Supplementary Table 1. List of antibodies used for staining and perturbation of adhesion function of integrins.

Antigen	Species, clonality, labeling	lsoty pe	Clone name	Company	Catalogue number	Application	Final concentration µg/ml
Human α1 integrin	mouse monoclonal, FITC	lgG1	TS2/7	Abcam	ab34176	FACS	10
Human α2 integrin	mouse monoclonal, FITC	lgG1	AK-7	BD Biosciences	555498	FACS	5
Human α3 integrin	mouse monoclonal	lgG1	17C6	Bio-Rad	MCA1948 GA	FACS	10
Human α6 integrin	Rat monoclonal	lgG2a	GoH3	BD Biosciences	555734	FACS	10
Human αV integrin	mouse monoclonal	lgG1	272- 17E6	Abcam	ab16821	FACS, Adhesion- perturbing	10
Human β1 integrin	mouse monoclonal	lgG1	4B4	Bechman Coulter	6603113	FACS, IF, Adhesion- perturbing	10 15
Human β3 integrin	mouse monoclonal	lgG1	Y2/51	Bio-Rad	MCA2588 GA	FACS	10
Human β4 integrin	mouse monoclonal	lgG1	ASC-3	Abcam	ab78267	FACS	10
Human Collagen IV	Rabbit polyclonal	lgG1	_	Sigma	PA1-28534	IF	5
Mouse Iaminin	Rabbit polyclonal	IgG	_	Sigma	L9393	IF	7
Human vimentin	Rabbit monoclonal	IgG	SP20	Thermo Scientific	MA5- 14564	IF	1:250
Chicken paxillin	Mouse monoclonal	lgG1	165/ Paxillin	BD Biosciences	610619	IF	10
lsotype control	Mouse monoclonal	lgG1	MOPC- 21	BD Biosciences	555746	FACS, IF, Adhesion- perturbing	10 10-15
lsotype control	Rat monoclonal	lgG2a	R35-95	BD Biosciences	553927	FACS, IF, Adhesion- perturbing	10
lsotype control, FITC	Mouse monoclonal	lgG1	MOPC- 21	BD Biosciences	551955	FACS	10

Supplementary Table 2. Proteins deposited by mouse astrocytes on cell culture dish identified by mass-spectrometry. Details are described in Materials and Methods section.

Click here to Download Table S2

Supplementary Table 3. Proteins deposited by human astrocytes on cell culture dish identified by mass-spectrometry. Details are described in Materials and Methods section.

Click here to Download Table S3

Supplementary information

Fig. S1. Expression of integrin subunits in U-251 and E-98 cells measured with flow cytometry.

Journal of Cell Science • Supplementary information

Fig. S2. Migration of glioma cells on rBM coated surface and in hyaluronan**rBM** interface is dependent on β 1, α V and α 6 integrin subunits. (A) Radial migration of U-251 and E-98 cells from spheroids after 24 h on plastic surface coated with rBM molecules (Matrigel) in media with control isotype IgGs or with adhesionperturbing anti-integrin mAbs 4B4 (β 1), 17E6 (α V), GoH3 (α 6) combined with cRGDfV peptide inhibiting RGD-binding integrins (α 5, α V). (B) Average radial migration distance of U-251 and E-98 cells from the spheroid margin. Data represent 10-13 (U-251) and 10-11 (E-98) spheroids per condition from 2 independent experiments. Values display the median (black line), 25/75 percentiles (boxes) and maximum/minimum (whiskers). (C) Migration of U-251 and E-98 cells from spheroids along hyaluronan-rBM interface in media with control isotype IgGs or with adhesionperturbing anti β 1 integrin mAb 4B4 or anti α 6 mAb GoH3. (D) Average migration distance of U-251 and E-98 cells along hyaluronan-rBM interface after 24 h. Data represent 10-14 (U-251) and 10-11 (E-98) spheroids per condition from 2 independent experiments. Values display the median (black line), 25/75 percentiles (boxes) and maximum/minimum (whiskers). Scale bars, 200 μm.

С

Proteins deposited by mouse astrocytes

PROTEIN	emPAI Sample 1	NR-PEPS Sample 1
serine protease HTRA1 precursor [Mus musculus]	2.26	17
tubulointerstitial nephritis antigen-like precursor [Mus musculus]	0.60	7
nidogen-1 precursor [Mus musculus]	0.54	16
cathelicidin-7 precursor [Bos taurus]	0.47	2
keratin 9 [Homo sapiens]	0.40	6
plasminogen activator inhibitor 1 precursor [Mus musculus]	0.39	6
vimentin [Mus musculus]	0.36	7
lysyl oxidase homolog 2 precursor [Mus musculus]	0.31	7
alpha-2-HS-glycoprotein precursor [Bos taurus]	0.28	3
keratin, type I cytoskeletal 14 [Bos taurus]	0.26	5
nidogen-1 precursor [Bos taurus]	0.25	10
PREDICTED: hemoglobin subunit beta-like [Bos taurus]	0.25	2
PREDICTED: keratin, type I cytoskeletal 10-like [Bos taurus]	0.23	4
actin, cytoplasmic 1 [Mus musculus]	0.21	3
keratin, type II cytoskeletal 1 [Mus musculus]	0.20	3
keratin, type I cytoskeletal 10 [Mus musculus]	0.17	3
laminin subunit beta-1 [Mus musculus]	0.17	9
vitronectin precursor [Bos taurus]	0.17	2
fibronectin precursor [Mus musculus]	0.16	11
keratin, type II cytoskeletal 6A [Bos taurus]	0.15	3
von Willebrand factor A domain-containing protein 1 precursor [Mus musculus]	0.15	2
PREDICTED: keratin, type II cytoskeletal 1 [Bos taurus]	0.14	3
laminin subunit gamma-1 precursor [Mus musculus]	0.13	7
PREDICTED: keratin, type I cytoskeletal 25-like [Bos taurus]	0.13	2
PREDICTED: keratin, type II cytoskeletal 2 epidermal [Bos taurus]	0.12	3
PREDICTED: keratin, type II cytoskeletal 3 [Bos taurus]	0.11	2
basement membrane-specific heparan sulfate proteoglycan core protein precursor [Mus musculus]	0.11	14
laminin subunit alpha-1 precursor [Mus musculus]	0.11	11
PREDICTED: keratin, type I cytoskeletal 13 [Bos taurus]	0.11	2
keratin, type II cytoskeletal 2 epidermal [Mus musculus]	0.10	3
collagen alpha-1(XVIII) chain isoform 2 precursor [Mus musculus]	0.10	4
lysyl oxidase homolog 4 isoform 1 precursor [Mus musculus]	0.10	3
keratin, type II cytoskeletal 7 [Bos taurus]	0.09	2
A disintegrin and metalloproteinase with thrombospondin motifs 1 precursor [Mus musculus]	0.06	2
prelamin-A/C isoform A [Mus musculus]	0.03	1
laminin subunit alpha-5 precursor [Mus musculus]	0.02	3

Fig. S3. Differences in protein composition of astrocyte-deposited matrix and rBM. (A) PAAG electrophoresis (in 6% and 10% gels) of rBM, mouse (mADM) and human (hADM) astrocyte deposited matrices (silver staining). (B) Matrix proteins identified both in mouse and human astrocyte matrix and low-abundance proteins in growth factor reduced rBM (Matrigel) based on published mass-spectrometry data (Hughes et al., 2010). (C) Proteins identified by mass-spectrometry in mouse astrocyte-deposited matrix.

References.

Hughes, C. S., Postovit, L. M. and Lajoie, G. A. (2010). Matrigel : A complex protein mixture required for optimal growth of cell culture. *Proteomics* **10**, 1886–1890.