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Supplementary Information 
Section S1. DEER kernel derivation 

A two-electron system with a dipole-dipole and an exchange coupling has the following Hamiltonian 
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Where   is a set of three Euler angles,    2

,0m D  are second-rank Wigner D-functions, J  is defined in 

the NMR convention in angular frequency units, and the irreducible spherical tensor operators are 
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Applying the rotating frame with respect to the Zeeman Hamiltonian 
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and relying on the fact that the spin echo would refocus the g-factor offset variations, we obtain the 

following rotating frame Hamiltonian 
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Here we have skipped all but the secular components, which is permitted when 1 2 ,J D  . This 

condition is fulfilled in DEER for most spin pairs if the difference between the pump and observe fre-

quencies strongly exceeds J and D. The Hamiltonian given in Eq. (4), when acting on the transverse mag-

netization, produces the following oscillation 
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Averaging this over all molecular orientation produces the required formula 

 

 

    

   

0

2, , cos sin

6 6
cos FrC sin F

1 3c

r

s

S
6

oD J t D J t d

Dt Dt
D J t D J t

Dt



  



 

      

    
             

     


  (6) 

where Fresnel functions are defined as 
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Equation (6) still has a simple analytical form when a Gaussian distribution in the exchange coupling is 

assumed, because the exchange coupling only occurs under simple trigonometric functions, for which 
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Thus, the distribution in the exchange coupling creates an extra decay in the DEER trace, but the sinus-

oidal modulation still occurs at the frequency 0D J . The updated expression for the form factor is 
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where 0J  is the average exchange coupling and J  is the standard deviation of its distribution. 

 

Section S2. Performance illustrations for networks of different depth 

The “relative error” metric is defined as the 2-norm of the difference between the network output and 

the ground truth, divided by the 2-norm of the ground truth. The data for the performance illustrations 

were selected from the training database in the following way: the “easy case” was sampled from the 

region between zero and one standard deviation on the relative error; the “tough case was sampled 



 

from the region between one and two standard deviations; the “bad case” was sampled from 100 worst 

fits in the entire 100,000-trace training database. 

 

 

Fig. S1. DEERNet performance illustration, distance distribution recovery: two-layer feedforward network, fully connected, 
with 256 neurons per layer. The first layer has a sigmoid transfer function; the second layer has a log-sigmoid transfer function. 
BG = background. 

 

Fig. S2. DEERNet performance illustration, distance distribution recovery: three-layer feedforward network, fully connected, 
with 256 neurons per layer. The first two layers have a sigmoid transfer function; the last layer has a log-sigmoid transfer func-
tion. BG = background. 
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Fig. S3. DEERNet performance illustration, distance distribution recovery: four-layer feedforward network, fully connected, 
with 256 neurons per layer. The first three layers have a sigmoid transfer function, the last layer has a log-sigmoid transfer 
function. BG = background. 

 

Fig. S4. DEERNet performance illustration, form factor recovery: two-layer feedforward network, fully connected, with 256 
neurons per layer. All layers have a sigmoid transfer function. BG = background. 

 

Fig. S5. DEERNet performance illustration, form factor recovery: three-layer feedforward network, fully connected, with 256 
neurons per layer. All layers have a sigmoid transfer function. BG = background. 
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Fig. S6. DEERNet performance illustration, form factor recovery: four-layer feedforward network, fully connected, with 256 
neurons per layer. All layers have a sigmoid transfer function. BG = background. 

 

Section S3. Effects of transfer functions, choke points, and bias vectors 
A minor complication associated with logistic sigmoid transfer functions – that negative inputs are 

mapped into very small numbers and the vanishing gradient problem becomes more severe – does not 

appear to be a problem for the relatively shallow networks used in this work. 

Table S1. Distance distribution recovery performance statistics for feedforward networks with hyperbolic tangent sigmoid 
(tansig) and logistic sigmoid (logsig) transfer function at the last layer. 

Network 
Inner layer 

transfer function 
Last layer 

transfer function 
Mean relative 

error 
Iteration count at 

convergence 

In-(256)2-Out tansig tansig 0.110 2915 

In-(256)3-Out tansig tansig 0.091 3134 

In-(256)4-Out tansig tansig 0.088 4570 

In-(256)2-Out tansig logsig 0.090 1062 

In-(256)3-Out tansig logsig 0.077 2234 

In-(256)4-Out tansig logsig 0.070 2495 
 

Table S2. Performance statistics for a family of feedforward networks set up as a sequence of fully connected layers with a 
choke point in the position indicated. A schematic of the network topology is given in the middle diagram of Fig. 3. 

Network 
Bias vectors present Bias vectors absent 

Mean 
relative error 

Rel. error 
st. dev. 

Mean 
relative error 

Rel. error 
st. dev. 

In-256-128-256-256-256-256-Out 0.071 0.200 0.073 0.202 

In-256-256-128-256-256-256-Out 0.074 0.193 0.074 0.200 

In-256-256-256-128-256-256-Out 0.071 0.195 0.072 0.196 

In-256-256-256-256-128-256-Out 0.072 0.194 0.072 0.198 

 

The most likely reason for the bias vectors apparently not having any influence on the network perfor-

mance is the fact that the networks in question are fully connected and the input data are well scaled. It 

is easy to demonstrate that the operation involving a matrix product and a bias vector: 

 Wx b   (10) 

is equivalent to just a matrix-vector product involving a matrix with one extra row and column: 

0 0.5 1 1.5 2

an easy case

DEER

BG

0 0.5 1 1.5 2

a tough case

DEER

BG

0 0.5 1 1.5 2

a bad case

DEER

BG

20 30 40 50

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

True

DEERNet

20 30 40 50

True

DEERNet

20 30 40 50

True

DEERNet

time, µs time, µs time, µs

distance, Å distance, Å distance, Å

a
m

p
lit

u
d

e
, 

a
.u

.
a

m
p

lit
u

d
e

, 
a

.u
.



 

 
1 1 1     

     
     

0

Wx b b W x
  (11) 

For a network with 256 or more neurons per layer, the accuracy impact of dedicating one line of neu-

rons to effectively handling the bias appears to be negligible.  

 

Section S4. Behavior of Tikhonov regularization for exchange-coupled systems 
All current Tikhonov regularisation methods are based on the pure dipole-dipole coupling model; they 

are not expected to produce correct answers for exchange-coupled systems. Here we briefly demon-

strate that this is indeed the case. We have processed the simulated data shown in Fig. 17 of the main 

text by Tikhonov regularization. In cases where the fit of the form factor looked reasonable, we have 

performed validation in DeerAnalysis. The results are shown in fig. S7. 

For the case shown in the top row, an expert would recognize that the fit (red line in the left panel) of 

the form factor (black line) is too poor for the distance distribution (blue line in the right panel) to be 

trusted. Reckless use of a dipole-only model would produce an apparently trustworthy peak around 24 

Å. This is, of course, incorrect: the underlying mean distance is about 36 Å as seen in Fig. 17 in the main 

text. 

For the data set shown in the middle row of Fig. 17, Tikhonov regularization does not find a solution that 

fits the data, but the failure is graceful – it is readily apparent to a non-expert user. 

For the data set shown in the bottom row of Fig. 17, Tikhonov regularization provides a fit of the form 

factor within the amplitude of the noise. Nothing looks suspicious, not even the L-curve (data not 

shown). The apparent distance distribution is bimodal with peaks at about 23 and 41 Å, whereas the 

input distribution was a narrow unimodal skewed distribution with a mean value slightly above 20 Å. In 

other words, the failure is not apparent, even after validation. 

In applications of site-directed spin labelling to structural biology, no exchange coupling is expected in 

the distance range above 15 Å. However, the same does not apply in materials science where the mo-

lecular backbone may be conjugated, or the matrix conducting or semiconducting. In those cases, 

DEERNet either provides reliable data or fails gracefully, whereas analysis by Tikhonov regularization 

based on a purely dipolar kernel leads to incorrect results. Importantly, we have only tested fixed ex-

change couplings so far – data sets with a distribution over exchange couplings are likely to be much 

harder to process. 

 



 

 

Fig. S7. Tikhonov analysis of synthetic data produced as described in the main text and featuring a unimodal distance distri-
bution in the presence of a fixed exchange coupling (cf. Fig. 17). The left column shows the background-corrected synthetic 
data (black) and their fit based on the distance distribution obtained by Tikhonov regularization. The right column shows the 
distance distribution (blue) and, in cases where the form factor fit is reasonable, the uncertainty estimate by the validation tool 
of DeerAnalysis (pink shaded area). 

 

Section S5. Behavior of neural networks with the increasing level of noise 
Increasing the level of noise in the input data results in a gradual degradation in the accuracy of the dis-

tance distribution reconstruction, but also produces appropriately increased uncertainty bounds. As Fig-

ures S8-S10 illustrate, the user is not misled at any point – in all cases, the uncertainty bounds are a 

suitable reflection of the deviation of the reconstruction from the true answer. 

 

Fig. S8. A randomly generated DEER data set with the noise SD set at 2.5% of the modulation depth and the resulting dis-
tance distribution reconstruction by DEERNet. In the rightmost diagram, the blue line is the average neural network output, 
the shaded area is the 95% confidence interval, and the black line is the true answer.  
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Fig. S9. A randomly generated DEER data set with the noise SD set at 10% of the modulation depth and the resulting distance 
distribution reconstruction by DEERNet. In the rightmost diagram, the blue line is the average neural network output, the 
shaded area is the 95% confidence interval, and the black line is the true answer. 

 

Fig. S10. A randomly generated DEER data set with the noise SD set at 30% of the modulation depth and the resulting dis-
tance distribution reconstruction by DEERNet. In the rightmost diagram, the blue line is the average neural network output, 
the shaded area is the 95% confidence interval, and the black line is the true answer. 
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