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Abstract
Background The performance of RNA-Seq aligners and assemblers varies greatly across di�erent organisms and
experiments, and often the optimal approach is not known beforehand. Results Here we show that the accuracy of
transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate
multiple RNA-Seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select the
best transcript models according to user-speci�ed metrics, while solving common artefacts such as erroneous transcript
chimerisms. Conclusions We have implemented this method in an open-source Python3 and Cython program, Mikado,
available at https://github.com/lucventurini/Mikado.
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Background

The annotation of eukaryotic genomes is typically a complex
process which integrates multiple sources of extrinsic evidence
to guide gene predictions. Improvements and cost reductions
in the �eld of nucleic acid sequencing now make it feasible
to generate a genome assembly and to obtain deep transcrip-
tome data even for non-model organisms. However, for many
of these species often there are only minimal EST and cDNA
resources and limited availability of proteins from closely re-
lated species. In these cases, transcriptome data from high-
throughput RNA sequencing (RNA-Seq) provides a vital source
of evidence to aid gene structure annotation. A detailed map
of the transcriptome can be built from a range of tissues, de-
velopmental stages and conditions, aiding the annotation of
transcription start sites, exons, alternative splice variants and
polyadenylation sites.
Currently, one of the most commonly used technology for

RNA-Seq is Illumina sequencing, which is characterised by
extremely high throughput and relatively short read lengths.
Since its introduction, numerous algorithms have been pro-

posed to analyse its output. Many of these tools focus on the
problem of assigning reads to known genes to infer their abun-
dance [1, 2, 3, 4], or of aligning them to their genomic locus
of origin [5, 6, 7]. Another challenging task is the reconstruc-
tion of the original sequence and genomic structure of tran-
scripts directly from sequencing data. Many approaches devel-
oped for this purpose leverage genomic alignments [8, 9, 10, 11],
although there are alternatives based instead on de novo assem-
bly [9, 12, 13]. While these methods focus on how to analyse a
single dataset, related research has examined how to integrate
assemblies from multiple samples. While some researchers ad-
vocate for merging together reads from multiple samples and
assembling them jointly [9], others have developed methods to
integrate multiple assemblies into a single coherent annotation
[8, 14].
The availability of multiple methods has generated inter-

est in understanding the relative merits of each approach
[15, 16, 17]. The correct reconstruction of transcripts is often
hampered by the presence of multiple isoforms at each locus
and the extreme variability of expression levels, and therefore
in sequencing depth, within and across gene loci. This variabil-

Compiled on: January 18, 2018.
Draft manuscript prepared by the author.

1

Manuscript Click here to download Manuscript gigascience_article[1].pdf 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/lucventurini/Mikado
http://www.editorialmanager.com/giga/download.aspx?id=31821&guid=eea745cb-b68c-4c8e-a434-e329e4d14dc6&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=31821&guid=eea745cb-b68c-4c8e-a434-e329e4d14dc6&scheme=1


2 | GigaScience, 2018, Vol. 00, No. 0

ity also a�ects the correct identi�cation of transcription start
and end sites, as sequencing depth typical drops near the termi-
nal ends of transcripts. The issue is particularly severe in com-
pact genomes, where genes are clustered within small inter-
genic distances. Further, the presence of tandemly duplicated
genes can lead to alignment artefacts that then result in multi-
ple genes being incorrectly reconstructed as a fused transcript.
As observed in a comparison performed by the RGASP consor-
tium [18], the accuracy of each tool depends on how it corrects
for each of these potential sources of errors. However, it also
depends on other external factors such as the quality of the
input sequencing data as well as on species-dependent char-
acteristics, such as intron sizes and the extent of alternative
splicing. It has also been observed that no single method con-
sistently delivers the most accurate transcript set when tested
across di�erent species. Therefore, none of them can be deter-
mined a priori as the most appropriate for a given experiment
[19]. These considerations are an important concern in the de-
sign of genome annotation pipelines, as transcript assemblies
are a common component of evidence guided approaches that
integrate data from multiple sources (e.g. cDNAs, protein or
whole genome alignments). The quality and completeness of
the assembled transcript set can therefore substantially impact
on downstream annotation.
Following these studies, various approaches have been pro-

posed to determine the best assembly using multiple measures
of assembly quality [20, 19] or to integrate RNA-Seq assem-
blies generated by competing methods [21, 22, 23]. In this
study we show that alternative methods not only have di�er-
ent strengths and weaknesses, but that they also often comple-
ment each other by correctly reconstructing di�erent subsets
of transcripts. Therefore, methods that are not the best over-
all might nonetheless be capable of outperforming the “best”
method for a sub-set of loci. An annotation project typically
integrates datasets from a range of tissues or conditions, or
may utilise public data generated with di�erent technologies
(e.g. Illumina, PacBio) or sequencing characteristics (e.g. read
length, strand speci�city, ribo-depletion); in such cases, it is
not uncommon to produce at least one set of transcript as-
semblies for each of the di�erent sources of data, assemblies
which then need to be reconciled. To address these challenges,
we developed MIKADO, an approach to integrate transcript as-
semblies. The tool de�nes loci, scores transcripts, determines
a representative transcript for each locus, and �nally returns
a set of gene models �ltered to individual requirements, for
example removing transcripts that are chimeric, fragmented
or with short or disrupted coding sequences. Our approach
was shown to outperform both stand-alone methods and those
that combine assemblies, by returning more transcripts recon-
structed correctly and less chimeric and unannotated genes.

Results and discussion

Assessment of RNA-Seq based transcript reconstruc-
tion methods

We evaluated the performance of four commonly utilised tran-
script assemblers: Cu�inks, StringTie, CLASS2 and Trinity.
Their behaviour was assessed in four species, using as input
data RNA-Seq reads aligned with two alternative leading align-
ers, TopHat2 and STAR. In total, we generated 32 di�erent tran-
script assemblies, eight per species. In line with the previous
RGASP evaluation, we performed our tests on the three meta-
zoan species of Caenhorabditis elegans, Drosophila melanogaster
and Homo sapiens, using RNA-Seq data from that study as input.
We also added to the panel a plant species, Arabidopsis thaliana,
to assess the performance of these tools on a non-metazoan

genome. Each of these species has undergone extensive man-
ual curation to re�ne gene structures, and moreover, these an-
notations exhibit very di�erent gene characteristics in terms of
their proportion of single exon genes, average intron lengths
and number of annotated transcripts per gene (Supplementary
Table ST1). Similar to previous studies [18, 24], we based our
initial assessment on real rather than simulated data, to ensure
we captured the true characteristics of RNA-Seq data. Predic-
tion performance was benchmarked against the subset of an-
notated transcripts with all exons and introns (minimum 1X
coverage) identi�ed by at least one of the two RNA-Seq align-
ers.
The number of transcripts assembled varied substantially

across methods, with StringTie and Trinity generally recon-
structing a greater number of transcripts (Supplementary Fig-
ure SF1). Assembly with Trinity was performed using the
genome guided de-novo method, where RNA-Seq reads are
�rst partitioned into loci ahead of de-novo assembly. This
approach is in contrast to the genome guided approaches em-
ployed by the other assemblers that allow small drops in read
coverage to be bridged and enable the exclusion of retained in-
trons and other lowly expressed fragments. As expected Trin-
ity annotated more fragmented loci, with a higher proportion
of mono-exonic genes (Supplementary Figure SF1).
Accuracy of transcript reconstruction was measured using

recall and precision. For any given feature (nucleotide, exon,
transcript, gene), recall is de�ned as the percentage of cor-
rectly predicted features out of all expressed reference features,
whereas precision is de�ned as the percentage of all features
that correctly match a feature present in the reference. In line
with previous evaluations, we found that accuracy varied con-
siderably among methods, with clear trade-o�s between re-
call and precision (Supplementary Figure SF2). For instance,
CLASS2 emerged as the most precise of all methods tested, but
its precision came at the cost of reconstructing less transcripts
overall. In contrast, Trinity and StringTie often outperformed
the recall of CLASS2, but were also muchmore prone to yield er-
roneous transcripts (Supplementary Figure SF2, SF3). Notably,
the performance and the relative ranking of the methods dif-
fered among the four species (Table 1). We found CLASS2 and
StringTie to be overall the most accurate (with either aligner),
however exceptions were evident. For instance, the most accu-
rate method in D. melanogaster (CLASS2 in conjunction with
Tophat alignments) performed worse than any other tested
method in A. thaliana. The choice of RNA-Seq aligner also sub-
stantially impacted assembly accuracy, with clear di�erences
between the two when used in conjunction with the same as-
sembler.
Across the four species and depending on the aligner used,

22 to 35% of transcripts could be reconstructed by any com-
bination of aligner and assembler (Supplementary Table ST2).
However, some genes were recovered only by a subset of the
methods (Supplementary Table ST2), with on average 5% of
the genes being fully reconstructable only by one of the avail-
able combinations of aligner and assembler.
Taking the union of genes fully reconstructed by any of the

methods shows that an additional 14.92-19.08% of genes could
be recovered by an approach that would integrate the most
sensitive assembly with less comprehensive methods. This
complementarity manifests as well in relation to genes missed
by any particular method: while each approach failed to re-
construct several hundred genes on average, the majority of
these models could be fully or partially reconstructed by an al-
ternative method (Supplementary Figure SF3A). Another class
of error are artifactual fusion/chimeric transcripts that chain
together multiple genes. These artefacts usually arise from
an incorrect identi�cation of start and end sites during tran-
script reconstruction - an issue which appears most promi-
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Table 1. Cumulative z-score for each method aggregating individual z-scores based on base, exon, intron, intron chain, transcript and geneF1 score (top ranked method in bold, bottom ranked method underlined and in italics).
A. thaliana C. elegans D. melanogaster H. sapiens All methods

Method Z-score Rank Z-score Rank Z-score Rank Z-score Rank Z-score Rank
CLASS2 (STAR) 7.627 1 7.309 1 -3.310 6 5.258 1 16.884 1
StringTie (TopHat2) 0.584 4 5.502 3 6.612 2 3.199 3 15.897 2
CLASS2 (TopHat2) -5.542 8 6.698 2 9.314 1 4.998 2 15.738 3
StringTie (STAR) 2.621 3 -2.197 4 1.587 3 2.991 4 5.001 4
Cu�inks (STAR) 2.716 2 -2.306 5 -1.730 5 1.037 5 -0.283 5
Cu�inks (TopHat2) -0.526 5 -5.363 8 -1.504 4 -0.993 6 -8.386 6
Trinity (STAR) -4.120 7 -5.079 7 -4.762 7 -3.417 7 -17.458 7
Trinity (TopHat2) -3.280 6 -4.833 6 -6.206 8 -13.073 8 -27.392 8

nently in compact genomes with smaller intergenic distances
[9]. Among the methods tested, Cu�inks was particularly
prone to this class of error, while Trinity and CLASS2 assembled
far fewer such transcripts. Again, alternative methods com-
plemented each other, with many genes fused by one assem-
bler being reconstructed correctly by another approach (Sup-
plementary Figure SF3B). Finally, the e�ciency of transcript
reconstruction depends on coverage, a re�ection of sequenc-
ing depth and expression level. Methods in general agree on
the reconstruction of well-expressed genes, while they show
greater variability with transcripts that are present at lower
expression levels. Even at high expression levels, though, only
a minority of genes can be reconstructed correctly by every
tested combination of aligner and assembler (Supplementary
Figure SF4). Our results underscore the di�culty of transcript
assembly and highlight advantageous features of speci�cmeth-
ods. A naive combination of the output of all methods would
yield the greatest sensitivity, but at the cost of a decrease in
precision as noise from erroneous reconstructions accumulates.
Indeed, this is what we observe: in all species, while the recall
of the naive combination markedly improves even upon the
most sensitive method, the precision decreases (Supplemen-
tary Figure SF2). As transcript reconstruction methods exhibit
idiosyncratic strengths and weaknesses an approach that can
integrate multiple assemblies can potentially lead to a more
accurate and comprehensive set of gene models.

Overview of the Mikado method

Mikado provides a framework for integrating transcripts from
multiple sources into a consolidated set of gene annotations.
Our approach assesses, scores (based on user con�gurable crite-
ria) and selects transcripts from a larger transcript pool, lever-
aging transcript assemblies generated by alternative methods
or from multiple samples and sequencing technologies. The
software takes as input transcript structures in standard for-
mats such as GTF and GFF3, with optionally BLAST similarity
scores or a set of high quality splice junctions, and produces
a polished annotation and a rich set of metrics for each tran-
script. The software is written in python3 and Cython, and
extensive documentation is available from https://github.com/
lucventurini/mikado.
Mikado is composed of three core programs (prepare, se-

rialise, pick) executed in series. The Mikado prepare step
validates and standardizes transcripts, removing exact dupli-
cates and artefactual assemblies such as those with ambiguous
strand orientation (as indicated by canonical splicing). Dur-
ing the Mikado serialise step, data from multiple sources are
brought together inside a common database. Mikado by de-
fault analyses and integrates three types of data: open-reading
frames (ORFs) currently identi�ed via TransDecoder, protein
similarity derived through BLASTX or Diamond and high qual-
ity splice junctions identi�ed using tools such as Portcullis [25]

or Stampy [26]. The selection phase (Mikado pick) groups tran-
scripts into loci and calculates for each transcript over �fty nu-
merical and categorical metrics based on either external data
(e.g. BLAST support) or intrinsic qualities relating to CDS,
exon, intron or UTR features (summarised in Supplementary
Table ST3). While some metrics are inherent to each transcript
(e.g. the cDNA length), others depend on the context of the lo-
cus the transcript is placed in. A typical example would be the
proportion of introns of the transcript relative to the number
of introns associated to the genomic locus. Such values are de-
pendent on the loci grouping, and can change throughout the
computation, as transcripts are moved into a di�erent locus
or �ltered out. Notably, the presence of open reading frames
is used in conjunction with protein similarity to identify and
resolve fusion transcripts. Transcripts with multiple ORFs are
marked as candidate false-fusions; homology to reference pro-
teins is then optionally used to determine whether the ORFs de-
rive from more than one gene. If the fusion event is con�rmed,
the transcript is split into multiple transcripts (Figure 1).

Figure 1. The algorithm employed by Mikado is capable of solving complex
loci, with multiple potential assemblies. This locus in A. thaliana is particu-
larly challenging as an ancestral gene in the locus tandemly duplicated into the
current AT5G66610, AT5G66620 and AT5G66630 genes. Due to these di�cul-
ties, no single assembler was capable of reconstructing correctly all loci. For
instance, Trinity was the only method which correctly assembled AT5G66631,
but it failed to reconstruct correctly any other transcript. The reverse was
true for Cu�inks, which correctly assembled the three duplicated genes, but
completely missed the monoexonic AT566631. By choosing between di�erent
alternative assemblies, Mikado was capable to provide an evidence-based an-
notation congruent to the TAIR10 models.

To determine the primary transcript at a locus, Mikado as-
signs a score for each metric of each transcript, by assessing
its value relatively to all other transcripts associated to the
locus. Once the highest scoring transcript for the group has
been selected, Mikado will exclude all transcripts which are
directly intersecting it, and if any remain, iteratively select
the next best scoring transcripts pruning the graph until all
non-intersecting transcripts have been selected. This iterative
strategy ensures that no locus is excluded if e.g. there are un-
resolved read-through events that would connect two or more
gene loci. Grouping and �ltering happen in multiple sequen-
tial phases, each de�ned by di�erent rules for clustering tran-
scripts into loci (see methods). The process is controlled by a
con�guration �le that determines desirable gene features, al-
lowing the user to de�ne criteria for transcript �ltering and
scoring as well as specifying minimum requirements for po-
tential alternative splicing events.
We also developed a Snakemake-based pipeline, Daijin, in

order to drive Mikado, including the calls to external programs
to calculate ORFs and protein homology. Daijin works in two
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independent stages, assemble and mikado. The former stage
enables transcript assemblies to be generated from the read
datasets using a choice of read alignment and assembly meth-
ods. In parallel, this part of the pipeline will also calculate
reliable junctions for each alignment using Portcullis. The lat-
ter stage of the pipeline drives the steps necessary to execute
Mikado, both in terms of the required steps for our program
(prepare, serialise, pick) and of the external programs needed
to obtain additional data for the picking stage (currently, ho-
mology search and ORF detection). A summary of the Daijin
pipeline is reported in Figure 2.

Figure 2. Schematic representation of the Mikado work�ow.

Performance of Mikado

To provide a more complete assessment we evaluated the per-
formance of Mikado on both simulated and real data. While real
data represents more fully the true complexity of the transcrip-
tome simulated data generates a known set of transcripts to
enable a precise assessment of prediction quality. For our pur-
poses, we used SPANKI to simulate RNA-Seq reads for all four
species, closely matching the quality and expression pro�les
of the corresponding real data. Simulated reads were aligned
and assembled following the same protocol that was used for
real data, above. Mikado was then used to integrate the four
di�erent transcript assemblies for each alignment.
Across the four species and on both simulated and real data,

Mikado was able to successfully combine the di�erent assem-
blies, obtaining a higher accuracy than most individual tools in
isolation. Compared with the best overall combination, CLASS2
on STAR alignments, Mikado improved the accuracy on aver-
age by 6.58% and 9.23% on simulated and real data at the
transcript level, respectively (Figure 3 and Additional File 2).
Most of this improvement accrues due to an improved recall
rate without signi�cant losses on precision. We register a sin-
gle exception, on H. sapiens simulated data, due to an excess of
intronic gene models which pervade the assemblies of all other
tools. On simulated data, CLASS2 is able to detect these models
and exclude them, most probably using its re�ned �lter on low-
coverage regions [11]; however, this increase in precision is ab-
sent when using TopHat2 as an aligner and on real data. Aside
from the accuracy in correctly reconstructing transcript struc-
tures, in our experiments, merging and �ltering the assemblies
proved an e�ective strategy to produce a comprehensive tran-
script catalogue: Mikado consistently retrieved more loci than
the most accurate tools, while avoiding the sharp drop in preci-
sion of more sensitive methods such as e.g. Trinity (Figure 3b).
Finally, Mikado was capable to accurately identify and solve
cases of artefactual gene fusions, which mar the performance
of many assemblers. As this kind of error is more prevalent
in our real data, the increase in precision obtained by using
Mikado was greater using real rather than simulated data.

Figure 3. Performance of Mikado on simulated and real data. a We evaluated
the performance of Mikado using both simulated data and the original real data.
The method with the best transcript-level F1 is marked by a circle. b Number
of reconstructed, missed and chimeric genes in each of the assemblies. Notice
the lower level of chimeric events in simulated data.

We further assessed the performance of Mikado in com-
parison with three other methods that are capable of inte-

grating transcripts from multiple sources: Cu�Merge [27],
StringTie-merge [14] and EvidentialGene [23, 28]. Cu�Merge
and StringTie-merge perform a meta-assembly of transcript
structures, without considering ORFs or homology. In con-
trast, EvidentialGene is similar to Mikado in that it classi�es
and selects transcripts, calculating ORFs and associated quality
metrics from each transcript to inform its choice. In our tests,
Mikado consistently performed better than alternative combin-
ers, in particular when compared to the two meta-assemblers.
The performance of StringTie-merge and Cu�Merge on simu-
lated data underscored the advantage of integrating assemblies
from multiple sources as both methods generally improved re-
call over input methods. However, this was accompanied by
a drop in precision, most noticeably for Cu�Merge, as assem-
bly artefacts present in the input assemblies accumulated in
the merged dataset. In contrast, the classi�cation and �lter-
ing based approach of EvidentialGene led to a more precise
dataset, but at the cost of a decrease in recall. Mikado managed
to balance both aspects, thus showing a better accuracy than
any of the alternative approaches (A. thaliana +6.24%, C. ele-
gans +7.66%, D.melanogaster +9.48%, H. sapiens +4.92% F1 im-
provement over the best alternative method). On real and sim-
ulated data, Mikado and EvidentialGene generally performed
better than the two meta-assemblers, with an accuracy di�er-
ential that ranged from moderate in H. sapiens (1.67 to 4.32%)
to very marked in A. thaliana (14.87 to 29.58%). An impor-
tant factor a�ecting the accuracy of the meta-assemblers with
real data is the prevalence of erroneous transcript fusions that
can result from incorrect read alignment, genomic DNA con-
tamination or bona �de overlap between transcriptional units.
Both StringTie-merge and Cu�Merge were extremely prone to
this type of error, as across the four species they generated
on average 2.39 times the number of fusion genes compared
to alternative methods (Figure 3b). Between the two selection
based methods, EvidentialGene performed similarly to Mikado
on real data but much worse on simulated data: its accuracy
was on average 2 points lower than Mikado on real data, and
8.13 points lower in the simulations. This is mostly due to a
much higher precision di�erential between the two methods
in simulated data, with Mikado much better than Evidential-
Gene on this front (+8.95% precision on simulated data).

Filtering lenient assemblies

Although our tests have been conducted using default param-
eters for the various assemblers, these parameters can be ad-
justed to alter the balance between precision and sensitivity
according to the goal of the experiment. In particular, three
of the assemblers we tested provide a parameter to �lter out
alternative isoforms with a low abundance. This parameter is
commonly referred to as “minimum isoform fraction”, or MIF,
and sets for each gene a minimum isoform expression thresh-
old relative to the most expressed isoform. Only transcripts
whose abundance ratio is greater than the MIF threshold are re-
ported. Therefore, lowering this parameter will yield a higher
number of isoforms per locus, retaining transcripts that are
expressed at low levels and potentially increasing the number
of correctly reconstructed transcripts. This improved recall is
obtained at the cost of a drop in precision, as more andmore in-
correct splicing events are reported (Supplementary Figure 4).
Mikado can be applied on top of these very permissive assem-
blies to �lter out spurious splicing events. In general, �ltering
with Mikado yielded transcript datasets that are more precise
than those produced by the assemblers at any level of chosen
MIF, or even when comparing the most relaxed MIF in Mikado
with the most conservative in the raw assembler output (Fig-
ure 4).
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Figure 4. Performance of Mikado while varying the Minimum Isoform Frac-
tion parameter.. Precision/recall plot at the gene and transcript level for CLASS
and StringTie at varying minimum isoform fraction thresholds in A. thaliana,
with and without applying Mikado. Dashed lines mark the F1 levels at di�er-
ent precision and recall values. CLASS sets MIF to 5% by default (red), while
StringTie uses a slightly more stringent default value of 10% (cyan).

Multi-sample transcript reconstruction

Unravelling the complexity of the transcriptome requires
assessing transcriptional dynamics across many samples.
Projects aimed at transcript discovery and genome annota-
tion typically utilize datasets generated across multiple tissues
and experimental conditions to provide a more complete rep-
resentation of the transcriptional landscape. Even if a sin-
gle assembly method is chosen, there is often a need to inte-
grate transcript assemblies constructed frommultiple samples.
StringTie-merge, Cu�Merge and the recently published TACO
[29] have been developed with this speci�c purpose in mind.
The meta-assembly approach of these tools can reconstruct
full-length transcripts when they are fragmented in individ-
ual assemblies, but as observed earlier, it is prone to creating
fusion transcripts. TACO directly addresses this issue with a
dedicated algorithmic improvement, ie change-point detection.
This solution is based on fusion transcripts showing a dip in
read coverage in regions of incorrect assembly; this change in
coverage can then be used to identify the correct breakpoint. A
limitation of the implementation in TACO is that it requires ex-
pression estimates to be encoded in the input GTFs, and some
tools do not provide this information.
To assess the performance of Mikado for multi sample re-

construction, we individually aligned and assembled the twelve
A. thaliana seed development samples from PRJEB7093, us-
ing the four single-sample assemblers described previously.
The collection of twelve assemblies per tool was then inte-
grated into a single set of assemblies, using di�erent combin-
ers. StringTie-merge and TACO could not be applied to the
Trinity dataset, as they both require embedded expression data
in the GTF �les, which is not provided in the Trinity output.
In line with the results published in the TACO paper [29], we
observed a high rate of fusion events in both StringTie-merge
and Cu�Merge results (Figure 5b), which TACO reduced. How-
ever, none of these tools performed as well as EvidentialGene
or Mikado, either in terms of accuracy, or in avoiding gene fu-
sions (Figure 5). Mikado achieved the highest accuracy irre-
spective of the single sample assembler used, with an improve-
ment in F1 over the best alternative method of +8.25% for Cuf-
�inks assemblies, +2.23% in StringTie, +0.95% with CLASS2
and +6.65% for Trinity.

Figure 5. Integrating assemblies coming from multiple samples. a Mikado
performs consistently better than other merging tools. StringTie-merge and
TACO are not compatible with Trinity results and as such have not been in-
cluded in the comparison. b Rate of recovered, missed, and fused genes for all
the assembler and combiner combinations.

Transcript assemblies are commonly incorporated into
evidence-based gene �nding pipelines, often in conjunction
with other external evidence such as cross species protein se-
quences, proteomics data or synteny. The quality of transcript
assembly can therefore potentially impact on downstream gene
prediction. To test the magnitude of this e�ect, we used the
data from these experiments on A. thaliana to perform gene
prediction with the popular MAKER annotation pipeline, using
Augustus with default parameters for the species as a gene pre-

dictor. Our results (Supplementary Figure SF5) show that, as
expected, an increased accuracy in the transcriptomic dataset
leads to an increased accuracy in the �nal annotation. Impor-
tantly, MAKER was not capable of reducing the prevalence of
gene fusion events present in the transcript assemblies. This
suggests that ab initio Augustus predictions utilized by MAKER
do not compensate for incorrect fusion transcripts that are
provided as evidence, and stress the importance of pruning
these mistakes from transcript assemblies before performing
an evidence-guided gene prediction.

Expansion to long read technologies

Short read technologies, due to their low per-base cost and ex-
tensive breadth and depth of coverage, are commonly utilised
in genome annotation pipelines. However, like the previous
generation Sanger ESTs, their short size requires the use of
sophisticated methods to reconstruct the structure of the origi-
nal RNA molecules. Third-generation sequencing technologies
promise to remove this limitation, by generating full-length
cDNA sequences. These new technologies currently o�er lower
throughput and are less cost e�ective, but have in recent stud-
ies been employed alongside short read technologies to de�ne
the transcriptome of species with large gene content [30, 31].
We tested the complementarity of the two technologies by

sequencing two samples of a standard human reference RNA
library with the leading technologies for both approaches, Il-
lumina HiSeq for short-reads (250 bp, paired-end reads) and
the Paci�c Bioscience IsoSeq protocol for long reads. Given the
currently higher per-base costs of long-read sequencing tech-
nologies, read coverage is usually much lower than for short
read sequencing. We found many genes to be reconstructed
by both platforms, but as expected given the lower sequenc-
ing depth there was a clear advantage for the Illumina dataset
on genes with expression lower than 10 TPM (Supplementary
Figure SF6). We veri�ed the feasibility of integrating the re-
sults given by the di�erent sequencing technologies by combin-
ing the long reads with the short read assemblies, either sim-
ply concatenating them, or by �ltering them with Evidential-
Gene and Mikado (Supplementary Figure SF8). An advantage
of Mikado over the two alternative approaches is that it allows
to prioritise PacBio reads over Illumina assemblies, by giving
them a slightly higher base score. In this analysis, we saw
that even PacBio data on its own might require some �ltering,
as the original sample contains a mixture of whole and frag-
mented molecules, together with immature transcripts. Both
Mikado and EvidentialGene are capable of identifying mature
coding transcripts in the data, but Mikado shows a better recall
and general accuracy rate, albeit at the cost of some precision.
However, Mikado performed much better than EvidentialGene
in �ltering either the Illumina data on its own, or the combina-
tion of the two technologies. Although the �ltering inevitably
loses some of the real transcripts, the loss is compensated by
an increased overall accuracy. Mikado performed better in this
respect than EvidentialGene, as the latter did not noticeably
improve in accuracy when given a combination of PacBio and
Illumina data, rather than the Illumina data alone.

Conclusions

Transcriptome assembly is a crucial component of genome an-
notation work�ows, however, correctly reconstructing tran-
scripts from short RNA-Seq reads remains a challenging task.
Over recent years methods for both de novo and reference
guided transcript reconstruction have accumulated rapidly.
When combined with the large number of RNA-seq mapping
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tools deciding on the optimal transcriptome assembly strat-
egy for a given organism and RNA-Seq data set (stranded/un-
stranded, polyA/ribodepleted) can be bewildering. In this arti-
cle we showed that di�erent assembly tools are complementary
to each other; fully-reconstructing genes only partially recon-
structed or missing entirely from alternative approaches. Simi-
larly, when analysingmultiple RNA-Seq samples, the complete
transcript catalogue is often only obtained by collating together
di�erent assemblies. For a gene annotation project it is there-
fore typical to have multiple sets of transcripts, be they derived
from alternative assemblers, di�erent assembly parameters or
arising from multiple samples. Our tool, Mikado, provides a
framework for integrating transcript assemblies exploiting the
inherent complementarity of the data to to produce a high-
quality transcript catalogue.
Rather than attempting to capture all transcripts, our ap-

proach aims to mimic the selective process of manual cura-
tion by evaluating and identifying a sub-set of transcripts from
each locus. The criteria for selection can be con�gured by the
user, enabling them to for example to penalise gene models
with truncated ORFs, those with non-canonical splicing, tar-
gets for nonsense mediated decay or chimeric transcripts span-
ning multiple genes. Such gene models may represent bona
�de transcripts (with potentially functional roles), but can also
arise from aberrant splicing or, as seen from our simulated
data, from incorrect read alignment and assembly. Mikado
acts as a �lter principally to identify coding transcripts with
complete ORFs and is therefore in line with most reference an-
notation projects that similarly do not attempt to represent all
transcribed sequences. Our approach is made possible by in-
tegrating the data on transcript structures with additional in-
formation generally not utilised by transcript assemblers such
as similarity to known proteins, the location of open reading
frames and information on the reliability of splicing junctions.
This information aids Mikado in performing operations such
as discarding spurious alternative splicing events, or detecting
chimeric transcripts. This allows Mikado to greatly improve in
precision over the original assemblies, with in general minimal
drops in recall. Moreover, similarly to TACO, Mikado is capable
of identifying and resolving chimeric assemblies, which nega-
tively a�ect the precision of many of the most sensitive tools,
such as StringTie or the two meta-assemblers Cu�merge and
StringTie-merge.
Our experiments show that Mikado can aid genome anno-

tation by generating a set of high quality transcript assem-
blies across a range of di�erent scenarios. Rather than hav-
ing to identify the best aligner/assembly combination for ev-
ery project, Mikado can be used to integrate assemblies from
multiple methods, with our approach reliably identifying the
most accurate transcript reconstructions and allowing the user
to tailor the gene set to their own requirements. It is also sim-
ple to incorporate assemblies from new tools even if the new
method is not individually the most accurate approach. Given
the challenges associated with short-read assembly it is desir-
able (when available) to integrate these with full-length cDNA
sequences. Mikado is capable of correctly integrating analyses
coming from di�erent assemblers and technologies, including
mixtures of Illumina and PacBio data. Our tool has already been
employed for such a task on the large, repetitive genome of
Triticum aestivum [31], where it was instrumental in selecting a
set of gene models from over ten million transcript assemblies
and PacBio IsoSeq reads. The consolidated dataset returned by
Mikado was almost thirty times smaller than the original in-
put dataset, and this polishing was essential both to ensure
a high-quality annotation and to reduce the running times of
downstream processes.
In conclusion, Mikado is a �exible tool which is capable of

handling a plethora of data types and formats. Its novel selec-

tion algorithm was shown to perform well in model organisms
and was central in the genome annotation pipeline of various
species [32, 31, 33]. Its deployment should provide genome an-
notators with another powerful tool to improve the accuracy
of data for subsequent ab initio training and evidence-guided
gene prediction.

Methods

Input datasets

For C. elegans, D. melanogaster and H. sapiens, we retrieved from
the European Nucleotide Archive (ENA) the raw reads used for
the evaluation in [18], under the Bioproject PRJEB4208. We
further selected and downloaded a publicly available strand-
speci�c RNA-Seq dataset for A. thaliana, PRJEB7093. Congru-
ently with the assessment in [18], we used genome assem-
blies and annotations from EnsEMBL v. 70 for all metazoan
species, while for A. thaliana we used the TAIR10 version. For
all species, we simulated reads using the input datasets as tem-
plates. Reads were trimmed with TrimGalore v0.4.0 [34] and
aligned onto the genome with Bowtie v1.1.2 [35] and HISAT
v2.0.4 [7]. The HISAT alignments were used to calculate the ex-
pression levels for each transcript using Cu�inks v2.2.1, while
the Bowtie mappings were used to generate an error model
for the SPANKI Simulator v.0.5.0 [36]. The transcript cover-
ages and the error model were then used to generate simulated
reads, at a depth of 10X for C. elegans and D. melanogaster and
3X for A. thaliana and H. sapiens. A lower coverage multiplier
was applied to the latter species to have a similar number of
reads for all four datasets, given the higher sequencing depth
in the A. thaliana dataset and the higher number of reference
transcripts in H. sapiens. cDNA sequences for A. thaliana were
retrieved from the NCBI Nucleotide database on the 21st of April
2017, using the query:
‘‘Arabidopsis ’’ [Organism] OR arabidopsis[All

Fields ]) AND ‘‘Arabidopsis thaliana ’’[porgn]

AND biomol\_mrna [PROP]

For the second experiment on H. sapiens, we sequenced two
samples of the Stratagene Universal Human Reference RNA
(catalogue ID#740000), which consists of a mixture of RNA de-
rived from ten di�erent cell lines. One sample was sequenced
on an Illumina HiSeq2000 and the second on a Paci�c Bio-
sciences RSII machine. Sequencing runs were deposited in ENA,
under the project accession code PRJEB22606.
Preparation and sequencing of Illumina libraries
The libraries for this project were constructed using the
NEXT�ex™Rapid Directional RNA-Seq Kit (PN: 5138-08) with
the NEXT�ex™DNA Barcodes – 48 (PN: 514104) diluted to 6µm.
The library preparation involved an initial QC of the RNA us-
ing Qubit DNA (Life technologies Q32854) and RNA (Life tech-
nologies Q32852) assays as well as a quality check using the
PerkinElmer GX with the RNA assay (PN:CLS960010)
1µg of RNA was puri�ed to extract mRNA with a poly-A pull

down using biotin beads, fragmented and �rst strand cDNA
was synthesised. This process reverse transcribes the cleaved
RNA fragments primed with random hexamers into �rst strand
cDNA using reverse transcriptase and random primers. The
second strand synthesis process removes the RNA template
and synthesizes a replacement strand to generate dscDNA. The
ends of the samples were repaired using the 3’ to 5’ exonuclease
activity to remove the 3’ overhangs and the polymerase activ-
ity to �ll in the 5’ overhangs creating blunt ends. A single ‘A’
nucleotide was added to the 3’ ends of the blunt fragments to
prevent them from ligating to one another during the adapter
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ligation reaction. A corresponding single ’T’ nucleotide on the
3’ end of the adapter provided a complementary overhang for
ligating the adapter to the fragment. This strategy ensured a
low rate of chimera formation. The ligation of a number index-
ing adapters to the ends of the DNA fragments prepared them
for hybridisation onto a �ow cell. The ligated products were
subjected to a bead based size selection using Beckman Coulter
XP beads (PN: A63880). As well as performing a size selection
this process removed themajority of un-ligated adapters. Prior
to hybridisation to the �ow cell the samples were PCR’d to en-
rich for DNA fragments with adapter molecules on both ends
and to amplify the amount of DNA in the library. Directionality
is retained by adding dUTP during the second strand synthesis
step and subsequent cleavage of the uridine containing strand
using Uracil DNA Glycosylase. The strand that was sequenced
is the cDNA strand. The insert size of the libraries was veri�ed
by running an aliquot of the DNA library on a PerkinElmer GX
using the High Sensitivity DNA chip (PerkinElmer CLS760672)
and the concentration was determined by using a High Sensi-
tivity Qubit assay and q-PCR.
The constructed stranded RNA libraries were normalised

and equimolar pooled into two pools. The pools were quanti�ed
using a KAPA Library Quant Kit Illumina/ABI (KAPA KK4835)
and found to be 6.71nm and 6.47nm respectively. A 2nm di-
lution of each pool was prepared with NaOH at a �nal concen-
tration of 0.1N and incubated for 5 minutes at room tempera-
ture to denature the libraries. 5µl of each 2nm dilution was
combined with 995µl HT1 (Illumina) to give a �nal concentra-
tion of 10pm. 135µl of the diluted and denatured library pool
was then transferred into a 200µl strip tube, spiked with 1%
PhiX Control v3 (Illumina FC-110-3001) and placed on ice be-
fore loading onto the Illumina cBot with a Rapid v2 Paired-end
�ow-cell and HiSeq Rapid Duo cBot Sample Loading Kit (Illu-
mina CT-403-2001). The �ow-cell was loaded on a HiSeq 2500
(Rapid mode) following the manufacturer’s instructions with a
HiSeq Rapid SBS Kit v2 (500 cycles) (Illumina FC-402-4023)
and HiSeq PE Rapid Cluster Kit v2 (Illumina PE-402-4002).
The run set up was as follows: 251 cycles/7 cycles(index)/251
cycles utilizing HiSeq Control Software 2.2.58 and RTA 1.18.64.
Reads in .bcl format were demultiplexed based on the 6bp Illu-
mina index by CASAVA 1.8 (Illumina), allowing for a one base-
pair mismatch per library, and converted to FASTQ format by
bcl2fastq (Illumina).
Preparation and sequencing of PacBio libraries
The Iso-Seq libraries were created starting from 1µg of hu-
man total RNA and full-length cDNA was then generated us-
ing the SMARTer PCR cDNA synthesis kit (Clontech, Takara
Bio Inc., Shiga, Japan) following PacBio recommendations set
out in the Iso-Seq method (http://goo.gl/1Vo3Sd). PCR op-
timisation was carried out on the full-length cDNA using
the KAPA HiFi PCR kit (Kapa Biosystems, Boston USA) and
12 cycles were su�cient to generate the material required
for ELF size selection. A timed setting was used to frac-
tionate the cDNA into 12 individual sized fractions using the
SageELF (Sage Science Inc., Beverly, USA), on a 0.75% ELF
Cassette. Prior to further PCR, the ELF fractions were equimo-
lar pooled into the following sized bins: 0.7-2kb, 2-3kb, 3-
5kb and > 5kb. PCR was repeated on each sized bin to gen-
erate enough material for SMRTbell library preparation, this
was completed following Pacbio recommendations in the Iso-
Seq method. The four libraries generated were quality checked
using Qubit Florometer 2.0 and sized using the Bioanalyzer
HS DNA chip. The loading calculations for sequencing were
completed using the PacBio Binding Calculator v2.3.1.1 (https:
//github.com/PacificBiosciences/BindingCalculator). The se-
quencing primer was used from the SMRTbell Template Prep
Kit 1.0 and was annealed to the adapter sequence of the li-

braries. Each library was bound to the sequencing polymerase
with the DNA/Polymerase Binding Kit v2 and the complex
formed was then bound to Magbeads in preparation for se-
quencing using the MagBead Kit v1. Calculations for primer
and polymerase binding ratios were kept at default values. The
libraries were prepared for sequencing using the PacBio rec-
ommended instructions laid out in the binding calculator. The
sequencing chemistry used to sequence all libraries was DNA
Sequencing Reagent Kit 4.0 and the Instrument Control Soft-
ware version was v2.3.0.0.140640. The libraries were loaded
onto PacBio RS II SMRT Cells 8Pac v3; each library was se-
quenced on 3 SMRT Cells. All libraries were run without stage
start and 240 minute movies per cell. Reads for the four li-
braries was extracted using SMRT Pipe v2.3.3, following the
instructions provided by the manufacturer at https://github.
com/PacificBiosciences/cDNA_primer.

Alignments and assemblies

Reads from the experiments were aligned using STAR v2.4.1c
and TopHat v2.0.14. For STAR, read alignment parameters for
all species were as follows:
--outFilterMismatchNmax 4 --alignSJoverhangMin 12 --

alignSJDBoverhangMin 12 --outFilterIntronMotifs

RemoveNoncanonical --alignEndsType EndToEnd --

alignTranscriptsPerReadNmax 100000 --

alignIntronMin MININTRON --alignIntronMax

MAXINTRON --alignMatesGapMax MAXINTRON

whereas for TopHat2 we used the following parameters:
-r 50 -p 4 --min -anchor -length 12 --max -multihits 20

--library -type fr-unstranded -i MININTRON -I

MAXINTRON

The parameters “MINTRON” and “MAXINTRON” were var-
ied for each species, as follows:
• A. thaliana: minimum 20, maximum 10000
• C. elegans: minimum 30, maximum 15,000
• D. melanogaster: minimum 20, maximum 10,000
• H. sapiens: minimum 20, maximum 10,000
Each dataset was assembled using four di�erent tools:

CLASS v 2.12, Cu�inks 2.1.1, StringTie v. 1.03, and Trinity
r20140717. Command lines for the tools were as follows:
• CLASS: we executed this tools through a wrapper included
in Mikado, class_run.py, with command line parameters -F
0.05

• Cu�inks: -u -F 0.05; for the A. thaliana dataset, we further
speci�ed –library-type fr-firststrand.

• StringTie: -m 200 -f 0.05
• Trinity: –genome_guided_max_intron MAXINTRON (see above)
Trinity assemblies were mapped against the genome

using GMAP v20141229 [37], with parameters -n 0
–min-trimmed-coverage=0.70 –min-identity=0.95. For sim-
ulated data, we elected to use a more modern version of
Trinity (v.2.3.2) as the older version was unable to assemble
transcripts correctly for some of the datasets. For assembling
separately the samples in PRJBE7093, we used Cu�inks
(v.2.2.1) and StringTie v1.2.3, with default parameters.

Mikado analyses

All analyses were run with Mikado 1.0.1, using Daijin to drive
the pipeline. For each species, we built a separate reference
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protein dataset, to be used for the BLAST comparison (see
Table ST4). We used NCBI BLASTX v2.3.0 [38], with a
maximum evalue of 10e-7 and a maximum number of targets
of 10. Open reading frames were predicted using TransDe-
coder 3.0.0 [9]. Scoring parameters for each species can be
found in Mikado v1.0.1, at https://github.com/lucventurini/
mikado/tree/master/Mikado/configuration/scoring_files,
with a name scheme of species_name_scoring.yaml (eg.
“athaliana_scoring.yaml” for A. thaliana). The same scoring
�les were used for all runs, both with simulated and real data.
Filtered junctions were calculated using Portcullis v1.0 beta5,
using default parameters.
Mikado was instructed to look for models with - among

other features - a good UTR/CDS proportion (adjusted per
species), homology to known proteins, and a high proportion
of validated splicing junctions. We further instructed Mikado
to remove transcripts that do not meet minimum criteria such
as having at least a validated splicing junction if any is present
in the locus, and a minimum transcript length or CDS length.
The con�guration �les are bundled with the Mikado software
as part of the distribution.

Details on the algorithms of Mikado

The Mikado pipeline is divided into three distinct phases.
Mikado prepare
Mikado prepare is responsible for bringing together multiple
annotations into a single GTF �le. This step of the pipeline is
capable of handling both GTF and GFF3 �les, making it adapt-
able to use data from most assemblers and cDNA aligners cur-
rently available. Mikado prepare will not just uniform the data
format, but will also perform the following operations:
i. It will optionally discard any model below a user-
speci�ed size (default 200 base pairs).
ii. It will analyse the introns present in each model, and ver-
ify their canonicity. If a model is found to contain introns
from both strands, it will be discarded by default, although
the user can decide to override this behaviour and keep such
models in. Each multiexonic transcript will be tagged with
this information, making it possible for Mikado to under-
stand the number of canonical splicing events present in a
transcript later on.
iii. Mikado will also switch the strand of multiexonic tran-
scripts if it �nds that their introns are allocated to the wrong
strand, and it will strip the strand information from any mo-
noexonic transcript coming from non-strand speci�c assem-
blies
iv. Finally, Mikado will sort the models, providing a
coordinate-ordered GTF �le as output, together with a FASTA
�le of all the cDNAs that have been retained.
Mikado prepare uses temporary SQLite databases to perform

the sorting operation with a limited amount of memory. As
such, it is capable of handling millions of transcripts frommul-
tiple assemblies with the memory found on a regular modern
desktop PC (lower than 8GB of RAM).
Mikado serialise
Mikado serialise is the part of the pipeline whose role is to collect
all additional data on the models, and store it into a standard
database. Currently Mikado is capable of handling the follow-
ing types of data:
i. FASTAs, ie the cDNA sequences produced by Mikado pre-
pare, and the genome sequence.

ii. Genomic BED �les, containing the location of trusted
introns. Usually these are either output directly from the
aligners themselves (eg the “junctions.bed” �le produced by
TopHat) or derived from the alignment using a specialised
program such as Portcullis.
iii. Transcriptomic BED or GFF3 �les, containing the loca-
tion of the ORFs on the transcripts. These can be calculated
with any program chosen by the user. We highly recommend
using a program capable of indicating more than one ORF
per transcript, if more than one is present, as Mikado relies
on this information to detect and solve chimeric transcripts.
Both TransDecoder and Prodigal have such capability.
iv. Homology match �les in XML format. These can be pro-
duced either by BLAST+ or by DIAMOND (v 0.8.7 and later)
with the option “-outfmt 5”.
Mikado serialise will try to keep the memory consumption

at a minimum, by limiting the amount of maximum objects
present in memory (the threshold can be speci�ed by the user,
with the default being at 20,000). XML �les can be analysed
in parallel, so Mikado serialise can operate more e�ciently if
BLAST or DIAMOND runs are performed by pre-chunking the
cDNA FASTA �le and producing corresponding multiple output
�les.
Mikado serialise will output a database with the structure

in Supplementary Figure SF8.
Mikado pick
Mikado pick selects the �nal transcript models and outputs
them in GFF3 format. In contrast with many ab initio pre-
dictors, currently Mikado does not provide an automated sys-
tem to learn the best parameters for a species. Rather, the
choice of what types of models should be prioritised for in-
clusion in the �nal annotation is left to the experimenter, de-
pending on her needs and goals. For the experiments detailed
in this article, we con�gured Mikado to prioritise complete
protein-coding models, and to apply only a limited upfront
�ltering to transcripts. A stricter upfront hard-�ltering of
transcripts, for example involving discarding any monoexonic
transcript without su�cient homology support, might have
yielded a more precise collated annotation at the price of dis-
carding any potentially novel monoexonic genes. Although we
provide the scoring �les used for this paper in the software
distribution, we encourage users to inspect them and adjust
them to their speci�c needs. As part of the work�ow, Mikado
also produces tabular �les with all the metrics calculated for
each transcript, and the relative scores. It is therefore possi-
ble for the user to use this information to adjust the scoring
model. The GFF3 �les produced by Mikado comply with the
formal speci�cation of GFF3, as de�ned by the Sequence On-
tology and veri�ed using GenomeTools v.1.5.9 or later. Ear-
lier versions of GenomeTools would not validate completely
Mikado �les due to a bug in their calculation of CDS phases
for truncated models, see issue #793 on GenomeTools github:
https://github.com/genometools/genometools/issues/793.

Integration of multiple transcript assemblies

Evidential Gene v20160320 [23] was run with default parame-
ters, in conjunction with CDHIT v4.6.4 [39]. Models selected
by the tools were extracted from the combined GTFs using a
mikado utility, mikado grep, and further clustered into gene
loci using g�read from Cu�inks v2.2.1. StringTie-merge and
Cu�merge were run with default parameters. Limitedly to the
experiment regarding the integration of assemblies from mul-
tiple samples, we used TACO v0.7. For all these three tools,
we used their default isoform fraction parameter. The GTFs

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://github.com/lucventurini/mikado/tree/master/Mikado/configuration/scoring_files
https://github.com/lucventurini/mikado/tree/master/Mikado/configuration/scoring_files
https://github.com/genometools/genometools/issues/793


Venturini et al. | 9

produced by the TACO meta-assemblies were reordered using
a custom script (“sort_taco_assemblies.py”), present in the
script repository.

MAKER runs

We used MAKER v2.31.8 [40], in combination with Augustus
3.2.2 [41], for all our runs. GFFs and GTFs were converted to a
match/match_part format for MAKER using the internal script
of the tool “cu�inks2g�3.pl”. MAKER was run using MPI and
default parameters; the only input �les were the di�erent as-
semblies produced by the tested tools.

Comparison with reference annotations

All comparisons have been made using Mikado compare v1.0.1.
Brie�y, Mikado compare creates an interval tree structure of
the reference annotation, which is used to �nd matches in
the vicinity of any given prediction annotation. All possible
matches are then evaluated in terms of nucleotide, junction
and exonic recall and precision; the best one is reported as
the best match for each prediction in a transcript map (TMAP)
�le. After exhausting all possible predictions, Mikado reports
the best match for each reference transcript in the “reference
map” (REFMAP) �le, and general statistics about the run in
a statistics �le. Mikado compare is capable of detecting fu-
sion genes in the prediction, de�ned as events where a pre-
diction transcripts intersects at least one transcript per gene
from at least two di�erent genes, with either a junction in
common with the transcript, or an overlap over 10% of the
length of the shorter between the prediction or the reference
transcripts. Fusion events are reported using a modi�ed class
code, with a “f,” prepending it. For a full introduction to the
program, we direct the reader to the online documentation at
https://mikado.readthedocs.io/en/latest/Usage/Compare.html.
Creation of reference and �ltered datasets for the comparisons
For A. thaliana, we �ltered the TAIR10 GFF3 to retain only
protein coding genes. For the other three species, reference
GTF �les obtained through EnsEMBL were �ltered using the
“clean_reference.py” python script present in the “Assem-
blies” folder of the script repository (see the “Script avail-
ability” section). The YAML con�guration �les used for each
species can be found in the “Biotypes” folder. The retained
models constitute our reference transcriptome for compar-
isons.
For all our analyses, we deemed a transcript reconstructable

if all of its splicing junctions (if any) and all its internal bases
could be covered by at least one read. As read coverage typi-
cally decreases or disappears at the end of transcripts, we used
the mikado utility “trim” to truncate the terminal UTR exons
until their lengths reaches the maximum allowed value (50 bps
for our analysis) or the beginning of the CDS section is found.
BEDTools v. 2.27 beta (commit 6114307 [42]) was then used
to calculate the coverage of each region. Detected junctions
were calculated using Portcullis, speci�cally using the BED �le
provided at the end of Portcullis junction analysis step. The
“get_�ltered_reference.py” was then used to identify recon-
structable transcripts.
For simulated datasets, we used the BAM �le provided by

SPANKI to derive the list of reconstructable transcripts. For
the non-simulated datasets, we used the union of transcripts
found to be reconstructable from each of the alignment meth-
ods. The utility “mikado util grep” was used to extract the rele-
vant transcripts from the reference �les. Details of the process
can be found in the two snakemakes “compare.snake�le” and
“compare_simulations.snake�le” present in the “Snakemake”

directory of the script repository.
Calculation of comparison statistics
“Mikado compare” was used to assess the similarity of each
transcript set against both the complete reference, and the ref-
erence �ltered for reconstructable transcripts. Precision statis-
tics were calculated from the former, while recall statistics
were calculated from the latter.

Script availability

Scripts and con�guration �les used for the analyses in this
paper can be accessed at https://github.com/lucventurini/
mikado-analysis.

Customization and further development

Mikado allows to customize its run mode through the use of
detailed con�guration �les. There are two basic con�guration
�les: one is dedicated to the scoring system, while the latter
contains run-speci�c details. The scoring �le is divided in four
di�erent sections, and allows the user to specify which tran-
scripts should be �ltered out outright at any of the stages dur-
ing picking, and how to prioritise transcripts through a scor-
ing system. Details on the metrics, and on how to write a
valid con�guration �le, can be found in the SI and at the on-
line documentation (http://mikado.readthedocs.io/en/latest/
Algorithms.html). These con�guration �les are intended to be
used across runs, akin to how standard parameter sets are re-
used in ab initio gene prediction programs, e.g. Augustus. The
second con�guration �le contains parameters pertaining each
run, such as the position of the input �les, the type of database
to be used, or the desired location for output �les. As such, they
are meant to be customised by the user for each experiment.
Mikado provides a command, “mikado con�gure”, which will
generate this con�guration �le automatically when given basic
instructions.

Availability of source code and requirements

• Project name: Mikado
• Project home page: http://github.com/lucventurini/mikado
• Operating system(s): Linux
• Programming language: Python3
• Other requirements: SnakeMake, BioPython, NumPY, SciPY,
Scikit-learn, BLAST+ or DIAMOND, Prodigal or TransDe-
coder

• License: GNU LGPL3

Availability of supporting data and materials

The datasets supporting the conclusions of this article are
included within the article (and its additional �les). Transcript
assemblies and gene annotation produced during the current
study are available in a FigShare repository, together with
the source code of the version of our software tool used to
perform all experiments in this study, at this permanent
address: https://figshare.com/projects/Leveraging_multiple_
transcriptome_assembly_methods_for_improved_gene_structure_
annotation/26149. Mikado is present on GitHub, at the
address https://github.com/lucventurini/mikado. Many of
the scripts used to control the pipeline executions, together
with the scripts used to create the charts present in the
article, can be found in the complementary repository
https://github.com/lucventurini/mikado-analysis. All se-
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quencing runs and reference sequence datasets used for this
study are publicly available. Please see the section “Input
datasets” for details.
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Additional �le 1 — Supplemental Information

Additional information for the main article, including supple-
mental �gures and tables.

Additional �le 2— Reconstruction statistics for the in-
put methods

This Excel �le contains precision, recall and F1 statistics for the
various methods tested.
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