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SUMMARY

Pdgfra+ oligodendrocyte precursor cells (OPCs)
arise in distinct specification waves during embryo-
genesis in the central nervous system (CNS). It is
unclear whether there is a correlation between these
waves and different oligodendrocyte (OL) states at
adult stages. Here, we present bulk and single-cell
transcriptomics resources providing insights on
how transitions between these states occur. We
found that post-natal OPCs from brain and spinal
cord present similar transcriptional signatures.
Moreover, post-natal OPC progeny of E13.5 Pdgfra+
cells present electrophysiological and transcriptional
profiles similar to OPCs derived from subsequent
specification waves, indicating that Pdgfra+ pre-
OPCs rewire their transcriptional network during
development. Single-cell RNA-seq and lineage
tracing indicates that a subset of E13.5 Pdgfra+ cells
originates cells of the pericyte lineage. Thus, our
results indicate that embryonic Pdgfra+ cells in the
CNS give rise to distinct post-natal cell lineages,
including OPCs with convergent transcriptional
profiles in different CNS regions.

INTRODUCTION

Oligodendrocytes (OLs; for abbreviations, please refer to
Table S4) are one of the most abundant cell types in the central
nervous system (CNS). OLs have been classically described as
support cells for neurons, responsible for the insulation of axons
and enabling rapid saltatory conduction, although recent find-
ings suggest their involvement in other processes (Larson
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et al., 2018; Micu et al., 2016; Nave and Werner, 2014). OLs
arise from the differentiation of oligodendrocyte precursor cells
(OPCs). Since OLs and OPCs are found throughout the CNS,
they were originally thought to be derived from embryonic neu-
ral progenitors (NPs) from nearby ventricular zones or from
radial glial cells in all CNS regions (Hirano and Goldman,
1988). However, in vitro experiments with cell suspensions
and explants suggested a restricted ventral origin of OPCs in
the embryonic rat spinal cord (Warf et al., 1991). OPCs express-
ing platelet-derived growth factor receptor alpha (Pdgfra) ap-
peared to arise exclusively from ventral domains of the CNS,
with a subset migrating to dorsal regions (Pringle and Richard-
son, 1993). This led to the hypothesis of a single embryonic line-
age for OPCs, arising at embryonic day (E) 12.5 from progenitor
domains and dependent on sonic hedgehog (Shh) (Richardson
et al.,, 2000). Nevertheless, cells expressing Plp/dm-20 were
also observed to give rise to OLs (Spassky et al., 2000), sug-
gesting that other progenitors in the dorsal/ventral axis of the
CNS could be alternative sources of OPCs. Indeed, knockdown
of transcription factors (TFs) involved in the specification of
ventral spinal cord domains and lineage-tracing studies uncov-
ered a subset of OPCs originating from the mouse dorsal spinal
cord at E14.5-E15.5 (Cai et al., 2005; Fogarty et al., 2005;
Vallstedt et al., 2005). Dorsal-derived spinal cord OPCs were
not dependent on Shh for their specification (Cai et al., 2005;
Vallstedt et al., 2005). Moreover, they populated specific re-
gions of the spinal cord, while OPCs from the ventral-derived
neuroepithelium gave rise to the vast majority of OLs throughout
the adult spinal cord (Tripathi et al., 2011; Fogarty et al., 2005).
A similar pattern of OL specification was found to operate in
the mouse forebrain. The first OPCs were shown to be formed
at E12.5 from Nkx2.1-expressing precursors in the medial
ganglionic eminence, followed by a subsequent wave from
precursors expressing Gsx2 in the lateral and medial ganglionic
eminences at E15.5 (Kessaris et al., 2006). The last wave
of cortically derived Emx7-expressing precursors begins
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developing at birth and eventually becomes the major contrib-
utor to the post-natal OPC pool (Kessaris et al., 2006).

It is unclear whether diverse populations and developmental
waves of OPC in the CNS generate identical or distinct OLs.
When Richardson and colleagues specifically ablated OPCs
generated from three brain developmental waves in mice, no
gross behavior abnormalities were observed, most likely due
to functional compensation of the lost populations by OL lineage
cells from non-ablated regions (Kessaris et al., 2006). This sug-
gested that OL lineage cells derived from different brain regions
are, or can become, functionally equivalent. However, adult
OPCs have been classified into different sub-populations with
diverse cycling (Jang et al., 2013; Young et al., 2013; Clarke
et al., 2012), myelinating (Vigano et al., 2013), and remyelination
(Crawford et al., 2016) properties. In addition, spinal cord post-
natal OPCs give rise to OLs that present a higher myelin sheet
length than OLs from the cortex (Bechler et al., 2015). By per-
forming single-cell RNA-seq (RNA sequencing) on ~5,000 cells
of the OL lineage in juvenile and adult mice, we found at least
six distinct mature OL cell states (Marques et al., 2016), suggest-
ing possible functional heterogeneity.

Diverse adult cortical interneuron populations have recently
been shown to be specified already at the embryonic stages in
the CNS (Mayer et al., 2018; Mi et al., 2018). In order to investi-
gate whether different embryonic waves of OPC specification
give rise to redundant OLs or are assigned to specific mature
OL states and/or populations, we analyzed the transcriptome
of mouse forebrain and spinal cord Pdgfra+ cells at E13.5,
E17.5, P7, and juvenile/adult stages using bulk and single-cell
RNA-seq (resource website with browsable graphic visualiza-
tions of the data and annotated tables (Figure S6D) available at
https://ki.se/en/mbb/oligointernode. Features as expression
profile of genes of interest in the different clusters, tissues and
ages can be explored. Gene expression tables can also be
explored to sort for genes differentially expressed in different
clusters). E13.5 Pdgfra/GFP+ cells were found to constitute six
distinct cell states within the OL, pericyte, and possibly other lin-
eages. Embryonic Pdgfra/GFP+ cells expressed patterning TFs
that were diagnostic of their sites of origin in the ventricular
zone (VZ) and other transcripts typical of NPs. These cells might
be transitional cells on the path to becoming OPCs (“pre-
OPCs"), or, alternatively, they might be multi-potent or bi-potent
NPs that still retain the ability to generate neurons and glia. Strik-
ingly, expression of patterning TFs was greatly attenuated at
post-natal ages, when a common transcriptional profile emerged
that was characteristic of post-natal OPCs and compatible with
electrophysiological capacity. Thus, the transcriptional program
of post-natal OPCs is independent of when and where in the em-
bryonic VZ they were originally specified (e.g., spinal cord versus
brain, dorsal versus ventral VZ).

In addition to OPCs, we detected a group of Pdgfra/GFP+ cells
in the embryonic and post-natal spinal cord and brain that had
the transcriptional character of pericytes. These cells might
have been generated from the Pdgfra/GFP+ NPs described
above or from a separate source, for example, from cells associ-
ated with blood vessels that invade the developing brain and
spinal cord from the pial surface before birth.

In sum, our results indicate that while embryonic Pdgfra/GFP+
cells in the CNS are heterogeneous, spatial and temporal

transcriptional convergence occurs in the transition between
embryonic pre-OPCs and OPCs during development, with
OPCs arising in different parts of the embryonic germinal zones
being ultimately highly similar to one another.

RESULTS

Transcriptional Profiles of Pdgfra/GFP+ Cells during
CNS Development

To determine the transcriptional profile of progenitors of the OL
lineage during development, we performed stranded total RNA-
seq of cells expressing Pdgfra, a widely used marker for OPCs in
CNS, isolated by Fluorescence-Activated Cell Sorting (FACS)
GFP+ populations from the (fore) brain or spinal cord of
Pdgfra-H2B-GFP mice (Klinghoffer et al., 2002) at E13.5 and
P7 (Figures 1A and S1A-S1E). Differential gene expression anal-
ysis revealed increased levels of differentiation and/or myelina-
tion-related genes (Mbp, Plp1, Mag, and Mog, among others)
in Pdgfra/GFP+ cells at P7 relative to E13.5, and in the spinal
cord when compared to the brain (Opalin and Pip1, Figure 1B;
Table S1). P7 spinal cord Pdgfra/GFP+ cells were characterized
by higher expression of genes corresponding to later stage dif-
ferentiation (Mog, Mal, Mag) when compared to P7 brain, which
in contrast exhibit increased expression of Pdgfra, Sox2, and
Sox9 (Figure S1F and Table S1). This pattern of expression
would suggest that OPCs are more prone to differentiation in
the spinal cord, consistent with myelination occurring earlier in
the spinal cord compared to brain (Marques et al., 2016; Coffey
and McDermott, 1997).

Many TFs involved in patterning and cell specification (Hox
and Lhx genes, Otx2, Nkx2.1, Arx) were expressed in Pdgfra/
GFP+ cells at E13.5 and substantially down-regulated or ab-
sent at P7 (Figure 1C and Table S1). In contrast, TFs with roles
in OL differentiation (Sox710, Sox8, Nkx2.2) were enriched at
P7, when compared to E13.5. Principal-component analysis
confirmed that Pdgfra/GFP+ populations were more distinct
temporally than spatially (Figure 1D). Gene ontology (GO)
analysis indicated that, apart from genes involved in differen-
tiation and/or myelination, spinal cord cells were enriched in
genes with TF activity (Figure 1E-highlighted in blue, Fig-
ure S2A and Table S1), consistent with the expression of
patterning TFs involved in anterior/posterior regionalization
(Figure 1B). TF activity was also enriched in E13.5 Pdgfra+/
GFP cells compared to P7 (Figure 1F). Post-natal Pdgfra/
GFP+ cells, in particular in the forebrain, were enriched in
genes involved in ion channel complex and transport, and
synaptic transmission, among others (Figures 1F and
S2A-highlighted in yellow). Some of the contributions to these
P7 signatures were potassium and sodium ion channels, as
well as glutamate receptor subunits and (gamma-Aminobuty-
ric acid) GABA receptors (Figure S2B). In contrast to post-
natal cells, E13.5 Pdgfra/GFP+ cells were enriched in genes
involved in a myriad of unrelated processes, such as neural
precursor and neuron development and/or specification,
extracellular matrix and collagen organization, and basal lam-
ina and angiogenesis (Figure 1F-highlighted in green and Fig-
ures S2A and 2C). This diversity of biological function was
intriguing, since these cells are thought to give rise exclusively
to cells of the OL lineage.
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Figure 1. Temporal and Spatial Transcriptional Heterogeneity of Pdgfra/GFP+ Cells

(A) Schematic of Pdgfra/GFP+ cell purification for bulk RNA sequencing.

(B) Volcano plots of Gencode-annotated genes depicting differential expression between (fore) brain versus spinal cord, and E13.5 versus P7.

(C) Hierarchical clustering of bulk samples based on normalized gene expres:
(D) Principal-component analysis of bulk RNA-seq of Pdgfra/GFP+ cells from

sion (cpmm) of transcription factors annotated in animalTFDB.
E13.5 and P7 (fore) brain and spinal cord.

(E and F) Gene ontology analysis of enriched biological functions overrepresented in either (fore) brain versus spinal cord (E), or E13.5 versus P7 (F).

See also Figures S1, S2 and Tables S1.

Single-Cell RNA-Seq Reveals Similar Transcriptional
Profiles of Post-natal OPCs in the Spinal Cord and Brain
Since the diversity of biological processes associated with E13.5
Pdgfra+/GFP cells could reflect a broad cell potential or cell het-
erogeneity, and the latter would be obscured by bulk RNA-seq
analysis, we performed single-cell RNA-seq using STRT-Seq
technology (Islam et al., 2014) on 2496 Pdgfra+/GFP cells
(1,514 cells after quality control [QC]) from Pdgfra-H2B-GFP
(Klinghoffer et al., 2002) and Pdgfra-CreERT-RCE (LoxP-GFP)
mice (Kang et al., 2010) at E13.5 and P7 (Figures 2A and S1G).
For comparison purposes, we also included 271 OPCs, 114
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committed oligodendrocyte precursors (COPs), and 75 vascular
and leptomeningeal cells (VLMCs) from the juvenile and adult
CNS (Marques et al., 2016) in the analysis.

There was a clear temporal segregation of E13.5 and P7 cells
(Figure 2B) in accordance with the bulk RNA-seq data (Fig-
ure 1D). Spatial segregation was also observed, but to a lesser
extent than in the bulk analysis. In fact, subsets of P7 brain
and spinal cord cells intermingled in the t-Distributed Stochastic
Neighbor Embedding (t-SNE plot), suggesting close similarity
(Figure 2B). We performed cell clustering using two different al-
gorithms, BackSPIN2 (Marques et al., 2016) and PAGODA (Fan
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Figure 2. Single-Cell RNA-Seq Reveals Similar Transcriptional Profiles of OPCs in the Post-natal Spinal Cord and Brain

(A) Scheme of Pdgfra/GFP+ cell purification for single-cell RNA-seq.

(B and C) t-SNE of single-cell RNA-seq of E13.5, P7 Pdgfra/GFP+ cells, and P20-30, and P60 cells from Marques et al., highlighting age and region (B) and

identified clusters (C).

(D) Single-cell expression of the most relevant marker genes in all identified populations.

(E) Fraction of OPC1a, 1b and OPCcyc in each P7, juvenile/adult tissues.

(F) Single-cell expression of cluster-specific genes for OPCs, overlayed in t-SNE from Figure 2C.

See also Figures S1, S3, S4 and Tables S2 and S3.

et al., 2016). These algorithms revealed similar clusters (Figures
S3A and S3B), which were merged to form our final cluster set
(see STAR Methods for further details). We could identify cells
expressing hallmarks of COPs (Bmp4, Neu4) and newly formed
OLs (NFOL) (Prom1, Tspan2) from the P7 CNS (Figures 2B and
2C), confirming that these populations appear to arise in the
CNS already at P7 and remain transcriptionally similar in the

juvenile and adult CNS (Marques et al., 2016). COPs, and partic-
ularly NFOLs, were found in higher proportions in the spinal cord
at P7, highlighting that the process of differentiation is further
advanced in this region (Figures 2B and 2C).

Three clusters of P7 and juvenile/adult cells presented
markers of OPCs (OPC1a, 1b, and OPCcyc), (Figures 2C, S4A,
and Table S2). Surprisingly, P7 OPCs from spinal cord and brain

Developmental Cell 46, 504-517, August 20, 2018 507
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clustered together (Figures 2B and 2C). In order to rule out that
this similarity is not due to hidden confounding factors, including
noise and putative batch effects, we performed a removal of
confounding factors using the f-scLVM package (Buettner
et al., 2017), which revealed an even more homogeneous distri-
bution of spinal cord- and brain-derived OPCs (Figure S3C).
Furthermore, batch-corrected Bayesian based single cell differ-
ential expression (SCDE) analysis (Fan et al., 2016) of the single-
cell OPC populations in the P7 brain and spinal cord failed to
identify significant differences in gene expression (Figure S3D).
To more conclusively exclude major differences between brain
and spinal cord OPCs, we used Model-based Analysis of Single
Cell Transcriptomics (MAST) (Finak et al., 2015), a differential
expression algorithm that, in contrast to the Bayesian-based
SCDE, uses a hurdle model to calculate significant differential
expression. MAST analysis yielded a limited number of genes
significantly differentially expressed after multiple testing
corrections (Table S3). With the exception of Hoxc8, patterning
genes present in E13.5 Pdgfra/GFP+ cells were not significantly
differentially expressed or sporadically expressed (Table S3).
Likewise, with the exception of Plp1, myelination genes enriched
in P7 spinal cord Pdgfra/GFP+ cells in the bulk RNA-seq, such as
KIk6, Trf, Mbp, Cnp, Qk, and Opalin, were not differentially ex-
pressed in P7 spinal cord and brain OPCs (Table S3).

Our single-cell RNA-seq analysis indicates that P7 OPCs from
different CNS regions, such as the brain and spinal cord, present
comparable gene expression profiles, in contrast to the bulk
RNA-seq analysis of the same populations (Figure 1). The differ-
ence in differentiation and/or myelination genes in the bulk pop-
ulations (Figure 1B) is unlikely to reflect intrinsic differences in
myelinating potential between OPCs, and might rather reflect
that the half-life of H2B-GFP protein is longer than PDGFRA
mRNA, resulting in the GFP labeling of other populations within
the OL lineage. Indeed, COPs, and particularly NFOLs, are
present in higher numbers in the spinal cord Pdgfra/GFP+
FACS-sorted populations when compared to brain Pdgfra/
GFP+ populations (Figures 2B and 2C), which would explain
the enrichment of differentiation and/or myelination genes in
spinal cord populations in the bulk RNA-seq. Thus, single-cell
RNA-seq analysis allows the deconvolution of our bulk RNA-
seq data and suggests a loss of patterning factors and subse-
quent transcriptional convergence of OPC cell states in the
different anterior-posterior regions at P7.

The three OPC clusters presented unique temporal distribu-
tions, with none being present in the E13.5 (Figures 2B and
2C), OPC1a enriched at P7, and OPC1b at juvenile/adult CNS
(Figure 2E). OPCcyc was segregated from OPCla/b and ex-
pressed genes involved in mitosis and cell division (Figure S3F).
OPC1a and OPC1b clusters were quite similar in their transcrip-
tional profile (Figures S3E and S4A), which could indicate that
they might constitute cell states rather than cell types or even
constitute a single cluster. However, OPC1a presented distinc-
tive expression of Resp18 (Figures 2D and 2F) and genes
involved mainly in diverse metabolic processes (mitochondrial
energy production, RNA processing), such as ATP synthase,
Cox, and ribosomal genes (Table S2). OPC1b was characterized
by the expression of genes involved in nervous system develop-
ment and transcription regulation. We also found enriched
expression of immediate early genes such as Fosb, Fos, Jun,
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and Egr1 (Figure 2F; Table S2), which might be associated with
specific activation of OPC1b cells by the neighboring neuronal
network (Hrvatin et al., 2018), although it could also simply reflect
cellular stress during the cell extraction procedure (van den Brink
etal., 2017). Allthree OPC cell states were observed in both brain
and spinal cord (Figure 2E), highlighting the similarity of OPCs in
the anterior-posterior axis of the CNS.

E13.5 Pdgfra+/GFP Cells Do Not Have the Hallmarks of
Post-natal OPCs

Clustering and differential gene expression analysis allowed the
identification of six distinct populations of E13.5 Pdgfra/GFP+
cells (Figure 2C; Table S2). Four populations (NPs, 1a, 1b, 2,
and 3) presented high correlation between themselves (Fig-
ure 3A). We examined the expression profiles of identified
markers of these populations in the E13.5 and P4 CNS through
publicly available in situ hybridization data from the Allen Institute
for Brain Science (©2008 Allen Institute for Brain Science.
Allen Developing Mouse Brain Atlas available from http://
developingmouse.brain-map.org). The NP markers presented
non-overlapping expression patterns at E13.5 (Figure S4B), indi-
cating that they are indeed expressed in distinct cell populations.
Moreover, we observed absence or reduced expression of some
of these markers in the corpus callosum at P4, suggesting that
their expression is attenuated or repressed after birth, in agree-
ment with our single-cell data (Figure S4B).

NP1-3 expressed markers of the NP, neuroblast, or radial glia
lineages (Figure S4A). To confirm these identities, we performed
Pearson correlation comparisons on the embryonic midbrain cell
populations identified by single-cell RNA-seq (La Manno et al.,
2016). Although correlation was low, this indicated a partial
similarity between NPs and neuroblast and neuronal progenitor
populations (Figure 3B). While some cells within the NP popula-
tions expressed individual markers of OPCs, RNA levels for
these genes were relatively low in the cells where they were
observed (Figure S4A).

Two additional E13.5 clusters expressed higher levels of
Pdgfra and Csgp4 (NG2), albeit lower than P7 OPCs (Figure S4A).
They also expressed genes involved in collagen formation, such
as Col1al. Correlation analysis with previous published
single-cell datasets (La Manno et al., 2016; Marques et al.,
2016) indicates that these cells are related to pericytes and
VLMCs (Figures 3B and 3C), and as such, they were named
embryonic VLMCs (eVLMCs) and pericyte lineage cells (PLCs).
Thus, the pericyte/VLMC signature of E13.5 Pdgfra+/GFP cells
found in the bulk RNA-seq (Figures 1F and S2C) is most likely
due to cell heterogeneity rather than broader cell potential.

NP1a Constitutes a Pre-OPC Neural Progenitor
Population

NP1a and NP3 were more similar to OPCs than other NPs
(Figures 3A and 3C), and as such might be the embryonic
progenitors of the OL lineage. Nevertheless, our data indicate
that there is a transcriptional leap between E13.5 progenitors
and P7 OPCs (Figure 2C). In order to better define the transitions
between embryonic and post-natal states, we performed addi-
tional single-cell RNA-seq with E17.5 Pdgfra/GFP+ cells of
Pdgfra-H2BGFP knockin mice. We found that, at this stage,
Pdgfra/GFP+ cells were mainly associated with OPC clusters,
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Figure 3. NP1a Constitutes a Pre-OPC Neural Progenitor Population

(A-C) Heatmaps with correlation analysis between all identified populations (A), of all the populations compared to La Manno et al. (2016) dataset (B) and of all the
populations compared to Marques et al. (2016) dataset (C).

(D and E) SCN3E network analysis of (fore) brain (D) and spinal cord (E) E13.5 and P7 Pdgfra/GFP+ cells, with juvenile/adult OPCs, COPs, and VLMCs from
Marques et al. (2016) Brain SCN3E also includes cells from E17.5 scRNA-seq experiment. On the right, overlay of gene expression levels of a subset of genes on
the SCN3E graphs, with gradient from yellow (low expression) to red (high expression).

(F and G) Heatmaps of pseudo-time iterations from the SCN3E analysis of brain (F) and spinal cord (G), representing the 50 most variable genes along pseudo-
time with at least p < 0.01 computed using MAST. Arrows illustrate transitions between pre-OPCs (NP1a), OPCs, and COPs/NFOLs. An additional transition is
observed in (fore) brain, corresponding to E17.5 to P7 OPCs.

See also Figures S5 and S6.
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although a subset of cells clustered close to E13.5 NP1a cells
(Figure S5A). As such, at this stage, our data suggest that NPs
are nearly absent within the Pdgfra+/GFP population, having
already given rise to OPCs.

To further determine the relationship of the identified popula-
tions, we developed an algorithm for single-cell near-neighbor
network embedding and lineage determination (SCN3E, see
STAR Methods for further details). By identifying the likely
neighbors for each individual cell, we can infer which cells are
most likely to be the progeny or progenitor of others. As a proof
of concept, we analyzed the OL lineage populations identified in
our previous single-cell RNA-seq work (Marques et al., 2016).
SCNBS3E led to a similar ordering to the one obtained by t-SNE
and Monocle, with a clear path from OPCs to MFOLs (Marques
et al., 2016), but allowed a better resolution in the late differenti-
ation and/or maturation, indicating a branching event at the
MFOL stage (Figure S5B). SCN3E analysis for forebrain and spi-
nal cord datasets indicated that NP1a cells (Figures 3D and 3E,
arrows) were more related to post-natal OPCs, which then give
rise to COPs and the remaining OL lineage. To verify our results
using SCN3E, we used Monocle 2 (Qiu et al., 2017), an alterna-
tive “pseudo-time” algorithm, that orders cells in reconstructed
pseudo-trajectories. Monocle2 generated similar results as
SCNB3E (Figures S6A and S6B).

A subset of NP1a cells expressed genes as Olig1/2 and
Ptptrz1 but also Nestin (Nes) and Bcan (Figures 3D, 3E, and
S4A), suggesting that they might constitute pre-OPCs.
Monocle2 ordering of cells in a reconstructed pseudo-trajectory
also revealed early OL lineage expression of Piptrz1, Bcan, and
Olig2 (Figure S6B), comparable to the findings using our SCN3E
pipeline. Interestingly, we also observed sparse expression in
these cells of Rfx4 (Figure 3D), which has been reported to be
present in Sox10+ cells at E13.5 in the ventral midbrain, within
a radial glia population, mRgI2 (La Manno et al., 2016). To further
validate our findings, we applied SCN3E to this orthologous em-
bryonic midbrain single-cell RNA-seq dataset (Figure S5C) (La
Manno et al., 2016), and indeed found a sub-population within
mRgI2 expressing Bcan, Olig1, Ptprz1, and lower levels of Nestin
(Figure S5C), suggesting that this might constitute an NP1a
population in the ventral midbrain. In sum, SCN3E analysis sug-
gests that Bcan*/ Olig1/2*/Ptptrz1*/Nes* NP1a cells are likely to
be the progenitors of OPCs in the brain, constituting a pre-OPC
cell state.

Bulk RNA-seq analysis showed that patterning and/or specifi-
cation TFs were substantially down-regulated from E13.5 to P7,
while TFs with roles in OL differentiation emerged (Figures 1B
and 1C). We observed that Hoxb3 and Sox11 expression was
also reduced in the transition from pre-OPCs to OPCs in the sin-
gle-cell RNA-seq data (Figure 3E). We also observed such tran-
sitions when we ordered cells along SCN3E-derived pseudo-
time, selecting the 50 most significant variable genes along
pseudo-time (Figures 3F and 3G). Indeed, several on-off transi-
tions of cohort of genes occurred during different stages of the
pseudo-time, with, for instance, genes expressed at NPs being
down-regulated from the OPC stage on, being replaced by
genes involved in differentiation and myelination at the COP/
NFOL stage (Figures 3F and 3G). These transitions were
observed both in the brain and spinal cord, highlighting tran-
scriptional convergence between these two regions.
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E13.5 Pdgfra+ Cells Give Rise Mainly to OPCs in the
Post-natal CNS, but Also to Cells of the Pericyte Lineage
Our single-cell data indicated the presence of a subset of
E13.5 Pdgfra/GFP+ cells possibly belonging to the pericyte
lineage. To investigate whether these cells can indeed give
rise to cells of this alternative lineage, we performed lineage-
tracing experiments by injecting tamoxifen in E12.5 Pdgfra-
Cre®T_LoxP-eGFP mice (Kang et al., 2010) and examined
the GFP+ population at P21 (Figure 4A, see STAR Methods
for more details). 47 + 6% of the GFP + cells in the corpus cal-
losum were OPCs (Pdgfra+/Col1—) (Figures 4B and 4E), while
15 + 4% of E13.5 expressed Collal, a marker of the VLMC
and pericyte lineages (Marques et al., 2016) (Figures 4D and
4E). Some of the remaining GFP+ populations were mature
OLs (Figure 4C). Similar proportions were observed in the dor-
sal horn (spinal cord) (Figures 4B, 4C, and 4E). Thus, a subset
of E13.5 Pdgfra+/GFP cells (most likely eVLMCs or PLCs)
belong to the pericyte lineage and retain these properties or
give rise to new cells of this lineage (e.g., pnVLMCs, VLMCs)
at post-natal stages. Surprisingly, we found that at P21 there
was still a considerable contribution of E13.5 Pdgfra+ cells to
the OL lineage, and in particular to OPCs (Figures 4B, 4C,
and 4E).

Forebrain Nkx2.1-expressing OL progenitors have been re-
ported to originate at E12.5, but to have a minor contribution
to dorsal forebrain OL lineage at post-natal stages (Tripathi
et al., 2011; Kessaris et al., 2006). Since our data indicated
that the first wave of oligodendrogenesis gives rise primarily
to OPCs after birth, we examined the percentage of OPCs
(Pdgfra+/Col1—) originating from this wave (GFP+ cells),
compared to subsequent waves (GFP— cells). In the corpus
callosum, less than 20% of OPCs were derived from the first
wave, while the majority was derived from subsequent waves
(Figure 4F). This is consistent with the findings that 20% of
OL lineage cells (Sox10+) in the corpus callosum at P12-P13
are derived from the first and/or second wave, while 80% orig-
inate from the third one (Tripathi et al., 2011). In contrast, in the
dorsal horn 48 + 4% of the OPCs were derived from the E13.5
wave (Figure 4F). Thus, our results indicate that the progeny of
the first wave of E13.5 Pdgfra+ progenitors persists in the juve-
nile CNS, with sub-populations giving rise not only to a specific
population of OPCs but also to cells of other lineages, such as
pericytes.

E13.5-Derived Post-natal OPCs and OPCs Derived from
Subsequent Waves Have Similar Transcriptional Profiles
and Electrophysiological Properties

Our single-cell transcriptomics analysis suggests that embryonic
OL progenitors might undergo a process of rapid change of their
transcriptional networks. Given that we observed that E13.5
Pdgfra/GFP+ progenitors give rise to a subset of the OPC popu-
lation in the post-natal CNS (Figure 4), we investigated whether
this convergence indeed occurs during development in vivo.
We performed lineage tracing of Pdgfra+ cells originating from
only the first wave (tamoxifen treatment at E12.5-txE12.5) or
from all waves (tamoxifen treatment at P3-txP3) and assessed
their progeny at P7 by single-cell RNA-seq (Figure 5A). We
observed that OPCs derived from E13.5 or from subsequent
waves intermingled (Figure 5B), with OPC1a/b and OPCcyc cells
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Figure 4. E13.5 Pdgfra+ Cells Give Rise to OPCs and Cells of the VLMC/Pericyte Lineage

(A) Scheme of lineage tracing experiments in Pdgfra-CreERT-RCE mice; E13.5 Pdgfra+ cells progeny was followed until P21 by GFP expression.

(B-D) Immunohistochemistry targeting Pdgfra+ cells (B and D), CC1+ mature oligodendrocytes (C) and cells of the VLMC/pericyte lineage (Col1al+, D) in E13.5
Pdgfra+ progeny (GFP+) in corpus callosum and spinal cord (dorsal horn). B - White arrows, double positive Pdgfra/GFP cells. C - White arrows, double positive
CC1/GFP cells. D -White arrows, double positive Pdgfra/GFP cells; yellow arrows, double positive Col1al/GFP cells; arrowhead, GFP+/Pdgfra-/Col1al- cell.
(E) Quantification of OPCs, VLMCs/pericytes, and other cells derived from E13.5 Pdgfra+ cells in the corpus callosum and dorsal horn; one-way ANOVA with
Tukey’s multiple comparisons test.

(F) Quantification of OPCs derived from the first wave (GFP+/ PDGFRa+) and subsequent waves (GFP—/ PDGFRa+) in the corpus callosum and dorsal horn. Two-
tailed unpaired t test. All results are expressed as means + SEM. For quantifications, 3 animals were used in each time point and 4-5 slices were photographed
per animal. An average of 33 and 46 photos in CC and dorsal horn, respectively, were counted per animal. *, p value < 0.05; **, p value < 0.01; ***, p value < 0.001.
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Figure 5. Similar Single-Cell Transcriptomic Profiles of Cells Derived from the First and Subsequent Waves of Oligodendrogenesis
(A) Scheme of lineage tracing experiments in Pdgfra-CreERT-RCE mice; E12.5-13.5 and P3-5 Pdgfra+ cells progeny was identified by GFP expression at P7-8

when single-cell RNA-seq was performed.

(B) t-SNE (from Figure 2) illustrating GFP+ cells from the lineage tracing of E12-5-13.5 or P3-P5 Pdgfra+ cells in the PdgfraCreERT-RCE mice at P7.

(C) Fraction of OPC1a, 1b and OPCcyc in each lineage tracing experiment.

(D) t-SNE clustered using glutamate receptor, potassium channel, voltage gated ion channel, and GABA receptor genes, illustrating homogeneous distribution of

E13.5 and P3 lineage traced OPCs.

(E) Hierarchically clustered heatmap showing the expression of glutamate receptor, potassium channel, voltage-gated ion channel, and GABA receptor genes in

E13.5 and P3 lineage traced OPCs.

being progeny of both the first wave and the subsequent
waves (Figure 5C). OPC1b had a smaller representation in
P3-derived OPCs, which might suggest that a defined
temporal window is required for the maturation of Pdgfra/
GFP+ into OPC1b, as well as pnVLMCs and COPs. We also
analyzed the lineage-traced cells, focusing only on the
expression profiles of genes involved in electrophysiological
activity: glutamate receptor, potassium channel, voltage
gated ion channel, and GABA receptor genes. t-SNE repre-
sentation indicated that variation between these genes could
not segregate txE12.5 from txP3 cells (Figure 5D), reflecting
that these genes were expressed in a stochastic manner in
both populations (Figure 5E). Thus, our results indicate that
OPCs from different development temporal and spatial origins
indeed converge into three transcriptional states at post-natal
stages.

OPCs have been shown to present electrophysiological
properties (Clarke et al., 2012; Karadottir et al., 2008), and
our single-cell RNA-seq experiments coupled with lineage
tracing would suggest that E13.5-derived OPCs at P7 have
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similar electrophysiological properties to OPCs derived from
subsequent waves (Figure 5E). In order to investigate if this is
indeed the case, we performed whole-cell voltage-clamp re-
cordings of corpus callosum OPCs at P7-P8 derived from
either the first wave (tamoxifen treatment at E12.5-txE12.5) or
all waves (tamoxifen treatment at P3-txP3) (Figures 6A and
6B). The two groups (slices from 2 animals txE12.5 and from
4 animals txP3) exhibited comparable passive intrinsic proper-
ties: input resistance (txE12.5 1.6 + 0.2 GQ; txP3 1.6 + 0.2 GQ;
(n) of cells = 6 and 15, respectively), and membrane capaci-
tance (txE12.5: 34.3 + 8.7 pF, n = 7; txP3: 30.7 = 6.1 pF,
n = 15). Recorded events had similar average amplitudes
(txE12.5: —12.28 + 0.39 pA, n = 7; txP3: —13.0 + 0.4 pA,
n = 15). The frequency of events in the two populations was
also not significantly different (Figures 6C and 6D). However,
while txE12.5 cells received less frequent events in a more uni-
form manner (6 + 1.89 Hz, n = 7), txP3 cells exhibited a larger
heterogeneity, with 30% of the cells having more frequent
events (11.4 + 3.1 Hz, n = 15; p = 0.3). Concurrently, the cumu-
lative distribution of event amplitudes displayed somewhat
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Figure 6. Similar Electrophysiological Profiles of Cells Derived from the First and Subsequent Waves of Oligodendrogenesis
(A) Scheme of lineage tracing experiments in Pdgfra-CreERT-RCE mice; E12.5-13.5 and P3-5 Pdgfra+ cells progeny was identified by GFP expression at

P7-8 when electrophysiological recordings were performed.

(B) Representative image showing a recorded cell labeled with biocytin-streptavidin (blue) and expression of NG2 (red); Scale bar represents 5 um.

(C) Representative voltage-clamp traces of OPCs (held at —70 mV) showing inward spontaneous post-synaptic currents.

(D) Frequency of events in seven txE12.5-cells (dark green) and fifteen txP3-cells (red). Tetrodotoxin (TTX) strongly reduced frequency spontaneous of events,
shown as txE12.5+TTX (five cells) and txP3+TTX (three cells). Blockage of glutamatergic receptors with CNQX/MK801 showed similar effect (txP3-CM, four cells).
(E) Cumulative distribution of events’ amplitudes and on the right side insert with average amplitudes for each cell. p values correspond to two-tailed Student’s
t test for independent (between groups) or paired-samples (for pharmacology experiments).

(F) Model for transcriptional convergence of the different waves of progenitors of oligodendrocyte lineage cells.

larger events recorded on OPCs derived from txP3 (Figure 6E).
In order to confirm that these events are due to spiking activity
in neighboring neurons, we blocked excitation by applying
10 uM of Tetrodotoxin (TTX) in slices from 2 animals per time
point. This drastically reduced the frequency of events in both
groups (Figure 6D): txE12+TTX (n = 5; 0.93 + 0.33 Hz; p =
0.038) and txP3+TTX (n = 3; 0.54 + 0.32 Hz; p = 0.075). Accord-
ingly, when glutamatergic receptors were blocked, we also
observed a robust decrease in number of events (txP3+CM—
1.2+ 1.3 Hz;n=4; p=0.11, Figure 6D). As such, OPCs derived
from the E13.5 wave present similar electrophysiological prop-
erties to OPCs derived from subsequent waves.

DISCUSSION

We have previously shown that OL lineage in the juvenile and
adult CNS is more heterogeneous than previously anticipated,
with several intermediate states after differentiation of OPCs
and six mature OL states (Marques et al., 2016). Here, we pro-
vide evidence that progenitor cells of the OL lineage with
different temporal and spatial origins in the CNS converge into
similar OPC transcriptional states at P7 (Figure 6F). Our results
from bulk and single-cell RNA-seq suggest that a transcriptional
network of embryonic patterning TFs is replaced at post-natal
stages in the anterior and posterior CNS by a convergent
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transcriptional network, associated with electrophysiological re-
sponses and compatible with activity-driven differentiation and
myelination (Koudelka et al., 2016; Gautier et al., 2015; Wake
et al., 2015; Gibson et al., 2014; Lundgaard et al., 2013; Demer-
ens et al., 1996). Given the occurrence of this convergence into
similar OPC states at post-natal stages, when differentiation
starts, subsequent cell-state diversification into six mature OL
cell states (Marques et al., 2016) is thus likely not cell intrinsic
but rather induced by the local environment OPCs are exposed
to upon differentiation (Figure 6F).

Previous transcriptomics studies on the OL lineage were
based on bulk populations expressing Pdgfra and focused on
single regions, such as the forebrain (Moyon et al., 2015; Zhang
et al., 2014; Cahoy et al., 2008). These studies were performed
with bulk RNA-seq or microarrays, and suggested, for instance,
that neonatal and adult OPCs presented different transcrip-
tional profiles (Moyon et al., 2015). In our study, bulk and sin-
gle-cell RNA transcriptomics were, for the first time, performed
on the exact same Pdgfra+ cell population at different stages
and regions, giving an unbiased and clear understanding of
what exactly these cells are at the molecular level and how
diverse the Pdgfra+ population is. Bulk RNA-seq analysis of
FACS-sorted Pdgfra+/GFP cells suggests heterogeneity be-
tween P7 OPCs from the spinal cord and brain, with the former
expressing genes involved in myelination at substantially higher
levels. However, scRNA-seq analysis of the populations pre-
sent at this stage indicates that OPCs are unexpectedly similar
at the transcriptional level, highlighting the strength of single-
cell RNA-seq analysis to deconvolute bulk transcriptomics
analysis.

OPCs in different anterior-posterior regions of the CNS
converge into similar transcriptional profiles at P7 that are
compatible to their main functions at that stage (integration of
neuronal activity and differentiation). Nevertheless, it is possible
that small cohorts of differentially expressed genes (Table S3)
might be involved in additional functions of OPCs, contributing
to different functional states within the OPC cell type within the
different regions or stages. Alternatively, it is possible that
intrinsic epigenetic differences between brain and spinal cord
OPCs are dormant, not reflected at a transcriptional level.
Such epigenetic memory, possibly in the form of post-transla-
tional modifications at the level of histones, could then be
reactivated upon specific environmental stimuli upon differentia-
tion. Further epigenomic experiments may elucidate whether
this is indeed the case.

Our data indicate that only a subset of Pdgfra/GFP+ cells at
E13.5 express markers of the future OL lineage, and that other
subsets have transcriptional profiles compatible with progeni-
tors of other cell lineages. Lineage tracing had previously indi-
cated that a small subset of post-natal Pdgfra/GFP+ cells can
give rise to neurons, although it was not clear whether this was
a technical artifact due to spurious Cre recombination (Clarke
et al., 2012). Motor neurons are specified at E9-10.5 at the
ventral CNS from an Olig2 domain, while a subsequent wave
of oligodendrogenesis starts occurring at E12.5, with the emer-
gence of Pdgfra+ cells (Rowitch, 2004). Thus, oligodendrogene-
sis, rather than neurogenesis, should be captured from this
domain at E13.5. Since we performed lineage tracing with
Pdgfra-Cre-ERT/RCE mice upon injection of tamoxifen at
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E12.5/13.5 and P3/P4 and combined with single-cell RNA-Seq
at P7/8, we could investigate whether this population can give
rise to neurons. Correlation analysis of this dataset with a previ-
ously published single-cell RNA-seq dataset (Zeisel et al., 2015)
indicates that the lineage-traced cells show high correlation with
OLs and astrocytes and/or ependymal cells, and much lower
with microglia, endothelial-mural cells or neurons (Figure S6C).
Nevertheless, four E13.5-derived cells have a high correlation
with neurons (Figure S6C). Additional single-cell RNA-seq will
be required to elucidate whether embryonic Pdgfra/GFP+ cells
indeed can give rise to neurons, since it is possible that the
four cells observed are due to spurious recombination.

The identification of progenitors of cells of the pericyte line-
age has been elusive (Armulik et al., 2011). We observed
E13.5 Pdgfra+ populations that express pericyte and VLMC
markers and can give rise to cells of the pericyte lineage. Peri-
cytes and OL progenitors have been described to share anti-
genic properties, including expression of Pdgfra and Cspg4
(NG2). Adult Pdgfra+ cells have also been described to occa-
sionally give rise to pericytes (Kang et al., 2010). Thus, it is
possible that Pdgfra+ eVMLC, or even one of the NP popula-
tions, are the progenitors of at least a subset of cells in the
pericyte lineage. Interestingly, it has been previously reported
that E7.5 Sox10+ neural crest cells give rise to pericytes in
the adult CNS (Simon et al., 2012). While we do not detect
Sox10 expression in eVLMCs or NPs, it is possible that these
cells are derived from an earlier progenitor population express-
ing Sox70. pnVLMCs, in contrast to pericytes and eVLMC,
express several genes that are present in cells of the OL line-
age, such as Plp1, Mbp, and Trf. This could suggest a lineage
relationship with OLs. Nevertheless, SC3NE and Monocle 2
(Figures 3 and S6) indicate that such a link is unlikely. As
such, we consider that the most likely explanation of our data
is that distinct sub-populations of Pdgfra+ cells at E13.5 give
rise to different lineages, rather than the existence of a multipo-
tential Pdgfra+ progenitor that gives rise both to OLs and
pericytes. These might have been generated from the Pdgfra+
NPs described above, or from a separate source, as cells asso-
ciated with blood vessels invading the developing CNS.
Lineage tracing using eVLMC or NP specific markers might
elucidate whether indeed any of these populations are progen-
itors within the pericyte lineage.

OPCs derived from the E13.5 wave presented similar elec-
trophysiological properties to OPCs derived from subsequent
waves (Figure 6). Nevertheless, there was a bimodal pattern of
electrophysiological activity for P3-derived OPCs. A subset of
second and/or third-wave-derived OPCs are more responsive
to the neighboring neuronal network than E13.5-derived OPCs
(Figure 6D), suggesting a higher heterogeneity of second and/
or third-wave-derived OPCs than first-wave-derived OPCs.
When analyzing the overall transcriptional profile of OPCs
derived from the E13.5 wave and other waves, no heterogene-
ity was found (Figure 5), indicating that the transcriptional state
could thus not account for the observed electrophysiological
differences. We observed scattered expression of several ion
channels and glutamate receptors (Figure 5E), which can be
consistent with cell heterogeneity at an electrophysiological
level. Techniques such as Patch-Seq (Fuzik et al., 2016) might
be able to address if this is indeed the case. Alternatively,



other post-transcriptional events, such as asymmetric distri-
bution of transcripts in OPC processes (Thakurela et al.,
2016) or translational events, might account for the observed
differences.

Our unexpected finding that post-natal OPCs from different
regions are transcriptionally similar suggests a strong selective
pressure during development to assure functional convergence
of these progenitor populations. This is in contrast with neuronal
lineages, where diversity of cell states arises early during devel-
opment, with progenitors expressing patterning TFs that will
ultimately determine the identity of their progeny (Mayer et al.,
2018; Mi et al., 2018). Interestingly, many of these TFs are
actively down-regulated upon terminal neuronal differentiation,
while their ectopic reactivation has been linked with cell death
and degeneration (von Schimmelmann et al., 2016). Neverthe-
less, the attenuation of patterning and/or specification transcrip-
tion we observe in the OL lineage is not a common event during
neural development. For instance, it does not occur within the
dopaminergic neuronal lineage, where patterning TFs such as
Lmx1a/b and Nurr1 continue to be expressed at adult stages
and have distinct functions relative to their developmental ones
(Doucet-Beaupré et al., 2016; Kadkhodaei et al., 2013). Our
results indicate that down-regulation of patterning and specifica-
tion TFs appear to be required for the establishment of an OPC
transcriptional state. Abnormal re-expression or retainment of
TFs expressed during embryogenesis might be deleterious to
post-natal OPCs or might prevent their capacity to differentiate
in the context of disease.
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STARXxMETHODS

KEY RESOURCES TABLE
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Antibodies

Chicken polyclonal anti-GFP Abcam ab13970, RRID:AB_300798
Goat polyclonal anti-PDGFRA R&D AF1062, RRID:AB_2236897
Rabbit polyclonal anti-COL1A1 Abcam ab21286, RRID:AB_446161
Mouse monoclonal anti-CC1 (anti-APC) Millipore OP80, RRID:AB_2057371
Rabbit polyclonal anti-NG2 Millipore AB5320, RRID:AB_11213678

Experimental Models: Organisms/Strains

Pdgfra-CreER"'/RCE (mouse)

Pdgfra-H2BGFP (mouse)

The Jackson Laboratory

Philippe Soriano

B6N.Cg-Tg(Pdgfra-CreERT)467Dbe/J crossed
with Gt(ROSA)26Sortm1.1(CAG-EGFP)Fsh/Mmjax

B6.129S4-Pdgfratm11(EGFP)Sor/J

Critical Commercial Assays

Neural tissue dissociation kit (P) Miltenyi 130-092-628
C1™ Single-Cell Reagent Kit for mRNA Seq Fluidigm 100-6201
miRNeasy micro kit Qiagen 217084
MaxTract High density Qiagen 29046

QuBit RNA HS assay kit ThermoFisher Q32852
RNA 6000 Pico Kit Agilent 5067-1513
TruSeq Stranded Total RNA Library Prep Kit lllumina 20020596
Other

C1™ Single-Cell Open App™ IFC, 10-17 um Fluidigm 100-8134

C1 instrument Fluidigm N/A
FACSAria lll Cell Sorter B5/R3/V3 BD biosciences N/A
Axopatch 200B Amplifier Molecular Devices N/A

Digidata 1322A Molecular Devices N/A

Nikon Ti-E with motorized stage Nikon N/A

7900HT Fast System Applied biosystems N/A
Software and Algorithms

FastQC Andrews (2010) https://www.bioinformatics.babraham.ac.uk/

STAR (v.2.5.0a)
GENCODE M8 annotations
featureCounts v1.5.0-p1
Bioconductor packages
biomaRt library

limma package

DESeq?2 package

heatmap3 library

RNASegPower library

topGO R package

Dobin et al. (2013)

Mudge and Harrow (2015)

Liao et al. (2014)

Gentleman et al. (2004)

Durinck et al. (2009)

Ritchie et al. (2015)

Love et al. (2014)

Zhao et al. (2014)

Hart et al. (2013)

Alexa and Rahnenfuhrer (2016)
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projects/fastqc/
https://github.com/alexdobin/STAR
https://www.gencodegenes.org/
http://bioinf.wehi.edu.au/featureCounts/
https://www.bioconductor.org/

https://bioconductor.org/packages/release/bioc/
html/biomaRt.html

http://bioconductor.org/packages/release/bioc/
html/limma.html

http://bioconductor.org/packages/release/bioc/
html/DESeqg2.html

https://cran.r-project.org/web/packages/
heatmap3/index.html

https://bioconductor.org/packages/release/bioc/
html/RNASeqPower.html

https://bioconductor.org/packages/release/bioc/
html/topGO.html
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Continued

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Fisher-elim algorithm

Cytoscape
EnrichmentMap plugin
HISAT2 version 2.0.5
Stringtie 1.3.1c
BackSPIN2 algorithm
Rpackage DPT

PAGODA (SCDE R-package)
MAST package R

Alexa et al. (2006)

Cline et al. (2007)
Merico et al. (2010)
Kim et al. (2015)
Pertea et al. (2015)
Marques et al. (2016)
Haghverdi et al. (2016)

Fan et al. (2016)
Finak et al. (2015)

https://bioconductor.org/packages/3.7/bioc/
vignettes/topGO/inst/doc/topGO.pdf

http://www.cytoscape.org/
http://baderlab.org/Software/EnrichmentMap
https://ccb.jhu.edu/software/hisat2/index.shtml
http://www.ccb.jhu.edu/software/stringtie/
https://github.com/linnarsson-lab/BackSPIN

https://www.rdocumentation.org/packages/
destiny/versions/2.0.4/topics/DPT

http://hms-dbmi.github.io/scde/
https://github.com/RGLab/MAST

SCN3E This paper https://github.com/Castelo-Branco-lab/
OPCsinglecell2017

Deposited Data

Raw and Analysed data This paper GEO: GSE95194 (single cell) and
GEO: GSE95093 (bulk)

Other

Webresource with browsable data This paper https://ki.se/en/mbb/oligointernode

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Gongalo
Castelo-Branco (goncalo.castelo-branco@ki.se).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Mice line used in this study included Pdgfra-cre-ERT/RCE (mixed C57BL/6NJ and CD1 background), which is result of a cross
between the Pdgfra-cre-ERT line (Kang et al., 2010) and the Z/EG line (Butt et al., 2008) and the Pdgfra-H2BGFP knock-in mouse
(Klinghoffer et al., 2002) (background C57BL/6NJ). Female Pdgfra-cre-ERT/RCE and the resulting embryos (E12.5) or pups (P3)
were used for lineage tracing. No further behavioral experiments were done in this group of animals.

Homozygous Pdgfra-H2BGFP, in which H2B-eGFP fusion gene is expressed under the promoter of the OPC marker, Pdgfra have
an embryonic lethal phenotype, with half of the embryos failing to survive past embryonic day 12.5 and the remainder failing to survive
beyond embryonic day 15.5 (https://www.jax.org/strain/007669). Therefore, we used heterozygote mice, in which Pdgfra is
expressed mainly in OPCs but the GFP remains to some extent in the early stages of OL differentiation, due to GFP half-life (Clarke
et al., 2012).

Mice were time mated to obtain embryos with 13.5 days or post-natal day 7 pups. Gender was randomized since the experiments
were mainly done in embryos and pups. The following light/dark cycle was used: dawn 6.00-7.00; daylight 07.00-18.00; dusk 18-00-
19.00; night 19.00-06.00. A maximum of 5 adult mice per IVC-cage of type Il Allentown. Breedings were done with 1 male and up
to 2 females. All experimental procedures performed followed the guidelines and recommendations of local animal protection legis-
lation and were approved by the local committee for ethical experiments on laboratory animals (Stockholms Norra Djurférsdksetiska
Namnd in Sweden).

METHOD DETAILS

OPC Extraction

Embryos with 13.5, E17.5 days and pups from post-natal day 7, from both genders of the Pdgfra-H2BGFP mice line were used to
extract OPCs. The dissociation method varied depending on the stage. For embryonic stage, forebrain and spinal cord were excised
and tissue was mechanical dissociated in HBSS with ions using 3 Pasteur pipettes of decreasing diameter. For post-natal stages, the
same tissues were dissociated with a Papain Neural dissociation kit from Miltenyi, following the manufacturer’s instructions.

FACS Sorting
The single-cell suspension from embryonic and post-natal tissue was FACS sorted for GFP cells using a BD FACSAria Ill Cell Sorter
B5/R3/V3 system. For bulk sequencing, cells were collected in non-sticky RNAse free tubes containing RNA Later, Qiazol was added
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and samples were snap frozen until further RNA extraction. For this, pooling of mice samples was performed to obtain at least
50,000 cells. For single-cell analysis, cells were collected in cutting solution with 1% BSA and quickly prepared for capture on the
C1 fluidigm system. FACS gating strategy is presented in Figure S1. We observed a gradient of GFP+ cells at P7. This gradient
was also previously observed in other studies with the Pdgfra-H2BGFP mice, where the OPC population was selected for the expres-
sion of high levels of GFP (Moyon et al., 2015). We performed qRT-PCR studies and determined that while the GFP++ population
expressed Pdgfra, Olig2 and Plp1, the GFP+ population lacked expression of these markers (data not shown, n = 1). Since the
main focus of our manuscript is OPCs, which express Pdgfra, we did not proceed to the analysis of the GFP+/Pdgfra- population.

RNA Extraction for Bulk RNA-Seq

RNA was extracted with miRNeasy micro kit from Qiagen, following manufacturer’s instructions with minor modifications. Briefly,
Qiazol extracts were thawed and vortexed for 1min. Chloroform was applied and mixture was transferred to a MaxTract High density
column. From that point on, the extraction was then performed according to the kit’s manual for low input samples. RNA was then
measured with QuBit RNA HS assay kit and Agilent RNA 6000 Pico Kit. 50 ng of RNA from each E13.5/ P7 sample was used for library
preparation. Each sample represented a pool of Pdgfra+ cells collected from 4 — 32 animals to achieve the 50ng required for library
preparation.

Library Preparation for Bulk RNA-Seq

lllumina’s TruSeq Stranded Total RNA Library Prep Kit was used according to manufacturer’s instructions. Three pooled biological
replicates were sequenced for each developmental stage and CNS region, and a total of 38 - 66 million 150 bp strand-specific paired-
end reads were generated for each replicate, comprising a total of 620.5 million reads across all datasets (Figure S1).

Single-Cell RNA-Seq Cell Capture and Imaging

Cell suspensions in a concentration of 600-1000 cells/uL was used. C1 Suspension Reagent was added (all 'C1’ reagents were from
Fluidigm, Inc.) in a ratio of 4uL to every 7uL cell suspension. 11pL of the cell suspension mix was loaded on a C1 Single-Cell AutoPrep
IFC microfluidic chip designed for 10- to 17um cells, and the chip was then processed on a Fluidigm C1 instrument using the ‘'mRNA
Seq: Cell Load (1772x/1773x)’ script (30 min at 4°C). The plate was then transferred to an automated microscope (Nikon TE2000E),
and a bright-field image (20x magnification) was acquired for each capture site using uManager (http://micro-manager.org/ (2)),
which took <15 minutes. Quality of cells, control for doublets and processing of C1 chips were performed in the Eukaryotic Single
Cell Genomics facility at ScilLife Lab, as described in Zeisel et al. (2015) and Marques et al. (2016).

Lineage Tracing

Pdgfra-cre-ERT/RCE female mice were injected 2mg tamoxifen (20mg/ml, Sigma) at pregnancy day E.12.5 (txE12.5) or when pups
were P3 (txP3). Brain tissue was then harvested at P7-P8 for electrophysiology and single-cell RNA sequencing and at P21 for immu-
nohistochemistry experiments, respectively. Since the Pdgfra-cre-ERT line was crossed with a low efficiency Z/EG reporter and not a
R26-GFP reporter, the likelihood of sporadic tamoxifen-independent recombination of the Pdgfra-CreERT mouse line in this study is
low (http://jackson.jax.org/rs/444-BUH-304/images/18280_Bergles.pdf).

Electrophysiology

P7-P8 pups were deeply anesthetized with isoflurane and brains were collected in ice-cold solution of the following composition
(in mM): 62.5 NaCl, 100 sucrose, 2.5 KCI, 25 NaHCO3, 1.25 NaH,PQO,4, 7 MgCl,, 1 CaCl,, and 10 glucose. Brains were vibratome
sectioned to 300um slices in the same solution and were then let recover for 1 h at room temperature in oxygenated aCSF
(in mM): 125 NaCl, 2.5 KCI, 25 NaHCO3, 1.25 NaH,PO4, 1 MgCl,, 1 CaCl,, and 10 glucose. To maximize the selection of OPCs
for electrophysiological recordings, we targeted small circular eGFP+ cells found in the corpus callosum, especially avoiding elon-
gated cells attached to blood vessels (which would be VLMCs or pericyte-lineage cells, labeled in this mouse line).

Whole-cell patch-clamp recordings were performed at 25+2°C, with slices continuously perfused with oxygenated aCSF. Patch
electrodes were made from borosilicate glass (resistance 5-8 MQ; Hilgenberg, GmbH) and filled with a solution containing
(in mM): 130 CsCl, 4 NaCl, 0.5 CaCl,, 10 HEPES, 10 EGTA, 4 MgATP, 0.5 Na,GTP. Neurobiotin (0.5%, Vectorlabs) was included
for post-hoc identification of recorded cells.

Cells were recorded in voltage-clamp mode held at -70 mV. At the end of the recording tetrodoxin (TTX, 10uM) or CNQX/MK-801
(10uM /5uM) were applied for 10 min to block spontaneous neuronal activity or glutamatergic inputs respectively. Currents were re-
corded with an Axopatch 200B amplifier (Molecular Devices), sampled at 10 kHz and digitized with Digidata 1322A (Molecular
Devices). All drugs were ordered from Sigma. In order to confirm their OPC identity, slices were fixed with 4% PFA for 1-2 h after
recording, washed and kept in PBS 4°C until stained for NG2 (rabbit anti-NG2 1:200, Millipore), Streptavidin 555 (1:1000, Invitrogen)
and Alexa-647 anti-rabbit (1:400, ThermoFisher). We did not recover post-staining for every recorded cell included in the analysis.
Nevertheless, we enriched our sample for OPCs, using a reporter mouse line and targeting small round eGFP+ cells. Accordingly,
all cells have homogenous intrinsic properties (e.g., input resistance — which differs greatly in more mature stages). Furthermore,
in relation to synaptic inputs we recovered eGFP+/NG2+ cells comprising both the lowest and the highest frequencies of synaptic
events.
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7 slices from 2 txE13.5 animals and 15 slices from 4 txP3 animals were recorded. In electrophysiology it is common to recorder
from 6-10 cells per group. After a first batch of experiments, we appreciated that the txP3 group was more heterogeneous (number
of events) and we decided to enlarge the sample to 15 cells in order to confirm the synaptic events distribution.
Electrophysiology Analysis
All traces were low-pass filtered at 1KHz (8-pole Bessel filter) and only events with amplitude larger than -10pA were included in the
analysis. We utilized a semi-automated event-detection on Clampex with which events were visually inspected and unclear cases
were discarded. Cells that died during recording or whose signals were not analyzed were excluded.

Immunohistochemistry

Pdgfra-CreERT/RCE mice recombined with Tamoxifen at E12.5 were perfused at P20 with PBS followed by 4% PFA. Brains and spi-
nal cords were dissected and postfixed with 4% PFA for 2h, at 4°C. The tissues were then cryoprotected with a 30% sucrose solution
for 48 hours. The tissues were embedded into OCT (Tissue-Tek) and sectioned coronally (20 um thickness).

Sections were quickly boiled in antigen retrieval (Dako, S1699) and stood in the antigen solution until cooling down. They were then
permeabilized in PBS/0.3% Triton (Millipore) 3x 5 minutes and blocked for 1 hour in PBS/0.3% Triton/5% normal donkey serum
(Sigma, D9663) at room temperature. Sections were incubated overnight at 4°C with primary antibodies [GFP (Abcam, ab13970,
chicken 1:2000), PDGFRA (R&D, AF1062, Goat 1:200), COL1A1 (Abcam, ab21286, rabbit, 1:50) or CC1 (anti-APC; Millipore,
OP80, Mouse 1:100) diluted in PBS/0.3% Triton/2% normal donkey serum. After washing the sections 3x 5min with PBS, secondary
Alexa Fluor-conjugated antibodies (Invitrogen, Alexa Fluor 488 1:500, Alexa Fluor 555 1:1000 and Alexa Fluor 647 1:250) diluted in
PBS/0.3% Triton/2% normal donkey serum were added and incubated for 1 hour at room temperature. Thereafter, slides were
mounted with mounting medium containing DAPI (Vector, H-1200) and kept at 4°C until further microscopic analysis.

Antibodies have been cited by other authors, are available on the webpage of the provider company or have been tested for immu-
nohistochemistry in mouse by the company.

Microscopy

Combined images of DAPI, Alexa 555, Alexa 488 and Alexa 647, spanning the corpus callosum (CC) and dorsal horn were obtained in
a Zeiss LSM700 Confocal. For quantifications, 3 animals were used in each timepoint and 4-5 slices were photographed per animal.
An average of 33 and 46 photos in CC and dorsal horn respectively were counted per animal. The number of animals used was similar
to those reported in previous publications presenting similar experiments (Kessaris et al., 2006). All the countings were normalized to
the area analysed in each photo. % of Pdgfra+Col1al- (OPCs) and Pdgfra+Col1al+ (VLMCs) cells out of GFP were calculated. The
remaining GFP cells (Pdgfra-/Col1a1-) were considered as non-OPC cells. The percentage of GFP cells out of the Pdgfra+ population
was counted as being OPCs derived from the E13.5 wave while the remaining Pdgfra+GFP- were considered to derive from the sec-
ond/third waves.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis of Gene Expression of Bulk RNA-Seq

After read quality control using FastQC (Andrews, 2010), STAR (Dobin et al., 2013) (v.2.5.0a) was used to map reads to the mouse
mm10 genome. GENCODE (Mudge and Harrow, 2015) M8 annotations were used to construct the splice junction database and as a
reference for the count tables. Gene-level count tables were obtained using featureCounts (Liao et al., 2014) v1.5.0-p1, assigning
multi-mapping reads fractionally to their corresponding loci and using convergent rounding to convert the resulting count tables
to the nearest integer values. Bioconductor packages were used for data processing and analysis (Gentleman et al., 2004), and
the biomaRt library was used for querying annotations and mapping across gene identifiers (Durinck et al., 2009). The limma package
was used for differential gene expression analysis (Ritchie et al., 2015), with normalisation carried out using the voom approach (Law
et al., 2014). Genes were tested for differential expression if they displayed 0.7 counts per million in at least three of the libraries, and
considered differentially expressed if found to have a Benjamini-Hochberg adjusted p-value < 0.05 and a greater than twofold change
in expression between queried samples. Exploratory data analysis and principle component analysis visualisation was carried out
using the DESeqg2 package (Love et al., 2014). Heatmaps were generated using the heatmap3 library (Zhao et al., 2014), using
the Spearman correlation coefficient between counts per million per gene as the distance metric for clustering.

3 replicates for each time point/tissue was run for RNA seq. Recent guidelines for "A survey of best practices for RNA-seq data
analysis" indicates that "three replicates are the minimum required for inferential analysis" (Conesa et al., 2016). We used the
RNASeqPower library (Hart et al., 2013) to perform power calculations on the count tables obtained after filtering out lowly expressed
genes. The lowest median depth was observed in the E13.5S3 dataset, with a median number of 90 reads per tested gene in the
library. Using this value as the coverage parameter for RNASeqPower, we revealed that with a within-group biological coefficient
of variation of 0.1, which is commonly used for inbred animals and with the 0.05 size of the test statistic we used (alpha) and a power
of 0.95, we would have needed 1.14 samples per group to accurately quantitate differential gene expression with a logFC > 2. Hence,
our analysis was adequately powered.

All tests used are in accordance with current best practices as outlined by Conesa et al. (2016) and analysis are carried out in line
with current best practices. All quality control metrics (% mapping, reads to genes etc) were consistent between the replicate
samples.
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Gene Ontology

Gene ontology analysis was carried out using the topGO R package (Alexa and Rahnenfuhrer, 2016) using the Fisher-elim algorithm
(Alexa et al., 2006). The Ensembl version 83 annotation was downloaded from biomaRt and used to generate the gene:category map-
pings. To take into account length bias in RNA-Seq gene ontology enrichment analysis (Young et al., 2010) a list of genes expressed
at similar levels but not differentially expressed between the two conditions was used, selecting 10 non-differentially expressed
genes for every differentially expressed one. The union of these genes for each condition was used as the background list for topGO.
For visualization, the results of the topGO analysis, expression values and the gene ontology mappings were exported to Cytoscape
(Cline et al., 2007), and the EnrichmentMap plugin (Merico et al., 2010) was used for visualizing the enriched categories and the
overlap between them. The size of each circle in Figures 1E and 1F indicates the number of genes contributing to each gene ontology
category, while the thickness of the connections between circles indicates the degree of overlap between the two categories
presented.

Single-Cell RNA-Seq
List of All the Single-Cell Experiments
2 E13.5 Brain experiments: 2 and 4 Fluidigm chips, respectively
1 E13.5 Spinal cord experiment — 4 Fluidigm chips
1 P7 Brain experiment — 4 Fluidigm chips
2 P7 Spinal cord experiments — 1 and 4 Fluidigm chips, respectively
2 experiments with P7 /P8 brain from E13.5 derived cells — 6 Fluidigm chips
1 experiment with P7/P8 brain from P3 derived cells — 3 Fluidigm chips
1 experiment with E17.5 brain — 1 Fluidigm chip

To prevent batch effects, in a balanced study design cells from different timepoints and regions would be mixed in each processed
single-cell run. Since we were collecting several timepoints and regions and using the Fluidigm C1 96 well Chips, this was not
possible to implement. Cells from the same area and age were collected and processed at several time points. We did not observe
differences between the experiments that would dramatically affect the analysis of the data, as assessed by comparison of the orig-
inal dataset with our dataset where the confounding factors were regressed out.

Single-Cell Clustering
Quality Control
Prior to clustering, cells from our dataset and the OPC, COP, and VLMC cells from Marques. et. al (Marques et al., 2016) were
selected based on a minimum transcript threshold. Cells had to express a minimum of 1000 mRNA molecules per cell excluding
mitochondrial RNA (filtered by the string “Mt-"), and repeat RNA (filtered by the string “r_") in order to be considered for analysis.
Distributions of transcript counts and total gene counts were calculated and categorized by cluster (Figure S1). Additionally 84 cells
were considered doublets due to a joint expression of either OL and neuronal genes, or a joint expression of OPC and VLMC asso-
ciated genes.

Weak single-cell data / dead cells which did not pass the quality control check have been filtered away from the single-cell analysis.

BackSPIN Clustering

The post QC dataset was clustered using the BackSPIN2 algorithm as previously described (Marques et al., 2016; Romanov et al.,
2017). In short, the algorithm is an adaptation to the sorting algorithm SPIN (Tsafrir et al., 2005) wherein a bi-clustering is performed by
sorting the cells and genes into a one-dimensional ordering where a binary split is performed based on the distribution of genes within
each ordering. The algorithm repeatedly performs feature selection and subsequent splits until a certain threshold is achieved.

Pathway and Geneset Overdispersion Analysis (PAGODA)

The post QC dataset was clustered using PAGODA (SCDE R-package) (Fan et al., 2016). First, the drop-out rate is determined and
the amplification noise is estimated through the use of a mixture-model. Then the first principal component is calculated for all gene
sets and GO-term clusters are provided or identified, and over-dispersion is defined as the amount of variance explained by the gene
set above expectation. Holm procedure is used as a part of the SCDE package.

Unbiased Cluster Determination PAGODA

Cluster generation within PAGODA is based on hierarchical clustering of the distance measure obtained from the first principal
component of the gene sets. We developed an algorithm to determine the final cluster amount in an unbiased way. First, we perform
a differential expression analysis using SDCE for each new split to calculate for each cluster what genes are differentially expressed
between them, we filter genes by a requirement to be expressed in at least 60% of the population, and then we calculate a p-value
assuming a normal distribution based on the Z-scores obtained from the differential expression analysis. Subsequently we either
discard the split or accept the split based on the significance of the top 20 most significant genes (p<0.01). Using these settings
the algorithm returned 15 clusters from the dataset.
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Merging of BackSPIN2 and PAGODA Clusters

BackSPIN2 sorts the expression matrix by genes and cells, then splits the cells iteratively forming clusters with associated genes.
Although bi-clustering (both cells and genes) is an advantage, genesets that are not unique to only one cluster can be discarded,
reducing sub-clustering power. PAGODA models the expression matrix, filtering out possible dropout genes. The residual expression
data is then assigned to pathways and genesets, which show coordinated variability in the dataset, and used to hierarchically cluster
the data in a set number of clusters. PAGODA is robust to noise through the use of co-varying genesets, potentially detecting
variations in gene expression that would be insignificant when measured using any one single gene. Nevertheless, PAGODA'’s
Bayesian modelling is slow and the number of clusters has to be set manually. In order to establish an unbiased end-point for cluster
splitting and avoid oversplitting in PAGODA, we implemented a custom algorithmic threshold, which performs differential gene
expression between clusters, and indicates whether they should be merged if no statistical difference in gene expression is detected.
In general, PAGODA and BackSPIN2 gave rise to clusters with similar transcriptional profiles. While we adopted the main BackSPIN2
clusters, PAGODA resolved OPCs as three populations and not as one population (as in BackSPIN2). This might be due to low
expression and the possible quiescent phenotype of some of the OPC clusters. PAGODA has the advantage of looking at patterns
of groups of genes instead of individual genes thus increasing sensitivity for low expressing cells. Therefore we retained the three
found OPC clusters in PAGODA and the NP3 cluster from PAGODA (due to their low expression) and merged them with the remaining
BackSPIN2 clusters. The remaining cells that were classified by backSPIN2 as OPCs but not by PAGODA, were reassigned to the
COP and NP3 clusters, given their transcriptional profile.

BackSPIN2 clustering indicated distinct clusters within the NFOL cluster. Enrichment analysis and marker selection revealed
shared markers and enriched genes as well as some minor differences in genes such as Mog and Mag expression. Further analysis
of these subclusters did not fall within the scope of this paper and as such the clusters were merged into the NFOL cluster. Further-
more, Enrichment analysis and marker selection of the NP1 cluster revealed a clear bimodal expression profile, hence we used the
BackSPIN2 clustering data to split one level deeper within the NP1 population resulting in the NP1a and NP1b subclusters. PAGODA
also revealed these when allowed to oversplit, our splitting algorithm indicated this split to form valid clusters. However, the NP1
cluster split was preceded by a number of non-valid splits, meaning that this cluster is a subcluster and statistical evaluation of split
validity is less effective due to the small cluster size.

Single-Cell Near-Neighbor Network Embedding (SCN3E)

Feature Selection

Initial gene selection involves a cutoff for expressed genes determined by expression above the mean expression of all genes, then a
feature selection is performed using the coefficient of variation, and for each gene we select genes above the support vector regres-
sion fitted line.

Dimensional Reduction of Count Based Expression Matrix Spaces

For dimensional reduction we use diffusion mapping, a non-linear dimensional reduction technique (Rpackage DPT) (Haghverdietal.,
2016) including a locally scaled transition matrix for improved resolution. We estimate the number of diffusion components using the
elbow method and overcluster the data in 100 clusters. Diffusionpseudotimes are then calculated for each of the 100 clusters of
which the first 20 principle components are used for subsequent network embedding (depending on the complexity of the dataset.
Nearest Neighbor Network Embedding and Lineage Estimation

The matrix of pseudotimes with origin of each previously determined cluster are reduced using PCA. Distances between cells are
defined using Manhattan distances. Per individual cell, the 20 nearest neighbors are calculated (within certain parameters, see
accompanying code) and network edges are created between them. Edges are then weighted based on the Pearson correlation.
The edge weights are then raised to a power (soft-thresholding). Generating a network based on transition probabilities
(pseudotimes) will emphasize smooth transitions and break up spurious connections in the graph.

Differential Gene Expression

Differential gene expression for scRNA-seq data was performed using MAST (Finak et al., 2015), and the SCDE R-package (Fan et al.,
2016). All enrichments were calculated using the geneselection obtained from the previously mentioned support vector model fitted
variable geneselection method. All differential expression analyses were performed using default settings.

Electrophysiology Analysis

For each cell, average amplitude and frequency values were calculated by total number events per time. Data are mean + s.e.m.
P-values are from Student’s two independent sample (p = 0.27; frequency F = 13.95, t = -1.53, df = 20; amplitude (F = 0.99,
t= 1.1, df = 18)) or paired t-tests (p = 0.033, p=0.06 and p=0.11; paired txE12.5 x txE12.5+TTX (t=2.497, df = 4); paired txP3 x
tXP3+TTX (t = 2.4974, dff = 2); paired txP3 x txP3+CM (t = 3.71, dff = 3)). *, p-value < 0.05.

Microscopy Analysis

Percentages of GFP*-Pdgfra* (fate mapped OPCs), GFP™-Col1a1* (fate mapped VLMCs), GFP*-Pdgfra/Col1al1” (fate mapped
oligodendrocytes) cells normalized by area were calculated. The results are expressed as means + SEM. Statistics comparing the
percentage of First and Second/third wave- derived OPCs were performed using two-tailed unpaired t test (Prism, GraphPad).
Statistics comparing the percentage of the VLMCs, OPCs, and other cell populations were performed using One-way
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ANOVA with Tukey’s multiple comparisons test (Prism, GraphPad). *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001
and ****, p-value < 0.0001.

DATA AND SOFTWARE AVAILABILITY
Data Resources
The accession number for the single-cell RNA-Seq raw data reported in this paper is GEO: GSE95194 and the accession number for

the bulk RNA-Seq raw data reported in this paper is GEO: GSE95093.

Software
Code used for bulk and single-cell RNA-Seq analysis is available at https://github.com/Castelo-Branco-lab/OPCsinglecell2017

ADDITIONAL RESOURCES

A web resource for browsing differential gene expression data for the single-cell and bulk data can be accessed at our resource
webpage https://ki.se/en/mbb/oligointernode.
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Figure S1 (related to Figures 1-2)
a) FACS sorting graph, highlighting selected Pdgfra+/GFP cells for bulk RNA-Seq;

b) FACS gating of GFP+ cells (FITC) from the P7 spinal cord of Pdgfra-H2B-GFP mice in 2 independent single cell RNA-Seq experiments.

c) FACS gating of GFP+ cells (FITC) from the P7 brain of Pdgfra-H2B-GFP mice in a single cell RNA-Seq experiment.

d) Bulk sequencing library depth and mapping statistics

e) Overlap between differentially expressed genes at each of the stages and regions investigated in the bulk RNA-Seq;

f) Heatmap showing hierarchical clustering of bulk samples based on normalised gene expression (counts per million mapped reads, cpmm) of selected genes
involved in oligodendrocyte lineage progression;

g) Single-Cell RNA sequencing Quality Control.
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Figure S2 (related to Figure1)

a) Gene ontology analysis with enriched biological functions overrepresented in either E13.5 versus P7 brain, and E13.5 versus P7 spinal cord.

b) Hierarchical clustering of bulk samples based on normalised gene expression (cpmm) of potassium and calcium channels, GABA, Sodium, HCN and TRP
receptors and neuromodulator-related, glutamate receptor genes observed in the bulk sequencing in Pdgfra+/GFP cells;

c) Hierarchical clustering of bulk samples based on normalised gene expression (cpmm) of pericyte marker and collagen related genes observed in the bulk
sequencing of Pdgfra+/GFP cells
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Figure S3 (related with Figure 2)

a) Differences and commonalities in the BackSPIN2 and PAGODA derived clusters, and the merged and final clusters as shown by tSNE;
b) Cluster overlap comparing PAGODA and BackSpin2, colorshaded by number of cells;

c) Noise corrected t-SNE after removal of hidden confounding factors using the f-scLVM package

d) Hierarchically clustered heatmap of top differentially expressed genes between Brain and Spinal Cord P7 OPCs, as assessed by SCDE
e) Hierarchically clustered heatmap of top differentially expressed genes between OPC1a, OPC1b, and OPCcyc, as assessed by SCDE
f) Total molecule count of cell cycle gene expression taken from GO:000749 among the different cell populations;
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Figure S4 (related to Figure 2) a) Single cell expression of known markers of different lineages in the different clusters, and of cell cycle geres.
b) In situ hybridisation of NP markers at E13.5 and P4 mouse CNS, from @2013 Allen Developing Mouse Brain Atlas
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Figure S5 (related to Figure 3)

a) t-SNE representation of single cell data as in Figure 2c, including in addition E17.5 Pdgfra+/GFP cells

b) SCN3E network analysis of the 12 OL lineage populations identified in Marques et al 2016, as a proof of concept of the SCN3E; Myelin forming
oligodendrocytes (MFOL)1 was suggested to be upstream mature oligodendrocytes MOL1, while MFOL2 was connected to MOL5;

c) SCN3E network analysis of embryonic ventral midbrain single-cell RNA-Seq from La Manno et all, 2016, with a focus on Rfx4+ populations
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Figure S6 (related to Figures 3 and 4)

a) Reverse graph embedding deconvolved path depicting the captured differentiation trajectories in the single cell data from brain (left) and spinal cord (right)
by Monocle2. Paths in the brain (b0/1/2) and spinal cord (s0/1/2) are shown as inferred by monocle, where the numbers 0, 1, and 2 stand for VLMC-,
Neuronal-, and Oligodendrocyte- fates respectively. b) Differential expression heatmap capturing the most differentially expressed genes related to the
oligodendrocyte (path 2) and neuronal lineage (path 1), with respect to the inferred branches in Monocle2. c) Pearson correlation performed on P7/8 single-
cell RNAseq dataset obtained from a lineage tracing experiment with Pdgfra-Cre-ERT/RCE mice upon injection of tamoxifen at E12.5/13.5 and P3/P4 and
Zeisel et al., 2015 single-cell RNA-Seq dataset. d) Screenshots of the resource website app, illustrating the exploration of expression data and table browsing.
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