
S1 Appendix. Theoretical procedures of each method included in the package SILGGM 

Without loss of generality, we assume that 𝑿 = (𝑋1, … , 𝑋𝑝) is an 𝑛 × 𝑝 matrix, where each 

row vector (𝑋𝑘1, … , 𝑋𝑘𝑝)
′
for 1 ≤ 𝑘 ≤ 𝑛 follows a 𝑝-dimensional independently and identically 

multivariate normal distribution with mean 0 and covariance matrix  𝛴. The precision matrix is 

denoted as Ω = (𝜔𝑖𝑗) = 𝛴−1, where 𝑖, 𝑗 = 1,2, … 𝑝.  

 

1. The bivariate nodewise scaled Lasso (B_NW_SL) 

B_NW_SL [1] is to make inference on each 𝜔𝑖𝑗  with 𝑖 ≠ 𝑗 . Based on the bivariate 

conditional normal distribution with index set 𝐴 = {𝑖, 𝑗}, 

         𝑿𝐴|𝑿𝐴𝑐  ~ 𝑁(−Ω𝐴,𝐴
−1 Ω𝐴,𝐴𝑐𝑿𝐴𝑐 , Ω𝐴,𝐴

−1 ),  Ω𝐴,𝐴 = (
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𝜔𝑗𝑖 𝜔𝑗𝑗
),                      (1) 

the bivariate nodewise scaled Lasso regression of the two variables in 𝐴 against the other variables 

in 𝐴𝑐 is proposed, 
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|𝛽𝑘|𝑘∈𝐴𝑐 },  𝑚 ∈ 𝐴 = {𝑖, 𝑗}.             (2) 

Here, each run of scaled Lasso regression is tuning-free and the tuning parameter is taken as 𝜆 =

√2 log(𝑝/√𝑛) /𝑛. The estimated residual 𝜀�̂� = 𝑿𝐴 − 𝑿𝐴𝑐�̂�𝐴  can be obtained once �̂�𝐴  is estimated 

from (2). Then, Ω for variables 𝑖 and 𝑗 can be estimated: 
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,  𝐴 = {𝑖, 𝑗}.                               (3) 

Under the minimal sparseness assumption 𝑠 = 𝑜(√𝑛/log (𝑝)), each estimator �̂�𝑖𝑗 has been 

shown asymptotically normal and efficient, 
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→ 𝑁(0,1).                                (4) 



According to (4), we can estimate the corresponding p-value and confidence interval of each 𝜔𝑖𝑗. 

The naive implementation of the procedure requires 𝑂(𝑝2) runs of scaled Lasso regression, but 

the total number of runs of regression can be reduced to 𝑂(𝑠𝑝) in terms of the comments in [1] 

and the implementation in [2]. 

 

2. The de-sparsified nodewise scaled Lasso (D-S_NW_SL) 

D-S_NW_SL [3] is based on the 𝑝  runs of nodewise scaled Lasso regression for 𝑖𝑡ℎ 

variable against all the other variables 𝑖𝑐, 

argmin𝛽𝑖∈𝑅𝑝−1, 𝜎∈𝑅+ {
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Again, the tuning parameter for each run of regression is taken as 𝜆 = √2 log(𝑝/√𝑛) /𝑛. Unlike the 

previous B_NW_SL, the procedure deals with the coefficients rather than the regression noise. If 

�̂�𝑖’s are the estimated coefficients from (5), we can define �̂�𝑖
2 = ‖𝑋𝑖 − 𝑿𝑖𝑐�̂�𝑖‖
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𝑇
. Then, the 𝑖𝑡ℎ column of Ω can 

be estimated:  

�̂�𝑖 = �̂�𝑖/�̃�𝑖
2.                                                                 (6) 

However, it is well known that the initial estimators in (6) have bias, so the authors have proposed 

a bias correction procedure on �̂�𝑖𝑗. Under the Karush-Kuhn-Tucker (KKT) conditions, the de-

sparsified (or de-biased) estimator �̌�𝑖𝑗 is 

  �̌�𝑖𝑗 = �̂�𝑖𝑗 + �̂�𝑗𝑖 − �̂�𝑖
𝑇�̂��̂�𝑗,                                                  (7) 

where �̂� = 𝑿𝑇𝑿/𝑛. 



Under the minimal sparseness assumption 𝑠 = 𝑜(√𝑛/log (𝑝)), each de-biased estimator 

�̌�𝑖𝑗 has achieved the asymptotically efficient result with 

√𝑛(�̂�𝑖𝑖�̂�𝑗𝑗 + �̂�𝑖𝑗
2 )

−1
(�̌�𝑖𝑗 − 𝜔𝑖𝑗)

𝐷
→ 𝑁(0,1).                                     (8) 

According to (8), the corresponding p-value and confidence interval can be estimated for each 𝜔𝑖𝑗.  

 

3. The de-sparsified graphical Lasso (D-S_GL) 

D-S_GL [4] also depends on a bias correction procedure which is very similar to the one 

in D-S_NW_SL. However, the initial estimator Ω̂ = (�̂�𝑖𝑗)𝑝×𝑝  here is obtained by solving a 

graphical Lasso optimization problem for Ω: 

argminΩ{trace(Ω𝑇�̂�) − log det(Ω) + 𝜆‖Ω‖1, off}.                            (9) 

Even though (9) is not tuning-free, the tuning parameter can be taken as 𝜆 = √log(𝑝)/𝑛 according 

to the suggestion in [4]. Then, with the same idea of bias correction in D-S_NW_SL, the de-

sparsified (or de-biased) estimator Ω̌ = (�̌�𝑖𝑗)𝑝×𝑝 is 

Ω̌ = 2Ω̂ − Ω̂�̂�Ω̂.                                                           (10)        

Under the minimal sparseness assumption 𝑠 = 𝑜(√𝑛/log (𝑝)), each de-biased estimator 

�̌�𝑖𝑗 achieves the same asymptotically efficient result as the one in (8).       

 

4. The Gaussian graphical model (GGM) estimation with false discovery rate (FDR) control 

using scaled Lasso or Lasso (GFC_SL or GFC_L)   

While the previous three methods are originally developed for individual inference of each 

𝜔𝑖𝑗 ,  GFC_SL or GFC_L [5] is proposed particularly for global inference of all 𝜔𝑖𝑗 ’s. The 

approach is based on a bias correction procedure on the sample covariance of residuals between 



each pair of variables 𝑖 and 𝑗. In order to obtain the estimators of residuals, the first step of the 

method needs 𝑝 runs of nodewise scaled Lasso regression same as those in (5) or nodewise Lasso 

regression for 𝑖𝑡ℎ variable against all the other variables 𝑖𝑐 as below, 

argmin𝛽𝑖∈𝑅𝑝−1 {
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+ 𝜆𝑖 ∑ |𝛽𝑖𝑘|𝑘∈𝑖𝑐 }.                                   (11)  

If the estimated coefficients �̂�𝑖’s are obtained from (5) or (11), then we can obtain the estimated 

residual 𝜀�̂� = 𝑋𝑖 − 𝑿𝑖𝑐�̂�𝑖 and the estimated sample covariance of residuals between (𝑖, 𝑗)𝑡ℎ pair of 

variables �̂�𝑖𝑗 =
1

𝑛
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𝑛
𝑘=1 . The second step is to make a bias correction on �̂�𝑖𝑗 to obtain 
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𝑘=1 ),  1 ≤ 𝑖 < 𝑗 ≤ 𝑝             (12)  

and construct a new test statistic 

�̂�𝑖𝑗 = √
𝑛

�̂�𝑖𝑖�̂�𝑗𝑗
𝑇𝑖𝑗                                                             (13) 

 for the multiple testing  

  𝐻0: 𝜔𝑖𝑗 = 0    vs.    𝐻1:  𝜔𝑖𝑗 ≠ 0.                                             (14) 

Under the null hypothesis in (14) and the same minimal sparseness assumption as before, (13) has 

an asymptotically normal result with  

�̂�𝑖𝑗

𝐷
→ 𝑁(0,1).                                                             (15) 

Since GFC_SL or GFC_L is developed for global inference, another main component of 

this method is to provide a novel framework for FDR control that has been theoretically proved 

valid in high-dimensional settings. It is well known that the false discovery proportion (FDP) with 

a threshold 𝑡 can be written as 

FDP(𝑡) = ∑ 𝐼{|�̂�𝑖𝑗| ≥ 𝑡}(𝑖,𝑗)∈𝐻0
/max{∑ 𝐼1≤𝑖<𝑗≤𝑝 {|�̂�𝑖𝑗| ≥ 𝑡},  1}.                (16) 



To control FDR needs to control (16) since we have E(FDP(𝑡)) = FDR(𝑡). The numerator of (16) 

is generally unknown, but according to [5], the author has proved that    

∑ 𝐼{|�̂�𝑖𝑗| ≥ 𝑡}(𝑖,𝑗)∈𝐻0
≈ 2(1 − Φ(𝑡))(𝑝2 − 𝑝)/2,                            (17) 

where Φ(∙) is a standard normal cumulative distribution function. Therefore, we can choose the 

threshold  

�̂� = inf {0 ≤ 𝑡 ≤ 2√log(𝑝) :  
2(1−Φ(𝑡))(𝑝2−𝑝)/2

max{∑ 𝐼1≤𝑖<𝑗≤𝑝 {|�̂�𝑖𝑗|≥𝑡}, 1}
≤ 𝛼},   0 ≤ 𝛼 ≤ 1.           (18)   

We reject 𝐻0 in (14) if |�̂�𝑖𝑗| ≥ �̂�. 

As an alternative to the tuning-free scaled Lasso regression, each run of (11) for 𝑋𝑖 against 

𝑿𝑖𝑐  requires a selection of the tuning parameter 𝜆𝑖 = 𝛿√�̂�𝑖𝑖
2 log(𝑝) / 𝑛, where �̂�𝑖𝑖

2 = ∑ 𝑋𝑘𝑖
2𝑛

𝑘=1 /𝑛,   

with a data-driven choice of 𝛿 from 0 to 2. The following data-driven scheme is used based on the 

result in (17): 

𝛿 =  𝑙/𝑁, 

𝑙 = argmin0≤𝑙≤2𝑁 ∑ (
∑ 𝐼{|�̂�𝑖𝑗(𝑙/𝑁)|≥Φ−1(1−𝑘/20)}1≤𝑖≠𝑗≤𝑝

𝑘(𝑝2−𝑝)/10
− 1)

2
9
𝑚=3 .                (19) 

Here, 𝑁 = 20 is set by default and a different value of 𝑁 can be set up in practice. 

Since the previous three methods have asymptotically normal results in terms of (4) and 

(8), the FDR framework described in (17) and (18) can also be applied to them by replacing �̂�𝑖𝑗 

with a different test statistic based on �̂�𝑖𝑗 or �̌�𝑖𝑗. Therefore, the implementations of B_NW_SL, 

D-S_NW_SL and D-S_GL are allowed for global inference as well.    
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