Environ Health Perspect

DOI: 10.1289/EHP3441

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ensuremath.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Longitudinal Effects of Developmental Bisphenol A Exposure on Epigenome-Wide DNA Hydroxymethylation at Imprinted Loci in Mouse Blood

Joseph J. Kochmanski, Elizabeth H. Marchlewicz, Raymond G. Cavalcante, Bambarendage P. U. Perera, Maureen A. Sartor, and Dana C. Dolinoy

Table of Contents

Table S1. Real-time quantitative polymerase chain reaction (RT-qPCR) primers for self-designed gene assays.

Table S2. Enhanced reduced representation bisulfite sequencing (ERRBS) differentially methylated CpGs (DMCs) annotated to top hit imprinted genes.

Table S3. Number of cytosine-phosphate-guanine (CpG) and cytosine-H-guanine (CHG; where H = adenine or thymine) sites at imprinted gene differentially hydroxymethylated regions (DHMRs).

Table S4. Enriched bisphenol A (BPA)-related differentially hydroxymethylated region (DHMR) pathways.

Figure S1. Exposure paradigm and blood collection time points to measure longitudinal 5hydroxymethylcytosine (5-hmC) patterns. Two weeks prior to mate-pairing with $A^{\nu\nu/a}$ males, six week old wild type a/a dams were placed on one of two experimental diet groups: (1) Control (modified AIN-93G), (2) Control + 50 µg bisphenol A (BPA)/kg diet. Exposure continued through pregnancy and lactation, ending for offspring at postnatal day (PND) 21. Matched blood samples were collected from wildtype a/a offspring at 2 months, 4 months, and 10 months of age. **Figure S2. Distribution of bisphenol A (BPA)-related differentially hydroxymethylated regions (DHMRs) compared to random.** Using the *annotatr* R package, BPA-related DHMRs were annotated to the *mm10* genome. Compared to a random distribution generated from background hydroxymethylated DNA immunoprecipitation-sequencing (HMeDIP-seq) data, BPA-related DHMRs were depleted at CpG shores, CpG shelves, promoters, 3'-UTRs, 5'-UTRs, exons, and introns, but slightly enriched at regions greater than 4,000 base pairs (bp) from a CpG island (interCGI). 3'-UTRs = 3'-untranslated regions. 5'-UTRs = 5'-untranslated regions. CpG = cytosine-phosphate-guanine.

Figure S3. Enhanced reduced representation bisulfite sequencing (ERRBS) DNA methylation data from identified *Klf14* **differentially hydroxymethylated region (DHMR).** Using the *RnBeads* R package, ERRBS data was visualized for the CpG sites contained within the identified *Klf14* DHMR. DNA methylation level is represented by intensity of color, with zero % methylation represented by white and 100% methylation represented by dark red. ERRBS data from Control mice is shown on the left, while ERRBS data from BPA exposed mice is shown on the right. Blood sample collection age (2 months, 4 months, or 10 months old) is indicated in the left column. Mean methylation across all CpGs with data is represented by line plots below the raw data. Line plots are colored according to age group. At the *Klf14* DHMR, there were no significant differentially methylated CpGs by BPA exposure, although comparisons were difficult due to limited coverage at some CpG.

Figure S4. Additional differential imprinted gene 5-hydroxymethylcytosine (5-hmC) peaks by bisphenol A (BPA) exposure. 5-hmC coverage was visualized at six additional imprinted loci with significant BPA-related differentially hydroxymethylated regions (DHMRs): A) *Airn*, B) *Cmah*, C) *Ppp1r9a*, D) *Kcnq1*, E) *Phactr2*, and F) *Pde4d*. 5-hmC levels are shown for matched 2 month, 4 month, and 10 month blood samples, as indicated by y-axis labels. Blue and red peaks represent forward and reverse strand 5-hmC enrichment, respectively. *Cmah*, *Ppp1r9a*, and *Kcnq1* DHMRs occurred on the forward strand. *Airn*, *Phactr2*, and *Pde4d* DHMRs occurred on the reverse strand.

Figure S5. 5-hydroxymethylcytosine (5-hmC) peaks at the *Igf2/H19* **imprinted loci.** Based on results at the *Plagl1* locus, which is a regulator of *Igf2* and *H19*, longitudinal 5-hmC patterns across the *Igf2* and *H19* imprinted genes were also visualized. 5-hmC peaks at both loci appear stable across individuals and adulthood stage in longitudinal mouse blood (2, 4, and 10 months old). Regions of non-significant bisphenol A (BPA)-related differential 5-hmC are indicated in red boxes for both genes. Despite not being detected as significant differentially hydroxymethylated regions (DHMRs) in *csaw*, these bisphenol A (BPA)-related changes in 5-hmC were stable at all three measured time points.

Gene	Full Name	GenBank Number	Strand	Primers (5' to 3')	Tm (°C)	Amplicon Size
Gapdh	Glyceraldehyde	NM_008084.3	FWD	GCCTGCTTCACCACCTTCTT	59.96	08
	dehydrogenase		RVS	CATGGCCTTCCGTGTTCCTA	59.07	98
Gnas	GNAS (guanine nucleotide	NM_201618.2	FWD	CTGCCATCATCTTCGTGGTG	58.99	
	binding protein, alpha stimulating) complex locus		RVS	GATTTGCCAGCGAGGACTTT	58.83	193

Table S1. Real-time quantitative polymerase chain reaction (RT-qPCR) primers for self-designed gene assays.

Forward and reverse primer sequences for the *Gapdh* and *Gnas* RT-qPCR assays are listed, along with melting temperatures and amplicon size. All assays were designed using the online Genscript Real-time PCR Primer Design software (<u>https://www.genscript.com/tools/real-time-pcr-tagman-primer-design-tool</u>). FWD = forward. RVS = reverse. Tm = melting temperature.

BPA-related Gnas/Nespas DMCs							
Chr	Position	Position Location Δ % Methylation ⁺		Gene ID	Gene name		
chr2	174295388	1to5kb:6242	-17.1%	14683	Gnas		
chr2	174295403	1to5kb:6241	-87.2%	14683	Gnas		
chr2	174299808	exon:51698	-10.6%	14683	Gnas		
chr2	174305903	intron:45418	23.1%	14683	Gnas		
chr2	174329842	5UTR:7653	-7.7%	14683	Gnas		
chr2	174330525	intron:45422	-12.7%	14683	Gnas		
chr2	174330995	intron:45434	9.9%	14683	Gnas		
chr2	174335278	intron:45423	29.8%	14683	Gnas		
chr2	174284270	intron:64744	-20.8%	56802	Nespas		
chr2	174284281	intron:64744	-35.9%	56802	Nespas		
chr2	174284283	intron:64740	-14.1%	56802	Nespas		
chr2	174291169	intron:64746	26.3%	56802	Nespas		
		BPA-relate	ed Grb10 DMCs				
Chr	Position	Location	Δ % Methylation ⁺	Gene ID	Gene name		
chr11	11967584	exon:321631	20.7%	14783	Grb10		
chr11	12037132	intron:281448	44.8%	14783	Grb10		
BPA-related <i>Plagl1</i> DMCs							
Chr	Position	Location	Δ % Methylation ⁺	Gene ID	Gene name		
chr10	13060418	promoter:34649	12.9%	22634	Plagl1		
chr10	13077185	intron:242831	25.8%	22634	Plagl1		
chr10	13080633	intron:242831	19.4%	22634	Plagl1		
chr10	13090048	promoter:34650	37.0%	22634	Plagl1		
chr10	13127241	exon:277501	-6.4%	22634	Plagl1		
BPA-related <i>Klf14/Mest</i> DMCs							
Chr	Position	Location	Δ % Methylation ⁺	Gene ID	Gene name		
chr6	30732802	promoter:19692	47.6%	17294	Mest		
chr6	30742815	exon:163519	-7.1%	17294	Mest		
BPA-related Pde10a DMCs							
Chr	Position	Location	Δ % Methylation ⁺	Gene ID	Gene name		
chr17	8541336	intron:376679	20.4%	23984	Pde10a		
chr17	8550528	intron:376679	35.3%	23984	Pde10a		
chr17	8551487	intron:376679	71.0%	23984	Pde10a		
chr17	8556028	intron:376679	25.3%	23984	Pde10a		
chr17	8569240	intron:376679	19.3%	23984	Pde10a		
chr17	8580177	intron:376679	22.8%	23984	Pde10a		
chr17	8612493	intron:376679	20.9%	23984	Pde10a		
chr17	8613629	intron:376679	-12.5%	23984	Pde10a		
chr17	8724732	intron:376679	31.9%	23984	Pde10a		

Table S2 – Enhanced reduced representation bisulfite sequencing (ERRBS) differentially methylated CpGs (DMCs) annotated to top hit imprinted genes.

chr17	8831508	intron:376680	30.6%	23984	Pde10a			
chr17	8875353	intron:376723	7.6%	23984	Pde10a			
chr17	8880832	intron:376723	24.3%	23984	Pde10a			
chr17	8955545	intron:376734	11.5%	23984	Pde10a			
chr17	8969673	exon:430628	6.3%	23984	Pde10a			
chr17	8972335	intron:376739	36.0%	23984	Pde10a			
	BPA-related Snrpn DMCs							
Chr	Position	Location	Δ % Methylation ⁺	Gene ID	Gene name			
chr7	60155536	intron:186662	-6.4%	20646	Snrpn			
chr7	60280001	intron:186663	-12 3%	20646	Snrnn			
-	00285504	1111011.100000	12.570	20010	Sinpi			
chr7	60289948	intron:186663	25.2%	20646	Snrpn			

[†]Change in average % methylation from control to BPA samples

In our differential methylation analyses of the ERRBS data by bisphenol A (BPA) exposure, we identified a number of differentially methylated CpGs annotated to each of the top six imprinted loci that had differentially hydroxymethylated regions (DHMRs). All significant DMCs annotated to the six imprinted genes with visualized DHMRs are listed in the table. Each gene is split into a sub-table. Of note, we identified three CpG sites within the *Gnasxl/Nespas* ICR that demonstrated significant hypomethylation with BPA exposure. None of the identified DMCs at the other top imprinted genes – *Grb10*, *Plagl1*, *Pde10a*, *Klf14*, and *Snrpn* – fell in known murine imprinting control regions (ICRs). **BOLD** = Located in *Nespas/Gnasxl* domain ICR (Coombes et al. 2003; Williamson et al. 2006). Chr = chromosome number.

Gene Name	Location	Chr	Start	End	CpG Sites	CHG Sites
Gnas	intronic	chr2	174315451	174315750	0	21
Grb10	intronic	chr11	12004801	12005100	0	13
Plagl1	exonic	chr10	13130651	13131050	0	17
Klf14	exonic	chr6	30957751	30958050	23	11
Pde10a	intronic	chr17	8746901	8747050	1	10
Airn	intronic	chr17	12828001	12828550	4	25
Cmah	intronic	chr13	24335001	24335150	0	3
Snrpn	intronic	chr7	60207401	60207600	0	0
Ppp1r9a	intronic	chr6	5079501	5079850	1	31
Kcnq1	intronic	chr7	143348051	143348350	5	13
Phactr2	intronic	chr10	13402051	13402250	1	1
Pde4d	intronic	chr13	108963951	108964200	1	5

Table S3 – Number of cytosine-phosphate-guanine (CpG) and cytosine-H-guanine (CHG; where H = adenine or thymine) sites at imprinted gene differentially hydroxymethylated regions (DHMRs).

The number of CpG and CHG sites contained within the twelve bisphenol A (BPA)-related imprinted gene DHMRs were quantified using the mm10 reference genome

(https://www.ncbi.nlm.nih.gov/nuccore). The number of CpG sites varied by region, with five of the DHMRs showing zero CpG sites. Chr = chromosome number.

 Table S4 - Enriched bisphenol A (BPA)-related differentially hydroxymethylated region (DHMR) pathways.

Hypo-hydroxymethylated BPA-related DHMR Pathways					
Pathway Type	Description	FDR	Genes		
		0.007896	12568,		
	hippocampus development		12570,		
Gene Ontology			19280,		
Biological Process			22062,		
			22416		
Cono Ontologi	spinal cord association neuron	0.013765	18505,		
Gene Untology			21349,		
Biological Process	differentiation		22416		

Hyper-hydroxymethylated BPA-related DHMR Pathways					
Pathway Type	FDR	Gene IDs			
Gene Ontology Molecular Function	L-ascorbic acid binding	0.006355	18484, 320452		
Gene Ontology Molecular Function	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen	0.006355	13105, 18484, 232174, 320452, 60527		
Gene Ontology Cellular Component	nucleolar part	0.02366	12578, 68147		
Gene Ontology Biological Process	positive regulation of establishment of protein localization to plasma membrane	0.028313	56212 <i>,</i> 76686		
Gene Ontology Molecular Function	isoprenoid binding	0.041794	225467, 232174		

Pathway analysis for DHMRs was performed using the ChIP-enrich analysis tool (<u>http://chip-enrich.med.umich.edu/</u>). Within the ChIP-enrich tool, the gene set filter was set to 2000, peak threshold was set to 1, and adjustment for mappability of gene locus regions was set to false. The genome used for pathway analyses was mm10, and the ChIP-enrich method was used for enrichment testing. DHMRs were split into hypo- and hyper-methylated regions prior to separate analyses. Only regions <5kb from transcription start site (TSS) were included in ChIP-enrich analysis. All pathway analyses included gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genome (KEGG) pathways. After correcting for multiple testing, only pathways with false discovery rate (FDR) <0.05 were considered significant. Significant pathways for hypo- and hyper-methylated DHMRs are listed in separate tables; there was no overlap between significant pathways for these separate analyses. None of the significant pathways included any imprinted genes.

Figure S1. Exposure paradigm and blood collection time points to measure longitudinal 5-

hydroxymethylcytosine (5-hmC) patterns. Two weeks prior to mate-pairing with A^{yy}/a males, six week old wild type a/a dams were placed on one of two experimental diet groups: (1) Control (modified AIN-93G), (2) Control + 50 µg bisphenol A (BPA)/kg diet. Exposure continued through pregnancy and lactation, ending for offspring at postnatal day (PND) 21. Matched blood samples were collected from wildtype a/a offspring at 2 months, 4 months, and 10 months of age.

Klf14 (chr6:30957751-30958050)

Figure S3 – Enhanced reduced representation bisulfite sequencing (ERRBS) DNA methylation data from identified *Klf14* differentially hydroxymethylated region (DHMR). Using the *RnBeads* R package, ERRBS data was visualized for the CpG sites contained within the identified *Klf14* DHMR. DNA methylation level is represented by intensity of color, with zero % methylation represented by white and 100% methylation represented by dark red. ERRBS data from Control mice is shown on the left, while ERRBS data from BPA exposed mice is shown on the right. Blood sample collection age (2 months, 4 months, or 10 months old) is indicated in the left column. Mean methylation across all CpGs with data is represented by line plots below the raw data. Line plots are colored according to age group. At the *Klf14* DHMR, there were no significant differentially methylated CpGs by BPA exposure, although comparisons were difficult due to limited coverage at some CpG

Figure S4 – Additional differential imprinted gene 5-hydroxymethylcytosine (5-hmC) peaks by bisphenol A (BPA) exposure. 5-hmC coverage was visualized at six additional imprinted loci with significant BPA-related differentially hydroxymethylated regions (DHMRs): A) *Airn*, B) *Cmah*, C) *Ppp1r9a*, D) *Kcnq1*, E) *Phactr2*, and F) *Pde4d*. 5-hmC levels are shown for matched 2 month, 4 month, and 10 month blood samples, as indicated by y-axis labels. Blue and red peaks represent forward and reverse strand 5-hmC enrichment, respectively. *Cmah*, *Ppp1r9a*, and *Kcnq1* DHMRs occurred on the forward strand. *Airn*, *Phactr2*, and *Pde4d* DHMRs occurred on the reverse strand.

H19 (chr7:142575530-142578146)

lgf2 (chr7:142650768-142658804)

Figure S5 – 5-hydroxymethylcytosine (5-hmC) peaks at the *Igf2/H19* **imprinted loci.** Based on results at the *Plagl1* locus, which is a regulator of *Igf2* and *H19*, longitudinal 5-hmC patterns across the *Igf2* and *H19* imprinted genes were also visualized. 5-hmC peaks at both loci appear stable across individuals and adulthood stage in longitudinal mouse blood (2, 4, and 10 months old). Regions of non-significant bisphenol A (BPA)-related differential 5-hmC are indicated in red boxes for both genes. Despite not being detected as significant differentially hydroxymethylated regions (DHMRs) in *csaw*, these bisphenol A (BPA)-related changes in 5-hmC were stable at all three measured time points.