Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

for Adv. Healthcare Mater., DOI: 10.1002/adhm.201701290

Impact of Graphene on the Efficacy of Neuron Culture Substrates

Rachel A. Fischer, Yuchen Zhang, Michael L. Risner, Deyu Li,* Yaqiong Xu,* and Rebecca M. Sappington*

Supporting Information for

Impact of Graphene on the Efficacy of Neuron Culture Substrates

Rachel A. Fischer,⁺ Yuchen Zhang,⁺ Michael L. Risner, Deyu Li^{*}, Yaqiong Xu^{*}, Rebecca M. Sappington^{*}

R.A.F. Author 1. Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center; Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA

Y.Z. Author 2. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA

Dr. M.L.R. Author 3. Departement of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA

Dr. D.L. Author 4. Department of Mechanical Engineering, Vanderbilt University,

Nashville, TN, USA

Email: <u>deyu.li@vanderbilt.edu</u>

Dr. Y.X. Author 5. Department of Physics and Astronomy and Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA

Email: yaqiong.xu@vanderbilt.edu

Dr. R.M.S. Author 6. Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center; Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA

Email: rebecca.m.sappington@vanderbilt.edu

⁺ These authors contributed equally to this work.

Keywords: graphene; primary neuron culture; extracellular matrix; ion channel; cell survival

Table S1. In vitro viability of cell culture on graphene substrates.					
Citation	Cell type	Substrates	Main results		
[1] Veliev et al. 2016 Biomaterials	Primary hippocampal neurons (from embryonic E16.5 mice)	Poly-L-Lysine (PLL) coated glass, PLL coated graphene, bare graphene	Increased density of attached neurons on bare graphene; Decreased neurite number on bare graphene; Increased neurite outgrowth on coated graphene compared to bare graphene		
Biointerfaces	hippocampal neurons (from postnatal P0 rats)	tissue culture polystyrene (TCPS) (both coated with poly-lysine)	sprouting/outgrowth, & complexity of dendritic network on graphene; Higher frequency of spontaneous post synaptic currents (sPSC) on graphene; Neurons couldn't grow on graphene or TCPS without coating		
[3] Lee et al. 2015 Biochem. & Biophys. Res. Comm.	Human neuroblastoma SH- SY5Y cells (neural differentiation with RA)	Glass, graphene on glass	Increased neurite outgrowth on graphene		
[4] Fabbro et al. 2016 ACS Nano	Primary hippocampal neurons (from postnatal P2-P3 rats)	Graphene on glass, Control (glass or polyornithine- coated glass)	Normal morphology & cell density on all substrates; no effect on sPSC or induced PSC or synaptogenesis on all substrates		
[5] Bendali et. al. 2013 Adv. Healthcare Mat.	Primary retinal ganglion cells (from adult rats)	Glass +/- Poly-D- Lysine (PDL)/laminin coating, graphene on sapphire +/- coating	Decreased cell survival, cell body area, & neurite outgrowth on graphene compared to glass (-coating); Decreased neurite outgrowth on graphene compared to glass (+coating); Decreased cell body area & neurite outgrowth on both substrates - coating compared to +coating		
	Primary retinal ganglion cells (from postnatal P7 rats)	Glass +/- PDL/laminin coating, graphene on sapphire +/- coating, sapphire +/- coating	Decreased cell viability, neurite outgrowth, & total processes on all substrates - coating compared to +coating; Increased cell body area on all substrates -coating compared to +coating (cell aggregation)		
[6] Sahni et al. 2013 J. Neurosurg. Ped.	Primary rat cortical neurons	Uncoated permanox dishes, PDL coated dishes, graphene	No deleterious effect of graphene on neuronal attachment, growth, or morphology; No evidence of cytotoxicity between substrates; Increased LDH activity on graphene compared to PDL coated; Decreased LDH activity on graphene compared to uncoated substrate		
[7] Park et al. 2013 J. Microbio.	Human nerve SH- SY5Y cells	Glass +/- graphene coating, SiO ₂ /Si +/-	Normal percentage cell viability, cell survival, & morphology on all substrates		

Biotech.		graphene coating	
[8] Li et al. 2011	Primary	TCPS, graphene on	Normal neuron growth, morphology,
Biomaterials	hippocampal	TCPS (both coated	density, metabolic activity, & membrane
	neurons (from	with PLL)	integrity on both substrates; Increased
	postnatal P1 mouse)		neurite outgrowth on graphene

[1] Veliev F, Briancon-Marjollet A, Bouchiat V, Delacour C. Impact of crystalline quality on neuronal affinity of pristine graphene. Biomaterials. 2016;86:33-41.

[2] He Z, Zhang S, Song Q, Li W, Liu D, Li H, et al. The structural development of primary cultured hippocampal neurons on a graphene substrate. Colloids Surf B Biointerfaces. 2016;146:442-51.

[3] Lee JS, Lipatov A, Ha L, Shekhirev M, Andalib MN, Sinitskii A, et al. Graphene substrate for inducing neurite outgrowth. Biochem Biophys Res Commun. 2015;460:267-73.

[4] Fabbro A, Scaini D, Leon V, Vazquez E, Cellot G, Privitera G, et al. Graphene-Based Interfaces Do Not Alter Target Nerve Cells. ACS Nano. 2016;10:615-23.

[5] Bendali A, Hess LH, Seifert M, Forster V, Stephan AF, Garrido JA, et al. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater. 2013;2:929-33.

[6] Sahni D, Jea A, Mata JA, Marcano DC, Sivaganesan A, Berlin JM, et al. Biocompatibility of pristine graphene for neuronal interface. J Neurosurg Pediatr. 2013;11:575-83.

[7] Park H-B. Effect of Graphene on Growth of Neuroblastoma Cells. Journal of Microbiology and Biotechnology. 2013;23:274-7.

[8] Li N, Zhang X, Song Q, Su R, Zhang Q, Kong T, et al. The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates. Biomaterials. 2011;32:9374-82.

Figure S1: Box plot of the mean neurite length (μ m) in each culture platform. Asterisks indicate p<0.05. Consistent with the results of Figure 4, average neurite length between graphene-integrated platforms and their respective substrate-only platforms did not differ (p > 0.05). Average neurite length was longer in the laminin platform than in the PDL platform (p < 0.05). These data confirm the results of the neurite intersections analysis that graphene overlay does not alter efficacy of glass, laminin or PDL substrates, and that laminin is the preferred substrate.

Figure S2: Optical images of graphene on top of (a) a laminin coated coverslip and (c, d) a SiO_2/Si wafer. (b) Raman mapping shows the 2D-peak intensity distribution in the black dashed line circled region in (a).

Figure S3: Fluorescence images of a laminin substrate labeled with anti-laminin antibodies (green) before and after graphene coating.