Intra-individual alterations of serum markers routinely used in forensic pathology depending on increasing post-mortem interval

Lina Woydt^{1,#}, Michael Bernhard^{2,3,#}, Holger Kirsten^{4,5}, Ralph Burkhardt⁶, Niels Hammer⁷⁻⁹, André Gries², Jan Dreßler¹, Benjamin Ondruschka^{1,*}

⁵ LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany

⁷ Department of Anatomy, University of Otago, Dunedin, New Zealand

Both authors contributed equally to this work.

* Corresponding Author: Dr. med. Benjamin Ondruschka

Medical Faculty University of Leipzig

Institute of Legal Medicine

Johannisallee 28

D-04103 Leipzig, Germany phone: +49 (0) 0341-9715152

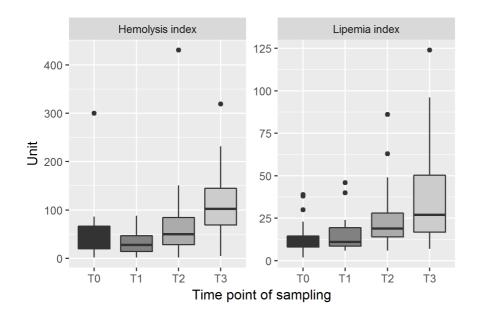
fax: +49 (0) 341-9715109

mail: benjamin.ondruschka@medizin.uni-leipzig.de

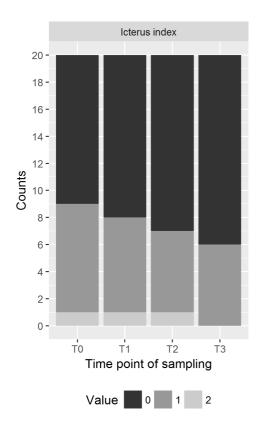
¹ Institute of Legal Medicine, Medical Faculty University of Leipzig, Leipzig, Germany

² Emergency Department, University Hospital of Leipzig, Leipzig, Germany

³ Emergency Department, Heinrich Heine University Duesseldorf, Duesseldorf, Germany


⁴ Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany

⁶ Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany


⁸ Department of Orthopedic and Trauma Surgery, University Hospital of Leipzig, Leipzig, Germany

⁹ Fraunhofer IWU, Dresden, Germany

Electronic supplementary material

Supplemental figure 1: Changes of hemolysis index (left) and lipemia index (right) according to the different sampling time points reflecting increasing post-mortem interval.

Supplemental figure 2: Minute changes of icterus index according to the different time points of sampling reflecting increasing post-mortem interval.

Marker	Upper clinical reference	Post-mortem cut-off values		
		Value	Citation	
Creatinine (in µmol/l)	104	353.6	Kernbach-Wighton [26]	
Urea (in mmol/l)	8.3	33.4	Kernbach-Wighton [26]	
3HB (in μmol/l)	74	500	Iten & Meier [27]	
Tryptase (in μg/l)	11.4	44.3	Edston et al. [28]	
Myoglobin (in μg/l)	72	not reported	not available	
Troponin T (in pg/ml)	14	250	Gonzalez-Herrera et al. [29]	
CK (in µkat/l)	2.9	not reported	not available	
CK-MB (in µkat/l)	0.4	not reported	not available	

Supplemental table 1: Comparison between upper clinical reference values presented by the manufacturer (Roche Diagnostics, Mannheim, Germany) and post-mortem threshold values, linked to one main reference.

Quality	Creatinine	Urea	3НВ	Tryptase	Myoglobin	Troponin T	CK	CK-			
control								MB			
Freeze-thaw stability											
Upper											
range	+28.8%	+25.8%	+17.6%	+21.1%	+6.4%	+13.9%	+51.8%	+16.9%			
Lower											
range	-8.8%	-13.3%	-17.9%	-45.2%	-51.0%	-54.9%	-8.0%	-9.7%			
Triplicate											
Upper											
range	+1.3%	+0.3%	+4.4%	+5.5%	+5.3%	+1.1%	+2.4%	+2.6%			
Lower											
range	-2.5%	0.0%	-3.2%	-7.3%	-2.3%	-6.5%	-3.4%	-2.6%			
Arterial-venous deviation											
Maximum											
relative	9.1%	2.8%	11.3%	1.7%	27.3%	18.3%	14.3%	1.9%			

Supplemental table 2: Numerical details of quality control checks.