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I. CONCATENATED FIBER MODEL

Experimentally we use 12 clamps to apply stress at
multiple points on the fiber. This can be simulated by
the concatenated fiber model [1]. The fiber is two-meter
long and divided into 5 segments. The numerical aper-
ture (NA) is 0.22. By varying the core diameter, we
change the number of spatial modes. Each spatial mode
has a two-fold degeneracy corresponding to horizontal
(H) and vertical (V) linear polarizations. Light propa-
gates without polarization or mode coupling in each seg-
ment. Between adjacent segments, all modes of different
spatial profiles and polarizations are randomly coupled,
which is modeled by a unitary random matrix. The total
transmission matrix is the product of the transmission
matrix for each segment.

As long as there is strong mode and polarization cou-
pling in each segment, the exact number of segments in
the concatenated model does not affect the degree of po-
larization control. To confirm this, we calculate the PER
of the fiber output using the concatenated model with
different number of fiber segments. As shown in Fig. S1,
the PER does not change with the number of segments,
because one segment already introduces complete polar-
ization and mode mixing.

II. FIBER TRANSMISSION MATRIX

If loss in a multimode fiber (MMF) is negligible, the
full transmission matrix for both polarizations

t =

[
tHH tHV

tVH tVV

]
is a random unitary matrix of dimension 2N×2N , where
N is the number of spatial modes for a single polarization
in the fiber. With strong polarization and mode coupling,
such a matrix t has no symmetry other than unitarity
and is a member of the circular unitary ensemble (CUE)
[2]. Since tHH and tVH are two statistically equivalent
quarters of the full matrix t, they have identical statis-
tical properties. Their eigenvalue density evolves to a
bimodal distribution at large N .

5 10 15 20 250

1000

2000

3000

4000

Number of segments

P
E

R

FIG. S1: Numerical simulation of PER at the output of an
MMF with different number of segments. The MMF has 60
spatial modes, the PER is independent of the number of fiber
segments, as long as there is complete polarization and mode
mixing in a single segment.

III. CHAOTIC CAVITY

The transmission matrix t for a lossless MMF with
strong polarization and mode coupling is mathematically
analogous to the scattering matrix s of a lossless chaotic
cavity with two leads [see Fig.2 (c) of the main text].
Wave enters the chaotic cavity through one lead, then
reflected multiple times from the cavity wall before es-
caping via the same lead or the other lead. Each lead
is a waveguide with N statistically equivalent channels.
The four components of the scattering matrix

s =

[
r1 t2
t1 r2

]
correspond to transmissions and reflections at the two
leads. When reciprocity is broken (e.g., via mag-
netic field), t1 6= tT2 , and the s matrix is a member
of CUE. Both r1,2 and t1,2 are statistically equivalent
N × N matrices. The density of transmission or reflec-
tion eigenvalues exhibits a bimodal distribution, p(τ) =
1/π

√
τ(1− τ), for large N [3].
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IV. MAXIMUM TRANSMISSION EIGENVALUE

The joint probability density for the N eigenvalues of
t†HHtHH or t†VHtVH for the MMF, {τ1, . . . , τN}, is identi-
cal to the joint probability of reflection or transmission
eigenvalues of a chaotic cavity, which is [3, 4]

p(τ1, . . . , τN ) = cN
∏
n<m

(τn − τm)2, (1)

with τn ∈ (0, 1) for all n. Here cN is a normalization

constant such that
∫

(
∏N
n=1 dτn)p(τ1, . . . , τN ) = 1 and∏

n<m is short for
∏N
n=1

∏N
m=n+1. The reduced prob-

ability when two eigenvalues are close by is a result of
eigenvalue repulsion [2].

Let τmax be the largest among the N eigenvalues. The
probability density of τmax follows from (1) as

p(τmax) = N

∫ τmax

0

dτ1 · · ·
∫ τmax

0

dτN−1p(τ1, . . . , τN−1, τmax).

(2)
The integrals in (2) gives

p(τmax) = N2(τmax)N
2−1, τmax ∈ (0, 1). (3)

Similarly, the probability density for the smallest eigen-
value is p(τmin) = N2(1− τmin)N

2−1.
Figure S2 plots the probability of having at least one

eigenvalue above 0.95. The probability increases dramat-
ically with N and reaches 1 for N > 10.

From Eq.3, we get

〈τmax〉 = 1− 1

N2 + 1
,

var (τmax) =
N2

(N2 + 1)2(N2 + 2)
.

(4)
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FIG. S2: Probability of finding at least one eigenvector of
t†HHtHH with an eigenvalue (transmission in horizontal polar-
ization) exceeding 0.95.

In the absence of loss, both 1 − 〈τmax〉 and the stan-
dard deviation of τmax scale as 1/N2 for large N . This

is because the eigenvalues near 1 are pushed further to-
ward 1 by the repulsion from the smaller eigenvalues and
there are no eigenvalues larger than 1 to counter balance
this push. We define the polarization extinction ratio
(PER) as the maximal ratio of the transmissions in the
two orthogonal polarizations, 〈τmax〉/(1− 〈τmax〉) = N2.

V. POLARIZATION CONTROL WITHOUT
MODE MIXING

With negligible mixing between different spatial modes
in the fiber, each pair of LP modes with same spatial pro-
file and orthogonal polarization is coupled due to bire-
fringence. Light injected to a spatial mode experiences
successive polarization rotations while propagating in the
fiber. Each mode is depolarized differently with a random
output polarization state, whose overlap with the desired
output polarization is a random number between 0 and
1. When light is launched into all spatial modes of the
fiber, the probability for all of them to have a substantial
overlap with the desired polarization state at the output
decreases exponentially with N. Therefore, simultaneous
control of the polarization states of all modes cannot be
achieved by using spatial degrees of freedom alone.

To have the transmitted light in a desired polarization
state, one should inject light only to the mode whose out-
put polarization is the closest to the desired one. This
reasoning can be shown mathematically. Since tHH is
now a diagonal matrix, the eigenvalues of t†HHtHH are
simply N independent random numbers with the n-th
eigenvalue being the overlap between the output of the
n-th mode and the desired polarization state. The eigen-
vector with the largest eigenvalue corresponds to sending
light only into the mode whose output polarization has
the largest overlap with the desired polarization. The
joint probability density of the N eigenvalues is simply
p(τ1, . . . , τN ) =

∏N
n=1 p(τn) = 1, and the probability den-

sity of the maximal eigenvalue [as given by Eq. (S2)] is

p′(τmax) = N

∫ τmax

0

p(τ1)dτ1 · · ·
∫ τmax

0

p(τN−1)dτN−1.

(5)
It follows that

p′(τmax) = N(τmax)N−1, τmax ∈ (0, 1). (6)

From it we have that 〈τmax〉 = 1 − 1/(N + 1) and PER
= 〈τmax〉/(1− 〈τmax〉) = N .

The above results are obtained without loss in the
fiber. When the fiber has significant loss, 〈τmax〉 is re-
duced. So is the PER, as will be shown in section VIII.

VI. FIBER REFRACTIVE INDEX PROFILE

The refractive index profile of the MMF whose data are
presented in the main text is designed to reduce mode-
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dependent loss. The core diameter is 50 µm and the
measured refractive index profile is plotted in Fig. S3. A
sharp drop of the refractive index at the interface between
the core and the cladding enhances optical confinement
and reduces the probability of light escaping from the
core.
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FIG. S3: Measured refractive index profile of the multimode
fiber. The difference between the refractive index in the core
and that in the cladding, ∆n, has a parabolic profile within
the core (from -25 µm to 25 µm), and a sharp drop at the
interface between the core and the cladding to reduce light
leakage.

VII. MODE COUPLING

Experimentally we use clamps to apply stress to the
fiber. To confirm that mode coupling occurs in the fiber,
we measure the output intensity patterns with and with-
out clamps, when a plane wave is launched into the fiber
at normal incidence. As shown in Fig. S4, the output
intensity pattern is speckled, indicating the output field
consists of multiple LP modes. When the fiber is pressed
by the clamps, the number of speckle grains increases and
the speckle grain size decreases. Therefore, more spatial
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FIG. S4: Output intensity patterns for an MMF with (a)
or without (b) clamps applying stress to it. A plane wave
is launched into the fiber at normal incidence. The clamps
enhance mode mixing in the fiber.
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FIG. S5: Field transmission matrices of the MMF at λ = 1550
nm. Amplitude (a,c) and phase (b,d) of the measured tHH

and tVH. tHH in (a,b) has both input and output horizontally
polarized. tVH in (c,d) has input horizontally polarized and
output vertically polarized.
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FIG. S6: Eigenvalues of the measured matrix t†HtH of the
MMF. The eigenvalues are normalized by their maximum.
The decay of τHH indicates mode-dependent loss in the fiber.

modes are excited in the fiber due to the enhanced mode
mixing introduced by the clamps.

As described in the main text, the transmission ma-
trix is measured with input in momentum (wavevector)
basis and output in real space, and we perform a basis
transform to represent the matrix in the fiber LP mode
basis. Figure S5 presents experimentally measured field
transmission matrices, tHH and tVH, of the MMF for two
output polarizations H and V, with the input polarization
set to H. The eigenvalues of t†HtH, in which tH =

(
tHH
tVH

)
,

reveals the mode-dependent loss in the fiber. As seen
in Fig. S6, the sharp drop of the transmission curve af-
ter mode 50 indicates the cut-off of guided modes in the
fiber.

The measured transmission matrix, represented in LP
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FIG. S7: Experimentally measured tHH and tVH cannot be
made diagonal by a common basis transform. Singular value
decomposition of tHH = UΣV †. (a) The diagonal matrix Σ.
(b) The transformed matrix U†tVHV is non-diagonal. A com-
mon basis transformation cannot diagonalize tHH and tVH si-
multaneously.

mode basis, shows that with input light in a single LP
mode, the fiber output spreads over all LP modes. To
quantify the degree of mode coupling, we calculate the
inverse participation ratio (IPR) of the LP modes con-
stituting the fiber output field when the input light
is in a single LP mode. The IPR is defined as IPR
≡ (
∑60
i=1 Pi)

2/
∑60
i=1 Pi

2, where Pi is the intensity of the
i-th LP mode at the fiber output. If the output field con-
sists of only one LP mode, the IPR is equal to 1. If the
output is a random superposition of all LP modes (with
statistically equal weight), the IPR is 30. In our exper-
iment, the IPR of the output field for a single LP mode
input is about 22, indicating the fiber output contains far
more than one LP mode due to strong mode mixing in
the fiber. The IPR is lower than 30 because the higher
order modes experience more loss and have lower output
intensities than the lower-order ones.

A systematic error in transforming the transmission
matrix from the measurement basis to the LP mode ba-
sis might make the measured tHH and tVH non-diagonal
matrices. If there were the case, a common basis trans-
formation could diagonalize both tHH and tVH. To test
this possibility, we conduct the singular value decomposi-
tion of the measured tHH. The input and output singular
vectors of tHH diagonalize tHH, but they cannot diagonal-
ize the measured tVH, as shown in Fig. S7. This result
confirms the measured transmission matrix correspond-
ing to that of an MMF with strong mode and polarization
coupling.

VIII. MODE-DEPENDENT LOSS

In the MMF, the lower order modes experience less
attenuation than the higher order modes. To simulate the
mode-dependent loss, we assume the decay length ξ for
each LP mode is proportional to its propagation constant
β, ξ = γ β, where γ is a coefficient. By varying the value
of γ, we can tune the amount of loss. We solve for the
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FIG. S8: Polarization control in the presence of MDL. (a)
PER for the output field of the eigenvector with the maximum
eigenvalue of t†HHtHH as a function of the MDL, characterized
by γ, for the MMF with (blue dot) and without (red triangle)

mode coupling. (b) Eigenvalues of the numerical t†HtH for γ
= 6, normalized by the maximum value. The range of decay
is comparable to that of the fiber used in our experiment in
Fig. S6.

eigenvectors of t†HHtHH with the maximum eigenvalues
and compute the PER. Fig. S8(a) plots the PER as a
function of γ. The stronger the MDL, the lower the PER.
Hence, the MDL reduces the polarization control.

Mode-dependent loss also reduces the polarization con-
trol when there is no mode mixing in the fiber. We repeat
the calculation for the MMF without mode mixing, and
obtain much lower PER for the same amount of MDL.
Fig. S8(a) shows no matter how strong the MDL is, the
PER without mode coupling is always lower than that
with mode coupling. Therefore, mode coupling enhances
the polarization control even when the fiber has MDL.

We adjust the amount of MDL in the numerical simu-
lation to match that of the fiber in the experiment. Fig-
ure S8(b) plots the eigenvalues of numerically calculated
tH , which decay over a range comparable to those of
the experimentally measured tH in Fig. S6. With this
amount of MDL in the numerical model, the eigenvector
with the maximum eigenvalue of t†HHtHH has a PER of
29, which is close to the experimental PER of 24. With-
out mode mixing, the PER is found numerically to be
6.5, much lower than the PER with mode mixing.

IX. WAVELENGTH DEPENDENCE

In the main text we demonstrate polarization con-
trol in an MMF for monochromatic light, which is of-
ten used for optical excitation in polarization-resolved
fluorescence microscopy. While our scheme of polar-
ization control works for any wavelength, we must ad-
just the input wavefront with wavelength in order to
realize a specific output polarization state. This is be-
cause the transmission matrix tHH is wavelength depen-
dent, and its spectral correlation width is determined
by the properties of the fiber, such as the length, the
differential group delay and the degree of mode mix-
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FIG. S9: (a) Spectral correlation function C(∆λ) of an MMF
with strong mode coupling and negligible loss. (b) Wave-
length dependent transmission in horizontal polarization for
the eigenvector with largest eigenvalue of tHH(λ0).

ing. The spectral correlation function is defined as
C(∆λ) = 〈I(λ0)I(λ0 + ∆λ)〉/〈I(λ0)〉〈I(λ0 + ∆λ)〉 − 1,
where I(λ) is the output intensity pattern at wavelength
λ for a fixed input wavefront. We compute C(∆λ) using
tHH(λ) for 1550 nm 6 λ 6 1551.3 nm in the numeri-
cal simulation of an MMF with strong mode mixing but
negligible loss. The spectral width of C(∆λ) is 0.2 nm in
Fig. S9(a). We further calculate the eigenvector with the

largest eigenvalue of t†HHtHH at λ0 = 1550 nm. The trans-
mission of horizontal polarization for this eigenvector is
unity at λ0, as expected. As shown in Fig. S9(b), when
the wavelength λ is detuned from λ0 by ∆λ, the transmis-
sion in horizontal polarization decreases and the trans-
mission in vertical polarization increases, eventually both
approach 0.5 for ∆λ > 0.2 nm. Thus the bandwidth of
the polarization-preserving channel is equal to the spec-
tral correlation width of the fiber. The same bandwidth
is found for the polarization-changing channels. For the
applications in nonlinear optics, broad-band pulses are
usually used, and a large bandwidth of the polarization-
shaping channels is required. This can be achieved by
using MMFs with small differential group delay, which
gives a large spectral correlation width.

X. MULTI-CHANNEL POLARIZATION
CONTROL

As stated in the main text, wavefront shaping can con-
vert arbitrary polarization states of the input light to any
arbitrary polarizations of individual modes at the output
of a multimode fiber with strong mode and polarization
mixing. Here we illustrate how to realize this with an ex-
ample. First we construct the transmission matrix that
relate different input and output polarization states. We
calculate tHH, tVH, tHV, tVV of a fiber with 60 spatial
modes using the concatenated fiber model. From them,
we construct, e.g., the transmission matrix for linear ver-
tical (V) polarization input and left-circular (L) polar-
ization output tLV = (1/

√
2)(tHV + itVV), or the trans-

mission matrix for right-circular (R) polarization input
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FIG. S10: Multi-channel polarization control. (a) Input po-
larization state A and output polarization state B. Modes 1-20
have the linear vertical (V) polarization at the input and the
left-circular (L) polarization at the output. Modes 21-40 have
the right-circular (R) polarization at the input and the linear
−45◦ polarization at the output. Modes 41-60 have the linear
45◦ polarization at the input and the linear horizontal (H)
polarization at the output. (b) Corresponding transmission
matrix tBA is constructed. (c) The Poincaré sphere repre-
sentation of the input and output polarization states for all
modes of the eigenvector of t†BAtBA with the largest eigen-
value.

and L polarization output tLR = (1/
√

2)(tLH − itLV), as
described in the main text. Next we consider individ-
ual input and output modes have different polarizations,
e.g., let us bin the LP modes into three groups, i.e. 1-20,
21-40 and 41-60. As illustrated in Fig. S10(a), the input
polarization state A has V polarization for modes 1-20,
R polarization for modes 21-40 and linear 45◦ (45) polar-
ization for modes 41-60. The output polarization state B
is designed to be L polarization for modes 1-20, linear -
45◦ (-45) polarization for modes 21-40 and horizontal (H)
polarization for modes 41-60. To achieve the conversion
from A to B, we construct the corresponding transmis-
sion matrix tBA shown in Fig. S10(b). For example, the
elements for 1-20 rows and 1-20 columns of tBA are a copy
of the elements in 1-20 rows and 1-20 columns of tLV, the
elements of 1-20 rows and 21-40 columns of tBA are copied
from the corresponding rows and columns of tLR, etc. We
then compute the eigenvalues and eigenvectors of t†BAtAB.
When the fiber has no loss, the maximum eigenvalue is
equal to 1. Figure S10(c) presents the Poincaré sphere
representation of the input (left) and output (right) po-
larization states of the corresponding eigenvector. The
arrows of three colors (red, green and blue) denote the
polarization states for three groups of LP modes (1-20,
21-40 and 41-60). These results confirm that the eigen-
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FIG. S11: Output intensity pattern (a), its left-hand (b)
and right-hand (c) circularly polarized components reveal the
transmitted field in the top half of the fiber facet is the left
circularly polarization, and the bottom half right circularly
polarization.

(a) (b)

FIG. S12: Output intensity patterns of an eigenstate of tHH,
which retain the input polarization state (linear horizontal).
(a) The pattern predicted by the measured transmission ma-
trix. (b) The pattern measured experimentally after shaping
the input wavefront. Their agreement confirms the experi-
mental stability.

vector of t†BAtBA with the unity eigenvalue has the input
polarization state A and the output polarization state B,
thus realizing the polarization conversion from A to B.

Figure S11 shows an numerically generated polariza-
tion state using the experimentally measured transmis-
sion matrices tHH and tVH. All spatial channels in the top
half of the fiber facet are left-hand circularly polarized
(L) and the bottom half right-hand circularly polarized
(R).

XI. EXPERIMENTAL STABILITY

In the experiment, the 2m long bare fiber is coiled to
5 loops (not on a spool) and pressed by 12 clamps. The
clamps not only introduce mode coupling in the fiber
but also stabilize the fiber. The effect of temporal drift
is negligible during the period of experiment. As a test,
Fig. S12(a) shows the MMF output intensity pattern for
an eigenstate retaining the input polarization, predicted
by the measured transmission matrix. By modulating
the amplitude and phase of input light and launching
it into the fiber after the transmission matrix measure-
ment, we record the output intensity pattern, as shown
in Fig. S12(b). It agrees well with the predicted one,
confirming the stability of the fiber during the period of
the experiment.
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