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Abstract

Background The performance of RNA-Seq aligners and assemblers varies greatly across di�erent organisms and
experiments, and often the optimal approach is not known beforehand. Results Here we show that the accuracy of
transcript reconstruction can be boosted by combining multiple methods, and we present a novel algorithm to integrate
multiple RNA-Seq assemblies into a coherent transcript annotation. Our algorithm can remove redundancies and select
the best transcript models according to user-speci�ed metrics, while solving common artefacts such as erroneous
transcript chimerisms. Conclusions We have implemented this method in an open-source Python3 and Cython program,
Mikado, available on GitHub [1].
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Background1

The annotation of eukaryotic genomes is typically a complex2

process which integrates multiple sources of extrinsic evidence3

to guide gene predictions. Improvements and cost reductions4

in the �eld of nucleic acid sequencing now make it feasible5

to generate a genome assembly and to obtain deep transcrip-6

tome data even for non-model organisms. However, for many7

of these species often there are only minimal EST and cDNA8

resources and limited availability of proteins from closely re-9

lated species. In these cases, transcriptome data from high-10

throughput RNA sequencing (RNA-Seq) provides a vital source11

of evidence to aid gene structure annotation. A detailed map12

of the transcriptome can be built from a range of tissues, de-13

velopmental stages and conditions, aiding the annotation of14

transcription start sites, exons, alternative splice variants and15

polyadenylation sites.16

Currently, one of the most commonly used technologies17

for RNA-Seq is Illumina sequencing, which is characterised by18

extremely high throughput and relatively short read lengths.19

Since its introduction, numerous algorithms have been pro-20

posed to analyse its output. Many of these tools focus on the 1

problem of assigning reads to known genes to infer their abun- 2

dance [2, 3, 4, 5], or of aligning them to their genomic locus of 3

origin [6, 7, 8]. Another challenging task is the reconstruction 4

of the original sequence and genomic structure of transcripts 5

directly from sequencing data. Many approaches developed for 6

this purpose leverage genomic alignments [9, 10, 11, 12], al- 7

though there are alternatives based instead on de novo assem- 8

bly [10, 13, 14]. While these methods focus on how to analyse a 9

single dataset, related research has examined how to integrate 10

assemblies frommultiple samples. While some researchers ad- 11

vocate for merging together reads from multiple samples and 12

assembling them jointly [10], others have developed methods 13

to integrate multiple assemblies into a single coherent annota- 14

tion [9, 15]. 15

The availability of multiple methods has generated inter- 16

est in understanding the relative merits of each approach 17

[16, 17, 18]. The correct reconstruction of transcripts is often 18

hampered by the presence of multiple isoforms at each locus 19

and the extreme variability of expression levels, and therefore 20

in sequencing depth, within and across gene loci. This variabil- 21
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ity also a�ects the correct identi�cation of transcription start1

and end sites, as sequencing depth typical drops near the termi-2

nal ends of transcripts. The issue is particularly severe in com-3

pact genomes, where genes are clustered within small inter-4

genic distances. Further, the presence of tandemly duplicated5

genes can lead to alignment artefacts that then result in multi-6

ple genes being incorrectly reconstructed as a fused transcript.7

As observed in a comparison performed by the RGASP consor-8

tium [19], the accuracy of each tool depends on how it corrects9

for each of these potential sources of errors. However, it also10

depends on other external factors such as the quality of the11

input sequencing data as well as on species-dependent char-12

acteristics, such as intron sizes and the extent of alternative13

splicing. It has also been observed that no single method con-14

sistently delivers the most accurate transcript set when tested15

across di�erent species. Therefore, none of them can be deter-16

mined a priori as the most appropriate for a given experiment17

[20]. These considerations are an important concern in the de-18

sign of genome annotation pipelines, as transcript assemblies19

are a common component of evidence guided approaches that20

integrate data from multiple sources (e.g. cDNAs, protein or21

whole genome alignments). The quality and completeness of22

the assembled transcript set can therefore substantially impact23

on downstream annotation.24

Following these studies, various approaches have been pro-25

posed to determine the best assembly using multiple measures26

of assembly quality [21, 20] or to integrate RNA-Seq assem-27

blies generated by competing methods [22, 23, 24]. In this28

study we show that alternative methods not only have di�er-29

ent strengths and weaknesses, but that they also often comple-30

ment each other by correctly reconstructing di�erent subsets31

of transcripts. Therefore, methods that are not the best over-32

all might nonetheless be capable of outperforming the “best”33

method for a sub-set of loci. An annotation project typically34

integrates datasets from a range of tissues or conditions, or35

may utilise public data generated with di�erent technologies36

(e.g. Illumina, PacBio) or sequencing characteristics (e.g. read37

length, strand speci�city, ribo-depletion); in such cases, it is38

not uncommon to produce at least one set of transcript as-39

semblies for each of the di�erent sources of data, assemblies40

which then need to be reconciled. To address these challenges,41

we developed MIKADO, an approach to integrate transcript as-42

semblies. The tool de�nes loci, scores transcripts, determines43

a representative transcript for each locus, and �nally returns44

a set of gene models �ltered to individual requirements, for45

example removing transcripts that are chimeric, fragmented46

or with short or disrupted coding sequences. Our approach47

was shown to outperform both stand-alonemethods and those48

that combine assemblies, by returning more transcripts recon-49

structed correctly and less chimeric and unannotated genes.50

Results and discussion51

Assessment of RNA-Seq based transcript reconstruc-52

tion methods53

We evaluated the performance of four commonly utilised tran-54

script assemblers: Cu�inks, StringTie, CLASS2 and Trinity.55

Their behaviour was assessed in four species, using as input56

data RNA-Seq reads aligned with two alternative leading align-57

ers, TopHat2 and STAR. In total, we generated 32 di�erent tran-58

script assemblies, eight per species. In line with the previous59

RGASP evaluation, we performed our tests on the three meta-60

zoan species of Caenhorabditis elegans, Drosophila melanogaster61

and Homosapiens, using RNA-Seq data from that study as input.62

We also added to the panel a plant species, Arabidopsis thaliana,63

to assess the performance of these tools on a non-metazoan64

genome. Each of these species has undergone extensive man- 1

ual curation to re�ne gene structures, and moreover, these an- 2

notations exhibit very di�erent gene characteristics in terms of 3

their proportion of single exon genes, average intron lengths 4

and number of annotated transcripts per gene (Supplementary 5

Table ST1). Similar to previous studies [19, 25], we based our 6

initial assessment on real rather than simulated data, to ensure 7

we captured the true characteristics of RNA-Seq data. Predic- 8

tion performance was benchmarked against the subset of an- 9

notated transcripts with all exons and introns (minimum 1X 10

coverage) identi�ed by at least one of the two RNA-Seq align- 11

ers. 12

The number of transcripts assembled varied substantially 13

across methods, with StringTie and Trinity generally reporting 14

a greater number of transcripts (Supplementary Figure SF1). 15

Assembly with Trinity was performed using the genome guided 16

de-novo method, where RNA-Seq reads are �rst partitioned 17

into loci ahead of de-novo assembly. This approach is in 18

contrast to the genome guided approaches employed by the 19

other assemblers that allow small drops in read coverage to 20

be bridged and enable the exclusion of retained introns and 21

other lowly expressed fragments. As expected Trinity anno- 22

tated more fragmented loci, with a higher proportion of mono- 23

exonic genes (Supplementary Figure SF1). 24

Accuracy of transcript reconstruction was measured using 25

recall and precision. For any given feature (nucleotide, exon, 26

transcript, gene), recall is de�ned as the percentage of cor- 27

rectly predicted features out of all expressed reference features, 28

whereas precision is de�ned as the percentage of all features 29

that correctly match a feature present in the reference. In line 30

with previous evaluations, we found that accuracy varied con- 31

siderably among methods, with clear trade-o�s between re- 32

call and precision (Supplementary Figure SF2). For instance, 33

CLASS2 emerged as the most precise of all methods tested, but 34

its precision came at the cost of reconstructing less transcripts 35

overall. In contrast, Trinity and StringTie often outperformed 36

the recall of CLASS2, but were also much more prone to yield 37

transcripts absent from the curated public annotations (Supple- 38

mentary Figure SF2, SF3). Although many of these might be 39

real, yet-unknown transcripts, the high number of chimeric 40

transcripts suggests to treat these novel models with suspi- 41

cion. Notably, the performance and the relative ranking of the 42

methods di�ered among the four species (Table 1). We found 43

CLASS2 and StringTie to be overall the most accurate (with ei- 44

ther aligner), however exceptions were evident. For instance, 45

the most accurate method in D. melanogaster (CLASS2 in con- 46

junction with Tophat alignments) performed worse than any 47

other tested method in A. thaliana. The choice of RNA-Seq 48

aligner also substantially impacted assembly accuracy, with 49

clear di�erences between the two when used in conjunction 50

with the same assembler. 51

Across the four species and depending on the aligner used, 52

22 to 35% of transcripts could be reconstructed by any com- 53

bination of aligner and assembler (Supplementary Table ST2). 54

However, some genes were recovered only by a subset of the 55

methods (Supplementary Table ST2), with on average 5% of 56

the genes being fully reconstructable only by one of the avail- 57

able combinations of aligner and assembler. Closer inspection 58

of the data shows that this e�ect is not due to a single assem- 59

bler having greater e�ciency; rather, each of the tools is shown 60

to be the only one capable of correctly reconstructing hundreds 61

of the expressed transcripts (Supplementary Figure SF4). Tak- 62

ing the union of genes fully reconstructed by any of the meth- 63

ods shows that an additional 14.92-19.08% of genes could be 64

recovered by an approach that would integrate the most sensi- 65

tive assembly with less comprehensive methods. This comple- 66

mentarity manifests as well in relation to genes missed by any 67

particular method: while each approach failed to reconstruct 68
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Table 1. Cumulative z-score for each method aggregating individual z-scores based on base, exon, intron, intron chain, transcript and gene
F1 score (top ranked method in bold, bottom ranked method underlined and in italics).

A. thaliana C. elegans D. melanogaster H. sapiens All methods

Method Z-score Rank Z-score Rank Z-score Rank Z-score Rank Z-score Rank

CLASS2 (STAR) 7.627 1 7.309 1 -3.310 6 5.258 1 16.884 1

StringTie (TopHat2) 0.584 4 5.502 3 6.612 2 3.199 3 15.897 2

CLASS2 (TopHat2) -5.542 8 6.698 2 9.314 1 4.998 2 15.738 3

StringTie (STAR) 2.621 3 -2.197 4 1.587 3 2.991 4 5.001 4

Cu�inks (STAR) 2.716 2 -2.306 5 -1.730 5 1.037 5 -0.283 5

Cu�inks (TopHat2) -0.526 5 -5.363 8 -1.504 4 -0.993 6 -8.386 6

Trinity (STAR) -4.120 7 -5.079 7 -4.762 7 -3.417 7 -17.458 7

Trinity (TopHat2) -3.280 6 -4.833 6 -6.206 8 -13.073 8 -27.392 8

several hundred genes on average, the majority of these mod-1

els could be fully or partially reconstructed by an alternative2

method (Supplementary Figure SF3A). Another class of error3

are artifactual fusion/chimeric transcripts that chain together4

multiple genes. These artefacts usually arise from an incorrect5

identi�cation of start and end sites during transcript recon-6

struction - an issue which appears most prominently in com-7

pact genomes with smaller intergenic distances [10]. Among8

the methods tested, Cu�inks was particularly prone to this9

class of error, while Trinity and CLASS2 assembled far fewer10

such transcripts. Again, alternative methods complemented11

each other, with many genes fused by one assembler being12

reconstructed correctly by another approach (Supplementary13

Figure SF3B). Finally, the e�ciency of transcript reconstruc-14

tion depends on coverage, a re�ection of sequencing depth and15

expression level. Methods in general agree on the reconstruc-16

tion of well-expressed genes, while they show greater variabil-17

ity with transcripts that are present at lower expression lev-18

els. Even at high expression levels, though, only a minority19

of genes can be reconstructed correctly by every tested combi-20

nation of aligner and assembler (Supplementary Figure SF5).21

Our results underscore the di�culty of transcript assembly22

and highlight advantageous features of speci�c methods. A23

naive combination of the output of all methods would yield24

the greatest sensitivity, but at the cost of a decrease in preci-25

sion as noise from erroneous reconstructions accumulates. In-26

deed, this is what we observe: in all species, while the recall of27

the naive combination markedly improves even upon the most28

sensitive method, the precision decreases (Supplementary Fig-29

ure SF2). As transcript reconstructionmethods exhibit idiosyn-30

cratic strengths and weaknesses an approach that can integrate31

multiple assemblies can potentially lead to a more accurate and32

comprehensive set of gene models.33

Overview of the Mikado method34

Mikado provides a framework for integrating transcripts from35

multiple sources into a consolidated set of gene annotations.36

Our approach assesses, scores (based on user con�gurable crite-37

ria) and selects transcripts from a larger transcript pool, lever-38

aging transcript assemblies generated by alternative methods39

or from multiple samples and sequencing technologies.40

The software takes as input transcript structures in stan-41

dard formats such as GTF and GFF3, with optionally BLAST sim-42

ilarity scores or a set of high quality splice junctions. Using this43

information, Mikado will then de�ne gene loci and their associ-44

ated transcripts. Each locus will be characterised by a primary45

transcript - ie the transcript in the region that best �ts the re-46

quirements speci�ed by the user, and which therefore receives47

the highest score. If any suitable alternative splicing event for48

the primary transcript is available, Mikado will add it to the49

locus. The software is written in python3 and Cython, and ex-50

tensive documentation is available on Read The Docs [26].51

Mikado is composed of three core programs (prepare, se- 1

rialise, pick) executed in series. The Mikado prepare step 2

validates and standardizes transcripts, removing exact dupli- 3

cates and artefactual assemblies such as those with ambiguous 4

strand orientation (as indicated by canonical splicing). Dur- 5

ing the Mikado serialise step, data from multiple sources are 6

brought together inside a common database. Mikado by de- 7

fault analyses and integrates three types of data: open-reading 8

frames (ORFs) currently identi�ed via TransDecoder, protein 9

similarity derived through BLASTX or Diamond and high qual- 10

ity splice junctions identi�ed using tools such as Portcullis [27] 11

or Stampy [28]. The selection phase (Mikado pick) groups tran- 12

scripts into loci and calculates for each transcript over �fty nu- 13

merical and categorical metrics based on either external data 14

(e.g. BLAST support) or intrinsic qualities relating to CDS, 15

exon, intron or UTR features (summarised in Supplementary 16

Table ST3). 17

While somemetrics are inherent to each transcript (e.g. the 18

cDNA length), others depend on the context of the locus the 19

transcript is placed in. A typical example would be the pro- 20

portion of introns of the transcript relative to the number of 21

introns associated to the genomic locus. Such values are de- 22

pendent on the loci grouping, and can change throughout the 23

computation, as transcripts are moved into a di�erent locus 24

or �ltered out. Notably, the presence of open reading frames 25

is used in conjunction with protein similarity to identify and 26

resolve fusion transcripts. Transcripts with multiple ORFs are 27

marked as candidate false-fusions; homology to reference pro- 28

teins is then optionally used to determinewhether the ORFs de- 29

rive frommore than one gene. If the fusion event is con�rmed, 30

the transcript is split into multiple transcripts (Figure 1). 31

Figure 1. The algorithm employed by Mikado is capable of solving complex

loci, with multiple potential assemblies. This locus in A. thaliana is particu-

larly challenging as an ancestral gene in the locus tandemly duplicated into the

current AT5G66610, AT5G66620 and AT5G66630 genes. Due to these di�cul-

ties, no single assembler was capable of reconstructing correctly all loci. For

instance, Trinity was the only method which correctly assembled AT5G66631,

but it failed to reconstruct correctly any other transcript. The reverse was

true for Cu�inks, which correctly assembled the three duplicated genes, but

completely missed the monoexonic AT566631. By choosing between di�erent

alternative assemblies, Mikado was capable to provide an evidence-based an-

notation congruent to the TAIR10 models.

To determine the primary transcript at a locus, Mikado as- 32

signs a score for each metric of each transcript, by assessing 33

its value relatively to all other transcripts associated to the 34

locus. Once the highest scoring transcript for the group has 35

been selected, Mikado will exclude all transcripts which are 36

directly intersecting it, and if any remain, iteratively select 37

the next best scoring transcripts pruning the graph until all 38

non-intersecting transcripts have been selected. This iterative 39
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strategy ensures that no locus is excluded if e.g. there are un-1

resolved read-through events that would connect two or more2

gene loci. Grouping and �ltering happen in multiple sequen-3

tial phases, each de�ned by di�erent rules for clustering tran-4

scripts into loci (see methods). After the gene loci and associ-5

ated primary transcripts have been de�ned, Mikado will look6

for potential alternative splicing events. Only transcripts that7

can be unambiguously assigned to a single gene locus will be8

considered for this phase. Mikado will add to the locus only9

transcripts whose structures are non-redundant with those al-10

ready present, and which are valid alternative splicing events11

for the primary transcript, as de�ned by the by class codes [29].12

Moreover, Mikado will discard any transcript whose score is13

too low when compared to the primary (by default, only tran-14

scripts with a score of 50% or more of the primary transcript15

will be considered). The process is controlled by a con�gura-16

tion �le that determines desirable gene features, allowing the17

user to de�ne criteria for transcript �ltering and scoring as well18

as specifying minimum requirements for potential alternative19

splicing events. The online documentation contains details on20

the format of the con�guration �le [30], and provides a tuto-21

rial on how to create such �les or adapt existing ones to new22

projects [31].23

Candidate isoforms will be ranked according to their score24

and considered in decreasing order, with a cap on the max-25

imum number of alternative isoforms and on the minimum26

score for a candidate to be considered valid (by default, at a27

minimum 50% of the score of the primary transcript). Mikado28

will add to the locus only transcripts whose structures are non-29

redundant with those already present, and which are valid al-30

ternative splicing events for the primary transcript, as de�ned31

by class codes (see ). The process is controlled by a con�gura-32

tion �le that determines desirable gene features, allowing the33

user to de�ne criteria for transcript �ltering and scoring as well34

as specifying minimum requirements for potential alternative35

splicing events.36

We also developed a Snakemake-based pipeline, Daijin, in37

order to drive Mikado, including the calls to external programs38

to calculate ORFs and protein homology. Daijin works in two39

independent stages, assemble and mikado. The former stage40

enables transcript assemblies to be generated from the read41

datasets using a choice of read alignment and assembly meth-42

ods. In parallel, this part of the pipeline will also calculate43

reliable junctions for each alignment using Portcullis. The lat-44

ter stage of the pipeline drives the steps necessary to execute45

Mikado, both in terms of the required steps for our program46

(prepare, serialise, pick) and of the external programs needed47

to obtain additional data for the picking stage (currently, ho-48

mology search and ORF detection). A summary of the Daijin49

pipeline is reported in Figure 2.50

Figure 2. Schematic representation of the Mikado work�ow.

Performance of Mikado51

To provide a more complete assessment we evaluated the per-52

formance ofMikado on both simulated and real data. While real53

data represents more fully the true complexity of the transcrip-54

tome simulated data generates a known set of transcripts to55

enable a precise assessment of prediction quality. For our pur-56

poses, we used SPANKI to simulate RNA-Seq reads for all four57

species, closely matching the quality and expression pro�les58

of the corresponding real data. Simulated reads were aligned59

and assembled following the same protocol that was used for60

real data, above. For each of the four species under analysis, 1

we also obtained reference-quality protein sequences from re- 2

lated species to inform the homology search through BLAST; 3

details on our selection can be found in Table ST4. Mikado was 4

then used to integrate the four di�erent transcript assemblies 5

for each alignment. 6

Across the four species and on both simulated and real data, 7

Mikado was able to successfully combine the di�erent assem- 8

blies, obtaining a higher accuracy than most individual tools in 9

isolation. Compared with the best overall combination, CLASS2 10

on STAR alignments, Mikado improved the accuracy on aver- 11

age by 6.58% and 9.23% on simulated and real data at the 12

transcript level, respectively (Figure 3 and Additional File 2). 13

Most of this improvement accrues due to an improved recall 14

rate without signi�cant losses on precision. We register a sin- 15

gle exception, on H. sapiens simulated data, due to an excess of 16

intronic gene models which pervade the assemblies of all other 17

tools. On simulated data, CLASS2 is able to detect these models 18

and exclude them, most probably using its re�ned �lter on low- 19

coverage regions [12]; however, this increase in precision is ab- 20

sent when using TopHat2 as an aligner and on real data. While 21

Mikado does not calculate or utilise coverage to score and se- 22

lect transcripts, we do make provision for externally generated 23

metrics that could be used in conjunction with Mikado’s frag- 24

ment �ltering to screen out lowly expressed intronic models. 25

Aside from the accuracy in correctly reconstructing transcript 26

structures, in our experiments, merging and �ltering the as- 27

semblies proved an e�ective strategy to produce a comprehen- 28

sive transcript catalogue: Mikado consistently retrieved more 29

loci than the most accurate tools, while avoiding the sharp drop 30

in precision of more sensitive methods such as e.g. Trinity 31

(Figure 3b). Finally, Mikado was capable to accurately identify 32

and solve cases of artefactual gene fusions, which mar the per- 33

formance of many assemblers. As this kind of error is more 34

prevalent in our real data, the increase in precision obtained 35

by using Mikado was greater using real rather than simulated 36

data. 37

Figure 3. Performance of Mikado on simulated and real data. a We evaluated

the performance of Mikado using both simulated data and the original real data.

The method with the best transcript-level F1 is marked by a circle. b Number

of reconstructed, missed and chimeric genes in each of the assemblies. Notice

the lower level of chimeric events in simulated data.

We further assessed the performance of Mikado in com- 38

parison with three other methods that are capable of inte- 39

grating transcripts from multiple sources: Cu�Merge [32], 40

StringTie-merge [15] and EvidentialGene [24, 33]. Cu�Merge 41

and StringTie-merge perform a meta-assembly of transcript 42

structures, without considering ORFs or homology. In con- 43

trast, EvidentialGene is similar to Mikado in that it classi�es 44

and selects transcripts, calculating ORFs and associated quality 45

metrics from each transcript to inform its choice. In our tests, 46

Mikado consistently performed better than alternative combin- 47

ers, in particular when compared to the two meta-assemblers. 48

The performance of StringTie-merge and Cu�Merge on simu- 49

lated data underscored the advantage of integrating assemblies 50

from multiple sources as both methods generally improved re- 51

call over input methods. However, this was accompanied by 52

a drop in precision, most noticeably for Cu�Merge, as assem- 53

bly artefacts present in the input assemblies accumulated in 54

the merged dataset. In contrast, the classi�cation and �lter- 55

ing based approach of EvidentialGene led to a more precise 56

dataset, but at the cost of a decrease in recall. Mikadomanaged 57

to balance both aspects, thus showing a better accuracy than 58

any of the alternative approaches (A. thaliana +6.24%, C. ele- 59
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gans +7.66%, D.melanogaster +9.48%, H. sapiens +4.92% F1 im-1

provement over the best alternative method). On real and sim-2

ulated data, Mikado and EvidentialGene generally performed3

better than the two meta-assemblers, with an accuracy di�er-4

ential that ranged from moderate in H. sapiens (1.67 to 4.32%)5

to very marked in A. thaliana (14.87 to 29.58%). An impor-6

tant factor a�ecting the accuracy of the meta-assemblers with7

real data is the prevalence of erroneous transcript fusions that8

can result from incorrect read alignment, genomic DNA con-9

tamination or bona �de overlap between transcriptional units.10

Both StringTie-merge and Cu�Merge were extremely prone to11

this type of error, as across the four species they generated12

on average 2.39 times the number of fusion genes compared13

to alternative methods (Figure 3b). Between the two selection14

based methods, EvidentialGene performed similarly to Mikado15

on real data but much worse on simulated data: its accuracy16

was on average 2 points lower than Mikado on real data, and17

8.13 points lower in the simulations. This is mostly due to a18

much higher precision di�erential between the two methods19

in simulated data, with Mikado much better than Evidential-20

Gene on this front (+8.95% precision on simulated data).21

Filtering lenient assemblies22

Although our tests have been conducted using default param-23

eters for the various assemblers, these parameters can be ad-24

justed to alter the balance between precision and sensitivity25

according to the goal of the experiment. In particular, three26

of the assemblers we tested provide a parameter to �lter out27

alternative isoforms with a low abundance. This parameter28

is commonly referred to as “minimum isoform fraction”, or29

MIF, and sets for each gene a minimum isoform expression30

threshold relative to the most expressed isoform. Only tran-31

scripts whose abundance ratio is greater than the MIF thresh-32

old are reported. Therefore, lowering this parameter will yield33

a higher number of isoforms per locus, retaining transcripts34

that are expressed at low levels and potentially increasing the35

number of correctly reconstructed transcripts. This improved36

recall is obtained at the cost of a drop in precision, as more and37

more incorrect splicing events are reported (Figure 4). Mikado38

can be applied on top of these very permissive assemblies to39

�lter out spurious splicing events. In general, �ltering with40

Mikado yielded transcript datasets that are more precise than41

those produced by the assemblers at any level of chosen MIF,42

or even when comparing the most relaxed MIF in Mikado with43

the most conservative in the raw assembler output (Figure 4).44

Figure 4. Performance of Mikado while varying the Minimum Isoform Frac-

tion parameter.. Precision/recall plot at the gene and transcript level for CLASS

and StringTie at varying minimum isoform fraction thresholds in A. thaliana,

with and without applying Mikado. Dashed lines mark the F1 levels at di�er-

ent precision and recall values. CLASS sets MIF to 5% by default (red), while

StringTie uses a slightly more stringent default value of 10% (cyan).

Multi-sample transcript reconstruction45

Unravelling the complexity of the transcriptome requires46

assessing transcriptional dynamics across many samples.47

Projects aimed at transcript discovery and genome annota-48

tion typically utilize datasets generated across multiple tissues49

and experimental conditions to provide a more complete rep-50

resentation of the transcriptional landscape. Even if a sin-51

gle assembly method is chosen, there is often a need to inte-52

grate transcript assemblies constructed frommultiple samples.53

StringTie-merge, Cu�Merge and the recently published TACO 1

[34] have been developed with this speci�c purpose in mind. 2

The meta-assembly approach of these tools can reconstruct 3

full-length transcripts when they are fragmented in individ- 4

ual assemblies, but as observed earlier, it is prone to creating 5

fusion transcripts. TACO directly addresses this issue with a 6

dedicated algorithmic improvement, ie change-point detection. 7

This solution is based on fusion transcripts showing a dip in 8

read coverage in regions of incorrect assembly; this change in 9

coverage can then be used to identify the correct breakpoint. A 10

limitation of the implementation in TACO is that it requires ex- 11

pression estimates to be encoded in the input GTFs, and some 12

tools do not provide this information. 13

To assess the performance of Mikado for multi sample re- 14

construction, we individually aligned and assembled the twelve 15

A. thaliana seed development samples from PRJEB7093, us- 16

ing the four single-sample assemblers described previously. 17

The collection of twelve assemblies per tool was then inte- 18

grated into a single set of assemblies, using di�erent combin- 19

ers. StringTie-merge and TACO could not be applied to the 20

Trinity dataset, as they both require embedded expression data 21

in the GTF �les, which is not provided in the Trinity output. 22

In line with the results published in the TACO paper [34], we 23

observed a high rate of fusion events in both StringTie-merge 24

and Cu�Merge results (Figure 5b), which TACO reduced. How- 25

ever, none of these tools performed as well as EvidentialGene 26

or Mikado, either in terms of accuracy, or in avoiding gene fu- 27

sions (Figure 5). Mikado achieved the highest accuracy irre- 28

spective of the single sample assembler used, with an improve- 29

ment in F1 over the best alternative method of +8.25% for Cuf- 30

�inks assemblies, +2.23% in StringTie, +0.95% with CLASS2 31

and +6.65% for Trinity. 32

Figure 5. Integrating assemblies coming from multiple samples. a Mikado

performs consistently better than other merging tools. StringTie-merge and

TACO are not compatible with Trinity results and as such have not been in-

cluded in the comparison. b Rate of recovered, missed, and fused genes for all

the assembler and combiner combinations.

Transcript assemblies are commonly incorporated into 33

evidence-based gene �nding pipelines, often in conjunction 34

with other external evidence such as cross species protein se- 35

quences, proteomics data or synteny. The quality of transcript 36

assembly can therefore potentially impact on downstreamgene 37

prediction. To test the magnitude of this e�ect, we used the 38

data from these experiments on A. thaliana to perform gene 39

prediction with the popular MAKER annotation pipeline, using 40

Augustus with default parameters for the species as a gene pre- 41

dictor. Our results (Supplementary Figure SF6) show that, as 42

expected, an increased accuracy in the transcriptomic dataset 43

leads to an increased accuracy in the �nal annotation. Impor- 44

tantly, MAKER was not capable of reducing the prevalence of 45

gene fusion events present in the transcript assemblies. This 46

suggests that ab initio Augustus predictions utilized by MAKER 47

do not compensate for incorrect fusion transcripts that are 48

provided as evidence, and stress the importance of pruning 49

these mistakes from transcript assemblies before performing 50

an evidence-guided gene prediction. 51

Expansion to long read technologies 52

Short read technologies, due to their low per-base cost and ex- 53

tensive breadth and depth of coverage, are commonly utilised 54

in genome annotation pipelines. However, like the previous 55

generation Sanger ESTs, their short size requires the use of 56
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sophisticated methods to reconstruct the structure of the origi-1

nal RNA molecules. Third-generation sequencing technologies2

promise to remove this limitation, by generating full-length3

cDNA sequences. These new technologies currently o�er lower4

throughput and are less cost e�ective, but have in recent stud-5

ies been employed alongside short read technologies to de�ne6

the transcriptome of species with large gene content [35, 36].7

We tested the complementarity of the two technologies by8

sequencing two samples of a standard human reference RNA9

library with the leading technologies for both approaches, Il-10

lumina HiSeq for short-reads (250 bp, paired-end reads) and11

the Paci�c Bioscience IsoSeq protocol for long reads. Given the12

currently higher per-base costs of long-read sequencing tech-13

nologies, read coverage is usually much lower than for short14

read sequencing. We found many genes to be reconstructed15

by both platforms, but as expected given the lower sequenc-16

ing depth there was a clear advantage for the Illumina dataset17

on genes with expression lower than 10 TPM (Supplementary18

Figure SF7). We veri�ed the feasibility of integrating the re-19

sults given by the di�erent sequencing technologies by combin-20

ing the long reads with the short read assemblies, either sim-21

ply concatenating them, or by �ltering them with Evidential-22

Gene and Mikado (Supplementary Figure SF8). An advantage23

of Mikado over the two alternative approaches is that it allows24

to prioritise PacBio reads over Illumina assemblies, by giving25

them a slightly higher base score. In this analysis, we saw26

that even PacBio data on its own might require some �ltering,27

as the original sample contains a mixture of whole and frag-28

mented molecules, together with immature transcripts. Both29

Mikado and EvidentialGene are capable of identifying mature30

coding transcripts in the data, but Mikado shows a better recall31

and general accuracy rate, albeit at the cost of some precision.32

However, Mikado performed much better than EvidentialGene33

in �ltering either the Illumina data on its own, or the combina-34

tion of the two technologies. Although the �ltering inevitably35

loses some of the real transcripts, the loss is compensated by36

an increased overall accuracy. Mikado performed better in this37

respect than EvidentialGene, as the latter did not noticeably38

improve in accuracy when given a combination of PacBio and39

Illumina data, rather than the Illumina data alone.40

Conclusions41

Transcriptome assembly is a crucial component of genome an-42

notation work�ows, however, correctly reconstructing tran-43

scripts from short RNA-Seq reads remains a challenging task.44

Over recent years methods for both de novo and reference45

guided transcript reconstruction have accumulated rapidly.46

When combined with the large number of RNA-seq mapping47

tools deciding on the optimal transcriptome assembly strat-48

egy for a given organism and RNA-Seq data set (stranded/un-49

stranded, polyA/ribodepleted) can be bewildering. In this arti-50

cle we showed that di�erent assembly tools are complementary51

to each other; fully-reconstructing genes only partially recon-52

structed or missing entirely from alternative approaches. Sim-53

ilarly, when analysing multiple RNA-Seq samples, the com-54

plete transcript catalogue is often only obtained by collating55

together di�erent assemblies. For a gene annotation project56

it is therefore typical to have multiple sets of transcripts, be57

they derived from alternative assemblers, di�erent assembly58

parameters or arising frommultiple samples. Our tool, Mikado,59

provides a framework for integrating transcript assemblies ex-60

ploiting the inherent complementarity of the data to to pro-61

duce a high-quality transcript catalogue. As Mikado is capable62

of accepting data from multiple standard �le formats (GFF3,63

BED12, GTF), its applications are wider than those presented64

in this manuscript. Although it is not discussed fully here, the65

Daijin pipeline already supports additional aligners and assem- 1

blers, such as Scallop [37] or HISAT2 [8]. Similarly to what 2

we have shown in this manuscript, Mikado can be fruitfully 3

applied to assembly work�ows based on these tools (Supple- 4

mentary Figure SF9), and as such it provides a mechanism to 5

integrate transcript assemblies from both new and established 6

methods. 7

Rather than attempting to capture all transcripts, our ap- 8

proach aims to mimic the selective process of manual cura- 9

tion by evaluating and identifying a sub-set of transcripts from 10

each locus. The criteria for selection can be con�gured by the 11

user, enabling them to for example to penalise gene models 12

with truncated ORFs, those with non-canonical splicing, tar- 13

gets for nonsense mediated decay or chimeric transcripts span- 14

ning multiple genes. Such gene models may represent bona 15

�de transcripts (with potentially functional roles), but can also 16

arise from aberrant splicing or, as seen from our simulated 17

data, from incorrect read alignment and assembly. Mikado 18

acts as a �lter principally to identify coding transcripts with 19

complete ORFs and is therefore in line with most reference an- 20

notation projects that similarly do not attempt to represent all 21

transcribed sequences. Our approach is made possible by in- 22

tegrating the data on transcript structures with additional in- 23

formation generally not utilised by transcript assemblers such 24

as similarity to known proteins, the location of open reading 25

frames and information on the reliability of splicing junctions. 26

This information aids Mikado in performing operations such 27

as discarding spurious alternative splicing events, or detecting 28

chimeric transcripts. This allows Mikado to greatly improve in 29

precision over the original assemblies, with in general minimal 30

drops in recall. Moreover, similarly to TACO, Mikado is capable 31

of identifying and resolving chimeric assemblies, which nega- 32

tively a�ect the precision of many of the most sensitive tools, 33

such as StringTie or the two meta-assemblers Cu�merge and 34

StringTie-merge. 35

Genome annotation involves making choices about what 36

genes and transcripts to include in the gene set, and di�er- 37

ent annotators will make di�erent choices dependent on their 38

own motivations and available data. The manually annotated 39

genomes of human and A. thaliana exhibit clear di�erences. 40

The annotation of the human genome is very comprehensive, 41

with an average of �ve transcripts per gene; in contrast, the 42

TAIR10 annotation of A. thaliana captures less splice variants, 43

with most genes being annotated with a single, coding isoform. 44

This re�ects not only potentially real di�erences in the extent 45

of alternative splicing between the species but also di�erences 46

in the annotation approach, with the human gene set captur- 47

ing, in addition to coding splice variants, transcripts lacking 48

annotated ORFs and those with retained introns or otherwise 49

�agged as targets for nonsense mediated decay. Neither the 50

more comprehensive nor the more conservative approach is 51

necessarily the most correct; the purpose of the annotation, i.e. 52

how it will be used by the research community, and the types of 53

supporting data will guide the selection process. Mikado pro- 54

vides a framework to apply di�erent selection criteria, there- 55

fore, similarly to ab initio programs where the results are heav- 56

ily dependent on the initial training set, also for Mikado the re- 57

sults will depend on the experimenter’s choices. In the online 58

documentation, we provide a discussion on how to customise 59

scoring �les according to the needs of the experimenter, and a 60

tutorial to guide through its creation [31]. 61

Our experiments show that Mikado can aid genome anno- 62

tation by generating a set of high quality transcript assem- 63

blies across a range of di�erent scenarios. Rather than hav- 64

ing to identify the best aligner/assembly combination for ev- 65

ery project, Mikado can be used to integrate assemblies from 66

multiple methods, with our approach reliably identifying the 67

most accurate transcript reconstructions and allowing the user 68
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to tailor the gene set to their own requirements. It is also sim-1

ple to incorporate assemblies from new tools even if the new2

method is not individually the most accurate approach. Given3

the challenges associated with short-read assembly it is desir-4

able (when available) to integrate these with full-length cDNA5

sequences. Mikado is capable of correctly integrating analyses6

coming from di�erent assemblers and technologies, including7

mixtures of Illumina and PacBio data. Our tool has already been8

employed for such a task on the large, repetitive genome of9

Triticumaestivum [36], where it was instrumental in selecting a10

set of gene models from over ten million transcript assemblies11

and PacBio IsoSeq reads. The consolidated dataset returned by12

Mikado was almost thirty times smaller than the original in-13

put dataset, and this polishing was essential both to ensure14

a high-quality annotation and to reduce the running times of15

downstream processes.16

In conclusion, Mikado is a �exible tool which is capable of17

handling a plethora of data types and formats. Its novel selec-18

tion algorithm was shown to perform well in model organisms19

and was central in the genome annotation pipeline of various20

species [38, 36, 39]. Its deployment should provide genome21

annotators with another powerful tool to improve the accuracy22

of data for subsequent ab initio training and evidence-guided23

gene prediction.24

Methods25

Input datasets26

For C. elegans, D.melanogaster and H. sapiens, we retrieved from27

the European Nucleotide Archive (ENA) the raw reads used for28

the evaluation in [19], under the Bioproject PRJEB4208. We29

further selected and downloaded a publicly available strand-30

speci�c RNA-Seq dataset for A. thaliana, PRJEB7093. Congru-31

ently with the assessment in [19], we used genome assem-32

blies and annotations from EnsEMBL v. 70 for all metazoan33

species, while for A. thaliana we used the TAIR10 version. For34

all species, we simulated reads using the input datasets as tem-35

plates. Reads were trimmed with TrimGalore v0.4.0 [40] and36

aligned onto the genome with Bowtie v1.1.2 [41] and HISAT37

v2.0.4 [8]. The HISAT alignments were used to calculate the ex-38

pression levels for each transcript using Cu�inks v2.2.1, while39

the Bowtie mappings were used to generate an error model40

for the SPANKI Simulator v.0.5.0 [42]. The transcript cover-41

ages and the error model were then used to generate simulated42

reads, at a depth of 10X for C. elegans and D. melanogaster and43

3X for A. thaliana and H. sapiens. A lower coverage multiplier44

was applied to the latter species to have a similar number of45

reads for all four datasets, given the higher sequencing depth46

in the A. thaliana dataset and the higher number of reference47

transcripts in H. sapiens. cDNA sequences for A. thaliana were48

retrieved from the NCBI Nucleotide database on the 21st of April49

2017, using the query:50

‘‘Arabidopsis ’’ [Organism ] OR arabidopsis[All51

Fields ]) AND ‘‘Arabidopsis thaliana ’’[ porgn]52

AND biomol \_mrna [PROP]53

For the second experiment on H. sapiens, we sequenced two54

samples of the Stratagene Universal Human Reference RNA55

(catalogue ID#740000), which consists of a mixture of RNA de-56

rived from ten di�erent cell lines. One sample was sequenced57

on an Illumina HiSeq2000 and the second on a Paci�c Bio-58

sciences RSII machine. Sequencing runs were deposited in ENA,59

under the project accession code PRJEB22606.60

Preparation and sequencing of Illumina libraries 1

The libraries for this project were constructed using the 2

NEXT�ex™Rapid Directional RNA-Seq Kit (PN: 5138-08) with 3

the NEXT�ex™DNA Barcodes – 48 (PN: 514104) diluted to 6µm. 4

The library preparation involved an initial QC of the RNA us- 5

ing Qubit DNA (Life technologies Q32854) and RNA (Life tech- 6

nologies Q32852) assays as well as a quality check using the 7

PerkinElmer GX with the RNA assay (PN:CLS960010) 8

1µg of RNA was puri�ed to extract mRNA with a poly-A pull 9

down using biotin beads, fragmented and �rst strand cDNA 10

was synthesised. This process reverse transcribes the cleaved 11

RNA fragments primed with randomhexamers into �rst strand 12

cDNA using reverse transcriptase and random primers. The 13

second strand synthesis process removes the RNA template 14

and synthesizes a replacement strand to generate dscDNA. The 15

ends of the samples were repaired using the 3’ to 5’ exonuclease 16

activity to remove the 3’ overhangs and the polymerase activ- 17

ity to �ll in the 5’ overhangs creating blunt ends. A single ‘A’ 18

nucleotide was added to the 3’ ends of the blunt fragments to 19

prevent them from ligating to one another during the adapter 20

ligation reaction. A corresponding single ’T’ nucleotide on the 21

3’ end of the adapter provided a complementary overhang for 22

ligating the adapter to the fragment. This strategy ensured a 23

low rate of chimera formation. The ligation of a number index- 24

ing adapters to the ends of the DNA fragments prepared them 25

for hybridisation onto a �ow cell. The ligated products were 26

subjected to a bead based size selection using Beckman Coulter 27

XP beads (PN: A63880). As well as performing a size selection 28

this process removed themajority of un-ligated adapters. Prior 29

to hybridisation to the �ow cell the samples were PCR’d to en- 30

rich for DNA fragments with adapter molecules on both ends 31

and to amplify the amount of DNA in the library. Directionality 32

is retained by adding dUTP during the second strand synthesis 33

step and subsequent cleavage of the uridine containing strand 34

using Uracil DNA Glycosylase. The strand that was sequenced 35

is the cDNA strand. The insert size of the libraries was veri�ed 36

by running an aliquot of the DNA library on a PerkinElmer GX 37

using the High Sensitivity DNA chip (PerkinElmer CLS760672) 38

and the concentration was determined by using a High Sensi- 39

tivity Qubit assay and q-PCR. 40

The constructed stranded RNA libraries were normalised 41

and equimolar pooled into two pools. The pools were quanti�ed 42

using a KAPA Library Quant Kit Illumina/ABI (KAPA KK4835) 43

and found to be 6.71nm and 6.47nm respectively. A 2nm di- 44

lution of each pool was prepared with NaOH at a �nal concen- 45

tration of 0.1N and incubated for 5 minutes at room tempera- 46

ture to denature the libraries. 5µl of each 2nm dilution was 47

combined with 995µl HT1 (Illumina) to give a �nal concentra- 48

tion of 10pm. 135µl of the diluted and denatured library pool 49

was then transferred into a 200µl strip tube, spiked with 1% 50

PhiX Control v3 (Illumina FC-110-3001) and placed on ice be- 51

fore loading onto the Illumina cBot with a Rapid v2 Paired-end 52

�ow-cell and HiSeq Rapid Duo cBot Sample Loading Kit (Illu- 53

mina CT-403-2001). The �ow-cell was loaded on a HiSeq 2500 54

(Rapid mode) following the manufacturer’s instructions with a 55

HiSeq Rapid SBS Kit v2 (500 cycles) (Illumina FC-402-4023) 56

and HiSeq PE Rapid Cluster Kit v2 (Illumina PE-402-4002). 57

The run set up was as follows: 251 cycles/7 cycles(index)/251 58

cycles utilizing HiSeq Control Software 2.2.58 and RTA 1.18.64. 59

Reads in .bcl format were demultiplexed based on the 6bp Illu- 60

mina index by CASAVA 1.8 (Illumina), allowing for a one base- 61

pair mismatch per library, and converted to FASTQ format by 62

bcl2fastq (Illumina). 63

Preparation and sequencing of PacBio libraries 64

The Iso-Seq libraries were created starting from 1µg of hu- 65

man total RNA and full-length cDNA was then generated us- 66

ing the SMARTer PCR cDNA synthesis kit (Clontech, Takara Bio 67
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Inc., Shiga, Japan) following PacBio recommendations set out1

in the Iso-Seq method [43]. PCR optimisation was carried out2

on the full-length cDNA using the KAPA HiFi PCR kit (Kapa3

Biosystems, Boston USA) and 12 cycles were su�cient to gen-4

erate the material required for ELF size selection. A timed set-5

ting was used to fractionate the cDNA into 12 individual sized6

fractions using the SageELF (Sage Science Inc., Beverly, USA),7

on a 0.75% ELF Cassette. Prior to further PCR, the ELF frac-8

tions were equimolar pooled into the following sized bins: 0.7-9

2kb, 2-3kb, 3-5kb and > 5kb. PCR was repeated on each sized10

bin to generate enough material for SMRTbell library prepara-11

tion, this was completed following Pacbio recommendations in12

the Iso-Seq method. The four libraries generated were quality13

checked using Qubit Florometer 2.0 and sized using the Bioan-14

alyzer HS DNA chip. The loading calculations for sequencing15

were completed using the PacBio Binding Calculator v2.3.1.116

[44]. The sequencing primer was used from the SMRTbell Tem-17

plate Prep Kit 1.0 and was annealed to the adapter sequence of18

the libraries. Each library was bound to the sequencing poly-19

merase with the DNA/Polymerase Binding Kit v2 and the com-20

plex formed was then bound to Magbeads in preparation for21

sequencing using the MagBead Kit v1. Calculations for primer22

and polymerase binding ratios were kept at default values. The23

libraries were prepared for sequencing using the PacBio recom-24

mended instructions laid out in the binding calculator. The se-25

quencing chemistry used to sequence all libraries was DNA Se-26

quencing Reagent Kit 4.0 and the Instrument Control Software27

version was v2.3.0.0.140640. The libraries were loaded onto28

PacBio RS II SMRT Cells 8Pac v3; each library was sequenced29

on 3 SMRT Cells. All libraries were run without stage start and30

240 minute movies per cell. Reads for the four libraries was31

extracted using SMRT Pipe v2.3.3, following the instructions32

provided by the manufacturer [45].33

Alignments and assemblies34

Reads from the experiments were aligned using STAR v2.4.1c35

and TopHat v2.0.14. For STAR, read alignment parameters for36

all species were as follows:37

--outFilterMismatchNmax 4 --alignSJoverhangMin 12 --38

alignSJDBoverhangMin 12 --outFilterIntronMotifs39

RemoveNoncanonical --alignEndsType EndToEnd --40

alignTranscriptsPerReadNmax 100000 --41

alignIntronMin MININTRON --alignIntronMax42

MAXINTRON --alignMatesGapMax MAXINTRON43

whereas for TopHat2 we used the following parameters:44

-r 50 -p 4 --min -anchor -length 12 --max -multihits 2045

--library - type fr -unstranded -i MININTRON -I46

MAXINTRON47

The parameters “MINTRON” and “MAXINTRON” were var-48

ied for each species, as follows:49

• A. thaliana: minimum 20, maximum 1000050

• C. elegans: minimum 30, maximum 15,00051

• D. melanogaster: minimum 20, maximum 10,00052

• H. sapiens: minimum 20, maximum 10,00053

Each dataset was assembled using four di�erent tools:54

CLASS v 2.12, Cu�inks 2.1.1, StringTie v. 1.03, and Trinity55

r20140717. Command lines for the tools were as follows:56

• CLASS: we executed this tools through a wrapper included57

in Mikado, class_run.py, with command line parameters -F58

0.0559

• Cu�inks: -u -F 0.05; for the A. thaliana dataset, we further60

speci�ed –library-type fr-firststrand.61

• StringTie: -m 200 -f 0.05 1

• Trinity: –genome_guided_max_intron MAXINTRON (see above) 2

Trinity assemblies were mapped against the genome 3

using GMAP v20141229 [46], with parameters -n 0 4

–min-trimmed-coverage=0.70 –min-identity=0.95. For sim- 5

ulated data, we elected to use a more modern version of 6

Trinity (v.2.3.2) as the older version was unable to assemble 7

transcripts correctly for some of the datasets. For assembling 8

separately the samples in PRJBE7093, we used Cu�inks 9

(v.2.2.1) and StringTie v1.2.3, with default parameters. 10

Mikado analyses 11

All analyses were run with Mikado 1.0.1, using Daijin to drive 12

the pipeline. For each species, we built a separate reference 13

protein dataset, to be used for the BLAST comparison (see Ta- 14

ble ST4). We used NCBI BLASTX v2.3.0 [47], with a maximum 15

evalue of 10e-7 and a maximum number of targets of 10. Open 16

reading frames were predicted using TransDecoder 3.0.0 [10]. 17

Scoring parameters for each species can be found in Mikado 18

v1.0.1 [48], with a name scheme of species_name_scoring.yaml 19

(eg. “athaliana_scoring.yaml” for A. thaliana). The same scor- 20

ing �les were used for all runs, both with simulated and real 21

data. Filtered junctions were calculated using Portcullis v1.0 22

beta5, using default parameters. 23

Mikado was instructed to look for models with - among 24

other features - a good UTR/CDS proportion (adjusted per 25

species), homology to known proteins, and a high proportion 26

of validated splicing junctions. We further instructed Mikado 27

to remove transcripts that do not meet minimum criteria such 28

as having at least a validated splicing junction if any is present 29

in the locus, and a minimum transcript length or CDS length. 30

The con�guration �les are bundled with the Mikado software 31

as part of the distribution. 32

Details on the algorithms of Mikado 33

The Mikado pipeline is divided into three distinct phases. 34

Mikado prepare 35

Mikado prepare is responsible for bringing together multiple 36

annotations into a single GTF �le. This step of the pipeline is 37

capable of handling both GTF and GFF3 �les, making it adapt- 38

able to use data from most assemblers and cDNA aligners cur- 39

rently available. Mikado prepare will not just uniform the data 40

format, but will also perform the following operations: 41

i. It will optionally discard any model below a user- 42

speci�ed size (default 200 base pairs). 43

ii. It will analyse the introns present in eachmodel, and ver- 44

ify their canonicity. If a model is found to contain introns 45

from both strands, it will be discarded by default, although 46

the user can decide to override this behaviour and keep such 47

models in. Each multiexonic transcript will be tagged with 48

this information, making it possible for Mikado to under- 49

stand the number of canonical splicing events present in a 50

transcript later on. 51

iii. Mikado will also switch the strand of multiexonic tran- 52

scripts if it �nds that their introns are allocated to the wrong 53

strand, and it will strip the strand information from any mo- 54

noexonic transcript coming from non-strand speci�c assem- 55

blies 56

iv. Finally, Mikado will sort the models, providing a 57

coordinate-orderedGTF �le as output, together with a FASTA 58

�le of all the cDNAs that have been retained. 59
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Mikado prepare uses temporary SQLite databases to perform1

the sorting operation with a limited amount of memory. As2

such, it is capable of handling millions of transcripts frommul-3

tiple assemblies with the memory found on a regular modern4

desktop PC (lower than 8GB of RAM).5

Mikado serialise6

Mikadoserialise is the part of the pipeline whose role is to collect7

all additional data on the models, and store it into a standard8

database. Currently Mikado is capable of handling the follow-9

ing types of data:10

i. FASTAs, ie the cDNA sequences produced by Mikado pre-11

pare, and the genome sequence.12

ii. Genomic BED �les, containing the location of trusted13

introns. Usually these are either output directly from the14

aligners themselves (eg the “junctions.bed” �le produced by15

TopHat) or derived from the alignment using a specialised16

program such as Portcullis.17

iii. Transcriptomic BED or GFF3 �les, containing the loca-18

tion of the ORFs on the transcripts. These can be calculated19

with any program chosen by the user. We highly recommend20

using a program capable of indicating more than one ORF21

per transcript, if more than one is present, as Mikado relies22

on this information to detect and solve chimeric transcripts.23

Both TransDecoder and Prodigal have such capability.24

iv. Homology match �les in XML format. These can be pro-25

duced either by BLAST+ or by DIAMOND (v 0.8.7 and later)26

with the option “-outfmt 5”.27

Mikado serialise will try to keep the memory consumption28

at a minimum, by limiting the amount of maximum objects29

present in memory (the threshold can be speci�ed by the user,30

with the default being at 20,000). XML �les can be analysed31

in parallel, so Mikado serialise can operate more e�ciently if32

BLAST or DIAMOND runs are performed by pre-chunking the33

cDNA FASTA �le and producing corresponding multiple output34

�les.35

Mikado serialise will output a database with the structure36

in Supplementary Figure SF10.37

Mikado pick38

Mikado pick selects the �nal transcript models and outputs39

them in GFF3 format. In contrast with many ab initio predic-40

tors, currently Mikado does not provide an automated system41

to learn the best parameters for a species. Rather, the choice of42

what types of models should be prioritised for inclusion in the43

�nal annotation is left to the experimenter, depending on her44

needs and goals. For the experiments detailed in this article,45

we con�gured Mikado to prioritise complete protein-coding46

models, and to apply only a limited upfront �ltering to tran-47

scripts. A stricter upfront hard-�ltering of transcripts, for ex-48

ample involving discarding any monoexonic transcript with-49

out su�cient homology support, might have yielded a more50

precise collated annotation at the price of discarding any po-51

tentially novel monoexonic genes. Although we provide the52

scoring �les used for this paper in the software distribution,53

we encourage users to inspect them and adjust them to their54

speci�c needs. As part of the work�ow, Mikado also produces55

tabular �les with all the metrics calculated for each transcript,56

and the relative scores. It is therefore possible for the user to57

use this information to adjust the scoring model. The GFF358

�les produced by Mikado comply with the formal speci�cation59

of GFF3, as de�ned by the Sequence Ontology and veri�ed using60

GenomeTools v.1.5.9 or later. Earlier versions of GenomeTools61

would not validate completelyMikado �les due to a bug in their62

calculation of CDS phases for truncated models, see issue #79363

on GenomeTools github [49].64

Integration of multiple transcript assemblies 1

Evidential Gene v20160320 [24] was run with default parame- 2

ters, in conjunction with CDHIT v4.6.4 [50]. Models selected 3

by the tools were extracted from the combined GTFs using a 4

mikado utility, mikado grep, and further clustered into gene 5

loci using g�read from Cu�inks v2.2.1. StringTie-merge and 6

Cu�merge were run with default parameters. Limitedly to the 7

experiment regarding the integration of assemblies from mul- 8

tiple samples, we used TACO v0.7. For all these three tools, 9

we used their default isoform fraction parameter. The GTFs 10

produced by the TACO meta-assemblies were reordered using 11

a custom script (“sort_taco_assemblies.py”), present in the 12

script repository. 13

MAKER runs 14

We used MAKER v2.31.8 [51], in combination with Augustus 15

3.2.2 [52], for all our runs. GFFs and GTFs were converted to a 16

match/match_part format for MAKER using the internal script 17

of the tool “cu�inks2g�3.pl”. MAKER was run using MPI and 18

default parameters; the only input �les were the di�erent as- 19

semblies produced by the tested tools. 20

Comparison with reference annotations 21

All comparisons have been made using Mikado compare v1.0.1. 22

Brie�y, Mikado compare creates an interval tree structure of 23

the reference annotation, which is used to �nd matches in 24

the vicinity of any given prediction annotation. All possible 25

matches are then evaluated in terms of nucleotide, junction 26

and exonic recall and precision; the best one is reported as 27

the best match for each prediction in a transcript map (TMAP) 28

�le. After exhausting all possible predictions, Mikado reports 29

the best match for each reference transcript in the “reference 30

map” (REFMAP) �le, and general statistics about the run in a 31

statistics �le. Mikado compare is capable of detecting fusion 32

genes in the prediction, de�ned as events where a prediction 33

transcripts intersects at least one transcript per gene from at 34

least two di�erent genes, with either a junction in common 35

with the transcript, or an overlap over 10% of the length of 36

the shorter between the prediction or the reference transcripts. 37

Fusion events are reported using a modi�ed class code, with a 38

“f,” prepending it. For a full introduction to the program, we 39

direct the reader to the online documentation [53]. 40

Creation of reference and �ltered datasets for the comparisons 41

For A. thaliana, we �ltered the TAIR10 GFF3 to retain only 42

protein coding genes. For the other three species, reference 43

GTF �les obtained through EnsEMBL were �ltered using the 44

“clean_reference.py” python script present in the “Assem- 45

blies” folder of the script repository (see the “Script avail- 46

ability” section). The YAML con�guration �les used for each 47

species can be found in the “Biotypes” folder. The retained 48

models constitute our reference transcriptome for compar- 49

isons. 50

For all our analyses, we deemed a transcript reconstructable 51

if all of its splicing junctions (if any) and all its internal bases 52

could be covered by at least one read. As read coverage typi- 53

cally decreases or disappears at the end of transcripts, we used 54

the mikado utility “trim” to truncate the terminal UTR exons 55

until their lengths reaches the maximum allowed value (50 bps 56

for our analysis) or the beginning of the CDS section is found. 57

BEDTools v. 2.27 beta (commit 6114307 [54]) was then used 58

to calculate the coverage of each region. Detected junctions 59

were calculated using Portcullis, speci�cally using the BED �le 60

provided at the end of Portcullis junction analysis step. The 61
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“get_�ltered_reference.py” was then used to identify recon-1

structable transcripts.2

For simulated datasets, we used the BAM �le provided by3

SPANKI to derive the list of reconstructable transcripts. For4

the non-simulated datasets, we used the union of transcripts5

found to be reconstructable from each of the alignment meth-6

ods. The utility “mikado util grep” was used to extract the rele-7

vant transcripts from the reference �les. Details of the process8

can be found in the two snakemakes “compare.snake�le” and9

“compare_simulations.snake�le” present in the “Snakemake”10

directory of the script repository.11

Calculation of comparison statistics12

“Mikado compare” was used to assess the similarity of each13

transcript set against both the complete reference, and the ref-14

erence �ltered for reconstructable transcripts. Precision statis-15

tics were calculated from the former, while recall statistics16

were calculated from the latter.17

Script availability18

Scripts and con�guration �les used for the analyses in this pa-19

per can be found on GitHub [55], in FigShare [56] and in the20

GigaScience Database [57].21

Customization and further development22

Mikado allows to customize its run mode through the use of23

detailed con�guration �les. There are two basic con�guration24

�les: one is dedicated to the scoring system, while the latter25

contains run-speci�c details. The scoring �le is divided in four26

di�erent sections, and allows the user to specify which tran-27

scripts should be �ltered out outright at any of the stages dur-28

ing picking, and how to prioritise transcripts through a scor-29

ing system. Details on the metrics, and on how to write a valid30

con�guration �le, can be found in the SI and on the online31

documentation [58]. These con�guration �les are intended to32

be used across runs, akin to how standard parameter sets are33

re-used in ab initio gene prediction programs, e.g. Augustus.34

The second con�guration �le contains parameters pertaining35

each run, such as the position of the input �les, the type of36

database to be used, or the desired location for output �les. As37

such, they are meant to be customised by the user for each ex-38

periment. Mikado provides a command, “mikado con�gure”,39

which will generate this con�guration �le automatically when40

given basic instructions.41

Availability of source code and requirements42

• Project name: Mikado43

• Project home page: [1]44

• Operating system(s): Linux45

• Programming language: Python346

• Other requirements: SnakeMake, BioPython, NumPY, SciPY,47

Scikit-learn, BLAST+ or DIAMOND, Prodigal or TransDe-48

coder, Portcullis49

• Available through: PyPI, bioconda, SciCruch (RRID:50

SCR_016159)51

• License: GNU LGPL352

Availability of supporting data and materials53

The datasets supporting the conclusions of this article are in-54

cluded within the article (and its additional �les). Transcript55

assemblies and gene annotation produced during the current56

study are available in the GigaScience Database [57] and in 1

FigShare [56] together with the source code of the version of 2

our software tool used to perform all experiments in this study. 3

The sequencing runs analysed for this article can be found on 4

ENA, under the accession codes PRJEB7093 (for A. thaliana) and 5

PRJEB4028 (for the other three species). The human sequenc- 6

ing data of our parallel Illumina and PacBio experiment can 7

be found under the accession code PRJEB22606. Mikado is 8

present on GitHub [1]. Many of the scripts used to control the 9

pipeline executions, together with the scripts used to create the 10

charts present in the article, can be found in the complemen- 11

tary repository [55]. Extensive documentation for the program 12

is available in the “docs” folder in the GitHub repository [1] and 13

is published on the “Read The Docs” website [26]. All sequenc- 14

ing runs and reference sequence datasets used for this study 15

are publicly available. Please see the section “Input datasets” 16

for details. 17
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