S2 File. Testing on the accuracy of individual inference

In this supplementary file, we present the details of evaluation on the accuracy of individual inference of each ω_{ij} (or gene pair) for the cases with n = 800, p = 5000 and n = 800, p = 10000. We consider three graph settings described as below:

- Band graph: a p by p precision matrix $\Omega = (\omega_{ij})_{p \times p}$ with $\omega_{i,i+1} = \omega_{i+1,i} = 0.6$, $\omega_{i,i+2} = \omega_{i+2,i} = 0.3$ and the other off-diagonal elements $\omega_{ij} = 0$ for $|i-j| \ge 3$. The diagonal entries of Ω are $\omega_{ii} = 1$ for i = 1,2,3...,p. The expected node degree of the graph is 4.
- **E-R graph:** we start with an initial p by p matrix $\Omega' = (\omega_{ij})_{p \times p}$ with each off-diagonal entry $\omega_{ij} = \omega_{ji} = \mu_{ij} * \varphi_{ij}$, where μ_{ij} is a uniform random variable between 0.4 and 0.8 and φ_{ij} is a Bernoulli random variable (1 means success and 0 means failure) with the success probability of $\min(0.05, 5/p)$. The diagonal entries of Ω' are $\omega_{ii} = 1$ for i = 1,2,3...,p. To make the matrix positive definite, the final precision matrix is $\Omega = \Omega' + (|\lambda_{min}| + 0.05)I_p$, where λ_{min} is the minimum eigenvalue of Ω' and I_p is a p by p identity matrix. The expected node degree of the graph is 5 for p = 5000 or 10000.
- Scale-free graph: By using the preferential attachment scheme, we start with a single node (or gene) and no edges in the first time step. Then, in each time step, a new gene is added, and the newly-added gene initiates an edge to one of the old genes. An old gene i is selected based on the probability $p(i) \propto d(i)^{0.01} + 1$, where d(i) is the node degree of gene

i in the current time step and 0.01 is the power of the preferential attachment. Therefore, the total number of edges in the entire generated graph is given by p-1. The above procedure is achieved by the implementation of the function barabasi.game() in the R package igraph. Therefore, we generate a p by p adjacency matrix $A=(a_{ij})_{p\times p}$ with each off-diagonal element $a_{ij}=1$ if there is a non-zero partial correlation between gene i and j; otherwise, $a_{ij}=0$. The diagonal elements of A are all equal to 0. Then, we generate an initial p by p matrix $\Omega'=(\omega_{ij})_{p\times p}$ and set any off-diagonal element $\omega_{ij}=0.3$ if its corresponding $a_{ij}=1$. To make the matrix positive definite, the final precision matrix is $\Omega=\Omega'+(|\lambda_{min}|+0.2)I_p$, where λ_{min} is the minimum eigenvalue of Ω' and I_p is a p by p identity matrix. The following histograms in Fig. A show that the node degree distribution of Scale-free graph for p=5000 and p=10000 follows a power law.

Fig. A. Histograms of node degrees of Scale-free graph. The left plot illustrates the case of p = 5000, and the right plot shows the node degree distribution when p = 10000.

Under each of the three graph settings, we simulate 100 data sets. We customize GFC_L to be implemented among 5 candidates of tuning parameters for tuning selection, and the other approaches in SILGGM are run with default parameters. We set a pre-specified level of 0.05 on the estimated p-value of each ω_{ij} . In terms of the estimated p-values of all ω_{ij} 's in an entire graph, the mean of the estimated Type I error under the 0.05 level and the corresponding mean of the estimated Type II error over the 100 replications for Band graph, E-R graph and Scale-free graph are reported in the following three tables respectively. The results indicate that all the approaches control the Type I error well in these large scales (p = 5000/p = 10000) for individual testing on each gene pair. Also, a non-zero partial correlation can be correctly identified in the case of either p = 5000 or p = 10000 since the corresponding Type II error for all the simulation settings are around 0.

Graph setting	Average node degree	р	n	Methods	Type I error (0.05 level)	Type II error
	3.9988	5000	800	B_NW_SL	0.0496	0
				D-S_NW_SL	0.0228	0
Band				D-S_GL	0.0006	0
				GFC_SL	0.0501	0
				GFC_L	0.0503	0
			800	B_NW_SL	0.0496	0
				D-S_NW_SL	0.0221	0
	3.9994	10000		D-S_GL	0.0002	0
				GFC_SL	0.0501	0
				GFC_L	0.0502	0

Graph setting	Average node degree	р	n	Methods	Type I error (0.05 level)	Type II error
	5.0356	5000	800	B_NW_SL	0.0496	9.4×10^{-4}
				D-S_NW_SL	0.0280	1.6×10^{-3}
				D-S_GL	0.0315	8.0×10^{-4}
				GFC_SL	0.0501	9.3×10^{-4}
E-R				GFC_L	0.0501	1.3×10^{-3}
		10000	800	B_NW_SL	0.0496	6.0×10^{-4}
				D-S_NW_SL	0.0276	1.1×10^{-3}
	4.9704			D-S_GL	0.0300	5.6×10^{-4}
				GFC_SL	0.0501	6.0×10^{-4}
				GFC_L	0.0501	8.9×10^{-4}

Graph setting	Average node degree	р	n	Methods	Type I error (0.05 level)	Type II error
	1.9996	5000	800	B_NW_SL	0.0495	5.6×10^{-5}
				D-S_NW_SL	0.0427	6.0×10^{-5}
				D-S_GL	0.0415	5.8×10^{-5}
				GFC_SL	0.0501	5.4×10^{-5}
Scale-				GFC_L	0.0501	4.8×10^{-5}
free		10000	800	B_NW_SL	0.0495	7.0×10^{-5}
				D-S_NW_SL	0.0432	8.0×10^{-5}
	1.9998			D-S_GL	0.0431	8.0×10^{-5}
				GFC_SL	0.0501	7.0×10^{-5}
				GFC_L	0.0501	6.0×10^{-5}

The above validation with Type I and Type II errors for individual inference of whether a known zero or a non-zero partial correlation can be correctly identified based on the information of p-values implies no differences among all the approaches. To make a further comparison for individual inference, we then evaluate the average empirical coverage probabilities for the 95% confidence intervals of the ω_{ij} 's for the "non-zero partial correlation" set S_0 (a set of all pairs with non-zero ω_{ij} 's) and the "zero partial correlation" set S_0^c (a set of all pairs with zero ω_{ij} 's) respectively.

Based on the same 100 replications, we report the mean of the 100 estimated average coverage probabilities of the 95% confidence intervals of the ω_{ij} 's in S_0 and the mean of the 100 estimated average coverage probabilities of the 95% confidence intervals of the ω_{ij} 's in S_0^c for Band graph, E-R graph and Scale-free graph in the following three tables respectively.

Graph setting	Average node degree	p	n	Methods	<i>S</i> ₀	S ₀ ^c
Band	3.9988	5000	800	B_NW_SL	0.9505	0.9504
				D-S_NW_SL	0.7864	0.9772
				D-S_GL	0.5355	0.9994
				B_NW_SL	0.9496	0.9504
	3.9994	10000	800	D-S_NW_SL	0.7368	0.9779
				D-S_GL	0.5538	0.9998

Graph setting	Average node degree	р	n	Methods	S_0	$S_0^{\ c}$
E-R	5.0356	5000	800	B_NW_SL	0.8588	0.9504
				D-S_NW_SL	0.9454	0.9720
				D-S_GL	0.7967	0.9685
				B_NW_SL	0.8452	0.9504
	4.9704	10000	800	D-S_NW_SL	0.9448	0.9724
				D-S_GL	0.7801	0.9700

Graph setting	Average node degree	р	n	Methods	S ₀	S ₀ ^c
Scale-	1.9996	5000	800	B_NW_SL	0.9330	0.9505
				D-S_NW_SL	0.9459	0.9573
				D-S_GL	0.9354	0.9585
free				B_NW_SL	0.9361	0.9505
	1.9998	10000	800	D-S_NW_SL	0.9467	0.9568
				D-S_GL	0.9397	0.9569

Since GFC_SL or GFC_L provides no confidence intervals, we involve the other three approaches here. As it can be seen, the results of empirical coverage probabilities in S_0^c coincide the ones in Type I error rates and they are all good with our desired level 0.95. For Scale-free graph with p = 5000 and 10000, the empirical coverage probabilities of the three methods in S_0 are all around 0.95 as well. However, there are some differences in S_0 for Band graph and E-R graph. For Band graph, B_NW_SL particularly outperforms D-S_NW_SL and D-S_GL since its empirical coverage probabilities in S_0 are well around the desired level, while the empirical coverage probabilities of D-S_NW_SL in S_0 are less than 0.80 and the results of D-S_GL in S_0 are around 0.55. For E-R graph, D-S_NW_SL is the best one with the empirical coverage probabilities in S_0 close to the desired level, but the differences in results among the three methods are much less significant than the ones in Band graph. The empirical coverage probabilities of B_NW_SL in S_0 are still around 0.85, and the results of D-S GL can be around 0.80 as well.

According to the results from the three graph settings, the overall performance of the confidence intervals among the three methods are good since S_0^c is a major part of the sparse graph settings. But in terms of the confidence intervals in S_0 or the non-zero partial correlations, B_NW_SL and D-S_NW_SL perform better than D-S_GL. Moreover, the performance of B_NW_SL is more stable than that of D-S_NW_SL.