectomy status, hormone use history, and QRS duration. HT=hormone therapy

550 Table 4: Unadjusted and multivariable-adjusted associations between number of

pregnancies leading to livebirths with p wave duration and p wave dispersion in N=39,338*
women in the Women's Health Initiative and Clinical Trials

	Dependent Variable	Number of Live Births	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	p-value			
	P wave duration (ms)				p value for linear trend =0.73			
		Never Pregnant	Ref	Ref	0.75			
		None (prior	0.09	0.09				
		pregnancy, no livebirths)	(-0.73, 0.92)	(-0.69, 0.87)				
		1	-0.06	-0.20				
			(-0.63, 0.51)	(-0.76, 0.35)				
		2-4	-0.03	-0.26				
			(-0.47, 0.40)	(-0.70, 0.18)				
		5+	0.99	-0.22				
			(0.49, 1.50)	(-0.74, 0.31)				
	P wave dispersion (ms)				p for linear			
					trend = 0.13			
		Never Pregnant	Ref.	Ref.				
		None (prior	0.67	0.64				
		pregnancy, no livebirths)	(-0.42, 1.77)	(-0.45, 1.72)				
		1	0.44	0.34				
			(-0.32, 1.20)	(-0.42, 1.11)				
		2-4	0.72	0.62				
			(0.15, 1.30)	(0.01, 1.24)				
		5+	1.49	0.94				
			(0.82, 2.17)	(0.20, 1.67)				
553 554 555 556 557 558	Effect estimates correspond to expected ms increase in the specified interval measure for each parity group relative to the never pregnant group. Fully adjusted models were adjusted for age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, antianxiety medication, antidepressant medication, lipid medication, duration of breastfeeding, oophorectomy status, hysterectomy status, hormone use history, heart rate, and QRS duration.							

*n differs from main analyses due to the exclusion of women with implausible PR wavemeasures

564	Table 5: Reproductive Duration and P wave Duration and Dispersion by hormone use
565	status. in N= 31,538* Women in the Women's Health Initiative Clinical Trial.

Dependent Variable	Hormone Use Status	Unadjusted Effect (95% CI)	Adjusted Effect (95% CI)	P value				
Due to the fact that there was statistically significant effect modification by HT use								
upon the association betw	veen reproductiv	e period and P v	vave duration in	linear				
regression models, we present the model estimates <i>by</i> strata of HT use.								
	Never User	0.07	0.09	p value for				
Deres derestion (ma)		(0.03, 0.11)	(0.06, 0.13)	interaction=				
	Past	-0.04	0.01	0.0009				
F wave duration (ins)		(-0.08, 0.005)	(-0.03, 0.05)					
C	Current	-0.03	0.01					
		(-0.06, 0.004)	(-0.02, 0.05)					
P wave dispersion (ms)	Never User	0.002	0.01	p value for				
		(-0.04, 0.05)	(-0.03, 0.06)	interaction=				
	Past	-0.03	-0.01	0.65				
		(-0.09, 0.02)	(-0.06, 0.05)					
	Current	-0.04	-0.02					
		(-0.08, 0.003)	(-0.06, 0.03)					

Effect estimates correspond to expected ms increase in PR measure. These models contained an interaction term for reproductive period duration hormone use status. Fully adjusted models were adjusted for number of live births, age, baseline BMI, baseline hypertension status, history of diabetes, income, education, race/ethnicity, region, history of breastfeeding, duration of breastfeeding, antianxiety medication, antidepressant medication, lipid medication,

571 oophorectomy status, hysterectomy status, hormone use history, heart rate, and QRS duration.

*n differs from main analyses due to the exclusion of women with implausible PR wavemeasures

STROBE Statement—checklist of items that should be included in reports of observational studies with page number in manuscript.

	Item No	Recommendation	Page number
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the	1
		abstract	2
		(b) Provide in the abstract an informative and balanced summary of what was done	2
		and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives	3	State specific objectives, including any prespecified hypotheses	5
Methods			
Study design	4	Present key elements of study design early in the paper	1, 5-10
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment,	5-6
		exposure, follow-up, and data collection	
Participants	6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of	5-6
		selection of participants. Describe methods of follow-up	
		Case-control study-Give the eligibility criteria, and the sources and methods of	
		case ascertainment and control selection. Give the rationale for the choice of cases	
		and controls	
		Cross-sectional study—Give the eligibility criteria, and the sources and methods of	
		selection of participants	
		(b) Cohort study—For matched studies, give matching criteria and number of	N/A
		exposed and unexposed	
		<i>Case-control study</i> —For matched studies, give matching criteria and the number of	
		controls per case	
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and	6-7
		effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods of	6-7
measurement		assessment (measurement). Describe comparability of assessment methods if there	
		is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	8-9
Study size	10	Explain how the study size was arrived at	6-7
Ouantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable	8-9
,		describe which groupings were chosen and why	• •
Statistical methods	12	(a) Describe all statistical methods including those used to control for confounding	8-9
		(b) Describe any methods used to examine subgroups and interactions	8-9
		(c) Explain how missing data were addressed	9-10
		(d) Cabort study—If applicable, explain how loss to follow-up was addressed	5-7
		<i>Case control study</i> If applicable explain how matching of cases and controls was	5-7
		addressed	
		Cross-sectional study_If applicable describe analytical methods taking account of	
		cross-sectional stating account of analytical methods taking account of sampling strategy	
		aniping sudicgy (a) Describe any sensitivity analyses	0.10
		(e) Describe any sensitivity analyses	7-10

3
4
5
6
7
, 0
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
36
20
3/
38
39
40
41
42
43
44
45
46
40
4/
48
49
50
51
52
53
54
55
55
50
5/
58
59
60

Results			Page number
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5-6
		(b) Give reasons for non-participation at each stage	5-6
		(c) Consider use of a flow diagram	5-6, 19
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	5-6, 20-23
		(b) Indicate number of participants with missing data for each variable of interest	19, 20-23
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	N/A
Outcome data	15*	Cohort study—Report numbers of outcome events or summary measures over time	N/A
		<i>Case-control study</i> —Report numbers in each exposure category, or summary measures of exposure	N/A
		Cross-sectional study-Report numbers of outcome events or summary measures	5-7
Main results	16	(<i>a</i>) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	24-27
		(b) Report category boundaries when continuous variables were categorized	20-23
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	10-11
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	10-11
Discussion			
Key results	18	Summarise key results with reference to study objectives	11-12
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	14-15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	15
Generalisability	21	Discuss the generalisability (external validity) of the study results	15
Other informati	on		
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	1

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.