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SUPPLEMENTARY MATERIALS

A fast exact functional test for directional

association and cancer biology applications
Hua Zhong and Mingzhou Song

F

SUPPLEMENTARY NOTE 1. PEARSON’S CHI-SQUARE TEST OF ASSOCIATION

Pearson’s chi-square test [1] determines the independence or association between variables in a contingency table. The null

hypothesis is that the row and column variables are statistically independent. Let O be an observed r× c contingency table

with Oi,j being the observed count in the cell at row i and column j. Let

n =
r∑
i=1

c∑
j=1

Oi,j (1)

stand for the observed sample size. Let E = [Ei,j ] denote the expected contingency table by chance under the null

hypothesis, where Ei,j is the expected count in the cell at row i and column j defined by

Ei,j =

∑c
k=1Oi,k ·

∑r
m=1Om,j

n
(2)

In his seminal work [1], Karl Pearson defined the chi-square statistic

χ2 =
r∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
(3)

which asymptotically follows a chi-square distribution with (r−1)× (c−1) degrees of freedom under the null hypothesis.

The p-value of the observed table O can be calculated by the upper tail probability of the distribution.

The chi-square null distribution is asymptotically accurate when the sample size approaches infinity, but it is inexact

at small sample sizes when Fisher’s exact test is often used. Pearson’s chi-square test is symmetrical and cannot detect

directional relationships. The chi-square statistic is closely related to other measures of association including G-test and

mutual information.
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SUPPLEMENTARY NOTE 2. FISHER’S EXACT TEST

With the same null hypothesis of Pearson’s chi-square test, Fisher’s exact test [2], [3] computes the exact p-value of

observed contingency table O to test the association between the row and column variables. The exact p-value is based on

the multivariate hypergeometric distribution for the null population where all tables have the same row and column sums

with the observed table O.

Let A represent the null population of all tables with fixed row and column sums to those observed in O. We can thus

write A as

A =

{
A
∣∣∣ ∀1 ≤ i ≤ r, c∑

j=1

Ai,j =
c∑
j=1

Oi,j and ∀1 ≤ j ≤ c,
r∑
i=1

Ai,j =
r∑
i=1

Oi,j

}
(4)

We denote the row and column sums of A by

Ai· =
c∑
j=1

Ai,j (5)

and

A·j =
r∑
i=1

Ai,j (6)

Let Pr(A) represent the null probability of matrix A ∈ A. Under the null hypothesis, each sample in A is obtained by

random sampling without repeat from the given row and column sums. Consequently, the counts in all cells in A follow a

multivariate hypergeometric null distribution with mass probability function

Pr(A) =

∏r
i=1Ai·! ·

∏c
j=1A·j !

n! ·
∏r
i=1

∏c
j=1Ai,j !

(7)

which is an extension [3] beyond the 2× 2 version originally described by Ronald A. Fisher [2].

The p-value of the observed table can be calculated exactly by summing up the probabilities of those tables no less

extreme than the observed table O. Table A is no less extreme than O if and only if Pr(A) ≤ Pr(O). An extreme table

of low probability supports a strong association between the row and column variables. Therefore the p-value of the test

given O is calculated by

p-value =
∑

A∈{A|Pr(A)≤Pr(O) andA∈A}

Pr(A) (8)

This p-value is exact for all sample sizes giving rise to the name of Fisher’s exact test. Due to fast algorithms [4], Fisher’s

exact test is computationally practical for reasonably large tables and sample sizes, and has become one of the most widely

used exact tests.

SUPPLEMENTARY NOTE 3. SYMMETRY OF EXACT FUNCTIONAL TEST ON 2-BY-2 CONTINGENCY TABLES

Lemma 1. For an observed 2-by-2 contingency table O and another 2-by-2 contingency table A with the same row and column sums

of O, χ2
f−1(A) ≥ χ2

f−1(O) if and only if χ2
f (A) ≥ χ2

f (O), where χ2
f−1(A) = χ2

f (A
>) and χ2

f−1(O) = χ2
f (O

>).

Proof. Let the observed 2-by-2 table O be

O =

 nobs11 nobs12

nobs21 nobs22

 (9)

and let another table A with the same row and column sums of O be

A =

 n11 n12

n21 n22

 (10)
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Due to the row and column constraints on A, χ2
f (A) is a univariate quadratic function and without loss of generality, we

choose n11 as the free variable. By definition of functional chi-square, we have

dχ2
f (A)

dn11
=

8

n1·n2·
(nn11 − n1·n·1) (11)

and
dχ2

f−1(A)

dn11
=

8

n·1n·2
(nn11 − n1·n·1) (12)

Both derivatives are equal to zero at the optimal solution

n∗11 =
n1·n·1
n

(13)

which also minimizes both χ2
f (A) and χ2

f−1(A) to zero.

Both χ2
f (A) and χ2

f−1(A) are quadratic functions decreasing before n∗11 and increasing afterwards.

Without loss of generality, we suppose nobs11 ≤ n∗11.

As both functional chi-square functions χ2
f (A) and χ2

f−1(A) are monotonically decreasing in (−∞, n∗11], for any n11 ∈

(−∞, nobs11 ], both χ2
f−1(A) ≥ χ2

f−1(O) and χ2
f (A) ≥ χ2

f (O) are true; for any n11 ∈ (nobs11 , n
∗
11], both

χ2
f−1(A) < χ2

f−1(O) and χ2
f (A) < χ2

f (O) (14)

are true.

Both functional chi-square functions χ2
f (A) and χ2

f−1(A) are monotonically increasing in [n∗11,∞). By symmetry of

quadratic functions around n11 = n∗11, we have exactly χ2
f (A) = χ2

f (O) and χ2
f−1(A) = χ2

f−1(O) at n11 = 2n∗11−nobs11 . Thus,

for any n11 ∈ [n∗11, 2n
∗
11 − nobs11 ), both χ2

f−1(A) < χ2
f−1(O) and χ2

f (A) < χ2
f (O) are true; for any n11 ∈ [2n∗11 − nobs11 ,∞),

both

χ2
f−1(A) ≥ χ2

f−1(O) and χ2
f (A) ≥ χ2

f (O) (15)

are true.

The case when nobs11 ≥ n∗11 can be argued analogously.

Therefore, we have proven that χ2
f−1(A) ≥ χ2

f−1(O) if and only if χ2
f (A) ≥ χ2

f (O).

Theorem 1. The p-values of observed exact functional test statistics χ2
f (O) and χ2

f−1(O) are equal for an observed 2-by-2 contingency

table O.

Proof. In computing the p-value of χ2
f−1(O), any table A> that is no less extreme than O> will have χ2

f−1(A) ≥ χ2
f−1(O) if

and only if χ2
f (A) ≥ χ2

f (O) by Lemma 1. Additionally Pr(A) = Pr(A>) by the definition of multivariate hypergeometric

distribution. Therefore the p-values of test statistics χ2
f (O) and χ2

f−1(O) are equal.

SUPPLEMENTARY NOTE 4. A FAST AND EXACT ALGORITHM BY BRANCH AND BOUND

To compute the exact p-value by definition, one must enumerate all tables in the null population A. The run time will be

exponential in sample size and table dimension. We present a branch-and-bound algorithm in to speed up the calculation

by skipping or including an entire branch of tables.
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Just before Ai,j is enumerated, we let Ul,q ≥ Al,q be an upper bound of a not yet enumerated element Al,q , constrained

by the row and column sums and also those already enumerated cells as follows:

Ul,q =


min

{
Oi· −

∑j−1
s=1Ai,s, O·q −

∑i−1
t=1At,q

}
l = i, q ≥ j

min
{
Ol·, O·q −

∑i
t=1At,q

}
l > i, q < j

min
{
Ol·, O·q −

∑i−1
t=1At,q

}
l > i, q ≥ j

(16)

An upper bound of the functional chi-square statistic

We first establish an upper bound UB(χ2
f (A)) just before the enumeration of Ai,j . By sorting Ui,q for q = j, . . . , c within

row i, we obtain the order statistics

Ui,(1) ≥ Ui,(2) ≥ · · · ≥ Ui,(c−j+1) (row i) (17)

with corresponding column index q(1), q(2), . . . , q(c−j+1), or

Ul,(1) ≥ Ul,(2) ≥ · · · ≥ Ul,(c) (row l > i) (18)

with corresponding column index q(1), q(2), . . . , q(c).

To maximize the row functional chi-square

c∑
q=1

(Al,q −Ol·/c)2

Ol·/c
=

c

Ol·

 c∑
q=1

A2
l,q

−Ol· (19)

we show that an optimal solution is, when l = i,

A∗i,(k) =

min
{
Ui,(1), Oi· −

∑j−1
q=1Ai,q

}
k = 1

min
{
Ui,(k), Oi· −

∑j−1
q=1Ai,q −

∑k−1
m=1A

∗
i,(m)

}
k > 1

(20)

or, when l > i,

A∗l,(k) =

min
{
Ul,(1), Ol·

}
k = 1

min
{
Ul,(k), Ol· −

∑k−1
m=1A

∗
l,(m)

}
k > 1

(21)

The optimality of the above solution is based on Theorem 2. The proof of the theorem is given in Supplementary Note 5.

The optimal solution gives rise to upper bounds on row chi-squares for all unenumerated elements starting at row i:

χ2
l,upper =


c−j+1∑
k=1

(A∗
i,(k)−Oi·/c)

2

Oi·/c
l = i

c∑
k=1

(A∗
l,(k)−Ol·/c)

2

Ol·/c
l > i

(22)

Thus, we find an upper bound of χ2
f (A) before the enumeration of Ai,j :

UB(χ2
f (A)) =

i−1∑
l=1

c∑
q=1

(Al,q −Ol·/c)2

Ol·/c
+

j−1∑
q=1

(Ai,q −Oi·/c)2

Oi·/c
+

r∑
l=i

χ2
l,upper −

c∑
q=1

(O·q − n/c)2

n/c
(23)

We skip the entire branch starting at A(i, j) if and only if

UB(χ2
f (A)) < χ2

f (O) (24)

Otherwise, we will enumerate Ai,j .



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

A lower bound of the functional chi-square statistic

We now establish a lower bound LB(χ2
f (A)) just before the enumeration of Ai,j . By sorting Ui,q (q ≥ j) within row i, we

obtain the order statistics

Ui,(1) ≤ Ui,(2) ≤ · · · ≤ Ui,(c−j+1) (row i) (25)

with corresponding column index q(1), q(2), . . . , q(c−j+1), and

Ul,(1) ≤ Ul,(2) ≤ · · · ≤ Ul,(c) (row l > i) (26)

with corresponding column index q(1), q(2), . . . , q(c).

Let di(j) be the needed sum of counts on row i from column j to c:

di(j) =

Oi· j = 1

Oi· −
∑j−1
q=1Ai,q j > 1

(27)

If the sum of count upper bounds on row i from column j to c is less than the needed sum di(j), i.e.,

c∑
q=j

Ui,(q) < di(j) (28)

then there is no feasible solution for Ai,j and we will return to enumerate another element before cell (i, j).

Otherwise, we claim that assigning

A∗i,(k) =

min
{
Ui,(k), di(j)/c

}
k = 1

min
{
Ui,(k),

(
di(j)−

∑k−1
q=1 A

∗
i,(q)

)
/ (c− k + 1)

}
k > 1

(29)

into cells from (i, j) to (i, c) achieves a lower bound of chi-square contributed by unenumerated elements in row i. A lower

bound of chi-square for row l > i can be achieved by assigning the following elements to row l:

A∗l,(k) =

min
{
Ul,(k), Ol·/c

}
k = 1

min
{
Ul,(k),

(
Ol· −

∑k−1
q=1 A

∗
l,(q)

)
/ (c− k + 1)

}
k > 1

(30)

The optimality of the assigned elements is based on Theorem 3. We prove the theorem in Supplementary Note 6.

The optimal solution gives rise to lower bounds on row chi-squares for all unenumerated elements starting at row i:

χ2
l,lower =


c−j+1∑
k=1

(A∗
i,(k)−Oi·/c)

2

Oi·/c
l = i

c∑
k=1

(A∗
l,(k)−Ol·/c)

2

Ol·/c
l > i

(31)

Thus, a lower bound of χ2
f (A) before Ai,j is enumerated can be calculated as

LB(χ2
f (A)) =

i−1∑
l=1

c∑
q=1

(Al,q −Ol·/c)2

Ol·/c
+

j−1∑
q=1

(Ai,q −Oi·/c)2

Oi·/c
+

r∑
l=i

χ2
l,lower −

c∑
q=1

(O·q − n/c)2

n/c
(32)

We will enumerate Ai,j if and only if

LB(χ2
f (A)) ≤ χ2

f (O) (33)

Otherwise, we will keep the entire branch starting at Ai,j . When elements remaining to be enumerated occupy entire rows
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from i to r (j = 1), the probability of tables in the entire branch can be computed by a new table formed by the first i− 1

row of A and a row containing O·q −
∑i−1
l=1 Al,q as follows:

Pr ({B|B shares the first i− 1 enumerated rows of A and B ∈ A}) =

(∏i−1
l=1 Ol·!

)
· (
∑r
l=iOl·)! ·

(∏c
q=1O·q!

)
n! ·

(∏i−1
l=1

∏c
q=1Al,q!

)
·
[∏c

q=1

(
O·q −

∑i−1
l=1 Al,q

)
!
]
(34)

which is added to the extreme table probability, eventually becoming the p-value.

SUPPLEMENTARY NOTE 5. UPPER BOUND OF SUM OF SQUARES WITH LINEAR INEQUALITY CONSTRAINTS

Lemma 2. Let x′ be a sequence of n numbers, which are bounded by x′i ≤ ui for i = 1, . . . , n with

u1 ≥ u2 ≥ · · · ≥ un (35)

Let x̂ be the sorted version of x′ in descending order, and thus

x̂1 ≥ x̂2 ≥ · · · ≥ x̂n (36)

Then we must have x̂i ≤ ui for i = 1, . . . , n.

Proof. Suppose x̂i > ui. There would be at least i numbers x̂1, . . . , x̂i in x̂ that are greater than ui. But since only the first

i − 1 elements in x′ are bounded by u1 ≥ u2 ≥ · · · ≥ ui−1(≥ ui) and can thus be greater than ui, x′ can only provide at

most i − 1 elements greater than ui. As x̂ and x′ contain two permutations of exactly the same numbers, it is a conflict to

have both at least i and at most i− 1 numbers greater than ui. Therefore, we must have x̂i ≤ ui for all i = 1, . . . , n.

Lemma 3. Given x1, . . . , xk ≥ 0 and a constant s ≥ 0 such that

x1 + x2 + · · ·+ xk = s (37)

Let v1 ≥ x1 be a given constant and we define recursively

zi =


min{v1, s} − x1 i = 1

min{x2, z1} i = 2

min{xi, z1 −
∑i−1
q=2 zq} i ≥ 3

(38)

Then, the following properties are true regarding zi:

zi ≥ 0 i = 1, . . . , k (39)

zi ≤ xi i = 2, . . . , k (40)

z1 =
k∑
i=2

zi (41)

Proof. Let î be the smallest integer from 2 to k such that

xî ≥ z1 (̂i = 2) (42)
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or

xî ≥ z1 −
î−1∑
q=2

zq (2 < î ≤ k) (43)

First we show that î must exist. If such î does not exist, we must have

xk < z1 −
k−1∑
q=2

zq (44)

and

zi = xi i = 2, . . . , k (45)

The above two equations imply that

z1 −
k∑
q=2

xq > 0 (46)

However, by definition we have

z1 −
k∑
q=2

xq (47)

= z1 − (s− x1) (48)

= (z1 + x1)− s (49)

= min{v1, s} − s (50)

≤ 0 (51)

Evidently, Eq. (46) and (51) constitute a conflict. Therefore, such î must exist.

If î = 2, we have z2 = z1 ≥ 0 and zi = 0 (3 ≤ i ≤ k), which imply that all claims in Eqs. (39, 40, 41) of this lemma are

true.

If î > 2, we have

zi = xi, i = 2, . . . , î− 1 (52)

ẑi = z1 −
î−1∑
q=2

xq (53)

zi = 0, i = î+ 1, . . . , k (54)

It follows that
k∑
i=2

zi = z1 (55)

By definition of zi in Eq. (38), we have

zi ≤ xi, i = 2, . . . , k (56)

For i = î− 1, we must have by definition of î

xî−1 ≤ z1 −
î−2∑
q=2

xq (57)

which leads to

z1 −
î−1∑
q=2

xq ≥ 0 (58)
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The left hand size of the inequality coincides with ẑi in Eq. (53) and thus

ẑi ≥ 0 (59)

As v1 ≥ x1 and s ≥ x1, we must have z1 ≥ 0. Together with Eqs. (52), (54), and (59), we have

zi ≥ 0, i = 1, . . . , k (60)

With Eqs. (55), (56), and (60), we complete the proof of Lemma 3.

Lemma 4. Given n constants x̂1 ≥ . . . ≥ x̂n ≥ 0, and an objective function

f(x̂, z) = (x̂1 + z1)
2 +

n∑
i=2

(x̂i − zi)2 (61)

the following constrained quadratic program 

min
z1,...,zn

f(x̂, z)

subject to
n∑
i=2

zi = z1

zi ≥ 0, i = 1, . . . , n

zi ≤ x̂i, i = 2, . . . , n

(62)

is solved at z∗i = 0 for 1 ≤ i ≤ n.

Proof. We can re-write the problem following the convention used in [5]:

min
z1,...,zn

(x̂1 + z1)
2 +

n∑
i=2

(x̂i − zi)2

subject to
n∑
i=2

zi − z1 = 0

zi ≥ 0, i = 1, . . . , n

x̂i − zi ≥ 0, i = 2, . . . , n

(63)

We define Lagrangian multipliers λ = (λ0, λ1, . . . , λn)
> and γ = (γ2, . . . , γn)

>, and the Lagrangian function

L(z, λ, γ) = (x̂1 + z1)
2 +

n∑
i=2

(x̂i − zi)2 − λ0

(
n∑
i=2

zi − z1

)
−

n∑
i=1

λizi −
n∑
i=2

γi(x̂i − zi) (64)

Then the gradient of L(z, λ, γ) with respect to z is

∇zL(z, λ, γ) =


2(x̂1 + z1) + λ0 − λ1

2(z2 − x̂2)− λ0 − λ2 + γ2
...

2(zn − x̂n)− λ0 − λn + γn

 (65)

The Karush-Kuhn-Tucker (KKT) first-order optimality condition for an optimal solution z∗ and the corresponding λ∗ and
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γ∗ of Eq. (63) is

∇zL(z∗, λ∗, γ∗) = 0 (66)

λ∗0

(
n∑
i=2

z∗i − z∗1

)
= 0 (67)

λ∗i ≥ 0, 1 ≤ i ≤ n (68)

γ∗i ≥ 0, 2 ≤ i ≤ n (69)

λ∗i z
∗
i = 0, 1 ≤ i ≤ n (70)

γ∗i (x̂i − z∗i ) = 0, 2 ≤ i ≤ n (71)

Next we can verify that the following values of z∗, λ∗, and γ∗ satisfy the KKT first order optimality condition:

z∗i = 0, 1 ≤ i ≤ n

λ∗0 = −2x̂1

λ∗1 = 0

λ∗i = 2(x̂1 − x̂i), 2 ≤ i ≤ n

γ∗i = 0, 2 ≤ i ≤ n

As the Hessian matrix of the objective function is ∇2
zzf(x̂, z) = 2I and thus positive definite, z∗ is a global minimizer

of f(x̂, z) according to Theorem 16.4 [5]. We thus have solved the original quadratic program defined in Eq. (62).

Theorem 2. Given n variables x1, . . . , xn and constants a > 0 and u1 ≥ · · · ≥ un ≥ 0 satisfying
∑n
i=1 ui ≥ a, the maximization

problem 

max
x1,...,xn

n∑
i=1

x2i

subject to
n∑
i=1

xi = a

xi ≥ 0, i = 1, . . . , n

xi ≤ ui, i = 1, . . . , n

(72)

can be solved by

x∗i =

min{ui, a} i = 1

min{ui, a−
∑i−1
t=1 x

∗
t } i > 1

(73)

Proof. Let x = (x1, . . . , xn)
>. The objective function is equivalent to ‖x‖2, the square of the L2 norm of x. We prove

the theorem by constructing an optimal solution x∗ element by element from x∗1 to x∗n. The solution x∗ is analogous to

assigning a guests to n rooms with a total capacity no less than a, by filling the rooms in decreasing order of their capacity

u1 ≥ u2 ≥ · · · ≥ un until all a guests are assigned.

As the constrained problem is feasible and the objective function is bounded from above, there must exist a global

optimal solution

x′ = (x′1, . . . , x
′
n)
> (74)
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We next show that the solution

x∗ = (x∗1, . . . , x
∗
n)
> (75)

defined in Eq. (73) must also be a global optimal solution.

Let x̂ be the sorted version of x′ in descending order and thus

x̂1 ≥ x̂2 ≥ · · · ≥ x̂n (76)

By Lemma 2, We must have x̂i ≤ ui for all i = 1, . . . , n. As the objective function is insensitive to the order of the n

variables and x̂ satisfies all constraints, x̂ must be an optimal solution of the original problem.

By iteratively transforming x̂ to match each element in x∗, we will demonstrate that x∗ will not reduce the objective

function value. We use vector x̂i to represent the updated vector from x̂i−1 after x∗i has replaced x̂i−1i . Let x̂0 = x̂, which

is already an optimal solution.

We prove our claim by induction. At iteration i, we sort the last n − i + 1 elements in x̂i−1, i.e., x̂i−1i , . . . , x̂i−1n , in

descending order such that

x̂i−1i ≥ · · · ≥ x̂i−1n (77)

By Lemma 2, this transformed x̂i is an optimal solution to the original problem since x̂i−1 before the transformation is an

optimal solution.

Now we compute an adjustment vector zi as follows:

zi1 = 0 (78)

...

zii−1 = 0 (79)

zii = x∗i − x̂i−1i (80)

zii+1 = min
{
x̂i−1i+1, z

i
i

}
(81)

zii+2 = min
{
x̂i−1i+2, z

i
i − zii+1

}
(82)

...

zin = min

x̂i−1n , zii −
n−1∑
q=i+1

ziq

 (83)

Letting

v1 = ui (84)

s = a−
i−1∑
t=1

x∗t (85)

k = n− i+ 1 (86)

and mapping ziq to zq−i+1 (as defined in Lemma 3) and x̂i−1q to xq−i+1 (as defined in Lemma 3) for q = i, . . . , n, we can

apply Lemma 3 and obtain

ziq ≥ 0, q = i, . . . , n (87)

ziq ≤ x̂i−1q , q = i+ 1, . . . , n (88)
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zii =
n∑
q=2

ziq (89)

This leads to the update from x̂i−1 to x̂i as follows:

x̂i1 = x̂i−11 = x∗1 (90)

...

x̂ii−1 = x̂i−1i−1 = x∗i−1 (91)

x̂ii = x̂i−1i + zii = x∗i (92)

x̂ii+1 = x̂i−1i+1 − z
i
i+1 (93)

...

x̂in = x̂i−1n − zin (94)

The objective function is

∥∥x̂i∥∥2 =
n∑
q=1

(
x̂iq
)2

(95)

=
i−1∑
q=1

(
x̂i−1q

)2
+ f

((
x̂i−1i , . . . , x̂i−1n

)>
,
(
zii , . . . , z

i
n

)>)
(96)

≥
i−1∑
q=1

(
x̂i−1q

)2
+ f

((
x̂i−1i , . . . , x̂i−1n

)>
, (0, . . . , 0)>

)
(∵ Lemma 4) (97)

=
i−1∑
q=1

(
x̂i−1q

)2
+

n∑
q=i

(
x̂i−1q

)2
(98)

=
n∑
q=1

(
x̂i−1q

)2
(99)

=
∥∥x̂i−1∥∥2 (100)

which establishes that x̂i is also an optimal solution.

At i = n, we must have

‖x̂‖2 =
∥∥x̂0∥∥2 ≤ ∥∥x̂1∥∥2 ≤ · · · ≤ ‖x̂n‖2 = ‖x∗‖2 (101)

Therefore, we have proven that x∗ is another optimal solution to the problem defined in Eq. (72). This completes the proof

of Theorem 2.

SUPPLEMENTARY NOTE 6. LOWER BOUND OF SUM OF SQUARES WITH LINEAR INEQUALITY CONSTRAINTS

Given n variables x1, . . . , xn, and constants a, b > 0 and 0 ≤ u1 ≤ · · · ≤ un satisfying
∑n
i=1 ui ≥ a, our goal is to solve the

quadratic programming problem with inequality constraints:

min
x1,...,xn

n∑
i=1

(xi − b)2

subject to
n∑
i=1

xi = a

xi ≥ 0, i = 1, . . . , n

xi ≤ ui, i = 1, . . . , n

(102)
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and we prove the following solution

x∗i =

min{ui, a/n} i = 1

min{ui, (a−
∑i−1
t=1 x

∗
t )/(n− i+ 1)} i > 1

(103)

satisfies a second-order sufficient condition for constrained optimization.

We first establish a property of the solution x∗ in the following lemma.

Lemma 5. For x∗1, . . . , x
∗
n defined in Eq. (103), there exists 0 ≤ î < n such that

x∗1 = u1 ≤ x∗2 = u2 ≤ · · · ≤ x∗î = uî

≤ x∗
î+1

= x∗
î+2

= · · · = x∗n =
a−

∑î
t=1 x

∗
t

n− (̂i+ 1) + 1

Proof. Let î+ 1 be the first time that

uî+1 ≥
a

n
(̂i = 0) or uî+1 ≥

a−
∑î
t=1 x

∗
t

n− (̂i+ 1) + 1
(̂i ≥ 1) (104)

in the iteration defined in Eq (103). Such î must exist because of the condition
∑n
i=1 ui ≥ a. It thus follows that

x∗
î+1

=
a−

∑î
t=1 x

∗
t

n− (̂i+ 1) + 1
(105)

which implies

a−
î∑
t=1

x∗t = x∗
î+1

[n− (̂i+ 1) + 1] (106)

Now we compute x∗
î+2

by definition

x∗
î+2

= min

{
uî+2,

a−
∑î+1
t=1 x

∗
t

n− (̂i+ 2) + 1

}

= min

uî+2,
a−

∑î
t=1 x

∗
t − x∗î+1

n− (̂i+ 2) + 1


= min

uî+2,
x∗
î+1

[n− (̂i+ 1) + 1]− x∗
î+1

n− (̂i+ 2) + 1


(∵ Eq (106))

= min
{
uî+2, x

∗
î+1

}
= x∗

î+1
(∵ x∗

î+1
≤ uî+1 ≤ uî+2)

Therefore we have

x∗
î+1

= x∗
î+2

= · · · = x∗n =

a−
î∑
t=1

x∗t

n− (̂i+ 1) + 1
(107)

By the definition of î, we must have for any i ≤ î

ui <
a

n
for i = 1; ui <

a−
∑i−1
t=1 x

∗
t

n− i+ 1
for 2 ≤ i ≤ î (108)
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and thus by definition of x∗i , we also have

x∗1 = u1 ≤ x∗2 = u2 ≤ · · · ≤ x∗î = uî (109)

Finally, we establish the relationship between x∗
î+1

and x∗
î
. By definition of x∗

î
, we have

x∗
î
= uî ≤

a−
î−1∑
t=1

x∗t

n− î+ 1
(110)

which implies

a−
î−1∑
t=1

x∗t ≥ (n− î+ 1)uî = (n− î+ 1)x∗
î

(111)

By Eq. (107), we have

x∗
î+1

=
a−

∑î
t=1 x

∗
t

n− î
(112)

=
a−

∑î−1
t=1 x

∗
t − x∗î

n− î
(113)

≥
(n− î+ 1)x∗

î
− x∗

î

n− î
(∵ Eq. (111)) (114)

= x∗
î

(115)

Eqs. (107), (109), and (115) complete the proof of Lemma 5.

We can re-write the original problem in Eq. (102) in a canonical form [5] by

min
x1,...,xn

n∑
i=1

(xi − b)2

subject to
n∑
i=1

xi − a = 0

xi ≥ 0, i = 1, . . . , n

−xi + ui ≥ 0, i = 1, . . . , n

(116)

Let vector x = (x1, . . . , xn)
>. We define the Lagrangian multiplier vector

λ = (λ0, λ1,1, λ1,2, . . . , λn,1, λn,2)
> (117)

We define the Lagrangian function

L(x, λ) =
n∑
i=1

(xi − b)2 −
n∑
i=1

λi,1xi −
n∑
i=1

λi,2(−xi + ui)− λ0

[(
n∑
i=1

xi

)
− a

]
(118)

whose gradient with respect to x can be calculated by

∇xL(x, λ) =



2(x1 − b)− λ1,1 + λ1,2 − λ0
...

2(xi − b)− λi,1 + λi,2 − λ0
...

2(xn − b)− λn,1 + λn,2 − λ0


(119)
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We next prove that x∗ and an implied λ∗ satisfy the optimal KKT conditions for inequality-constrained quadratic program-

ming problems [5] (page 464) stated in the following lemma.

Lemma 6 (Satisfaction of Karush-Kuhn-Tucker condition). There exists λ∗ associated with x∗ such that the following KKT

condition is satisfied:

∇xL(x∗, λ∗) = 0, (120)
n∑
i=1

x∗i − a = 0, (121)

x∗i ≥ 0, i = 1, . . . , n (122)

−x∗i + ui ≥ 0, i = 1, . . . , n (123)

λ∗i,1 ≥ 0, i = 1, . . . , n (124)

λ∗i,2 ≥ 0, i = 1, . . . , n (125)

λ∗0

(
n∑
i=1

x∗i − a
)

= 0, (126)

λ∗i,1x
∗
i = 0, i = 1, . . . , n (127)

λ∗i,2(−x∗i + ui) = 0, i = 1, . . . , n (128)

Proof. By definition of x∗i in Eq. (103), Eq. (122) and Eq. (123) are always true. Using Lemma 5, we can derive that
n∑
i=1

x∗i = a,

leading to satisfaction of both Eq. (121) and Eq. (126).

We choose λ∗i,1 = 0 for all i to satisfy Eq. (124) and Eq. (127).

We also choose λ∗i,2 = 0 to satisfy Eq. (128) for i > î (̂i is defined in Lemma 5). When i ≤ î, we have x∗i = ui which

satisfy Eq. (128) for i ≤ î.

When i > î, Eq. (120) is true if and only if

2(x∗i − b)− λ∗0 = 0, for i > î

and by Lemma 5 we have

λ∗0 = 2(x∗
î+1
− b) = 2a− 2

∑î
t=1 x

∗
t

n− (̂i+ 1) + 1
− 2b (129)

When i ≤ î, Eq. (120) is true if and only if

2(x∗i − b) + λ∗i,2 − λ∗0 = 0, for i ≤ î

which implies by Lemma 5

λ∗i,2 = 2(x∗
î+1
− x∗i ) ≥ 0, for i ≤ î (130)

Together with λ∗i,2 = 0 chosen for i > î earlier, λ∗i,2 now satisfies Eq. (125). Therefore, x∗ and λ∗ meet all required KKT

conditions. This completes the proof of Lemma 6.

Theorem 3. Given n variables x1, . . . , xn and constants a, b > 0 and 0 ≤ u1 ≤ · · · ≤ un satisfying
∑n
i=1 ui ≥ a, the quadratic
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programming problem 

min
x1,...,xn

n∑
i=1

(xi − b)2

subject to
n∑
i=1

xi = a

xi ≥ 0, i = 1, . . . , n

xi ≤ ui, i = 1, . . . , n

(131)

can be solved by

x∗i =

min{ui, a/n} i = 1

min{ui, (a−
∑i−1
t=1 x

∗
t )/(n− i+ 1)} i > 1

(132)

Proof. By definition of L(x, λ), the Hessian matrix of L(x, λ) is

∇2
xxL(x, λ) = 2I (133)

where I is the n× n identity matrix, and it always satisfies a second-order condition

w>∇2
xxL(x

∗, λ∗)w > 0 for w 6= 0

Together with the KKT condition established in Lemma 6, x∗ and λ∗ satisfy a second-order sufficient condition for

constrained optimization by Theorem 12.6 [5]. Therefore, x∗ is a strict local solution. The objective function can rewritten

as
n∑
i=1

(xi − b)2 = x>Ix− 2bx>1+ nb2

where 1 = [1, . . . , 1]>. By Theorem 16.4 [5], the positive definite identity matrix I in the quadratic function implies that x∗

is also a global solution of the constrained optimization problem defined in Eq. (131).

SUPPLEMENTARY NOTE 7. THE HOUSE NOISE MODEL

The model specifies a conditional probability function to transform the value Y = y of a discrete random variable Y to a

noisy version Y ′ = y′ defined by

PY ′|Y (y′|y, θ) =


[(

1− |y′−y|∑c
d=1 |d−y|

)
θ
c−1

]
(1− θ) + θ

c , y′ 6= y[
θ
c−1 + 1− θ

]
(1− θ) + θ

c , y′ = y
(134)

where c is the number of discrete levels of Y, Y ′ ∈ {1, . . . , c}, and parameter θ ∈ [0, 1] represents the noise level. In this

model, the conditional probability decreases as y′ moves further away from y. Supplementary Figure 1 illustrates the house

noise model for a random variable Y with four levels at the noise level of θ = 0.1.

SUPPLEMENTARY NOTE 8. SCREENING PUTATIVE NONCODING RNAS ON WHICH LUNG CANCER PHENO-

TYPES FUNCTIONALLY DEPENDS

From a total of 91, 213 unannotated transcription start sites (TSSs) in the phase 1 data of FANTOM5 [6], [7] with annotation

based on Gencode V10 [8], we tested the functional dependency of lung cancer phenotypes on each TSS. We also evaluated

589 experimentally validated cancer driver genes obtained from Network of Cancer Genes 5.0 [9] originally taken from
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Supplementary Figure 1. An example of the house noise model. The noise level is θ = 0.1. Noise-free discrete variable Y has four levels from 1
to 4. The horizontal axis is its noisy version Y ′. The vertical axis is the probability of observing Y ′ = y′ conditioned on Y = y at the given noise
level. The conditional probability mass functions of Pr(Y ′ = y′|Y = y) are shown for (a) y = 1, (b) y = 2, (c) y = 3 and (d) y = 4.

Cancer Gene Census [10]. Using the TSS abundance of these known genes as a reference, we selected 1049 unannotated

TSSs as candidates for lung cancer markers.

We performed the exact functional test on 32 samples related to lung in the FANTOM5 TSS expression data. They

include 17 cell line samples covering 11 lung cancer subtypes:

1) adenocarcinoma,

2) giant cell carcinoma,

3) squamous cell carcinoma,

4) large cell carcinoma,

5) small cell carcinoma,

6) alveolar cell carcinoma,

7) bronchioalveolar carcinoma,

8) bronchogenic carcinoma,

9) fibrous histiocytoma,

10) bronchial squamous cell carcinoma, and

11) non-small cell cancer.

They also include 15 normal lung samples from three normal lung tissues

1) adult lung cell,

2) fetal lung cell, and

3) the right lower lobe of adult lung cell

and four lung primary cells

1) small airway epithelial cell,
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2) alveolar epithelial cell,

3) bronchial epithelial cell, and

4) smooth muscle cell.

We predicted novel putative noncoding RNA TSSs directionally associated with lung cancer in the following steps:

1) Normalize the data for each TSS by nonlinear transform. We iteratively applied logarithm transform on the

expression values (tags per million) of each TSS from all 899 FANTOM5 samples, until all the values of each

TSS follow a normal distribution as indicated by Shapiro test statistic W ≥ 0.9. If the iterative logarithm transform

could not increase W , we used the original data. This step is important for the exact functional test to operate at

the correct scale for each TSS;

2) Discretize the log-transformed expression values for each TSS on all 899 samples using R package Ckmeans.1d.dp [11].

The level of discretization was selected by R package mclust [12]. Using all 899 samples for discretization, we

took the dynamic range of each TSS into account. Thus, the discretized values obtained were more robust than

using only the 32 lung samples;

3) Perform the exact functional test to examine the functional dependency of lung cancer on each TSS and obtain

p-values. The tests were applied only on the discrete expression levels of each TSS from the 32 lung samples;

4) Select those unannotated TSSs which have stronger functional effect than known cancer genes on lung cancer

phenotypes: the p-value must be no greater than 95% of all 589 well-known cancer genes from Cancer Gene

Census.

Finally, we obtained 1049 unannotated TSSs, with a p-value threshold of 0.015 taken from step 4 above. They are listed

in

Supplementary File 6 "Novel_unannotated_cancer_TSSs.tsv"

Although some TSSs may originate from novel coding exons previously unannotated, most of them are likely to be from

novel noncoding RNAs. These TSSs constitute novel hypotheses for potential directional association with lung cancers.
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