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Extended Materials and Methods 
 
Study Area and DNA Sampling 
 
 We conducted the study in Singapore (1.150°-1.483°N and 103.633°-104.100°E; Fig. 1), 
a 718.3 sq. km island south of Peninsular Malaysia located within the Sundaland biodiversity 
hotspot in Southeast Asia. Singapore has historically experienced extreme levels of habitat loss 
and fragmentation owing to agriculture-driven land clearance in the early 19th century followed 
by rapid urbanisation in the 20th century (Corlett 1992, 1997, O’Dempsey 2014). These changes 
in land-use have resulted in the loss of over 99% of Singapore’s original primary vegetation 
cover. Today, although approximately 20% of Singapore’s land area consists of forest, these 
forest patches are predominantly broken up into fragments of varying sizes and largely composed 
of young to maturing secondary regrowth forests embedded within a heavily streetscaped urban 
landscape matrix, with most forests concentrated in the central and western regions of the island 
(Fig. 1; Fig. S11).  
 We conducted targeted mist netting at various forest fragments across Singapore 
between May 2013 and September 2014, with most mist netting sites clustering around the two 
major areas of remaining forest fragments in Singapore — the Central Catchment Nature 
Reserve and the Southern Ridges. We also conducted mist-netting on offshore islands and in 
isolated forest patches (Fig. 1). We collected blood samples via brachial venipuncture using a fine 
gauge needle (BD PrecisionGlide, 30 G x 1/2 in). Blood samples were collected using glass 
capillary tubes (Dummond Microcaps, 50µL) and transferred into either 500µL of Queen’s lysis 
buffer (Seutin et al. 1991) or 50 µL of 100% ethanol topped up to approximately 20x the blood 
volume. Bleeding was stanched by applying pressure with a cotton swab. All blood samples were 
stored at 4 °C. In addition, all mist-netted birds were fitted with a uniquely numbered alloy band 
to enable specimen identification and aid in future recapture studies. All fieldwork was carried 
out in accordance with national laws and regulations and in close collaboration with the National 
Parks Board. 
 Additional DNA samples were obtained from muscle and liver tissues stored at the 
cryogenic collection of the Lee Kong Chian Natural History Museum as well as from the carcass 
collection of the NUS Avian Evolution Laboratory. We sampled carcasses by extracting a cube 
of breast muscle tissue from the specimen with a sterile scalpel. Tissues were either preserved dry 
or in 100% ethanol and stored at -20 °C. A total of six tissue samples were obtained, five from 
the cryogenic collection dating to October 2006 and one from the carcass collection from March 
2014.  
 
RAD-Seq Library Preparation 
  
 For blood samples stored in Queen’s lysis buffer, we extracted DNA using the Exgene 
Clinic SV kit (GeneAll Biotechnology) as per the manufacturer’s protocol for blood and body 
fluid DNA extraction. As for blood samples stored in 100% ethanol, we pelleted the blood in a 
microcentrifuge at 10,000 RPM before aspirating out the 100% ethanol and leaving the pellet to 
dry for five minutes. We resuspended the blood pellets in 190µL of phosphate buffered saline 
(PBS) solution. Subsequent DNA extraction steps followed the manufacturer’s protocol for the 
Exgene Clinic SV kit for blood and body fluid except for an increased proteinase K digestion 
time to maximize DNA yield. As for muscle and liver tissue samples, we extracted DNA as per 
the Animal Tissue protocol for the Exgene Clinic SV kit. We eluted the extracted DNA samples 
into molecular grade water and stored them at -20°C. Fluorometric quantification with the Qubit 
2.0 BR DNA Assay (Invitrogen) was used to determine the concentration of DNA for each 
sample.  
 We prepared double digest RAD-Seq libraries for each sample based on a modified 
FASSST protocol as developed by Tay et al. (2016) and Tin et al. (2015). We used combinatorial 
barcodes derived from Peterson et al. (2012) to tag each individual with a unique adapter 
sequence, with at least two base-pair differences between each barcode adapter to reduce the 
likelihood of sample misidentification. The digestion-ligation reaction was conducted as per Tay 
et al. (2016) using 45 ng of DNA from each sample, and the restriction enzymes EcoRI (NEB) 



and MspI (NEB). A total of two reactions were conducted per sample to increase the yield of 
adapter-ligated restriction fragments.  We carried out fragment size selection on the adapter-
ligated fragments using Sera-Mag magnetic beads (Thermo Scientific) to select for 300-500 bp 
long fragments to be used as templates for PCR marker amplification. We amplified the size-
selected fragments with two initial PCR extension cycles at 55 °C and 18 subsequent PCR cycles 
at 68 °C using Q5 High-Fidelity DNA Polymerase (NEB). We conducted triplicate PCR 
reactions per sample to reduce the likelihood of PCR bias highlighted by Tin et al. (2015) and to 
maximise the yield of adapter-ligated fragments. We purified the PCR products to select for 300-
500 bp long fragments using a second size-selection step with Sera-Mag magnetic beads, and we 
verified the final fragment size range using a Fragment Analyzer (Advanced Analytical). We 
quantified the final adapter-ligated fragment concentrations with the Qubit 2.0 BR DNA Assay. 
In total, we produced 47 successful double digest RAD-Seq libraries, inclusive of one replicate 
specimen, and pooled them in equimolar volumes. The pooled libraries were sequenced on one 
lane of an Illumina HiSeq 2000 sequencer at BGI Shenzhen, producing 100 bp paired-end reads.  
 
 
Whole Genome Sequencing and Assembly 
 
 Genomic DNA was extracted from fresh tissue from one Striped Tit-Babbler individual 
using the KingFisher™ Duo extraction robot (Prime Magnetic Particle Processor) and the 
KingFisher Cell and Tissue DNA Kit, following the manufacturer´s protocol. Preparation of 
libraries, sequencing and the assembly of the de novo genome were performed by Science for Life 
Laboratory (SciLifeLab) in Stockholm. Short-insert-sized (180 bp) and mate-pair (5 and 8 kb) 
DNA libraries were constructed. All libraries were sequenced on the Illumina HiSeq 2500 
platform with a 2x126 setup in RapidHighOutput mode. Paired-end sequence data from the 
genomic DNA libraries were quality-checked, assembled, and evaluated using the NouGAT 
pipeline (Olsen et al. 2015), which automates the de novo assembly process. To pre-process and 
ascertain the quality of the sequenced genomic DNA libraries, the NouGAT pipeline uses 
Trimmomatic (Bolger et al. 2014) and FastQC (Babraham Bioinformatics) to identify and remove 
low quality and clonally duplicated reads, and generates k-mer counts for the reads using ABySS 
(Simpson et al. 2009). We subsequently used the NouGAT pipeline to assemble the quality-
checked reads using three short oligonucleotide analysis packages, ALLPATHS-LG (Gnerre et al. 
2011), ABySS (Simpson et al. 2009), and SOAPdenovo (Li et al. 2010) on default settings. Finally, 
we evaluated the relative quality of the assemblies using the evaluate pipeline in NouGAT, which 
computes standard contiguity metrics, contig lengths, and plots feature response curves.    
 
ddRAD-Seq Read Processing and Alignment 
 
 We initially analysed the raw sequence reads with FastQC (Babraham Bioinformatics) to 
determine the average quality scores across all single-end and paired-end reads. We used the 
process_radtags pipeline in Stacks v1.3 (Catchen et al. 2011, 2013) to demultiplex sequence reads 
and filter out low quality reads. Reads with an average Phred quality score below 20, indicative of 
a greater than 1% error probability, were discarded from the pool of raw reads. Additionally, 
process_radtags was used to trim all raw sequence reads to 90 bp to further filter out low quality 
bases at the terminal ends of each read. Single nucleotide errors within the barcode were also 
automatically corrected by the software. We renamed paired reads using the bbrename.sh script 
from BBMAP v35.10 (http://sourceforge.net/projects/bbmap/) to facilitate read alignment. 
Although we originally used BWA v0.7.12-r1039 (Li and Durbin 2009) to align the RAD reads to 
the Striped Tit-Babbler reference genome, we faced significant challenges in removing reads with 
terminal alignments (where reads are locally mapped with significant portions of both ends soft-
masked) as well as unpaired reads, which can contribute to downstream errors in haplotype 
calling. Hence, we used Bowtie2 v2.2.5 (Langmead and Salzberg 2012) to align the RAD reads to 
the Striped Tit-Babbler reference genome using the --very-sensitive setting for end-to-end read 
mapping, with the --qc-filter and --no-mixed options activated to filter out bad reads and ensure that 
only successfully paired reads were aligned. Successfully aligned reads were processed with 
SAMtools v1.0 (Li 2011) to filter out reads with a mapping quality score < 25 (corresponding 



with a mapping accuracy of 99.7%), exclude improperly paired reads, and convert the SAM files 
to BAM format.  
 We used the ref_map.pl pipeline in Stacks v1.3 to assemble reference-aligned reads into 
loci for SNP calling. For the initial assembly step, the minimum stack depth parameter (-m) was 
set at 11 and the upper error bound for SNP calling set at 0.05 based on optimised exploratory 
replicate analyses adapted from Mastretta-Yanes et al. (2014) (Figs. S1 – S6). As the original 
scripts were designed for multiple replicate pairs, the scripts had to be modified to account for 
the fact that only one replicate pair was used in this study (specimens CSW8313 and PRS3255). 
Note also that the scripts were written based on Stacks v1.02/1.03 and will not work for more 
recent versions of Stacks.  

We set the -r parameter for the populations module to 1 to ensure that only loci with no 
missing data were reported in the output SNP matrix. To exclude paralogous loci from the final 
SNP matrix, we manually compiled loci with read counts greater than three standard deviations 
of the mean read depth into a blacklist, which was passed to the populations module for exclusion 
from the SNP matrix. We further applied a minimum locus depth filter of 20 in populations to 
ensure that output loci had sufficient coverage, and used default parameters in Bayescan and a 
false discovery rate of 0.05 (Foll and Gaggiotti 2008) to detect loci under selection. To reduce the 
likelihood of linked loci, the --write-single-snp command was passed to populations, and PLINK 
v1.9 (Chang et al. 2015) was used to identify loci in linkage disequilibrium for subsequent filtering 
with a window size of 1000, step size of 5, and a VIF threshold of 2. Excluding the one replicate 
sample, we generated a SNP matrix for 46 Striped Tit-Babbler individuals.  
 To account for analyses such as Bayesian clustering and principal component analysis 
(PCA) where kinship bias may exert a significant effect, we used the software Coancestry (Wang 
2011) to determine the relatedness coefficients between individuals as well as the inbreeding 
coefficients for all 46 individuals. We subsequently filtered out one individual from each pair with 
an inferred relatedness greater than half-sibs (Queller and Goodnight (1989) relatedness 
coefficient > 0.25) using GenoDive (Meirmans and Van Tienderen 2004), taking care to remove 
the most interrelated individuals to ensure that the maximum possible number of individuals 
were retained in the reduced SNP matrix. We used the TrioML method (Wang 2007) in 
Coancestry to estimate the inbreeding coefficients for each individual as it has been shown to 
perform better than other estimators, especially for populations with high inbreeding and closely 
related individuals (Wang 2007, Doyle 2014).  
 Although sex-biased dispersal may affect the population genetic structure of the Striped 
Tit-Babbler, the sexually monomorphic nature of the species (Wells 2007) makes it difficult to 
determine if the species exhibits any form of sex-biased dispersal. However, a review of existing 
literature indicates the absence of sex-biased dispersal in relatively closely related species such as 
the Abbott’s Wren-Babbler (Turdinus abbotti) (Khoonwongsa 2011), which belongs in the sister 
family Pellorneidae (Gelang et al. 2009), and in Steere’s Liocichla (Liocichla steerii) (Peng 2006), 
which belongs in the sister family Leiothricidae (Gelang et al. 2009). As such, we conducted all 
downstream analyses assuming no sex-biased dispersal in the Striped Tit-Babbler.  
 
Analysis of Population Genetic Structure 
 
 We performed a PCA with the kin-filtered SNP matrix using the dudi.pca function in the 
ade4 package (Dray and Dufour 2007) in R v3.2.2 (R Core Development Team, 2015) to explore 
the differentiation between individuals within a multivariate framework. The results of the PCA 
were plotted using the dudi.plot function in the R package Momocs (Bonhomme and Claude 
2014).  
 To calculate genetic diversity statistics, we grouped the 46 samples into three putative 
subpopulation clusters based on the PCA results (Fig. 2). These clusters include one isolated 
forest patch (Admiralty Park: n=3), and two large but fragmented networks of forest patches 
(Southern: n=16, and Central Catchment Nature Reserve: n=27) (Table 2). We conducted an 
analysis of molecular variance (AMOVA) in GenoDive with 99,999 permutations based on the 
subpopulation clusters defined to analyse the partitioning of variation within individuals, between 
individuals, and between subpopulations. We calculated population genetic statistics for both the 
full (n=46) and kin-filtered (n=35) datasets using the populations module in Stacks with and 



without the population map flag activated to derive overall and within-subpopulation genetic 
diversity statistics. We also calculated pairwise Weir and Cockerham’s FST (Weir and Cockerham 
1984) using the diffCalc function in the R package diveRsity (Keenan et al. 2013), with 
confidence intervals calculated using 9,999 bootstraps across loci, despite the small within-
subpopulation sample sizes as FST has been shown to yield accurate estimates for large numbers 
of loci (Willing et al. 2012). As the removal of kin may on the one hand improve the 
performance of FST estimations and on the other hand reduce the precision in FST (Waples and 
Anderson 2017), we calculated pairwise FST values using both the full (n=46) SNP matrix and the 
kin-filtered (n=35) SNP matrix.  
 To test the robustness of our population genetic inferences and to assess the 
informativeness of multilocus SNPs, we used custom bash scripts to randomly subset the original 
SNP matrix for varying numbers of loci ranging from 2 to 3,500 loci, and recalculated population 
genetic statistics based on these reduced-loci SNP matrices. We generated 100 independent 
random subsamples for each number of SNP loci being tested, and each locus-set was passed 
through the populations pipeline in Stacks as a whitelist for a total of 1400 whitelists. The Stacks 
outputs were further used to calculate pairwise FST values (using the R package diveRsity) and 
mean TrioML values (using Coancestry via the R package related (Pew et al. 2015)) for each 
subpopulation.  
 
Analysis of Inter-Population Gene Flow 
 
 To detect the presence of gene flow between subpopulations, we used GENECLASS2 
(Piry et al. 2004) to identify first generation immigrants within each putative subpopulation. We 
used L_home as the likelihood statistic owing to the fact that some source populations may not 
have been sampled. Assignment tests were performed using the Bayesian method described by 
Baudouin and Lebrun (2001), and exclusion probabilities were calculated using a Monte-Carlo 
resampling method following the algorithm described by Paetkau et al. (2004) for 100,000 
simulated individuals and an alpha threshold of 0.01.  
 
Analysis of Historical Population Demography 
 
 In order to understand the historical demography of the Striped Tit-Babbler population 
in Singapore, we performed coalescent simulations, compared different models of historical 
demography, and further estimated parameters in DIYABC (Cornuet et al. 2014). Based on initial 
results of extent of subdivision within the dataset based on analyses of population genetic 
structure (see above), we considered all samples as belonging to a single population and 
performed simulations to test three population demographic scenarios: (1) that the Striped Tit-
Babbler population in Singapore has maintained a uniform effective population size (Ne), (2) that 
the population has experienced a recent decline, and (3) that the population has undergone 
recent expansion (Fig. 3). We used log-uniform prior distributions for all our parameters and 
performed a total of 3,000,000 simulations (1 million simulations per scenario). Prior parameter 
distributions are provided in Table S3 (Supporting Information). We set prior conditions such 
that present population size should be greater than the historical population size for the 
contraction scenario and vice versa for the expansion scenario. We chose all four summary 
statistics estimated in DIYABC for a single population scenario: proportion of monomorphic 
loci, mean genetic diversity across polymorphic loci (Nei 1987), variance of genetic diversity 
across polymorphic loci and mean genetic diversity across all loci. 
 We checked our models by performing a PCA and visually verified if the observed 
empirical dataset falls within the prior distribution (pre-evaluation of scenarios) using default 
parameters. We chose the best model by performing a model comparison using direct estimates 
of model posterior probabilities as well as estimates of posterior probabilities obtained from the 
logistic regression approach (Fagundes et al. 2007, Beaumont 2008). Further, we obtained 
posterior predictive error rates and estimated parameter values from the best model. We 
performed all analyses within DIYABC. 
 We additionally used NeEstimator v2.01 (Do et al. 2014) to independently estimate the 
contemporary Ne of Striped Tit-Babblers in Singapore using the linkage disequilibrium method, 



with a minimum allele frequency cutoff of 0.02 and a random mating model. As Ne calculations 
can simultaneously be severely biased by the presence of closely-related individuals, and also 
overestimated under aggressive purging of kin (Waples and Anderson 2017), we used both the 
full (n=46) and kin-filtered (n=35) SNP matrices in Stacks and GenoDive without pruning for 
loci under linkage disequilibrium (containing 5481 loci), to explore the range of possible Ne 
values for the Striped Tit-Babbler population. 
 
GIS Analysis and Landscape Connectivity Modelling 
 
 To explore the changes in forest contiguity over time, we downloaded relatively cloud-
free remote sensing images captured by the LandSat 5 TM and LandSat 8 OLI/TIRS sensors 
from the EarthExplorer LandSat Archive (USGS) to construct land use maps of Singapore. We 
chose remote sensing images from between the years of 1989 and 2013 as they were the furthest 
apart available at the time of this study. We subsequently conducted a supervised classification 
using the maximum likelihood method in ArcMap 10.0 to produce four land use cover maps of 
Singapore for the years 1989, 1997, 2005, and 2013. We defined training areas based on 
comparisons with the 2005 land use cover map of Singapore (Yee et al. 2011) and Google Earth 
data, as well as from habitat information collected during site surveys. We defined a total of 
seven land-use types (Table S5, Supporting information) based on the known habitat preferences 
of the Striped Tit-Babbler. To remove noise and isolated pixels, we filtered the classified output 
using the majority filter tool in ArcMap 10.0. Two additional similarly classified images from 
2014 were composited onto the 2013 map to correct for cloud cover (Table S4, Supporting 
information).  
 We used Circuitscape v4.0.5 (McRae et al. 2008, 2013), which applies circuit theory to 
infer multiple dispersal pathways between habitat nodes, to model the connectivity between 
extant forest patches in 2013. To generate the input habitat focal node files and resistance grid 
files, we used the Gnarly Landscape Utilities ArcGIS toolbox (McRae et al. 2014) in ArcMap 
v10.0 to create a raster grid of core habitat localities based on the present extent of forest and 
woodland cover, as well as a preliminary resistance surface grid. We defined the initial resistance 
parameters of each habitat type along a scale of 1 (no resistance) to 100 (maximum resistance) 
(Table S5, Supporting Information) based on the known ecology and habitat requirements of the 
Striped Tit-Babbler (Wang and Hails 2007, Wells 2007, Yong 2009). We ran Circuitscape v4.0.5 
in pairwise mode to generate an exploratory currentmap showing the likely dispersal pathways 
between habitat fragments.  
  
Landscape Genomic Analyses 
 
 To explore the spatial genetic structure of the Striped Tit-Babbler, used GenAlEx 
(Peakall and Smouse 2012) to estimate the extent of spatial autocorrelation between the 
multilocus genotypes of the individuals sampled. We used a distance class size of 1 km for a total 
of 15 distance classes to maximise the number of samples per distance bin, and ran the spatial 
autocorrelation analysis using 999 permutations with 1,000 bootstraps. In addition, we conducted 
distance-based Moran’s eigenvector map (dbMEM) analyses, which account for potential spatial 
autocorrelation in the data and have been shown to be more powerful and informative than 
Mantel tests at revealing weak and cryptic spatial genetic structure (Galpern et al. 2014, Legendre 
et al. 2015) to determine the proportion of the spatial genetic signal explained by isolation by 
distance (IBD) and isolation by resistance (IBR) models. We calculated Bray-Curtis (1957) (Bray 
and Curtis 1957) genetic distances (Legendre and Legendre 1998) for each pairwise combination 
of Striped Tit-Babbler individuals owing to the ease of computation as well as its correlation with 
other genetic distance metrics such as Rousset’s ar (Cushman et al. 2006) using the R package 
ecodist (Goslee and Urban 2007). We subsequently used the mgLandscape() function in the R 
package MEMGENE (Galpern et al. 2014) to compare the explanatory power of the Euclidean 
distance matrix (corresponding with IBD) and the preliminary resistance model (corresponding 
with IBD+IBR). This function computes a least-cost distance matrix from the resistance model 
and the coordinates of the sampled individuals, and performs a redundancy analysis using the 
spatial MEM eigenvectors extracted from the Euclidean and least-cost distance matrices against 



the Bray-Curtis genetic distance matrix for 1,000,000 forward and final permutations, followed by 
variance partitioning to determine the proportion of variation explained by spatial and non-
spatial factors for each model.  
 Based on the dbMEM results, we further refined the resistance model by varying the 
resistance values for the urban and managed vegetation habitat strata between 10 and 100 in 
increments of 10, keeping all other parameters constant, and generating a resistance surface grid 
for every pairwise combination of values where resistanceurban > resistancemanagedvegetation (since 
parks and gardens are known to be less resistant to Striped Tit-Babbler movements than urban 
areas). We generated a total of 45 alternative landscape resistance models. To choose the 
optimum resistance model, we ran each alternative resistance grid in Circuitscape, using the 
capture locality coordinates of the sampled individuals as focal nodes, to obtain 45 pairwise 
resistance distance matrices for all 46 Striped Tit-Babbler samples. Using the resistance distance 
matrices as input instead of least-cost distances, we used MEMGENE to compare the amount of 
spatial genetic variation explained by each alternative resistance model for 1,000 forward and 
final permutations, and selected the model for which the proportion of genetic variation 
explained by spatial predictors was highest. We subsequently validated the final optimised 
resistance model using the mgLandscape() function in MEMGENE, with the default least-cost 
distance as input, to compare its performance against the Euclidean distance null model and the 
initial preliminary resistance model, with 1,000,000 forward and final permutations.  We used the 
optimised and validated resistance model to generate the final landscape connectivity map using 
Circuitscape v4.0.5.  
 
Forward-in-time Landscape Genomic Simulations 
 
 To test for false positive signals of IBR and to assess the validity of our population 
genetic analyses, we used CDPOP (Landguth and Cushman 2010) to simulate the effects of 
landscape structure and differing landscape genetic models on the population genetic structure of 
the Striped Tit-Babbler in Singapore. To simulate the Striped Tit-Babbler population in 
Singapore, we used QGIS to extract a clipped polygon vector shapefile of forest and woodland 
patches along the central north-south axis of Singapore from the 2013 classified land use map 
generated from LandSat data. We subsequently used the Random Points tool in QGIS to 
generate 5715 simulated Striped Tit-Babblers (based on the estimated population density of the 
species for Singapore) randomly distributed within the boundaries of the forest/woodland 
polygons, giving a spatial dataset of 5761 individual Striped Tit-Babbler locations. To simulate 
the effects of IBD, we calculated pairwise Euclidean distances between each of the 5761 
individuals using the distance() function in the ecodist package (Goslee and Urban 2007).  
 Based on the known biology of the Striped Tit-Babbler and reasonably closely related 
species, we defined relatively relaxed life history parameters coding for high maximum longevity 
(16 years, based on the longevity of the Jungle Babbler (Turdoides striata) (Brown 1928)), 
moderately low fledgling mortality (30%) and low adult mortality (14% per age class) (Fogden 
1972), delayed adult maturation due to cooperative breeding habits (Cockburn 2006), and a mean 
of three offspring per generation (Wells 2007). Based on the results of the spatial autocorrelation 
analysis we set the maximum threshold of offspring dispersal at 1 km, with an inverse square 
dispersal distance probability. As no information exists to suggest sex-biased dispersal for the 
Striped Tit-Babbler or in relatively closely related species such as the Abbott’s Wren Babbler 
(Turdinus abbotti) (Khoonwongsa 2011) (family Pellorneidae) or Steere’s Liocichla (Liocichla steerii) 
(Peng 2006) (family Leiothricidae), we assumed no sex-biased dispersal in this simulation. The 
mean neutral SNP mutation rate was estimated based on the galliform mutation rate of 1.8 x 10-9 
sites per year (Axelsson et al. 2004).  
 We allowed CDPOP to generate random genotypes for each individual at the start of the 
simulation to maximise genetic diversity, and configured the simulation for 99 neutral loci based 
on the method proposed by Kimura and Crow (1964) for estimating minimum effective alleles 
(Kimura and Crow 1964, Schmidt et al. 2017). We ran the IBD simulations for 100 generations, 
sampled every 10 generations, with 100 MCMC replicates per simulation.  
 To test for false positive signals of IBR, we sampled individual genotypes at the locations 
of the original 46 individuals from the IBD simulations for generations 10 to 50, excluding 



MCMC replicates for which an entire subpopulation goes extinct. We conducted a dbMEM 
analysis using MEMGENE for each generation to compare the amount of variance explained by 
the IBD-only Euclidean distance matrix and the IBD+IBR least cost distance matrix, with the 
expectation that the IBD-only distance matrix would explain a greater proportion of genetic 
variation for an IBD-only simulation. We summarised the results across the MCMC replicates 
and calculated the proportion of simulations with false positive results.  
 In addition, to assess the validity of our empirically derived FST estimates, we calculated 
the change in pairwise FST values between putative subpopulations over time for the IBD 
simulations. We sampled individual genotypes at the localities of the original 46 individuals for all 
sampled generations, discarding MCMC replicates if at least one subpopulation goes extinct, and 
used diveRsity to calculate pairwise FST values.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



de novo  assembly parameter optimisation 

 
Figure S1: Graph showing the change in the number of SNPs recovered for different Stacks 
assembly parameter values. The results show that relaxing the mismatch parameters for stacks 
(M) and for catalog loci (n) resulted in an increase in the number of SNPs recovered. Likewise, 
increasing the number of stacks at a single de novo locus (max.locus) results in an increase in the 
SNP yield. Conversely, increasing the minimum stack depth parameter (m) results in a decrease 
in the number of SNPs recovered from the RAD reads. 
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Figure S2: Graph showing the change in allele error rate for different Stacks assembly parameter 
values, corresponding with the number of allele mismatches between replicate pairs divided by 
the number of loci being compared. The results show that the allele error rate decreases as the 
minimum stack depth parameter (m) increases, while the allele error rate increased as both the 
distance between stacks (M) and maximum number of stacks at a single locus (max.locus) 
parameters increased. As for the distance between catalog loci parameter (n), the results show an 
optimal range at n = 1 and n = 2 where allele error rates are minimised. 
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Figure S3: Graph showing the change in SNP error rates, which represents the proportion of 
SNP mismatches between a replicate pair, for different Stacks assembly parameter values. The 
results show that increasing the distance between stacks (M) and maximum number of stacks per 
locus (max.locus) parameters gives rise to a corresponding increase in the SNP error rate. For 
both the distance between catalog loci (n) and minimum stack depth (m) parameters, the results 
show a range of optimal values (n = 2 or 3; m = 8 – 11) for which SNP error rates are 
minimised. 
 
 

 
Figure S4: Graph showing the change in the number of loci recovered when varying the upper 
error bound of the SNP calling model for three values of the minimum stack depth parameter 
(m). The results show that increasing the upper bound of the SNP calling model results in a 
reduction of the total number of loci recovered from the RAD reads. 
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Figure S5: Graph showing the change in the allele error rate, corresponding with the number of 
allele mismatches between replicate pairs divided by the total number of loci compared, for 
different upper error bound values for the SNP calling model. This was repeated for three values 
of the minimum stack depth parameter (m) to infer trends in the allele error rate. The results 
show that the allele error rate is optimised at an upper error bound of 0.05. 
 

 
Figure S6: Graph showing the change in the SNP error rate, corresponding with the proportion 
of SNP mismatches between a replicate pair, for different upper error bound values for the SNP 
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calling model. This was repeated for different values of the minimum stack depth parameter (m) 
to determine common response trends. The results show that the SNP error rate is relatively 
stable for any upper error bound value higher than 0.05, and that values less than 0.05 are likely 
to result in unreasonably high SNP error rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Genome assembly details 
 

 
Figure S7: Feature-Response curves for the genome assemblies produced by ALLPATHS-LG, 
ABySS, and SOAPdenovo, with the total number of features plotted on the x-axis and the 
coverage of each feature plotted on the y-axis. As can be observed in the figure, the 
ALLPATHS-LG curve exhibits the highest coverage for the least number of features, indicating 
that a higher portion of the genome is assembled with fewer errors relative to the other 
assemblers, showing that the ALLPATHS-LG assembly is the optimal genome assembly. 
 

 
Figure S8: %GC content for each scaffold against median coverage for the ALLPATHS-LG 
assembly. 



Specimen information and read counts for both raw and mapped reads 
 
Table S1: Summary of the 46 samples used, including the specimen IDs, sampling localities, 
DNA source, as well as the number of RAD reads before and after processing. Excluded from 
this table is the replicate sample (specimen ID PRS3255), which is a replicate of sample 
CSW8313. This table also includes the number of reads mapped to the reference genome by both 
BWA and Bowtie2, showing that more reads were mapped to the reference genome with BWA 
compared to Bowtie2. However, it should be noted that the reads mapped by BWA also included 
soft-masked locally mapped reads as well as unpaired reads, which would have contributed 
toward downstream errors in haplotype calling. 

Sample Locality DNA 
Source 

Total 
Reads 

Retained 
Reads 

Mapped 
Reads - 
BWA 

Mapped 
Reads- 
Bowtie2 

K1103 Admiralty Park Blood 7240494 6524291 5509357 4579356 
K1104 Admiralty Park Blood 8513906 7414164 6305152 5212580 
K1105 Admiralty Park Blood 7326138 6674555 5639967 4765918 

J2843 Central 
Catchment Blood 6472652 5573451 4617858 3868034 

J3137 Central 
Catchment Blood 6618812 5708010 4774918 4032082 

J3295 Central 
Catchment Blood 6710982 5699142 4784457 4015220 

J3502 Central 
Catchment Blood 6680370 5896418 4862404 4123518 

K0626 Central 
Catchment Blood 7297272 6323179 5356690 4524690 

K0628 Central 
Catchment Blood 7774964 7123158 6087057 5085034 

K0630 Central 
Catchment Blood 9016960 8021007 6692807 5580514 

K0636 Central 
Catchment Blood 6995226 6353741 5414337 4527166 

K0640 Central 
Catchment Blood 6783212 6225503 5368240 4633976 

K0646 Central 
Catchment Blood 9383196 8525096 7099347 5968108 

K0653 Central 
Catchment Blood 7404726 6048030 4977436 4143608 

K0655 Central 
Catchment Blood 9201374 8261106 6773726 5629898 

K0660 Central 
Catchment Blood 7003862 6332772 5442726 4559256 

K0662 Central 
Catchment 

Blood 7504790 6471148 5017219 4090536 

K0670 Central 
Catchment 

Blood 12916628 11433142 9516014 7998838 

K0673 Central 
Catchment 

Blood 8091290 7462186 6440245 5577166 

K0674 Central 
Catchment 

Blood 7178734 6414664 5476001 4667548 

K0676 Central 
Catchment 

Blood 6172182 5355005 4380558 3666228 

K0679 Central 
Catchment 

Blood 7602744 6842722 5775150 4957800 

K0682 Central 
Catchment 

Blood 16594764 14316443 11766877 9898116 



K0683 Central 
Catchment 

Blood 9051728 7989425 6463443 5425004 

K0684 Central 
Catchment 

Blood 6831700 6047947 5054040 4279926 

K0685 Central 
Catchment 

Blood 7210410 6504765 5490611 4649822 

K1107 Central 
Catchment 

Blood 9084988 7712125 6551324 5558486 

K1109 Central 
Catchment 

Blood 7621344 6865695 5712975 4813326 

K1111 Central 
Catchment 

Blood 4698714 4225764 3531875 3017218 

L1548 Central 
Catchment 

Blood 9495550 8662943 7423711 6308784 
K1118 Sentosa Blood 6723206 6041323 4996147 4182358 
K1119 Sentosa Blood 7282860 6337641 5263924 4435934 
K1120 Sentosa Blood 6399636 5443494 4362062 3647136 

CR062 Southern 
Ridges Carcass 7909572 7109259 5003712 4167432 

K1102 Southern 
Ridges Blood 7744484 7063073 6002704 5082558 

K1106 Southern 
Ridges 

Blood 6295924 5569484 4560274 3914484 

K1112 Southern 
Ridges 

Blood 8566456 7726524 6519325 5560442 

K1113 Southern 
Ridges 

Blood 7276486 6642974 5577297 4701604 

K1114 Southern 
Ridges 

Blood 8423230 7637889 6514617 5482852 

K1115 Southern 
Ridges 

Blood 7288480 6330749 5398424 4547728 

K1116 Southern 
Ridges 

Blood 7390280 6516729 5569250 4735128 

K1117 Southern 
Ridges 

Blood 7121090 6283143 5346736 4510472 

CSW8311 Southern 
Ridges Tissue 7314008 6475509 5003712 4167432 

CSW8312 Southern 
Ridges Tissue 5618224 4848889 3809033 3137342 

CSW8313 Southern 
Ridges Tissue 13015174 11012305 9156787 7666862 

KEL417 Southern 
Ridges Tissue 7084224 5568890 4459162 3726540 

 
 
 
 
 
 
 
 
 
 
 
 
 



Kinship and Inbreeding Analysis 
 
Table S2: Summary of the COANCESTRY analysis, indicating which specimens were filtered out 
as a result of high relatedness values (>0.25 Queller & Goodnight relatedness coefficient). ‘Yes’ 
indicates that the sample was excluded from the reduced SNP dataset. We also report the 
TrioML inbreeding coefficients for each individual. 

Sample Kin-filtered TrioML Inbreeding 
Coefficient 

K1103 No 0.1597 
K1104 No 0.0567 
K1105 Yes 0.0861 
J2843 Yes 0.0533 
J3137 No 0.0001 
J3295 No 0.0005 
J3502 Yes 0.0074 
K0626 Yes 0.0114 
K0628 No 0.0039 
K0630 Yes 0.0003 
K0636 No 0.002 
K0640 No 0.0005 
K0646 No 0.0011 
K0653 No 0.0009 
K0655 No 0.0031 
K0660 No 0.0005 
K0662 No 0.0385 
K0670 Yes 0.0001 
K0673 No 0.0248 
K0674 No 0.004 
K0676 Yes 0.0003 
K0679 No 0 
K0682 No 0.0104 
K0683 Yes 0.0164 
K0684 No 0.0383 
K0685 No 0.002 
K1107 No 0.0019 
K1109 No 0.0223 
K1111 No 0.003 
L1548 No 0.0006 
K1118 No 0.0055 
K1119 Yes 0 
K1120 No 0.0229 
CR062 No 0.0122 
K1102 No 0.0815 
K1106 No 0.0367 
K1112 No 0.0216 
K1113 No 0.0136 
K1114 No 0.0227 
K1115 No 0.0004 
K1116 Yes 0.0015 
K1117 No 0.0207 
CSW8311 No 0.0012 
CSW8312 No 0.0059 
CSW8313 No 0.011 
KEL417 Yes 0.0007 

 
 



 
Figure S9: Boxplot showing the spread of TrioML individual inbreeding coefficient values for 
each population, demonstrating that the Admiralty Park population is significantly more inbred 
than all the other surveyed populations.  
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Tests of parameter precision 
 

 
Figure S10: Effect of number of SNP loci on the mean observed heterozygosity estimates 
obtained for each putative Striped Tit-Babbler subpopulation. The results show that observed 
heterozygosity values exhibit relatively high levels of precision when more than 500 SNP loci are 
used.  
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Figure S11: Effect of number of SNP loci on the mean nucleotide diversity estimates obtained 
for each putative Striped Tit-Babbler subpopulation. The results show that nucleotide diversity 
values exhibit relatively high levels of precision when more than 500 SNP loci are used. 
 
 

 
Figure S12: Effect of number of SNP loci on the mean TrioML inbreeding coefficient estimates 
obtained for each putative Striped Tit-Babbler subpopulation. The results show that TrioML 
inbreeding coefficients exhibit relatively high levels of precision when more than 500 SNP loci 
are used. 
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Figure S13: Effect of number of SNP loci on the mean pairwise FST estimates obtained for each 
putative Striped Tit-Babbler subpopulation. The results show that pairwise FST values exhibit 
relatively high levels of precision when more than 500 SNP loci are used. 
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Demographic history modeling using DIYABC 
 
Table S3: Prior distribution of parameters present in models compared using DIYABC 
Parameter Lower Bound Upper Bound 
N 10 1000000 
Ndec 10 1000000 
Nexp 10 1000000 
t 5 100000 
 
 

 
Figure S14: Scenarios of population demographc history tested using DIYABC. Scenario 1 
represents a population of uniform size with no change in population size over time. Scenario 2 
represents a contraction scenario, with the historical effective population size (Ndec) undergoing a 
contraction to a population of size N at time t. Scenario 3 represents an expansion scenario, with 
a historical population Nexp undergoing an expansion to a population of size N at time t.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DIYABC Outputs  
 

 

 
Figure S15: Model comparison of population demographic history scenarios (Fig. 3) using (A) a 
direct approach, and (B) using a logistic regression. The model comparisons clearly show that 
Scenario 2 (the contraction scenario) is the scenario with the best support.  
 

A 

B 



Table S4: Confidence estimates of the demographic parameters estimated using DIYABC under 
Scenario 2 (population contraction), for median and mode point estimates. We report the mean 
relative bias (MRB), the root of the relative mean square error (RRMSE), and the relative median 
of the absolute error (RMAE) for each parameter estimate. The overall low error associated with 
each parameter estimate suggests that Scenario 2 performs well for estimating posterior 
distributions of parameters, and while a greater degree of error is associated with the median 
point estimates relative to the mode point estimates, we used the median point estimates for 
downstream analyses as the results were more realistic.  

Parameter MRB 
(Medians) 

MRB 
(Modes) 

RRMSE 
(Medians) 

RRMSE 
(Modes) 

RMAE 
(Medians) 

RMAE 
(Modes) 

N1 1.8905 -0.6906 4.889 0.804 0.911 0.890 
t 2.1151 -0.7194 5.554 0.805 0.932 0.882 
Ndec 5.3410 -0.9460 20.894 0.962 0.844 0.995 

 

 
Figure S16: Model checking of the best demographic history scenario (Scenario 2; Fig 3), 
showing that all posterior sampling of parameters falls within the prior space of the scenario. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Remote sensing and landscape classification details 
 
Table S5: List of remote sensing imagery used for reconstructing historical land-use cover of 
Singapore. The additional scenes from Feb 2014 and Sep 2014 were used to fill in clouded areas 
in the June 2013 image. 
Scene ID Date of collection Spacecraft Satellite sensor 
LT51250591989256BKT00 13 September 1989 Landsat 5 TM 
LT51250591997246DKI00 3 September 1997 Landsat 5 TM 
LT51250592005124BKT00 4 May 2005 Landsat 5 TM 
LC81250592013178LGN01 27 June 2013 Landsat 8 OLI/TIRS 
LC81250592014037LGN00 2 Feb 2014 Landsat 8 OLI/TIRS 
LC81250592014245LGN00 2 September 2014 Landsat 8 OLI/TIRS 
 
Table S6: Summary of land-use classification categories in Singapore, including inferred habitat 
value and resistance values for Circuitscape modeling. 
Landscape 
Classification 

Description Habitat 
Value 

Preliminary 
Resistance 

 Optimised 
Resistance 

Urban Built-up areas characterized by 
high levels of concretization 
with streetscape vegetation 
forming low levels of vegetation 
cover 

0.0 60  90 

Forest Wooded areas ranging from 
primary forests to wasteland 
habitats largely comprised of tall 
trees forming some semblance 
of canopy cover with low to 
high levels of understorey 
structure 

1.0 1  1 

Open Grassland Areas covered entirely by short 
grass with little to no tree cover. 
Grass species are usually 
Axonopus compressus or Imperata 
cylindrica. 

0.0 50  50 

Bare Ground Bare, exposed soil with little to 
no vegetation growing. Often 
found at sites that have recently 
been reclaimed or cleared for 
development. 

0.0 100  100 

Managed 
Vegetation 

Parkland areas dominated by 
grassy cover with trees 
interspersed across the 
landscape with little to no 
continuous canopy cover. 

0.5 40  50 

Inland Water Shallow water areas including 
reservoirs, ponds and golf 
course water hazards. 

0.0 100  100 

Open Water Deep water areas in the open 
sea. 

0.0 100  100 

 
 
 
 
 
 



Table S7: Resistance model optimization matrix showing the adjusted R2 values based on a dbMEM analysis using the resistance distance matrix generated by 
Circuitscape for each combination of urban (U) and managed vegetation (G) resistance values, where U > G. 

 
G1 G10 G20 G25 G30 G40 G50 G60 G70 G80 G90 G100 

U1 
            U10 0.017849736 

           U20 0.018913564 0.032260003 
          U25 0.02146266 0.018585581 0.027519648 

         U30 0.023294363 0.024507499 0.027129823 0.020392289 
        U40 0.023550216 0.02151023 0.027515521 0.02045581 0.02709894 

       U50 0.011847449 0.021228613 0.019299849 0.026506301 0.027540559 0.020481142 
      U60 0.015780106 0.023143029 0.021239218 0.017389268 0.019304113 0.023055162 0.023055012 

     U70 0.016358954 0.023990601 0.024780974 0.022314746 0.026687265 0.032518683 0.028793461 0.022323425 
    U80 0.017415185 0.020343348 0.021412519 0.024812029 0.02481614 0.031303117 0.034249874 0.027426186 0.032640665 

   U90 0.017068384 0.012877676 0.012559012 0.012538532 0.012526637 0.023250072 0.034255372 0.034237061 0.027433062 0.032638744 
  U100 0.012672204 0.0179595 0.020263848 0.020229558 0.012555893 0.019213072 0.018359577 0.032798331 0.03035696 0.030149519 0.027433961 

 



 
Figure S17: Classified land-use map of Singapore in 2013, showing the distribution of seven habitat types (excluding submerged reefs) defined based on the known 
habitat preferences of the Striped Tit-Babbler. Land-use was classified using the maximum likelihood supervised classification method in ArcMap v10.0 based on 
remote sensing imagery from the LandSat 8 OLI/TIRS platform (NASA Landsat Program, 2014d-f).



 
Figure S18: Time-series comparison showing changes in landscape composition around 
Admiralty Park between 1989 and 2013. The time-series shows the Admiralty Park patch being 
gradually isolated from the Central Catchment forest, with intervening intermediate habitats 
cleared for urban development. Land-use was classified using the maximum likelihood supervised 
classification method in ArcMap v10.0 based on remote sensing imagery from the LandSat 5 TM 
(NASA Landsat Program, 2014a-c) and LandSat 8 OLI/TIRS (NASA Landsat Program, 2014d-
f) platforms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Landscape Genomic Analyses 
 

 
Figure S19: Population size estimation of the Striped Tit-Babbler based on the density estimates 
and patch areas reported in Castelletta (2001), showing a strong linear correlation between area 
and population size. Based on this curve, we were able to estimate the approximate population 
size of the Admiralty Park Striped Tit-Babbler subpopulation at approximately 68.82 individuals. 
 
Table S8: Results of the distance-based Moran’s Eigenvector Map (dbMEM) analysis, showing 
the proportion of variation in genetic distance that is explained by spatial predictors ([abc]), 
spatial and explained by selected patterns in the model ([a]), spatial and explained by coordinates 
and not patterns in the model ([c]), spatial and confounded between model and coordinates ([b]), 
and residual and not explained by spatial predictors ([d]).  

model [abc] P[abc] [a] P[a] [c] P[c] [b] [d] 
Euclidean 0.0275 1.00E-06 0.0249 1.00E-06 0.0150 1.3E-04 -0.0124 0.973 
Preliminary 
Resistance 0.0331 1.00E-06 0.0306 1.00E-06 0.0291 1.00E-06 -0.0268 0.967 
Optimised 
Resistance 0.0344 1.00E-06 0.0318 1.00E-06 0.0291 1.00E-06 -0.0265 0.966 
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Figure S20: Graphical representation of the filtered and unfiltered Weir and Cockerham’s FST 
values for each pairwise population comparison, showing low levels of differentiation between 
the Central Catchment and the Southern subpopulations and relatively higher levels of 
differentiation between Admiralty Park and every other subpopulation. Values reported in this 
graph are identical to those reported in Table 3 of the main manuscript.  
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