Supplementary Material

Attentional Selection of Social Features Persists Despite Restricted Bottom-Up Information and Affects Temporal Viewing Dynamics

¹Aleya Flechsenhar^a, ¹Lara Rösler^a*, ¹Matthias Gamer

¹Department of Psychology, Julius Maximilian University of Würzburg, Würzburg, Germany ^aThese authors contributed equally *Corresponding author: lara.roesler@uni-wuerzburg.de

S1 Eye-Tracking Preprocessing Details

Saccades and were detected from the recorded eye-tracking data by using a velocity and an acceleration threshold of 30° /s or 8000° /s², respectively. Time periods between saccades were defined as fixations and their coordinates (x, y) and durations saved for subsequent analyses. Fixations were drift-corrected with reference to a baseline period of 300 ms during the presentation of the fixation cross directly preceding stimulus presentation. Similar to previous studies, fixations that deviated from this baseline were identified by a recursive outlier removal procedure that was applied separately to x- and y-baseline-coordinates (see ¹⁻³). In detail, this procedure temporarily removed the highest and lowest coordinates for each participant from the baseline distribution and compared it to the mean and standard deviation of the remaining data. If these values were more than three standard deviations below or above this mean, they were marked as outliers, otherwise, they were returned to the distribution. This procedure was repeated until no more values were defined as outliers. Baseline outliers or missing baseline coordinates (social scene trials: M = 5.89%, SD = 6.15%; non-social scene trials: M = 4.78%, SD = 4.73%) were replaced with the mean baseline position of all scenes with valid baseline position data of the respective participant.

Following baseline correction of all fixations within each trial, a fixation density map was created by storing fixation coordinates in an empty matrix with the same dimensions as the currently used stimuli (1200 x 900 pixels). Fixations were weighted by their duration in ms. The resulting map was smoothed with an isotropic Gaussian kernel with a standard deviation of 32 pixels corresponding to 1° visual angle in positive and negative direction using the R package *spatstat* ⁴ (version 1.47.0). The resulting 2° of visual angle correspond to the functional field of the human fovea centralis. In a final step, the fixation density maps were normalized to values between 0 and 1.

S2 Region of Interest Details

Saliency maps were used to identify regions of high saliency (above the eighth percentile of the saliency map) and areas of low saliency (below the eighth percentile) for all stimuli. Additionally, we manually defined regions for head and body of depicted human beings for social scenes using the software GNU Image Manipulation Program (GIMP; Version 2.8.10). A ROI could only be defined once, so that areas

of high and low saliency for social scenes were restricted to those that had not yet been defined by head and body ROIs. In a previous study, we already demonstrated that social ROIs (head and body) had a lower mean saliency than highly salient non-social image regions for this stimulus set¹. To determine the extent to which each ROI was fixated by the participant, we calculated the sum of fixation density values for each ROI and divided it by the sum of fixation density values for the whole stimulus. To take into account the different sizes of ROIs, this proportion was then normalized by dividing it by the area of the ROI. These area-normed fixation density scores were analyzed using a 2 x 4 repeated-measures ANOVA with factors viewing condition (free-viewing, gaze-contingent) and ROI (head, body, low saliency, high saliency).

S3 References of Stimuli from Databases

Stimuli taken from different databases (n = 67) with according reference and content differentiation for this study. The remaining stimuli (n = 93) were taken from internet sources (e.g., Google, Flickr etc.)

Database	Reference	Content
Emotional Picture Set	9.jpg	social
Emotional Picture Set	119.jpg	social
Emotional Picture Set	131.jpg	social
Emotional Picture Set	133.jpg	social
Emotional Picture Set	138.jpg	social
Emotional Picture Set	191.jpg	social
Emotional Picture Set	196.jpg	social
Emotional Picture Set	197.jpg	social
Emotional Picture Set	205.jpg	social
Emotional Picture Set	267.jpg	non-social
Emotional Picture Set	280.jpg	non-social
International Affective Picture System	5199.jpg	social
International Affective Picture System	9150.jpg	social
International Affective Picture System	9186.jpg	non-social
International Affective Picture System	9422.jpg	non-social
McGill Calibrated Colour Image Database	Merry_0005_Lasalle.jpg	non-social
McGill Calibrated Colour Image Database	Merry_0014_Lasalle.jpg	non-social
McGill Calibrated Colour Image Database	Merry_0060_Lasalle.jpg	non-social
McGill Calibrated Colour Image Database	Merry_0064_Lasalle.jpg	non-social
McGill Calibrated Colour Image Database	Merry_florida0011.jpg	social
McGill Calibrated Colour Image Database	Merry_florida0017.jpg	non-social
McGill Calibrated Colour Image Database	Merry_mexico0072.jpg	social
McGill Calibrated Colour Image Database	Merry_mexico0143.jpg	social
McGill Calibrated Colour Image Database	Merry_0081.jpg	non-social

McGill Calibrated Colour Image Database McGill Calibrated Colour Image Database Nencki Affective Picture System Object and Semantic Images and Eyetracking dataset

Pippin_city6.jpg Pippin_city66.jpg Animals_025.jpg Animals_048_h.jpg Animals_074_h.jpg Animals_102_h.jpg Animals_128_h.jpg Animals_194_h.jpg Animals_195_h.jpg Animals_201_h.jpg Animals_218_h.jpg Faces_023_h.jpg Faces_265_h.jpg Faces_290_h.jpg Faces_302_h.jpg Landscapes_016_h.jpg Landscapes_025_h.jpg Landscapes_040_h.jpg Landscapes_043_h.jpg Landscapes_064_h.jpg Landscapes_071_h.jpg Landscapes_085_h.jpg Landscapes_178_h.jpg Objects_002_h.jpg Objects_013_h.jpg Objects_058_h.jpg Objects_183_h.jpg Objects_202_h.jpg Objects_214_h.jpg People_009_h.jpg People_015_h.jpg People_022_h.jpg People_054_h.jpg People_058_h.jpg People_109_h.jpg People_116_h.jpg People_131_h.jpg People_157_h.jpg People_158_h.jpg People_167_h.jpg People_182_h.jpg People_195_h.jpg 118.jpg

social social non-social non-social non-social non-social non-social non-social non-social non-social non-social social social social social non-social social non-social

Supplemental References

- 1. End, A. & Gamer, M. Preferential processing of social features and their interplay with physical saliency in complex naturalistic scenes. *Front. Psychol.* **8**, 418 (2017).
- 2. Flechsenhar, A. F. & Gamer, M. Top-down influence on gaze patterns in the presence of social features. *PLoS One* **12**, 1–20 (2017).
- 3. Rösler, L., End, A. & Gamer, M. Orienting towards social features in naturalistic scenes is reflexive. *PLoS One* **12**, e0182037 (2017).
- 4. Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R. (2015).