# A screening assay for Selective Dimerizing Glucocorticoid Receptor Agonists and Modulators (SEDIGRAM) that are effective against acute inflammation

Jolien Souffriau<sup>1,2</sup>, Melanie Eggermont<sup>1,2</sup>, Sara Van Ryckeghem<sup>1,2</sup>, Kelly Van Looveren<sup>1,2</sup>, Lise Van Wyngene<sup>1,2</sup>, Evelien Van Hamme<sup>3</sup>, Marnik Vuylsteke<sup>4</sup>, Rudi Beyaert<sup>1,2</sup>, Karolien De Bosscher<sup>5,6</sup>, Claude Libert<sup>1,2\*</sup>

- <sup>1</sup> Center for Inflammation Research, VIB, Ghent, Belgium
- <sup>2</sup> Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- <sup>3</sup> Bio Imaging Core, Center for Inflammation Research, VIB, Ghent, Belgium
- $^{\rm 4}$  GNOMIXX ltd, Statistics for Genomics, Melle, Belgium
- <sup>5</sup> Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Ghent, Belgium
- <sup>6</sup> Department of Biochemistry, Ghent University, Ghent, Belgium

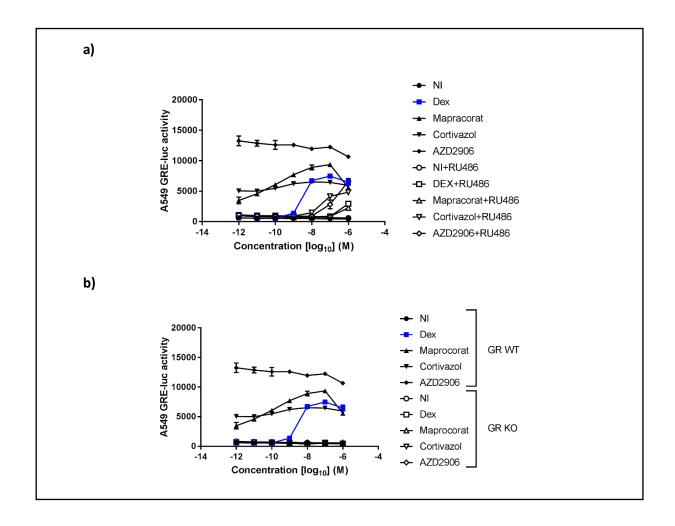
# \*Corresponding author:

Claude.Libert@IRC.VIB-UGent.be

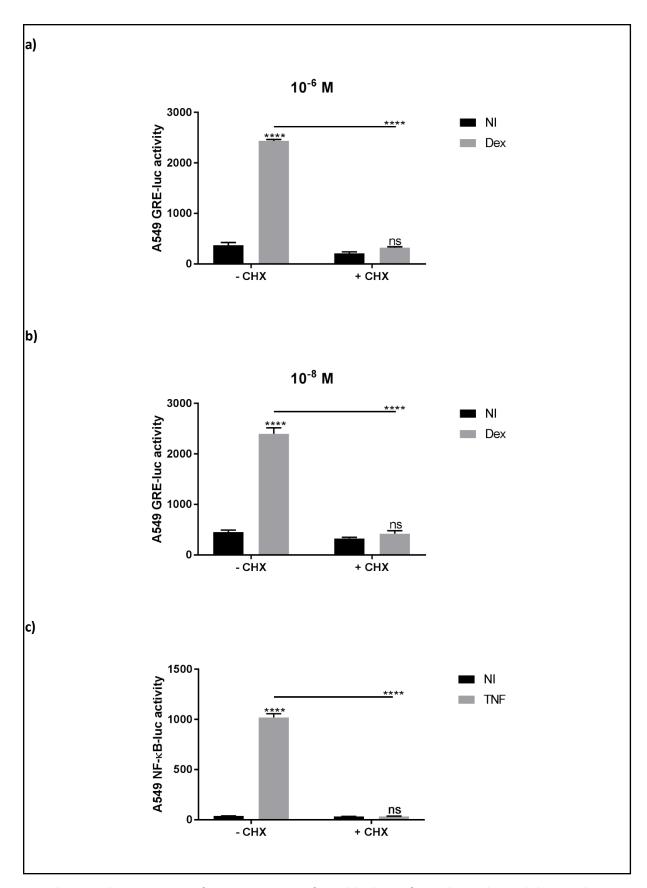
Supplemental methods: definition of X,  $\beta$ , Z and  $\nu$ 

$$\log(\mu) = \eta = \mathbf{X}\beta + \mathbf{Z}\nu$$
.

### Luciferase test:

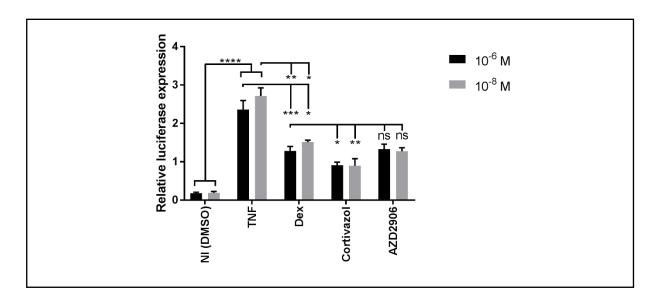

The matrix  $\mathbf{X}$  is the design matrix for the fixed COMPOUND, CONCENTRATION and the COMPOUND. CONCENTRATION interaction terms,  $\boldsymbol{\beta}$  is the vector of corresponding regression coefficients,  $\mathbf{Z}$  is the design matrix for the two random REPLICATE (representing the biological replicates) and PLATE terms with PLATE nested within REPLICATE, and  $\boldsymbol{v}$  is the corresponding vector of the random effects having a gamma distribution.

# Gene expression & ELISA test:

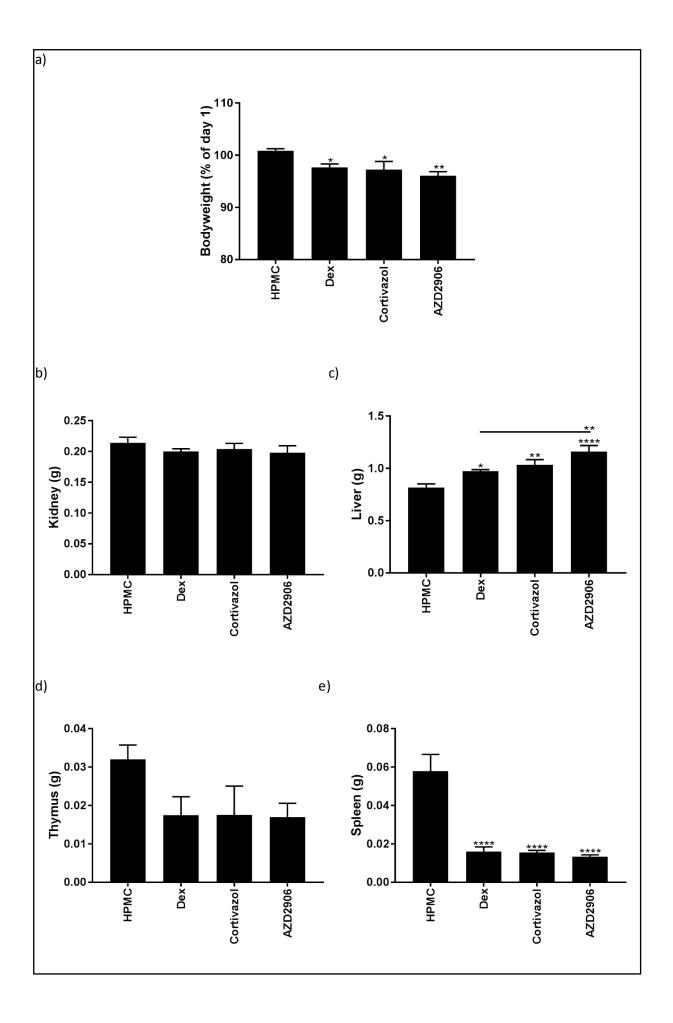

The matrix  $\mathbf{X}$  is the design matrix for the fixed COMPOUND term,  $\boldsymbol{\beta}$  is the vector of corresponding regression coefficients,  $\mathbf{Z}$  is the design matrix for the random REPLICATE term (representing biological replicates), and  $\mathbf{v}$  is the corresponding vector of the random REPLICATE effect having a gamma distribution.

### FRET test:

The matrix  $\mathbf{X}$  is the design matrix for the fixed COMPOUND term,  $\beta$  is the vector of corresponding regression coefficients,  $\mathbf{Z}$  is the design matrix for the random REPLICATE term (representing biological replicates), and  $\mathbf{v}$  is the corresponding vector of the random REPLICATE effect having a normal distribution.




Supplemental Figure S1. The GRE-luciferase signal induced by the compounds is glucocorticoid receptor (GR) dependent. A549 GRE-luc cells were stimulated with a dilution series of compounds for 5 h, after which they were lysed and luminescence was read out. In (a) the cells were co-treated with 10<sup>-6</sup> M RU486. In (b) A549 GR KO GRE-luc cells were used. NI: Non-Induced, Dex: Dexamethasone, WT: Wild-Type, KO: Knock-Out, GRE: Glucocorticoid Responsive Element.




Supplemental Figure S2. Luciferase activity confirms blocking of translation by cycloheximide. A549 GRE-luc and NF- $\kappa$ B-luc cells were pretreated with or without 10  $\mu$ G/ml cycloheximide (CHX, 30 min). CHX treatment in A549 GRE-luc was followed by a 3 h solvent control (NI) or Dex stimulation at (a) 10  $^6$  M or (b) 10  $^8$  M. (c) In A549 NF- $\kappa$ B-luc cells CHX treatment was followed by the solvent control for 1h

and subsequently cells were stimulated with 1000 U/ml human TNF for 2 h. The cells were lysed and luminescence was read out. Data are shown as mean  $\pm$  SEM. Significant differences are calculated with a Two-way Anova. Statistical differences compared to NI (above error bars) or between the Dex or TNF stimuli (indicated with –) are given. \*\*\*\* represents a P-value <0.0001. Ns: Not significant, NI: Non-Induced, Dex: Dexamethasone, TNF: Tumor Necrosis Factor.



Supplemental Figure S3. Comparison of maximal NF- $\kappa$ B luciferase transrepression over concentrations of GR dimer favouring compounds in absence of novel protein synthesis. NF- $\kappa$ B-luciferase gene-expression in A549 NF- $\kappa$ B-luc cells pretreated with 10 μg/ml cycloheximide (CHX, 30 min), followed by stimulation with the compounds (10<sup>-6</sup> M and 10<sup>-8</sup> M). 1 h later cells were challenged with 1000 U/ml human TNF for 2 h. Luciferase mRNA expression was measured with RT-qPCR. Data are shown as mean  $\pm$  SEM. Significant differences are calculated with a Two-way Anova. \*,\*\*\*,\*\*\* or \*\*\*\* represent significant differences with P <0.05, 0.01, 0.001 and 0.0001 respectively. 3 experiments were pooled. Ns: Non-significant, NI: Non-Induced, TNF: Tumor Necrosis Factor, Dex: Dexamethasone.



Supplemental Figure S4. Dex, Cortivazol and AZD2906 induce glucocorticoid side effects. Female C57BL/6J mice were treated daily with 1 mg/kg Dex or an equimolar dose of Cortivazol or AZD2906 dissolved in 100 µl HPMC, by oral gavage, for 5 consecutive days. (a) Whole bodyweight was measured and represented as a percentage of the bodyweight of day 1. (b) Kidney, (c) liver, (d) thymus and (e) spleen were isolated and weighed 6 h after the last oral gavage on day 5. Significant differences are calculated with a One-way Anova test. Statistical differences compared to HPMC (above error bars) and Dex (indicated with –) are given. P-values < 0.05, 0.01 and 0.0001 are represented by \*, \*\* or \*\*\*\* respectively. Non-significant differences are not indicated on the graph. N=5 mice per group. HPMC: Hydroxypropylmethylcellulose, Dex: Dexamethasone.

### Supplemental Table S5: Statistical significances A549 GRE luciferase test

|               | 10 <sup>-6</sup> M |             |      | 10 <sup>-7</sup> M |             |      | 10 <sup>-8</sup> M |            |      |
|---------------|--------------------|-------------|------|--------------------|-------------|------|--------------------|------------|------|
|               | tvalue             | t_Prob      |      | tvalue             | t_Prob      |      | tvalue             | t_Prob     |      |
| NI (DMSO)     | -12,0194           | 0           | **** | -10.5178           | 0           | **** | -10.1074           | 0          | **** |
| Fosdagrocorat | -9.81095           | 0           | **** | -7.98583           | 3.33067E-15 | **** | -7.1263            | 1.775E-12  | **** |
| Prednisolone  | -1.67533           | 0.094130019 | ns   | -2.47463           | 0.013474763 | *    | -4.9483            | 8.5516E-07 | **** |
| Mapracorat    | -1.34209           | 0.179819598 | ns   | 0.741652           | 0.458443248 | ns   | 3.1998             | 0.00141136 | **   |
| Cortivazol    | -1.50158           | 0.133467994 | ns   | -0.31341           | 0.754021013 | ns   | 0.4723             | 0.63676508 | ns   |
| LGD5552       | -7.34966           | 3.66374E-13 | **** | -7.0909            | 2.26996E-12 | **** | -7.6088            | 5.5733E-14 | **** |
| AZD2906       | 4.67152            | 3.32704E-06 | **** | 5.970065           | 3.11913E-09 | **** | 7.7683             | 1.6875E-14 | **** |

A Hierarchical Generalized Linear Mixed Model (HGLMM) has been fitted to the luciferase activities measured at various concentrations of the compounds. T statistics (unpaired, two-tailed) were used to assess the significance of fixed compound and concentration effects estimated as differences (on the transformed scale) to Dex at a particular concentration set as reference. Estimated mean values were obtained as predictions from the HGLMM, formed on the log scale. T-values and P-values (t\_Prob) for the concentrations  $10^{-6}$  M,  $10^{-7}$  M and  $10^{-8}$  M (concentrations where Dex has its maximal activity) are represented in the table. P <0.05, 0.01, 0.001 and 0.0001 are represented with \*,\*\*,\*\*\* or \*\*\*\* respectively. Ns: Not significant. Experiments were repeated 6 times with at least 2 technical replicates included.

## Supplemental Table S6: Statistical significances A549 NF-κBluciferase test

|               | 10 <sup>-6</sup> M |             |      | 10 <sup>-7</sup> M |             |      | 10 <sup>-8</sup> M |            |      |
|---------------|--------------------|-------------|------|--------------------|-------------|------|--------------------|------------|------|
|               | tvalue             | t_Prob      |      | tvalue             | t_Prob      |      | tvalue             | t_Prob     |      |
| TNF           | 4.093525           | 5.36968E-05 | **** | 5.061932           | 6.97285E-07 | **** | 5.31003            | 2.0399E-07 | **** |
| Fosdagrocorat | 1.698806           | 0.09031577  | ns   | 2.534819           | 0.011720736 | *    | 2.363495           | 0.0186934  | *    |
| Prednisolone  | 0.390697           | 0.696278242 | ns   | 0.822702           | 0.411282717 | ns   | 1.977445           | 0.04883856 | *    |
| Mapracorat    | 1.008059           | 0.314178525 | ns   | 0.890265           | 0.373983976 | ns   | 1.278091           | 0.20213207 | ns   |
| Cortivazol    | 0.08944            | 0.928787321 | ns   | 0.398634           | 0.690425207 | ns   | 0.417441           | 0.67663249 | ns   |
| LGD5552       | 1.483195           | 0.138994568 | ns   | 2.525585           | 0.012027034 | *    | 3.725319           | 0.00023006 | ***  |
| AZD2906       | -0.10878           | 0.913445047 | ns   | -0.00309           | 0.99753567  | ns   | -0.07995           | 0.93632506 | ns   |

A Hierarchical Generalized Linear Mixed Model (HGLMM) has been fitted to the luciferase activities measured at various concentrations of the compounds. T statistics (unpaired, two-tailed) were used to assess the significance of fixed compound and concentration effects estimated as differences (on the transformed scale) to Dex at a particular concentration set as reference. Estimated mean values were obtained as predictions from the HGLMM, formed on the log scale. T-values and P-values (t\_Prob) for the concentrations  $10^{-6}$  M,  $10^{-7}$  M and  $10^{-8}$  M (concentrations where Dex has its maximal activity) are represented in the table. P <0.05, 0.01, 0.001 and 0.0001 are represented with \*,\*\*,\*\*\* or \*\*\*\* respectively. Ns: Not significant. Experiments were repeated twice with at least 2 technical replicates included.