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Materials and Methods
Cell lines and adenoviral constructs

Wild-type MEFs were prepared from E10.5 ¢57/bl6 mouse embryos. SV-40 T antigen-
immortalized Mfn1 null (CRL-2992), Mfn2 null (CRL-2993) and Mfn1/Mfn2 double null MEFs
(CRL-2994) (17) were purchased from ATCC. MEFs were subcultured in DMEM (4.5g/L
glucose) plus 10% fetal bovine serum, 1x nonessential amino acids, 2 mM L-glutamine,
100U/ml penicillin and 100ug/ml streptomycin.

Human Mfn2 Ser378 was mutated to Ala or Asp by site-directed mutagenesis using the
QuikChange Lightning kit (Agilent Technologies Inc.) and primers:

Mfn2-S378D-fw 5’-cgactcatcatggacgacctgcacatggegge-3’
Mfn2-S378D-rv 5’-gccgecatgtgcaggtegtccatgatgagteg-3°
Mfn2-S378 A-fw 5’-gactcatcatggacgccctgcacatggeg-3’
Mfn2-S378A-rv 5’ —cgccatgtgcagggcgtccatgatgagte-3’

Mfn2 and its mutants were sub-cloned into adenoviral vector Type 5 (dE1/E3) with
RGD-fiber modification (Vector Biolabs) using BamHI/Xhol. All constructs were verified by
Sanger DNA sequencing. Adeno-viral PINK1 was purchased from Vector Biolabs.
Immunoblotting used mouse anti-Mfn2 (Abcam # ab56889, 1: 1000), anti-PINK1 (Sigma
#P0076, 1: 500), and beta-actin (Santa Cruz Biotechnology #sc-81178, 1:1000). Protein
detection and digital acquisition used peroxidase-conjugated anti mouse secondary antibody
(Cell Signaling #70768S, 1:2500) and Western Lightning PLUS ECL substrate (Perkin Elmer
105001EA) on a Li-COR Odyssey instrument.

Peptide studies
The C-terminal and N-terminal Mfn2 367-384Gly peptides and Ala substituted variants
of Mfn2 374-384 were chemically synthesized and introduced into cells using TAT47—
57 conjugation (ThermoFisher Scientific). Except when indicated, 1 mM stocks in sterile water
were diluted into culture media 1:1000 to achieve a final concentration of 1 uM. Cells were
treated overnight.
For Alanine scanning the following peptides were synthesized:
(NH3) GTADSLHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMASLHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDALHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDSAHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDSLAMAARGGYGRKKRRQRRR (COOH)

The following peptides were synthesized for Ser378 substitution studies:
(NH3) GIMDSLHAAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDDLHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDS(p)LHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDGLHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDCLHMAARGGYGRKKRRQRRR (COOH)
(NH3) GIMDNLHMAARGGYGRKKRRQRRR (COOH)



Nuclear Magnetic Resonance (NMR) of HR1 peptide structure

Carboxyl terminal-amidated S378 parent and substituted peptide were synthesized for
NMR studies:

Min2-371-384 (378S) - AVRGIMDSLHMAAR
Min2-371-384 (378S(p)) — AVRGIMD[S(p)]LHMAAR

Proton 2D NOESY and '°N-"H heteronuclear single quantum coherence overlay spectra
of the above peptides were recorded on 600 MHz Bruker Avance III spectrometer equipped with
cryoprobe, at 15 °C, pH 6, 50 mM NaCl, with each peptide at 2 mM concentration. Distance
restraints were derived from observed NOE interactions between hydrogens within each peptide,
and torsion angle restraints (¢ and y) were derived from the observed chemical shifts (for C, H
and N nuclei) (Supplemental dataset 1). The calculations used only experimental data; no
theoretical molecular dynamics simulations/refinements were applied.

The helical structures/propensities in these peptides were not inferred or assumed from
any single type of data. “Diagnostic” NOEs, in particular dnn and dab(i, i+3), were present in
200ms and 500ms mixing time H-H NOESY experiments, wherever signals could be resolved.
The structural ensemble calculations used only restraints derived from NMR experiments.
Distance restraints were derived from observed NOE interactions between hydrogens within
each peptide, and torsion angle restraints (f and y) were derived from the observed chemical
shifts (for C, H and N nuclei).

Both ensembles show preponderance of helical conformation between 378-383. These
are more regular in phosphopeptide ensemble (fig. S5C). Both ensembles show no regular
conformation between 371-376, consistent with a lack of observed NOEs and values of
chemical shifts characteristic for unstructured sequences. At the current level of precision, there
is little difference between two ensembles in positions of side chains for residues 379-383. The
almost identical 13C/1H chemical shifts of these methyl groups also suggest the similarity of their
positions and local environments. However, the backbone amide (N-H) and Ca signals clearly
show differences, beyond the obvious one caused by phosphate esterification of serine. The
amide signals shifted down-field (to higher values), a characteristic observed when amides form
(or strengthen) hydrogen bonds within peptides. In general, the helical secondary structure is
often stabilized by a negatively charged group “capping” the positive N-terminal end of
the helix dipole. Here, a phosphorylation of Ser 378 can produce H-bonding for the amide
of Leu-379 and the negative phosphate can additionally stabilize the helical turns
following 379, providing an explanation for observed down-field shifts (i.e. H-bonding induced)
in amides of 380, 381 and 382.

Min2 FRET for conformational studies

Mfn2 FRET probes contained N-termini-ceruleum and C-termini-mVenus fused to the
human (h) mitofusin protein as described (3). FRET analyses were performed either on
mitochondria isolated from Mfn1/Mfn2 null MEFs expressing the WT hMfn2 FRET-hMfn2
protein or intact Mfn1/Mfn2 null MEFs expressing WT or mutant Mfn2 FRET proteins (50
MOI). For isolated mitochondria studies 65 pg of organelle protein was used for each reaction in
a total volume of 100 pl diluted in 10mM Tris-MOPS (pH 7.4), 10mM EGTA/Tris, 200mM
sucrose. 1 uM of mitofusin agonist in DMSO was added simultaneously with 2uM mitofusin
antagonist peptide, incubated in dark at room-temperature for 30 minutes, and FRET signal
corrected for Cerulean signal analyzed using a Tecan Safire II multi-mode plate reader in
polystyrene 96 well assay plate (Costar 3916). Data acquisition was: FRET — Excitation 433/8



nm, Emission 528/8 nm; Cerulean — Excitation 433/8 nm, Emission — 475/8 nm. Isolated
mitochondria of non-infected cells were used to substract background, and FRET signals were
normalized to respective cerulean signals. The % changes in FRET/Cerulean provoked by
mitofusn antagonist peptide and reversed by different mitofusin agonist small molecules were
compared to Mfn2-FRET mitochondria treated with water and DMSO, the vehicles for Mfn
antagonist peptide and mitofusin agonist, respectively.

For FRET in intact cells, Mfn1/Mtn2 double null MEFs at 70% confluence were infected
with adenoviri expressing FRET-hMfn2, FRET-hMfn2(S378A) or FRET hMtn2(S378D) at 50
MOI. Two-days after transduction and 1 hour after application of 1uM Mfn2 antagonist mini-
peptide MP2 (3) to promote the closed/inactive Mfn conformation, cells were released from
tissue culture substrate with trypsin/EDTA, washed, and transferred to a polystyrene 96 well
assay plate (Costar 3916; 20,000 cells/50 ul/well). Fifty-microliters of modified Krebs-Henseleit
buffer containing DMSO (vehicle) or 1 uM mitofusin agonist was added with gentle agitation for
10 min at room temperature. FRET and cerulean signals were assayed in a 96-well plate reader
(TriStar 2S LB 942, Berthold Technologies) with 1 sec reading times at low sensitivity. Filters
combinations are as follows: FRET — Excitation 430/10, Emission 535/25; Cerulean — Excitation
430/10, Emission — 475/20. Signals from non-infected cells were used for background
correction. FRET was normalized to the respective cerulean signal for each well.

HR1 peptide-HR2 target binding assay

Target HR2 peptide sequence modified to include amino terminal 6 x His tags and Gly
linkers, were bonded to Ni-NTA resin (4.4 ug/ml) (Quiagen) and used as immobilized “receptor”
for amino-FITC-tagged Mfn2 374-384 (ligand) in which the Ser analogous to Ser378 was
replaced with Asp to confer the negative charge essential for activity. FITC peptide ligands were
suspended at 1 mM in 30% DMSO, 70% water (to minimize spontaneous aggregation) and
diluted into binding buffer (de-ionized water). For the displacement binding, 2.5 nmol of FITC
labeled agonist peptide was used in the presence or absence of different amounts of competing
compounds. Resin-bound FITC signal (485 nm excitation/ 538 nm emission) measured in a 96
well spectrofluorometer (Spectramax M5Se, Molecular Devices) represented binding to HR2
target. Competition binding isotherms were plotted and ICs values calculated using Prism 7
(GraphPad).

Sequences for binding assay components are:
(NH3) HHHHHH-GGGG-AAMNKKIEVLDSLQSKAKLLRNKA-GG (COOH) (target)
(NH3) HHHHHH-GGGG-AAMNKKIEVAASAQSKAKLLRNKA-GG (COOR) (target mutant)
(NH3) FITC-GGGG-AVRGIMDSLHMAAR-GG (COOH) (FITC labeled Ser peptide)
(NH3) FITC-GGGG-AVRGIMDDLHMAAR-GG (COOH) (FITC labeled Asp peptide)
(NH3) FITC-GGGG-AVRGIMDALHMAAR-GG (COOH) (FITC labeled Ala peptide)

Protein and peptide modeling

The hypothetical structures of human Mfn2 were developed using the I-TASSER Suite
package (/8). The putative closed conformation is based on structural homology with bacterial
dynamin-like protein (PDB: 2J69) (19), human Mfn1 (PDB:5GNS) (20), and Arabidopsis
thaliana dynamin-related protein (PDB: 3T34) (21). The putative open conformation was based
on structural homology with human Opal, retrieved from the following structures: rat dynamin
(PDB: 3ZVR) (22), human dynamin 1-like protein (PDB: 4BEJ) (23), and human myxovirus
resistance protein 2 (PDB: 4WHJ) (24). Minipeptide and protein modeling used PEP-FOLD3



(http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/) and UCSF Chimera (235),
respectively.

Protein alignment and phylogenetic analysis
Mfn2 orthologous sequences were retrieved from the Ensembl project database. Protein
alignments were performed using Clustal Omega (26).

In vitro PINK1-Mfn2 phosphorylation assay

In silico prediction of kinases that might phosphorylate Mfn2 Ser378 in the peptide
sequence AVRLIMDSLHMAARE used GPS 3.0 (http://gps.biocuckoo.org). GRK2/BARK]1 was
the top hit (score of 31.595), and GRK isoforms comprised 5 of the top 7 hits; ROCK kinase
(score 15.919) and PKCa (score 11.48) were the other two hits. PINK1 kinase is not represented
at this site, and no other sites reported any likely kinases for Mfn2 Ser378.

In vitro phosphorylation of Mfn2 by PINK 1 and GRK kinases used a modified published
protocol (27). Briefly, 20 ug of recombinant human Mfn2 (expressed in HEK293 cells;
OriGene: TP326143) plus 10-20 ug Tribolium castaneum PINK1 (expressed in E. coli;
Ubiquigent: 66-0043-050) or 10 ug human GRK2 (Invitrogen: PV3361) were combined in
kinase buffer (20 mM Hepes pH 7.4, 10 mM DTT, 0.1 mM EGTA, 0.1 mM ATP and 10 mM
MgCI2) and the reactions allowed to proceed at 37°C for 4 hours or overnight.

Mass spectrometric analysis of Mfn2 phosphopeptides

Preparation of peptides for nano-LC-MS. The in vitro kinase solution that contained 10 pg of
Mfn2 was spiked (10 uL) with a mixture of five carrier proteins (10 ug each). The mixture
consisted of human apo-transferrin (Sigma, T4382), bovine a-casein (Sigma, C6780),

bovine B-casein (Sigma, C6905), bovine ribonuclease (Sigma, R7884), and bovine albumin
(Sigma A7030) in 100 mM Tris buffer, pH 7.6 with 4% SDS and 100 mM DTT. The sample
was lyophilized overnight in a VirTis AdVantage Lyophilizer (SP Scientific).

Peptides were prepared using a modified filter-aided sample preparation method: dried sample
was dissolved in 60 pL of Tris buffer, pH 7.6 that contained 4% SDS and 100 mM DTT and
denatured by heating (95°C) for 5 min. The sample was then alkylated with 50 mM
iodoacetamide (Sigma, A3221) for 1 h at room temperature in the dark. After the addition of 1
ml of 50 mM ammonium bicarbonate buffer (pH 8.5) containing 8M urea (UA) and vortexing,
equal volumes of the samples were transferred to two YM-30 filter units (Millipore, Ref No.
MRCFORO030) and spun for 14 min at 10,000 rcf (Eppendorf, Model No. 5424). Filters were
washed with 200 pl of UA and the spin-wash cycle was repeated twice. The sample was then
exchanged into digest buffer with the addition of 200 ul of ammonium bicarbonate buffer, pH
8.5 (ABC) and centrifugation (11,000 rcf') for 10 min. After transferring the upper filter unit to a
new collection tube, 80 puL of the ABC buffer was added and the sample was digested with
trypsin (1 pg) for 4h at 37°C. The digestion was continued overnight after another addition of
trypsin. Filter units were then spun at 11,000 rcf for 10 min with a subsequent filter washing step
with 0.5 M NaCl (50 pL) followed by centrifugation (14,000 rcf for 10 min). The digest was then
extracted three times with 1 ml of ethyl acetate and acidified with trifluoroacetic acid (TFA)
(50%) to a final concentration of 1%. The pH was < 2.0 using pH paper. Solid phase extraction
of the peptides was performed using sequential, robotic pipetting with C4 and porous graphite
carbon micro-tips (Glygen). The peptides were eluted with 60% acetonitrile in 0.1% TFA and
pooled for drying in a Speed-Vac (Thermo Scientific, Model No. Savant DNA 120 concentrator)



after adding TFA to 5%. The peptides were dissolved in 20 pL. of 1% acetonitrile in water. An
aliquot (10%) was removed for quantification using the Pierce Quantitative Fluorometric Peptide
Assay kit (Thermo Scientific, Cat. No. 23290). The remaining sample was transferred to an
autosampler vial (Sun-Sri, Cat. No. 200046), dried in the SpeedVac and dissolved in 2.7 puL of
0.1%TFA.

Nano-LC-MS/MS Analysis of Phosphopeptides — The samples were loaded (2.5 uL) at a
constant pressure of 700 bar at 100% of mobile phase solvent A (0.1%FA) onto a 75

um i.d. x 50 cm Acclaim® PepMap 100 C18 RSLC column (Thermo-Fisher Scientific) using an
EASY nanoLC (Thermo Fisher Scientific). Before sample loading the column was equilibrated
with 100% A using 20uL at 700 bar. Peptide chromatography was initiated with A containing
2% B (100% ACN, 0.1%FA) for 5 min, then linear increased to 20% B over 100 min, to 32%

B over 20 min, to 95% B over 1 min and held at 95% B for 7 min, at a flow rate of 300

nL/min. The data dependent mode analysis was performed with in the Orbitrap mass analyzer
(Thermo-Fisher Scientific Q-Exactive™ Plus Hybrid Quadrupole-Orbitrap™ mass
spectrometer) with a scan range of m/z = 375 to 1500 and a mass resolving power set to 70,000.
Ten data-dependent high-energy collisional dissociations were performed with a mass resolving
power set to 17,500, a fixed lower value of m/z = 100, an isolation width of 2 Da, and a
normalized collision energy of 27. The maximum injection time was 60 ms for parent-ion
accumulations and 60 ms for product-ion analysis. The parent ions that were selected for MS2
were dynamically excluded for 20 sec. The automatic gain control was set at a target ion value of
le6 for MS1 scans and 1e5 for MS2 acquisition. Peptide ions with charge states of one or > 8
were excluded for CID acquisition.

Phosphopeptide data from the PINK kinase reactions were also acquired in targeted
mode. The full-scan mass spectra were acquired by the Orbitrap mass analyzer with a scan range
of m/z =350 — 2000 and a mass resolving power set to 70,000. The CID spectra were acquired at
resolving power of 17,500 with maximum injection time of 120 ms. The loop count was set to 4
and the isolation width was 2 Da. The acquisition of CID spectra were triggered by an inclusion
list of four m/z values for the +2 and +3 charge state of the natural abundance phosphorylated
and non-phosphorylated peptide (see Supplemental Table S1 for values). An AGC target value of
3e6 was used for MS scans and 2e5 for MS/MS scans. The unprocessed LC-MS data were
analyzed using SKYLINE (version 3.6.9).

The high-resolution ion chromatograms for the y ion series from the CID phosphopeptide
spectra shown in Figure 1G were acquired during the LC-MS analysis of the tryptic digest of
human recombinant Mfn2 after phosphorylation with PINK1. The corresponding chromatograms
from the synthetic, isotope-labeled phosphopeptide co-eluted with the PINK1 product and all
ions were observed with the same proportional intensities in the CID spectra as shown in the
adjacent stacked bar charts, confirming the sequence identity and phosphorylated residue
location. The expected mass increment of 10 Da from the Arg-[13Cs] [15N4] residue was observed
for all y ions in the CID spectra of the synthetic phosphopeptide. The spectra from the PINK1
phosphopeptide product and the synthetic phosphopeptide were acquired from the triply charged
parent ions at m/z = 446.543 and m/z = 449.880, respectively. The site of phosphorylation was
confirmed from the series of y ions with neutral losses of the phosphate moiety (H3PO4) that
were observed as ys- H3PO4 (m/z = 882.427), and y7- H3PO4
+2(m/z = 384.203). The same ion series was observed in the CID spectrum of the synthetic
peptide with the expected 10 Da mass increment, ys- H3PO4 (m/z = 892.432) and y7- H3PQO4 (m/z



= 777.404). Using the synthetic phosphorylated and non-phosphorylated peptides, we
determined that the phosphopeptide consistently eluted 9.5 — 10.5 min later in all LC-MS
analyses. We also analyzed all tandem spectra that were acquired from a precursor ion at m/z =
446.543 for any evidence of phosphorylation at Ser-378 in replicate PINK1 experiments, GRK
phosphorylation experiments, and in a digest of the recombinant Mfn2 protein without added
kinase. Phosphopeptides with the Ser-378 site were only observed from the PINK 1
phosphorylation experiments.

Dextran uptake assays of dynamin function

Wild-type MEFs (100,000 cells) were grown on cover slips. When they reached 60%
confluency they were washed with serum-free DMEM. Subsequently, cells were incubated in
serum-free DMEM containing either 1 uM compound A; B; B/A-L; dynasore (Calbiochem) or
DMSO only (vehicle) for 30 min at 37°C. AF594-labelled 10,000 MW Dextran (Invitrogen) was
then added to a final concentration of 0.5 mg/ml and incubated for additional 10 min. at 37°C.
Internalization was stopped by washing three-times with ice-cold PBS. Residual dextran was
removed by washing with 0.1M Na acetate, 0.05M NaCl for 10 min. Samples were fixed in 4%
PFA followed by confocal microscopy analysis.

Confocal live cell studies of mitochondria

Confocal imaging used a Nikon Ti Confocal microscope equipped with a 60x1.3NA oil
immersion objective. All live cells were grown on cover slips loaded onto a chamber (Warner
instrument, RC-40LP) in modified Krebs-Henseleit buffer (138 mM NaCl, 3.7 mM KCI, 1.2 mM
KH2PO4, 15 mM Glucose, 20 mM HEPES and 1 mM CaCl2) at room temperature.
Cells were excited with 408 nm (Hoechst), 561 nm (MitoTracker Green and Calcein AM, GFP),
or 637 nm (TMRE, MitoTracker Orange, Ethidium homodimer-1, and AF594- Dextran) laser
diodes. For mitochondrial elongation studies mitochondrial aspect ratio (long axis/short axis)
was calculated using automated edge detection and Image J software. Mitochondrial
depolarization was calculated as % of green mitochondria visualized on MitoTracker Green and
TMRE merged images, expressed as green/(green + yellow mitochondria) x 100.

Identification and de novo design of small molecule mitofusin agonists

We generated a pharmacophore model based on the interactions of HR1 and HR2
domains in the calculated structural model of Mfn2 in the closed conformation (3). The key
features included hydrophobic interactions involving Mfn2 HR1: Val372 and Met376, and
aromatic interactions and hydrogen bonding involving Mfn2 HR1 His380. Although our
pharmacophore model did not structurally model mitofusin agonist minipeptide HR1 (367-384),
we note that peptide residues Val6, Met10, and His14 correspond to Mfn2 HR1: Val372, Met376
and His380. A library comprising ~14 million commercially available compounds was prepared
in silico and evaluated using PHASE to fit these criteria. Top ranked hits were clustered, and
filtered based on pharmacological properties using Qikprop. The top 55 commercially available
small molecules conforming to the model were selected for functional screening and purchased
in 1 mg aliquots. Each compound was dissolved to a stock concentration of 10 mM in DMSO
and applied to Mfn2 null MEFs overnight at a final concentration of 1 uM. Eleven of the library
members were not soluble in DMSO at the required concentration. The 44 fully soluble
compounds were screened in groups of 6 at a time for cytotoxicity (calcein AM/ethidium
homodimer staining; ThermoFisher LIVE/DEAD Assay cat #1.3224) and fusogenicity (increase



in mitochondrial aspect ratio; MitoTracker Orange staining) compared to cells treated overnight
with 5 uM of the parent HR1 367-384 mitofusin agonist peptide (positive control) or vehicle
(DMSO). Images were acquired by confocal microscopy. Each compound was scored for
fusogenicity (Supplemental Figure S17A) and % cell death (Supplemental Figure S17B).
Pharmacophore model fit generally correlated with actual fusogenic activity (Pearson correlation
coefficient r=0.214; Supplemental Figure S17A, inset; Supplemental dataset 2).

Of nine compounds exhibiting apparent fusogenic activity on the initial screen (defined
as an increase in mitochondrial aspect ratio to >5 after 24h exposure to 1 uM compound), one
(A8) was mildly cytotoxic and therefore did not undergo further evaluation. The remaining eight
candidate fusogenic compounds were evaluated in a second series of experiments for their ability
to provoke dose-dependent mitochondrial elongation. Fusogenicity of six compounds was
confirmed, with ECs, values between ~25 nM and 150 nM (Supplemental Figure S18;
Supplemental dataset 2). Two compounds (D9 and A9) failed validation in the secondary
screen.

Our results defining a minimal fusogenic HR1 peptide (see Figure 1B), identifying
function-critical amino acids within the minipeptide (see Figure 1C), and defining HR1-HR2
interacting amino acids through binding assays (Figures 1E and 1F) suggested that our
previously published Mfn2 HR1-HR2 interaction model was imperfect (3), thus providing a
likely reason for the poor correlation between in silico pharmacophore model fit of compounds
B1 and A10 and their actual fusogenicity: Val372 was proven to be functionally dispensable and
His380 paired with Asp725 rather than Lys720 as indicated in the original model (3). Moreover,
our studies revealed that phosphorylation of Ser378 in both the mitofusin agonist peptide and
intact Mfn2 protein can change amino acids presented to the HR1-HR2 interface (see Figure
2A); this key transitional feature was not part of the initial model. Compounds A10 and B1
(which ranked 4™ and 2™ in fusogencity, but 27" and 31* in fit to the pharmacophore model) and
their chemosimilars conformed well to an Mfn2 HR1-HR2 interaction model incorporating these
biological findings, as depicted in Supplemental Figure S1. These two compounds were therefore
purified (Supplemental Figure S19) and used in subsequent studies.

Our ultimate goal was to design mitofusin agonists having optimal activity profiles.
(Here, a “fusogenic compound” is defined as promoting mitochondrial elongation without a
clearly defined mechanism, while a “mitofusin agonist” is a fusogenic compound that binds to
the Mfn2 HR2 minipeptide target domain, promotes Mfn2 opening, and loses its fusogenic
activity when endogenous mitofusin proteins are not present). Molecular modeling of class A
and B agonists assumed that the minipeptide a-helix is comprised of 3.6 amino acids per turn
with a 1.4 A pitch advance per amino acid, resulting in a distance of ~5.4 A between amino acids
of adjacent turns. Aliphatic backbones assumed a distance between single bonded carbons of
1.54 A. Structures were created or edited using Marvin JS at the MolPort website
(https://www.molport.com/shop/index) and available chemical analogs (chemosimilars;
Supplemental dataset 3) identified using the search function and a similarity parameter of 0.5.

Chemical synthesis, purification and analyses of novel small molecule mitofusin agonists
Four A-B chimeric molecules designed to incorporate different characteristics of Cpds A
and B (Supplemental dataset 4) were synthesized de novo:



Chimera B-A/l — (1-(2-((5-cyclopropyl-4-phenyl-4H-1,2,4-triazol-3-yl)thio)ethyl)-3-(2-
methylcyclohexyl)urea) was synthesized by Enamine Ltd as a racemic mixture (fig. S20). Step
A: 5-Cyclopropyl-4-phenyl-4H-1,2,4-triazole-3-thiol (1) (1 mmol) was dissolved in 1 mL of
CH;3;0H/H;0 (50:50), then NaOH (1 mmol) was added, stirred for 10 min, and 2-(boc-
amino)ethyl bromide (2) (1 mmol) was added at 25 °C. The reaction was allowed to stir for 3
hours then poured into 10 mL water. The precipitate was filtered and dried to get a solid. The
crude product was dissolved in 10 ml of trifluoroacetic acid (TFA), and heated at 50 °C for 10 h
to remove the solvent and 10ml of water and NaOH (1 mmol) were added. The mixture was
stirred at room temperature for 1 h, filtered, and washed with water (50 ml). The residue was
purified using reversed phase high-performance liquid chromatography RP-HPLC. Yield: 52 %.
Step B: 2-((5-Cyclopropyl-4-phenyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-amine (3) (0.5 mmol)
and 1,1'-carbonyldiimidazole (CDI) (1 mmol) were dissolved in 0.6 ml CH3CN, the mixture was
kept at a temperature of 70 °C for 1 h, and then the 2-methyl-cyclohexylamine (4) (0.5 mmol)
was added. The mixture was heated for 2 hours at 70 °C, then filtered, and evaporated. The
residue was purified using RP-HPLC to give the desired product as a white solid; Purity: 99.99%
(fig. S21A); Yield: 32 %; C21H29N50S; MW 399.5. Liquid chromatography with high-
resolution mass spectrometry using electrospray ionization LC-HRMS (ESI) with expected m/z
399.25 showed exact mass found 400.2 [M + H]" (fig. S21B). Chemical structure was confirmed
by proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (°C
NMR) (fig. S$22). "H NMR (400 MHz, DMSO-d6) & 7.60 (m, 3H), 7.48 (m, 2H), 5.95 (dt, 1H),
5.81 (dd, 1H), 3.26 (q, 2H), 3.07 (t, 2H), 3.00 (m, 1H), 1.62 (m, 4H), 0.99 (m, 10H), 0.81 (d,
2H), 0.75* (d, 1H). >C NMR (126 MHz, CDCl3) § 157.45, 156.97, 149.14, 133.14, 129.74,
127.34, 53.83, 48.83, 39.00, 34.12, 33.92, 32.69, 25.39, 25.30, 19.20, 7.15, 5.67.

Chimera B-A/s (2-((5-cyclopropyl-4-phenyl-4H-1,2,4-triazol-3-yl)thio)-N-(2-
methylcyclohexyl)propanamide) was synthesized by Enamine as a racemic mixture (fig. S23): 5-
Cyclopropyl-4-phenyl-4H-1,2,4-triazole-3-thiol (1) (0.5 mmol) was dissolved in 1 mL of
CH30H, then KOH (0.5 mmol) was added, stirred for 10 min, and then 2-chloro-N-(2-
methylcyclohexyl)propanamide (2) (0.5 mmol), was added at room temperature. The reaction
was allowed to stir for 3 hours then poured into 10 mL water. The precipitate was filtered and
dried, then was purified using RP-HPLC to give the title compound as a light brown solid;
Purity: 99.99% (fig. S24A); Yield: 43 %; C21H28N40S; MW 384.54. LC-HRMS (ESI):
expected m/z 384.24, exact mass found 385.2 [M + H]" (fig. S24B). Chemical structure was
confirmed by'H NMR and *C NMR (fig. S$25): '"H NMR (500 MHz, DMSO-ds)  8.01 (dd, 1H),
7.60 (m, 3H), 7.45 (m, 2H), 4.27 (qd, 1H), 3.14 (qd, 1H), 1.65 (m, 3H), 1.57 (m, 2H), 1.44 (d,
2H), 1.40 (d, 1H), 1.16 (m, 4H), 0.93 (m, 3H), 0.86 (m, 2H), 0.78 (d, 2H), 0.71* (d, 1H). °C
NMR (126 MHz, DMSO-de) 6 158.01, 139.15, 129.31, 128.75, 127.18, 54.27, 49.26, 39.36,
38.56, 35.24, 34.61, 34.48, 31.88, 31.83, 25.88, 25.79, 19.70.

Chimera A-B/I: (2-(3-(2-(benzylthio)ethyl)ureido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-
carboxamide) was synthesized by Enamine Ltd (fig. S26). Step A: Under an argon atmosphere,
into a reaction vessel of 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxamide (1)
(1.0 mmol), potassium iodide (0.8 mmol), potassium carbonate (1.0 mmol), N,N-
dimethylformamide (DMF) 1 mL and 2,2,2-trifluoroethyl chloroformate (2) (1.0 mmol) were



added. The reaction vessel was heated to 80 °C, and the mixture was stirred for 12 hours. The
reaction vessel was cooled to room temperature, and ethyl acetate 100 mL was added. The
organic layer was washed with water (50 mL), saturated brine (50 mL), and dried over sodium
sulfate. The sodium sulfate and the solvent were distilled off. Compound 3 was purified using
RP-HPLC. Yield: 54%. Step B: To a solution of 2 mmol of a 2,2,2-trifluoroethyl (3-carbamoyl-
5,6-dihydro-4H-cyclopenta[b]thiophen-2-yl)carbamate (3) and 2 mmol of an 2-
(benzylthio)ethan-1-amine (4) in 2 mL of acetonitrile, 0.2 mmol of 1,8-
diazabicyclo[5.4.0Jundec-7-ene (DBU) was added. The reaction mixture was heated at 80 °C for
4 h. Then 0.5-2 mL of water was added to the hot reaction mixture. The product precipitated
from the solution upon cooling to room temperature then filtered and concentrated in vacuum.
The residue was purified using RP-HPLC to give the title compound as a brown solid. Purity:
97.56% (fig. S27A); Yield: 51%; C18H21N302S2; MW 375.51; LC-HRMS (ESI): expected m/z
375.13, exact mass found 376.0 [M + H]" (fig. S27B); Structure was confirmed by'H NMR and
C NMR (fig. $28): 'H NMR (400 MHz, DMSO-d¢)  10.87 (s, 1H), 7.88 (s, 1H), 7.31 (m,
6H), 6.47 (s, 1H), 3.76 (s, 2H), 3.25 (q, 2H), 2.86 (t, 2H), 2.73 (t, 2H), 2.48 (m, 2H), 2.31 (p,
2H). *C NMR (126 MHz, DMSO-ds) & 167.20, 153.47, 151.94, 138.52, 128.88, 128.84, 128.32,
107.82, 34.74, 30.66, 29.30, 28.22, 27.52.

Chimera A-B/s: (2-(2-(benzylthio)propanamido)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-
carboxamide) was synthesized by Enamine Ltd as a racemic mixture (fig. S29):
Phenylmethanethiol (1) (0.5 mmol) was dissolved in 1 mL of CH3OH , then ethylbis(propan-2-
ylamine (0.55 mmol) was added, stirred for 10 min, and then 2-(2-chloropropanamido)-
4H,5H,6H-cyclopenta[b]thiophene-3-carboxamide (2) (0.5 mmol) was added. The reaction was
allowed to stir at room temperature for 3 hours, and then poured into 10 mL water. The
precipitate was filtered and dried, then was purified using RP-HPLC to give the title compound
as a yellow solid; Purity: 98.76% (fig. S30A); Yield: 37 %; C18H20N202S2; MW 360.49; LC-
HRMS (ESI): expected m/z 360.12, exact mass found 361.2 [M + H]+ (fig. S30B); Structure was
confirmed by H NMR and 13C NMR (fig. $31): 'H NMR (500 MHz, DMSO-d) & 12.49 (s,
1H), 7.64 (s, 1H), 7.33 (d, 2H), 7.28 (t, 2H), 7.22 (t, 1H), 6.70 (s, 1H), 3.83 (AB-system, 2H),
3.63 (q, 1H), 2.92 (t, 2H), 2.79 (t, 2H), 2.36 (q, 2H), 1.40 (d, 3H). °*C NMR (126 MHz, DMSO-
de) 6 168.77, 167.06, 148.07, 139.07, 137.35, 131.71, 128.91, 128.37, 126.99, 111.30, 42.52,
34.88,29.03, 28.22, 27.68, 17.57.

Purification methods

Preparative HPLC

Purification was performed using HPLC (H,O — MeOH; Agilent 1260 Infinity systems equipped
with DAD and mass-detectors. Waters Sunfire C18 OBD Prep Column, 1004, 5 pm, 19 mm X
100 mm with SunFire C18 Prep Guard Cartridge, 100A, 10 um, 19 mm X 10 mm) The material
was dissolved in 0.7 mL DMSO. Flow: 30mL/min. Purity of the obtained fractions was checked
via the analytical LCMS. Spectra were recorded for each fraction as it was obtained straight after
chromatography in the solution form. The solvent was evaporated in the flow of N, at 80°C. On
the basis of post-chromatography LCMS analysis fractions were united. Solid fractions were
dissolved in 0.5 mL MeOH and transferred into pre-weighted marked vials. Obtained solutions
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were again evaporated in the flow of N; at 80°C. After drying, products were finally
characterized by LCMS and "H NMR and "*C NMR.

Analytical methods

HPLC/HRMS (ESI)

LC/MS analysis was carried out using Agilent 1100 Series LC/MSD system with DAD\ELSD
and Agilent LC\MSD VL (G1956A), SL (G1956B) mass-spectrometer or Agilent 1200 Series
LC/MSD system with DAD\ELSD and Agilent LC\MSD SL (G6130A), SL (G6140A) mass-
spectrometer. All the LC/MS data were obtained using positive/negative mode switching. The
compounds were separated using a Zorbax SB-C18 1.8 um 4.6x15mm Rapid Resolution
cartridge (PN 821975-932) under a mobile phase (A — acetonitrile, 0.1% formic acid; B — water
(0.1% formic acid)). Flow rate: 3ml/min; Gradient 0 min — 100% B; 0.01 min — 100% B; 1.5 min
- 0% B; 1.8 min - 0% B; 1.81 min - 100% B; Injection volume 1pul; Ionization mode atmospheric
pressure chemical ionization (APCI); Scan range m/z 80-1000.

NMR
'H and "*C NMR spectra were recorded at ambient temperature using Bruker AVANCE DRX
500; Varian UNITYplus 400 spectrometers.

Mouse hippocampal neuron preparation, culture, and live cell imaging

Neonatal mouse hippocampal neurons were cultured from brains of one day old Mfn2
T105M or non-transgenic sibling mouse pups as described (28). After 10 days of differentiating
culture neurons were infected with Adeno-Cre to induce Mfn2 T105M expression or Adeno-Bgal
as a control (50 MOI). After an additional 72 hours mitofusin agonists or DMSO vehicle were
added. For static confocal imaging neuronal mitochondria were labeled with adenoviral-
expressed mitoGFP plus TMRE. Autophagy was measured by LC3 aggregation in neurons
infected with adenoviral LC3-GFP. For time-lapse studies of mitochondrial trafficking bi-
cistronic Adeno-Cre/GFP marked Cre expression and mitochondria were labeled with adeno-
mitoDsRed. Confocal live cell images were acquired with a time-lapse of
1 frame every 90 seconds for 1 hour.

HB9-Cre/Mfn2 T105M mouse creation and sciatic nerve studies

All mouse procedures were approved by the Institutional Animal Care and Use
Committee of Washington University in St. Louis. C57BL/6-Gt(ROSA)26Sortm1(CAG-
MFN2*T105M)Dple/J (stock no. 025322 donated by David Pleasure, University of California
Davis) (29) and B6.129S1-Mnx1tm4(cre)Tmj/J (here referred to as HB9-Cre; stock no. 006600
donated by Thomas Jessel of Columbia University) (30) were purchased from The Jackson
Laboratory. The HB9-Cre driver was bred onto the ROSA26 flox-stop Mfn2 T105 transgene to
induce Mfn2 T105M expression in motor neurons. Age- and sex-matched C57/b6 mice or mice
carrying the Mfn2 T105 flox-stop transgene in the absence of Cre were studied as normal
controls.

Sciatic nerves of 12-18 week old male or female Mfn2 T105M mice were removed en
bloc with the lumbar spine and axotomy at the tibial nerve, stained with TMEM (200 uM) for 30
minutes in prewarmed Neurobasal Medium without phenol red (Thermo Fisher Scientific) at
room temperature, washed, and maintained on the stage of a Nikon A1Rsi Confocal Microscope
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at 37degrees C for time-lapse confocal studies. Images were acquired with a 40x oil immersion
objective at 1 frame every 5 or 10 seconds for sequential 10 minute periods. Mitofusin agonist
chimera B-A/l was added after the first 10 minute imaging period (final concentrations of 1 or 5
uM) and nerve axons imaged for another 40 minutes. Because there was no difference in
mitochondrial trafficking or response to mitofusin agonist between male and female mice, the
data were combined.

Statistical methods

All data are reported as mean+=SEM. Statistical comparisons (two-sided) used one-way ANOVA
and Tukey’s tests for multiple groups or Student’s t-test for paired comparisons. p<0.05 was
considered significant.
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Mfn2 modeled as closed configuration
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Fig. S1. Hypothetical structures of human Mfn2. (top) Mfn2 computationally modeled in a
closed configuration based on structural homology with Homo sapiens Mfn1 and Arabidopsis
thaliana dynamin-related protein (BDRP). (bottom) Mfn2 computationally modeled in an open
configuration based on structural homology with Homo sapiens Opal. The first heptad repeat
(HR1) domain is green and the carboxyl-terminal second heptad repeat (HR2) domain is red.
Exploded areas show critical predicted HR1-HR2 interactions for the two conformations in
orthogonal views.
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FFHKVR(SRLSIPN|YF I LNNRWDASASEPEYMEEVRROHMYRCTRFLVDELGVVDRAQASDRIFFVSAKEVLS
KOFFHKVYERLSRPNIFILNNRWDASASEPEYMEEVR/IQHMYRCTSFLVDELVVDRAQA! DRIFFVSAKEVLHARIQ A
KEFFHKVYERLSEPNIFILNNRWDASASEPEYMEEVRRQHMYRCSFLVDELGVVDRAQASDRIFFVSAKEVLYS Rvg
KEFFHKVYERLSFPNIFILNNRWDASATEPEYMEEVRRQHMMRCTSFLVDELVVDRIIAGDRIFFVSAKEVLSARYOKA
KOFFHKVYERLSRPNIFILNNRWDASASEPEYMEEVRROHMMRCTSFLVDELGVVDRAQAGDRIFFVSAKEVLNARIQKA
KOFFHKVYERLSRPNIFILNNRWDASASEPEYMEEVEISIHIDIRIT UL 3 AU BE S A TNZT R BLF N e T NE R Y

]
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320 330 340 350 360 370 380 390

Human
Chimpanzee
Gorilla
Monkey
Macaque
Marmoset QGMPEHGGALAEGFQVRMFEFQNFERRFEECISE!AVKTKFEQHTVRAKQIAEAVRLIMDSLHVAA

Bushbaby IQGMPEGGGALAEGFQVRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQIAEAVRLIMDSLH] QEQRVYCLEMREE'
Lemur QGMPEGGGALAEGFQVRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQIAEAVREIMDSLH QEQRVYCLEMREER
Gibbon
Elephant
Armadillo
Cat

Dog
Ferret
Boar
Dolphin
Sheep
Squirrel QEQRVYCLEMREER
Guinea pig QEQRVYC@EMREE'
Rat
Mouse
Horse QEQRVYCLEMREER
Opossum MV YHVAAQEQRVYC[SERREER
Collrd flyctchr HVEAQEQRVYCLEMREER
Zebra finch
Chicken
Turkey RLIMDS\YHVAAQEQRVYCLEMREER
Turtle RLIMDSLHEAAQEQRVYCLEMREE'
Pufferfish A A RTIIMDS{HVAAQEQRVYCLE
Tilapia A A AIFRI:IIMDS| QEQRVYCLE,
Stickleback A A AIFRIITMD S\YH] QEQRIYCLE,

Cod ‘GGALAEGFQRRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQI AIFRLIMDS HVAEQEQ CEE

Platyfish OGMPESGGALAEGFQRMFEFQNFERRFEECI SQSAVKTKFEQHTVRAKQT RﬂIMDI HVAAQEQRYCLE
HRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQI RIATMDIAYHVAAQEQRI#YCLE
51MDS¥HEAAQEQR CEE

HVAAQEQ!

R ~|RLIMDS¥HEAAQEQ M

3 HVEAQEQR CLERREDR]

Amazon molly [QGMPEGGALAEGF Q!
Spotted gar A L4
Cave fish A A AIFRLIMDS
Zebrafish
Coelacanth [QOGMPEGGGALAEGFQLIRMFEFQNFERRFEECISQSAVKTKFEQHTVRAKQI

Frog YYPALLGGALAEGFQHRMFEFQNFERRFEECISQSAVKTKFEQHT‘RAKQIAE

Human
Chimpanzee
Gorilla
Monkey
Macaque
Marmoset
Bushbaby
Lemur
Gibbon
Elephant
Armadillo
Cat

Dog

Ferret
Boar
Dolphin
Sheep
Squirrel
Guinea pig
Rat

Mouse
Horse
Opossum 3 (V) EEIRRLSVLVDEYQMDFHPSPVVLKVYKNELHRHIEEGLGR
Collrd flyctchr EEIRRLSVLVDEYQ“DFHPSO LKV!KEELHNHIEEGLG-
Zebra finch LKVYKESELHSHIEEGLGR
Chicken EEIRRLSVLVDEYQLDFHPS O VVLKVYKNELH!

Turkey =] EEIRRLSVLVDEYQHDFHPSO
Turtle
Pufferfish ITEEVERQVS!
Tilapia ITEEVERQVSNAMA
Stickleback ITEEVERQVSNAMEEEI
Cod ITEEVERQVS! EEIRRL)
Platyfish H{ITEEVERQV, EEI§E£
Amazon molly JITERVERQV, EEI
Spotted gar - EEIRRL)
Cave fish ITEEVEIXQVSI EEIRRL)
Zebrafish ITEEVEIMQVSI EEIRRLAY
Coelacanth
Frog
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480 490 500 510 520 530 540 550

Human SIOIDMLVPREOCFSLAYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Chimpanzee SLOTMQOODMIDGLKPLLPVSVRSOIDMLVPREOCFSLNYDLNCDKLCADFQEDIEFHFSLGWTMLVNR
Gorilla SIDIDMLVPREOCFSLANYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Monkey INMSDRCSTAITNSLOTMOODMIDGLKPLLPVSVRSOIDMLVPREOCFSLANYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Macaque INMSDRCSTAITNSLOTMOODMIDGLKPLLPVSVRSOIDMLVPREOCFSLAYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Marmoset [NMSDRCSTAITWSLOTMQODMIDGLKPLLPVSVREOIDMLVPRGOCFSLYYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Bushbaby NMSDRCSTAITaSLQTMQQDMIDGLKPLLPVSV S-IDELVPR—QCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Lemur INMSDRCSTAITNSLOTMOODMIDGLKPLLPVSVRSOIDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR

Gibbon NMSDRCSTAITISLQTMQQDMIDGLKPLLPVSV'S-IDMLVPR—QCFSLNYDLNCDKLCADFQEDIEFHFSLGWTMLVN'

Elephant IDGLKPLLPg;HRS-IDMLVPR—QCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Armadillo SLOTMQQIZMIDGLKPLLPYLW RSO IDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Cat SLOQTMQODMIDGLKPLLPLISVRSOIDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Dog ISLOIz QQDMIDGLKPLLPHSVRS'IDMLVPR—QCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Ferret A ISLOI ‘QDMIDGLKPLLPESVRS'IDELVPR—QCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Boar IMSDRCSTAITESLOTMOQIXMIDGLKPLLPLISVR 'EDMLVPR—QCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Dolphin IMSDRCSTAIT) IDGLKPLLPVS“RSOID!LVPR FQCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Sheep IMSDRCSTAIT, *DGLKPLLPHSVRSOIDMLVPR FQCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Squirrel IMSDRCSTAITNSLOTMOODMIDGLKPLLPVSVRSOIDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR

Guinea pig QIDMLVPRgOCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVNR

Rat QIDMLVPRBOCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVNR
Mouse QIDMLVPRBOCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVNR
Horse SLQTMQQEMIDGLKPLLPVSV S0IDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHFSLGWTMLVNR
Opossum INASDRCS] 'SLOTMQQDMIDGLFPLLPVINR€OFDMLVPREOCFSLSYDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Collrd flyctchr INMSDRCSEAITHSLOTMOQBMIDGLKPLLPVSIYR €0 I DML, PR—QCFELSYDLNCDKLCADFQEDIEFHFSLGWTMLVN'
Zebra finch NMSDRCSZA I TiSLOTMOQ! {€0 1 DMLI{PRBMOCFYILS YDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Chicken TSLOTMOQ! IDGLKPLLPESIR QIDMLIPRBOCFHLS YDLNCDKLCADFQEDIEFHF SLGWTMLVNR
Turkey HSLQTMQQI IDGLKPLLPISIIR €0 I DMLI{PRBOCF LS YDLNCDKLCADFQED I EFHF SLGWNTMLVNR
Turtle IDGLKPLLPVSIR€0IDMLI{PREOCF LS YDLNCDKLCADFQEDEFHF SLGHTMLVNR
Pufferfish A liDIIVPR BoRFSLSYDLACDKLCEDFQEDEFHF SLGWTMLVNR]
Tilapia D ‘EtvDIIVPRIQCFSLSYDL CDKLCEDFQEDIFFHFSLGWTMLVNR
Stickleback 2 IOWDIT.VPRACFIILS YDLIACDKLCEDFQED ISFHF SLGWTMLVNR]
Cod ? I30\YDILVPRE QCFSLSYDLRCDKLC DFQEDIGFHFSHGWTMLVNR
Platyfish A

OANKITIgi- QIF [LayYDLIACDKLCEDFQED INFHF SLGWTMLVNR)
Amazon molly A SANKI Iigd—o]FigNI® YDLRCDKLC DFQEDINFHF SLGWTMLVNR]
Spotted gar I3OWDIMLVPREOCFSLSYDLNCDKLCE/DFQED] HF SLGWTMLVNR]
Cave fish 0 q*vPR QCFSLSYDLNCDKLCEDFQEDINFHF SLGWTMLVNR]

Zebrafish 0 PR} QCFHLSYDLNCDKLC DFQEDI¢FHF SLGWTMLVNR]
Coelacanth A QT OQI\IDGL JZARZPLLHSOVEIMI| 31— QEF\LSYDLNCDKLCHDFQEDI HF SLGWTMLVNR]
Frog L il PLLPIZ2#AR1ONDIALVPREOCFILS YDLECDKLCADFQEDEFHF SLGWTMLVNR
Human

Chimpanzee

Gorilla

Monkey

Macaque

Marmoset

Bushbaby

Lemur

Gibbon

Elephant

Armadillo

Cat

Dog

Ferret

Boar

Dolphin

Sheep

Squirrel

Guinea pig

Rat

Mouse

Horse

Opossum —PIPLTPANPSMPPLPQEELTQEELMVSMVTGLASLTSRTSMGILVVGGVVWKAVGWRLI
Collrd flyctchr RALMGYNDQVQR———PLTPANPSHPPLPQGS*TQEELMVSMVTGLASLTSRTSMGI GGVVWKAVGWRLI
Zebra finch RALMGYNDQVQR———PLTPANPSIPPLPQGS*TQEELMVSMVTGLASLTSRTSMGI GGVVWKAVGWRLI
Chicken ———PLTPANPSIPPLPQGS\TQEELMVSMVTGLASLTSRTSMGI GGVVWKAVGWRLI
Turkey ———PLTPANPS‘PPLPQGS*TQEELMVSMVTGLASLTSRTSMGI

Turtle —ELPLTPANPS‘PPLPQ S¥TQEELMVSMVTGLASLTSRTSMGILVVGGVVWKAVGWRLI
Pufferfish POSIS| TQEELMVSMVTGLASLTSRTSMGT .VVGGVVWKAVGWRLI|
Tilapia A PO W TOEELMVSMVTGLASLTSRTSMG VVGGVEWKAVGWRLI
Stickleback A PO SHTQEELMVSMVTGLASLTSRTSMG“LVVGGVVWKAVGWRLI
Cod A PQGS*TQEELMVSMVTGLASLTSRTSMGIEVVG KAVGWRLI
Platyfish A [POSIS\YTQEELMV] '].‘GLI\S]."J.‘SR'].‘SMG.r VVGG' KAVGWRLI
Amazon molly A [POEIS\YTOEELMV] TGLASLTSRTSMG“LVVGG KAVGWRLI
Spotted gar L A PQGSLTQEELMVSMVTGLASLTSRTSMGI KAVGWRLI
Cave fish A QGS“TQEELMVSMVTGLASLTSRTSMGI KAVGWRLI
Zebrafish PQGS*TQEELMVSMVTGLASLTSRTSMGI

Coelacanth EL A PQGS*TQEELMVSMVTGLASLTSRTSMGI

Frog A) A POGSUTQEELMVSMVTGLASLTSRTSMGILVVGGVVWKAVGWRLI|
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Fig. S2. Multi-species alignment of Mfn2 amino acid sequence. Black highlighting shows

SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVE[JASEKLQL[ISYTGSNCSHQVQQELSGIIFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDITRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTJAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQRT
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQL{ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET]
SWGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SWGLYGLLYVYERLTWIJKAKERAFKRQFVEYASEKLOLIISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET]
SGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLIISYTGSNCSHQVQQELSGTFAHLCQQVDITRENLEQET,
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDIITRENLEQET
SFGLYGLLYVYERLTWTTAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDMT! LEQEI
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDIT! LEQEI
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQET
SFGLYGLLYVYER[TWTTKAKERGFKRQFVEYASEKLQLI ISYTGSNCSHQVQQELSGTFAHLCQQVDVTREGLEQET
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYAEEKLQLIESYTGSNCSHQVQQELHGTFAHLCQQVDVTRENLEQEI
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYA!EKLQLIvsYTGSNCSHQVQQELRGTFAHLCQQVDVTRENLEQEI
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYA!EKLQLI*SYTGSNCSHQVQQEL GTF:E;CQQVDVTRENLEQEI
SFGLYGLLYVYERLTWTTKAKERAFKRQFVEYA“EKLQLI*SYTGSNCSHQVQQEL GTFASLCQQVDVTRENLEQET
SFGLYGLLYVYERLTWT&KAKERAFKRQFVEYASEKLQLI“SYTGSNCSHQVQQEL GTFAHLCQQVDVTRENLEQETI
SEGLYGLLYVYERLTWTTKAKERAFKRQFVEYASEKLQLIMSYTGSNCSHQVQQEL GﬁF'O CQOVDVTRS)
SlGLYGLLYEYERLTWTTKAKERAFKRQFVEYASEKLQLI‘SYTGSNCSHQVQQEL GIYF.

vGLYGLLY YERLTWTTJAKERAFKRQF VIJYASEKLQLI ¥SYTGSNCSHQVQQE R
S| GgYGLMYVYERLTWTTKAKERAFKRQFVEYASEKLQLIMSYTGSNCSHQVQQEL G| F'
SMGLYGLLYVYERLTWTTKAKERAFKRQF DYASEKLQLI*SYTGSNCSHQVQQEL A

KERAFKRQFV»YASEKLQLI*SYTGSNCSHQVQQELSGTF'
S GLYGLLYVYERLTWI THAKERIFKROFVINYASEKLOLISYTGSNCSHQVQQEL]

SIGLYGLLYVYERLTWT -AKERAFKRQFVEYAEEKLQLI SYTGSNCSHQVQQELEE o
SFGLYGLLYVYERLTWTYKAKERAFKRQFVEYANEKLOLI|SYTGSNCSHQVQQELSGTFAHLCQQVDVTRENLEQWT,

720 730 740 750
KKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
KKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
KKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AANKKIEVLDSLQOSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVL{JSLOSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
JKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
MKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQPSR
KKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AAMNKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPSR
AR KKEgaiDSLQSKAKLLRNKAGWLDSELNMFEHQYLQPS'

DSLQSHAKLLRNKAGWLDSELNMFTHQYLQPS‘
KKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQOPSR
"INKKIEVLDSLQSKAKLLRNKAGWLDSELNMFTHQYLQPS'
EMIMNKKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHOYLQWSR
FIAMNKKIEVLDSLQOSKAKLLRNKAGWLDSELNMFTHQYLQG@SR
BIAMNKKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQG@SR
FAMNKKIEVLDSLOSKAKLLRNKAGWLDSELNMFTHQOYLQGSR
KKIEMLDSLOSKAKLLRNKAGWLDSELNMFTHQYLQESR
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NEUZWIRI 8]
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identity with human Mfn2 protein.
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Fig. S3. Homology plot of Mfn2 amino acid sequence by functional domain. Positions of HR1
MP374-384 (“fuse”) and its HR2 interacting site (“Binding”) are shown on exploded views
below.
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Fig. S4. Mfn2 Ser378 charge status determines fusion-promoting activity of HR1 MP374-384.
Ser378 substitution analysis of mitochondrial fusion promoted by HR1 MP374-384.
Representative confocal images of MitoTracker Green/TMRE (red) stained live Mfn2-/- (Mfn2
knockout) MEFs are on the left; scale bars are 10 um. Group mean data from Figure 1D are to
the right; p values are by ANOVA with Tukey’s post hoc comparison.
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Fig. S5. NMR spectroscopy suggests a structural mechanism for effects of Ser378
phosphorylation on HR1 372-384 minipeptide fusogenic function. (A) Amide proton regions of
2D NOESY spectra of Ala371 to Arg384 fragment of hMfn2. /eft — unphosphorylated Ser378
peptide; right — peptide synthesized with phosphorylated Ser-378. Sequential cross peaks
between amide groups indicative of a-helical secondary structure are labeled. (B) Overlaid "°N-
'H heteronuclear single quantum coherence spectra of minipeptide backbone amides (bold
highlights on covalent wire-model to the left). Red is Ser378 peptide; green is (p)-Ser378
peptide. # marks the positions of Ser378 and (p)-Ser378. In addition to Ser378, the amide
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signals for amino acids 379-382 shifted down-field (i.e. to higher values) after phosphorylation,
as observed when amides within peptides form or strengthen hydrogen bonds. Here,
phosphorylation of Ser378 can induce hydrogen bonding for the amide of Leu379, stabilizing the
downstream helix and evoking the observed down-field shifts for amides of His380 and Met381.
(C) Ensembles of structures calculated from NMR restraints. Color coding is the same as in (B).
(D) PepFold3 modeling of the HR1 minipeptide shows how different backbone structure
provoked by Ser378 phosphorylation (see panel B) can alter Leu379 and His 380. * in (B) and
(D) mark amino acids with the greatest changes between Ser378 and (p)-Ser378 peptides.
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Fig S6. Mutagenesis analysis of Mfn2-function based on Ser378 phosphorylation status and
integrity of Met376 and His380 that are spatially regulated by Ser378 phosphorylation. Group
data and representative confocal images showing mitochondrial aspect ratio in mitofusin
deficient cells (Mfn1-/-, Mfn2-/- double knockout MEFs) infected with adnoviri expressing -
galactosidase (negative control), wild-type (WT) Mfn2 (positive control), or different single
amino acid Mfn2 mutants. Fusogenic function was impaired in pseudo-phosphorylated Mfn2
Ser378Asp (S378D) and alanine-substituted Mfn2 Met376Ala (M376A) and His380Ala
(H380A); non-phosphorylatable Mfn2 Ser378Ala (S378A) and Mfn2 Val372Ala (V372A, which
is not in the HR1-HR2 interacting domain) retained full activity. p values are by ANOVA with
Tukey’s post hoc comparison. MEFs were stained as described in Fig. S4 legend. Scale bar is 10
um.
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Fig. S7. High-resolution tandem mass spectra of peptides from a tryptic digest of PINK -
treated recombinant human Mfn2. The spectra of the phosphopeptide with the Ser-378
phosphorylation site (A), a stable isotope-labeled synthetic phosphopeptide (B), and the non-
phosphorylated peptide (C) are shown from a 4-hour in vitro PINK1 phosphorylation
experiment. (D) and (E) are like (A) and (C) after an overnight period for PINK1

phosphorylation. The m/z values for the assigned ions are highlighted in the adjacent ion tables.
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Fig. S8. High-resolution mass spectra of PINKI-phosphorylated recombinant human Mfn2
demonstrating phosphorylation of Thril1 (A) and Ser442 (B). These spectra were obtained in
the study shown in Fig. S7D and E. m/z values for assigned fragmentation ions are shown to the

right.
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Fig. S9. High-resolution tandem mass spectra of peptides from tryptic digest of GRK-treated
recombinant human Mfn2. (A) Representative non-matching spectrum from the elution window
of the Ser-378 phosphopeptide. (B) Matching spectrum for the non-phosphorylated peptide from
the GRK tryptic digest. The m/z values for the assigned ions are highlighted in the adjacent ion
tables. (C) Retention time/m/z coordinates of tandem spectra that were analyzed by targeted LC-
MS for phosphorylation of the Ser-378 containing peptide. The seven tandem spectra that were
acquired at retention times between 82-83 min at m/z = 446.542 showed no evidence of

phosphorylation.
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Fig. S10. Representative live-cell confocal images from studies described in Figure 1H.
Mitochondria of Mfn1-/-, Mfn2-/- double knockout MEFs infected with adenoviri expressing
Mifn2 mutants with or without adeno-PINK1 kinase were co-stained with MitoTracker Green

(green) and TMRE (red); nuclei are stained blue with Hoechst. Scale bars are 10 um.
Quantitative group mean data to the right are reproduced from Figure 1H for comparison.
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Fig. S11. Effects of Mfn2 mutations that prevent or mimic Ser378 phosphorylation on
mitochondrial fusion measured as content exchange. (left) Representative live cell confocal
images showing mitochondrial fusion (red/green mixing) 3 hours after PEG treatment of Mfn1-/-
, Mfn2-/- double knockout MEFs expressing Mfn2 Ser378 mutants. Scale bar is 21 wm. N=3
independent studies; p values are by ANOVA with Tukey’s post hoc comparison.
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Fig. S12. Small molecule mimetics of Mfn2 HR1 amino acid side chains that interact with HR2
are mitofusin agonists. (A) Functional screening for class A and B small mitofusin agonists.
1uM of each candidate compound was added to Mfn2-deficient MEFs overnight. Mitochondrial
aspect ratio is on left and cell viability on right. Structures of the class A and B chemosimilars
are shown below (n=3; p values are by ANOVA with Tukey’s post hoc comparison). Black bars
indicate class A and B compounds selected for detailed studies. (B) Representative confocal
images from studies in (A). Mitochondria were visualized with MitoTracker Orange. Cell
viability was assessed simultaneously with mitochondrial aspect ratio - live cells have green
cytoplasm (calcein AM) and dead cells lack calcein staining and have purple nuclei (red
ethidium homodimer overlying blue Hoechst). Scale bars are 10 wm. (C) Initial dose-response
relations of five fusogenic compounds from screening in (A). ECsy values (indexed to the 100%
maximal response elicited by the most effective compound, B1) are shown for the agonists with
strong fusion-promoting activity; mean+SEM of 3 independent studies for each compound. (D)
Competition of the HR1 minipeptide at its Mfn2 HR2 binding site by five fusogenic compounds
from (A). ICs values are shown for agonists with >50% displacement (mean+SEM of 6
independent experiments per compound). Displacement curves for compounds A and B are re-
plotted in Figure 2C.
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Fig. S13. Synergistic effects of a class A and class B mitofusin agonist. Mitochondrial elongation
(increase in aspect ratio) in Mfn2-/- MEFs stimulated by equimolar concentrations of mitofusin
agonists A and B. Dose-response curve on the left is from 6 independent experiments. Peak
aspect ratio achieved with A+B is ~25% greater than with either agonist alone (compare to
fig.12C). Representative live-cell confocal images are on right. Scale bar is 10 um.
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Fig. S14. Evaluation of chimeric small molecule mitofusin agonists. (A) Structures of
compounds A and B and their chimeras. (B) Dose-response of compounds in (A) to promote
mitochondrial fusion (increase in aspect ratio) in Mfn2-/- MEFs. Data for compounds A and B
and chimera B-A/l in Figure 2B are re-plotted here for comparison. (C) Comparison of EC50
values calculated from studies in panel B. p values are from ANOVA with Tukey’s test.
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Fig. S15. Functional evaluation of structurally diverse mitofusin agonists.

(A) Mitochondrial elongation stimulated by mitofusin agonists A and B or chimera B-A/l in cells
having different Mfn expression profiles. White bars are vehicle (DMSO) treated, black bars are
1 uM agonist overnight; * = p<0.05 vs vehicle (t-test). (B) Effects of cpds A and B or chimera
B-A/l (1uM) on dynamin-mediated endocytosis of Alexa-Fluor 594 Dextran. Dynasore is a
dynamin inhibitor. (C) Cell viability assessed after overnight exposure to indicated
concentrations of mitofusin agonist (n=4). Test compounds were not uniformly soluble at
concentrations greater than 50 uM. p values are by ANOVA with Tukey’s test.
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Fig. S16. Mitofusin agonist chimera B-A/l reverses mitochondrial abnormalities induced by
CMT2A mutant Mfn2 T105M in cultured mouse neurons. Representative confocal images of
living mouse neurons expressing MitoGFP and stained with TMRE and Hoescht from
experiments reported in Figures 4B and 4C. Scale bars are 21 wm; expanded views are from
white squares. Mfn2 T105M expression from the flox-stop transgene was induced by addition of
adeno-Cre.
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Fig. S17. Functional screening for fusogenic activity of mitofusin agonist pharmacophores.

A. Mitochondrial fusogenicity measured as aspect ratio of Mfn2 null MEFs after overnight treatment with
1 uM indicated library compound. Chemical details, structures, and commercial sources of these
compounds are in Supplemental dataset 2. Mock = DMSO vehicle control. Horizontal dotted line
indicates baseline value. Cells treated with 5 uM mitofusin agonist peptide HR1 367-384 (positive
control) had aspect ratios of ~6. Inset: correlation of rank order for initial model fit vs actual fusogenicity
(r=0.214). Red dots are compounds A10 and B1 that ranked 4™ and 2™ for fusogenicity, but 22" and 31%,
respectively, for fit to the original pharmacophore model. B. Cytotoxicity measured by live-dead assay.
Compounds are ranked by fusogenicity as in A. Means+SEM of 3 independent experiments examining
~30 cells per experiment.
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Fig. S18. Functional validation and dose-response relations of candidate fusogenic small molecules.

A. Chemical structures of 4 top candidate fusogenic compounds from initial screening (see Fig. S17). B.
Dose relations with representative images of vehicle and 1 uM treated Mfn2 null MEFs for each of the
compounds, only 3 of which were true positives. Cells are stained with Mitotracker orange, calcein AM
(green; alive) and ethidium homodimer (red nucleus; dead). There are no dead cells. ECs, values are
provided for true positives; D9 showed no true fusogenic activity. Scale bars are 10 microns. Dose-
response curves are meanstSEM of 3 independent experiments. C. Schematic depiction of
pharmacophore model fit for the 3 true positive fusogenic compounds.
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Fig. S19. Purification of mitofusin agonist compounds A and B. At the top are high performance liquid
chromatography and mass spectra of compounds as they were obtained from the commercial vendor.
On the bottom are spectra after in-house purification. Cpd A: expected m/z 306.18, exact mass found
307.3 [M + H]"; Cpd B: expected m/z 453.15, exact mass found 454.3 [M + H]".
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Fig. S20. Synthetic route for preparation of Chimera B-A/l (compound 5).
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Fig. S21: RP-HPLC and HRMS of newly synthesized chimera B-A/l. (A) HPLC spectrum of
chimera B-A/l. From top to bottom: UV Absorbance at 215nm; UV Absorbance at 254nm;
complete ionization mass selective detector (MSD) spectrum; evaporative light scattering
detection spectrum. Chimera B-A/l was 99.99% pure. (B) HRMS chromatogram of compound
B-A/l (C21H29N50S) shows exact mass: [M + H]": 400.2.
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Fig. S23. Synthetic route for preparation of chimera B-A/s (compound 3).
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Fig. S24: RP-HPLC and HRMS of newly synthesized chimera B-A/s. (A) HPLC spectrum of
compound B-A/s. From top to bottom: UV Absorbance at 215nm; UV Absorbance at 254nm;
complete ionization MSD spectrum; evaporative light scattering detection spectrum. Chimera B-
A/s was 99.99% pure. (B) HRMS chromatogram of compound B-A/s (C21H28N40S) shows
exact mass found: [M + H]": 385.2.
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Fig. S25: Proton and carbon-13 NMR of newly synthesized chimera B-A/s. (A) Full '"H NMR
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Fig. S26. Synthetic route for preparation of chimera A-B/l (compound 5).
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Fig. S27: RP-HPLC and HRMS of newly synthesized chimera A-B/l. (A) HPLC spectrum of
newly synthesized chimera A-B/l. From top to bottom: UV Absorbance at 215nm; UV
Absorbance at 254nm; complete ionization MSD spectrum; evaporative light scattering detection
spectrum. Chimera A-B/l was 97.56% pure. (B) HRMS chromatogram of compound A-B/1
(C18H21N302S2) shows exact mass found: [M + H]": 376.0.
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Fig. S28: Proton and carbon-13 NMR of newly synthesized chimera A-B/I. (A) Full '"H NMR
spectrum (400 MHz) of newly synthesized chimera A-B/l (DMSO-ds solvent) and expanded
view of region & 2.0 — 4.1 PPM. (B) >C NMR spectrum (126 MHz) of chimera A-B/l (DMSO
solvent).
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Fig. S29. Synthetic route for preparation of chimera A-B/s (compound 3).
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Fig. S30: RP-HPLC and HRMS of newly synthesized chimera A-B/s. (A) HPLC spectrum of

compound A-B/s. From top to bottom: UV Absorbance at 215nm; UV Absorbance at 254nm;
complete ionization MSD spectrum; evaporative light scattering detection spectrum. Chimera A-
B/s was 98.76% pure. (B) HRMS chromatogram of chimera A-B/s (C18H20N202S2) shows

exact mass found: [M + H]": 361.2.
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Fig. S31: Proton and carbon-13 NMR of newly synthesized chimera A-B/s. (A) Full '"H NMR
spectrum (400 MHz) of chimera A-B/s (DMSO-d; solvent) and expanded view of region & 5.7 —
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40



Supplemental Table S1. Fragmentation ions from tandem MS of Mfn phosphopeptides

LIMDSLHMAAR' (m/z=446.543)

ion m/z (Theoretical) | m/z (Observed) ppm
Y1 175.119 175.120 3.7
Y3 317.193 317.194 1.4
Ya 448.234 448.230 -9.0
ys 585.293 585.290 -3.6
Yo 698.377 698.380 5.0
y7-HsPO, " 384.203" 384.203 0.7
ys-H3PO, 882.425 882.427 2.3
LIMDsLHMAAR-["*C6]['°N4] (m/z=449.880)
ion m/z (Theoretical) | m/z (Observed) ppm
Y1 185.127 185.127 0.2
y2 256.164 256.163 -4.3
Y3 327.201 327.200 -3.1
Ya 458.242 458.242 -0.7
ys 595.301 595.300 -1.0
Yo 708.385 708.382 -4.6
y7-H3PO, 777.406 777.404 -3.7
ys-H3PO, 892.433 892.431 -2.1
yo-H3PO, 1023.474 1023.472 -1.7
y10-H3POy4 1136.558 1136.549 -8.0

' The lower case single amino acid abbreviation indicates the phosphorylated residue.
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