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 64 

Appendix Figure S1.  65 

Example output of MetaHybridLouvain for the representative sample used in Figure 2A, Figure 66 

3B, and 3D. At left, frequencies for each sub-community at each timepoint, and at right, a 67 

heatmap of the distribution of channel values is plotted for each sub-community (within each 68 

row). As expected, sub-communities generally show similar values among all channels for their 69 

constituent events, with some exceptions (heatmap cells with vertical gradients).  70 
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 71 

Appendix Figure S2.   72 

Heatmap of differences in marker protein expression between four naïve B cell sub-73 

communities identified by MetaHybridLouvain. All channels listed here differentiate sub-74 

community 4 from the median value for the other three sub-communities at a threshold of fold 75 

change > 1.5 and FDR < 0.05 (using a moderated paired t-test under the mixed effects model). 76 

Colors represent log2 fold change in channel intensity from the median for all communities (red 77 

means higher intensity). Notably, sub-community 4 is characterized by a much higher 78 

expression of CXCR5 as compared to all other sub-communities of naïve B cells. Otherwise, its 79 

marker expression is very similar to sub-community 1 of naïve B cells, albeit with much lower 80 

expression of CCR4, CXCR3 and CD80. 81 
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 83 

 84 

Appendix Figure S3. 85 

Correlations between acute-phase cell sub-community frequencies and log10 CHIKV antibody 86 

titer at 15d post-symptom onset (p.s.o.). A, Scatterplot of log10 cell sub-community frequencies 87 

at 1d p.s.o. against log10 CHIKV antibody titer at the 15d timepoint for CD14+CD16+ monocyte 88 

sub-community 1. This is the only correlation that is significant after multiple hypothesis 89 

correction (FDR P = 0.0050, Spearman’s ρ = 0.60). B, Scatterplot as in A but for two sub-90 

communities that have significant correlations at the 15d p.s.o. timepoint: again, CD14+CD16+ 91 

monocyte sub-community 1 (FDR P = 0.035, ρ = 0.51), and central memory CD4+ T cell sub-92 

community 2 (FDR P = 0.035, ρ = -0.52). 93 
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 95 

Appendix Figure S4. 96 

Differences in per-sample protein expression between two CD14+CD16+ sub-communities 97 

identified by MetaHybridLouvain on CyTOF data. 1 corresponds with the “intermediate” 98 

CD14++CD16+ phenotype, while 2 corresponds with the “nonclassical” CD14+CD16++ phenotype. 99 

The X axis is filtered to channels with differences significant at FDR < 0.05, and ordered from 100 

differences where sub-community 1 > 2 on the left to sub-community 1 < 2 on the right; i.e., red 101 

bars are “intermediate”-associated markers while gray bars are “nonclassical”-associated 102 

markers. Error bars correspond to 95% confidence intervals. *, FDR-adjusted P (FDR P) < 0.05; 103 

**, FDR P < 0.01, ***, FDR P < 0.001. 104 

 105 
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 107 

Appendix Figure S5. 108 

Summary of frequencies (per timepoint) and mean channel values for sub-community 1 of 109 

CD14+CD16+ monocytes, across all samples. At left, frequencies in each sample split by 110 
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timepoint; at right, within each row, heatmaps of the distribution of channel values for all events 111 

within this sub-community for each sample. A gray row indicates this sub-community was not 112 

identified in this sample.  113 
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 114 

Appendix Figure S6. 115 

Summary of population frequencies (per timepoint) and mean channel values for sub-116 

community 2 of CD14+CD16+ monocytes, across all samples. Layout as in Appendix Figure S5. 117 
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 119 

Appendix Figure S7. 120 

Manual gating analysis of a representative sample demonstrates the presence of a small but 121 

distinct CD14+ monocyte subpopulation that displays non-canonical markers CXCR3 and 122 

CCR4, among others (see sub-community 3 in Appendix Figure S8).  123 
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 124 

 125 

Appendix Figure S8. 126 

Heatmap of differences in marker protein expression between three CD14+ sub-communities 127 

identified by MetaHybridLouvain. All channels listed here showed differences significant at FDR 128 

< 0.05 (moderated paired t-test under the mixed-effects model). The patterns of fold change 129 

differences in channel intensities between sub-communities are ordered vertically with 130 

hierarchical clustering (red indicates increased relative to the other sub-communities). The 131 

mean intensity of each channel across all sub-communities is shown by the adjacent purple 132 

annotation column.   133 
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 134 

Appendix Figure S9. 135 

Summary of population frequencies (per timepoint) and mean channel values for sub-136 

community 1 of CD14+ monocytes, across all samples. Layout as in Appendix Figure S5. 137 
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 138 

Appendix Figure S10. 139 

Summary of population frequencies (per timepoint) and mean channel values for sub-140 

community 2 of CD14+ monocytes, across all samples. Layout as in Appendix Figure S5.  141 
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 142 

Appendix Figure S11. 143 

Summary of population frequencies (per timepoint) and mean channel values for sub-144 

community 3 of CD14+ monocytes, across all samples. Layout as in Appendix Figure S5.  145 
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 146 

Appendix Figure S12. 147 

Differences in serum growth factor levels between the acute and convalescent timepoints, as 148 

measured by multiplex ELISA (Luminex). Only one of the differences depicted here achieved 149 

statistical significance at FDR < 0.05, indicated by the asterisk.  150 
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 151 

Appendix Figure S13. 152 

Clustered heatmap of Spearman correlations between log-scaled serum cytokine concentration 153 

(Luminex) and log-scaled cell subphenotype frequencies (CyTOF) of changes from the acute to 154 

convalescent timepoints. CyTOF values are indicated by an asterisk following the label. 155 
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 157 

Appendix Figure S14. 158 

Clustered heatmap of Spearman correlations between log-scaled serum cytokine concentration 159 

(Luminex) and log-scaled cell subphenotype frequencies (CyTOF) within the acute timepoint. 160 

CyTOF values are indicated by an asterisk following the label. 161 
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 163 

Appendix Figure S15. 164 

Clustered heatmap of Spearman correlations between log-scaled serum cytokine concentration 165 

(Luminex) and log-scaled cell subphenotype frequencies (CyTOF) within the convalescent 166 

timepoint. CyTOF values are indicated with an asterisk following the label. 167 
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 169 

Appendix Figure S16. 170 

Clustered heatmap of Spearman correlations between log-scaled serum cytokine concentration 171 

and log-scaled monocyte subphenotype frequencies. A, within acute-phase samples. B, within 172 

convalescent-phase samples. CCL2 within the convalescent timepoint (highlighted) displayed 173 

the only set of Spearman correlations that differed significantly from those of the other cytokines 174 

at an FDR threshold of < 0.05 (Mann-Whitney U test). 175 
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 177 

Appendix Figure S17. 178 

Pathview plot of log2 fold change in gene expression between acute and convalescent 179 

timepoints for the cytokine-cytokine receptor interaction pathway in KEGG (accession 180 

hsa04060). Positive values indicate upregulation during the acute phase of infection. 181 

  182 
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 183 

Appendix Figure S18. 184 

Pathview plot of log2 fold change in gene expression between acute and convalescent 185 

timepoints for the RIG-I-like receptor signaling pathway in KEGG (accession hsa04622). 186 

Positive values indicate upregulation during the acute phase of infection. 187 

  188 
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 189 

Appendix Figure S19. 190 

Pathview plot of log2 fold change in gene expression between acute and convalescent 191 

timepoints for the JAK-STAT signaling pathway in KEGG (accession hsa04630).  Positive 192 

values indicate upregulation during the acute phase of infection. 193 

  194 
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 195 

Appendix Figure S20. 196 

Pathview plot of log2 fold change in gene expression between acute and convalescent 197 

timepoints for the chemokine signaling pathway in KEGG (accession hsa04062). Positive values 198 

indicate upregulation during the acute phase of infection. 199 

  200 
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 201 

Appendix Figure S21. 202 

Pathview plot of log2 fold change in gene expression between acute and convalescent 203 

timepoints for the toll-like receptor pathway in KEGG (accession hsa04620). Positive values 204 

indicate upregulation during the acute phase of infection. 205 

  206 
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 207 

Appendix Figure S22. 208 

Pathview plot of log2 fold change in gene expression between acute and convalescent 209 

timepoints for the TNF signaling pathway in KEGG (accession hsa04668). Positive values 210 

indicate upregulation during the acute phase of infection. 211 

  212 
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 213 

Appendix Figure S23. 214 

Pathview plot of log2 fold change in gene expression between acute and convalescent 215 

timepoints for the Influenza A pathway in KEGG (hsa05164). Positive values indicate 216 

upregulation during the acute phase of infection.  217 
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 225 
Appendix Figure S24. 226 

Heatmap of gene expression across different types of blood cell lines for genes expressed 227 

higher in acute phase (A) or higher in convalescent phase (B). Rows represent genes. Columns 228 

represent blood cell lines which are grouped according to the lineage (column legend). HSC, 229 

Hematopoietic stem cell; MYP, Myeloid progenitor; ERY, Erythroid cell; MEGA, Megakaryocyte; 230 

GM, Granulocyte/monocyte; EOS, Eosinophil, BASO, Basophil; DEND, Dendritic cell.  231 
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Appendix Figure S25. 234 

Correlation between cell frequency derived from CyTOF and that estimated from gene 235 

expression using expression of cell-specific markers (A) or the CIBERSORT algorithm (B).   236 

  237 



  Michlmayr et al. page 30 of 34 

 238 

Appendix Figure S26. 239 

Q-Q plot of the distribution of observed –log10 P values for differentially expressed transcripts 240 

between severe and non-severe cases against the distribution of –log10 P values expected 241 

under the null hypothesis (that no transcripts are differentially expressed). Gray shaded band 242 

indicates the 95% confidence interval for the expected P value distribution under the null 243 

hypothesis.   244 
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 245 

Appendix Figure S27. 246 

Weighted multiscale interaction network depicting all Pearson’s correlations between 247 

subpopulation frequencies (gold nodes), serum cytokine concentrations (small black nodes), 248 

coexpression modules (ME prefix, gray nodes), and clinical variables (large black nodes). 249 

Serum cytokine concentrations cluster into two highly interconnected components (upper right), 250 

farther from the clinical variables than the other node types. Edges are filtered to correlations 251 

significant at P < 0.001, and thickness is scaled to the magnitude of the correlation. 252 
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 254 

Appendix Figure S28. 255 

Receiver operator characteristic (ROC) curves measuring the performance of elastic net logistic 256 

regression models predicting the phase of infection (acute vs. convalescent) for each sample, 257 

using progressively dimensionality-reduced versions of the dataset. Thin grey lines show the 258 

ROC curves for 100 bootstrap replicates. The area under the curve (AUC) along with its 95% 259 

confidence interval are shown underneath each plot; a perfect classifier would achieve AUC=1 260 

while a random classifier is expected to achieve AUC=0.5 (dashed diagonal line). A, model 261 

trained using all CyTOF sub-community frequencies, all quantified RNA-seq transcripts, and all 262 

Luminex cytokine measurements achieves near-perfect performance. B, model trained as in A 263 

but with eigengene values for 92 coexpression modules replacing the RNA-seq transcript-level 264 

quantification; performance is still near-perfect. C, model trained as in B but without the Luminex 265 

cytokine measurements; performance is still essentially equivalent to the other two models. 266 
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 269 

Appendix Figure S29. 270 

Principal variance component analysis of CyTOF data for evaluation of potential batch effect. 271 

Since the 3 potential batch effect variables were largely collinear (Spearman correlation > 0.93 272 

for thaw, staining and acquisition batch variables), we included only the acquisition date in our 273 

PVCA analysis. A, Barplot of contributions for each variable to overall variance. Acquisition date 274 

explains 3.8% of the overall variance. B, Scatterplot of all samples in principal component space 275 

for the first two principal components. Acquisition date is used to color the samples, and grey 276 

lines connect pairs of samples across the two timepoints. As expected, the first principal 277 

component (explaining 78% of the overall variance) roughly parallels the timepoint contrast, 278 

while the acquisition date variable does not correlate with either of the first two principal 279 

components.  280 



  Michlmayr et al. page 34 of 34 

  A B 281 

 282 

Appendix Figure S30. 283 

High precision, recall scores and F1 score show that the classifier is returning accurate results 284 

with low false negative rates. A, Precision versus recall for each cell subset. The NOD classifier 285 

was trained over all samples except one, then applied to the remaining sample. This process 286 

was repeated for all samples ("jackknifing"). For each cell subset, precision (TP / TP + FP) and 287 

recall (TP / TP + FN) values were calculated, and the mean over all samples is presented here. 288 

B, The classifier is an accurate classifier as shown by high F1 score values for all large cell 289 

subsets. The F1 score for each cell subset is shown. The F1 score was calculated as the 290 

harmonic mean of precision and recall (2 x precision x recall / (precision + recall)). The line 291 

denotes the mean F1 score over all subsets. TP, true positive; FP, false positive; FN, false 292 

negative. 293 


