SUPPLEMENTARY INFORMATION

Defining the architecture of KPC-2 carbapenemase: identifying allosteric networks to fight antibiotic resistance

Ioannis Galdadas^{1#}, Silvia Lovera^{1#}, Guillermo Pérez-Hernández³, Melissa D Barnes⁴, Jess Healy⁵, Hamidreza Afsharikho⁵, Neil Woodford⁶, Robert A Bonomo⁴, Francesco L Gervasio^{1,2}, Shozeb Haider^{5*}

¹Department of Chemistry, University College London, London, UK

²Institute of Structural and Molecular Biology, University College London, London, UK

³Department of Mathematics and Computer Science, Freie Universitat Berlin, Berlin, Germany

⁴Department of Medicine, Case Western Reserve University & Research Service, Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio

⁵UCL School of Pharmacy, University College London, London, UK

⁶Public Health England, London, UK

Supplementary Figure S1: Sequence alignment of 83 sequence matches obtained with the Jalview program (version 2) using KPC-2 sequence (2OV5.pdb) as query. The conserved residues are highlighted and the colouring is based on their chemical nature. Red bars have been included to highlight the position of residues in the hydrophobic networks.

Supplementary Figure S1 (continued): Sequence alignment of 83 sequence matches obtained with the Jalview program (version 2) using KPC-2 sequence (2OV5.pdb) as query. The conserved residues are highlighted and the colouring is based on their chemical nature. Red bars have been included to highlight the position of residues in the hydrophobic networks.

Supplementary Figure S1 (continued): Sequence alignment of 83 sequence matches obtained with the Jalview program (version 2) using KPC-2 sequence (2OV5.pdb) as query. The conserved residues are highlighted and the colouring is based on their chemical nature. Red bars have been included to highlight the position of residues in the hydrophobic networks.

Target	Description	Species	E-value
BLKPC_KLEPNtP	Carbapenem-hydrolyzing beta-lactamase KPC	Klebsiella pneumoniae@	1.2e-193
BLKPC_KLEOX	Carbapenem-hydrolyzing beta-lactamase KPC	Klebsiella oxytoca@	1.2e-193
BLAN_SERMA@	Carbapenem-hydrolyzing beta-lactamase Sme-1	Serratia marcescens@	6.9e-104
BLAN ENTCLE?	Imipenem-hydrolyzing beta-lactamase	Enterobacter cloacaer?	3.9e-100
BLAC YEREN®	Beta-lactamase	Yersinia enterocoliticar?	9.3e-86
BLO1 KLEOX	Beta-lactamase OXY-1	Klebsiella oxytocar?	1 3e-85
BLO2_KLEOX	Beta-lactamase OXV-2	Klebsiella oxytoca/2	1 3e-84
BLAC CITYOR	Beta-Jactamase	Citrobactar kosari@	5.60-94
BLAC_CITROB	Deta-lactarilase		3.5- 03
BLAC_SERFUE	Beta-lactamase	Serratia ronticolata	3.58-82
BLAB_PROVU®	Beta-lactamase	Proteus vulgaris 🖻	7.2e-81
BLAC_NOCASE?	Beta-lactamase AST-1	Nocardia asteroides@	4.6e-80
BLT1_ECOLX	Beta-lactamase Toho-1	Escherichia coli 🖉	1.6e-79
BLAC_PROVU@	Beta-lactamase	Proteus vulgaris 🛛	1.6e-79
BLC2_SALTM@	Beta-lactamase CTX-M-2	Salmonella typhimurium@	2.2e-79
BLC1_ECOLX @	Beta-lactamase CTX-M-1	Escherichia coli 🛛	4.4e-79
BLC97_ECOLX @	Beta-lactamase CTX-M-97	Escherichia coli 🖻	5.5e-79
BLAC_AMYLA@	Beta-lactamase	Amycolatopsis lactamdurans@	1.8e-78
BLAC_BACAMe2	Beta-lactamase	Bacillus amyloliquefaciense	6.1e-78
BLC4 SALTMR	Beta-lactamase CTX-M-4	Salmonella typhimuriums	3.0e-77
BLC5 SALTM/2	Beta-lactamase CTX-M-5	Salmonella tynhimurium/2	3 8e-77
BLC6 SALTM/2	Beta-lactamase CTY-M-6	Salmonella typhimurium@	6 3e=77
BLAC NOCEAR	Beta-Jactamase EAR-1	Nocardia farcinica (strain IEM 10152)/2	1 70-75
BLAC BACSUM	Beta lastamase	Pacifica cubtilia (strain 114 10152)a	E 10 73
PLA1 PACMV	Beta lactamase 1	Bacillus subcis (strain 100) a	3.10-72
BLA1_BACKITE	Deta-lactarilase 1	Bacillus revenue?	3.16-70
BLAS_BACCEB	Beta-lactamase 3	Bacilius cereusian	1.06-69
BLAC_BACTUB	Beta-lactamase	Bacilius thuringlensis@	1.28-69
BLA1_BACCE®	Beta-lactamase 1	Bacillus cereus@	1.9e-69
BLAC_STRBA@	Beta-lactamase	Streptomyces badius@	1.7e-68
BLAC_BACLI@	Beta-lactamase	Bacillus licheniformis@	2.0e-67
BLAC_BACCE®	Beta-lactamase 1	Bacillus cereus@	2.5e-67
BLT2_ECOLX B	Beta-lactamase Toho-2	Escherichia coli 🖗	3.3e-67
BLAC_STRAL	Beta-lactamase	Streptomyces albus G	7.1e-67
BLAC_STRLA@	Beta-lactamase	Streptomyces lavendulae @	5.2e-66
BLAC_MYCBO@	Beta-lactamase	Mycobacterium bovis@	1.7e-63
BLAC MYCTAIP	Beta-lactamase	Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)@	1.7e-63
BLAC_STRFR@	Beta-lactamase	Streptomyces fradiae@	1.9e-63
BLAC PROMIS	Beta-lactamase	Proteus mirabilis@	6.4e-63
BLA1 STRCI®	Beta-lactamase 1	Streptomyces cacaolis?	2.3e-62
BLAC_STRAU	Beta-lactamase	Streptomyces aureofaciens	6.1e-62
BLA29_KLEPNd?	Beta-lactamase SHV-29	Klebsiella pneumoniae@	8.3e-62
BLA1 KLEPN	Beta-lactamase SHV-1	Klebsiella pneumoniae@	2.8e-61
BLA1 ECOLX	Beta-lactamase SHV-1	Escherichia coli 🖉	2.8e-61
BLA13 KLEPN	Beta-lactamase SHV-13	Klebsiella pneumoniae@	4.0e-61
BLA2 KLEPNIR	Beta-lactamase SHV-2	Klebsiella pneumoniaer@	4.8e-61
BLA2 SALTM2	Beta-lactamase SHV-2	Salmonella typhimurium@	4.8e=61
BLAS KLEPNIZ	Beta-lactamase SHV-5	Klebsiella nneumoniae/2	9.26-61
	Beta-Jactamase SHV-5	Residements services?	9.20-61
BLA2 ECOLY	Beta-Jactamase SHV-2	Fecherichia colis?	9 29-61
BLA2_KLEDO	Bota Jactamase SHV 2	Klobsiella proumeniae substra estaenaer@	0.20-61
BLA2_KEEFOB	Deta-lactarilase SHV-2	Certerietie entire	5.26-01
BLA8_ECULX®	Beta-lactamase SHV-8	Escherichia coli 😰	1.4e-60
BLA2_STRCI®	Beta-lactamase 2	Streptomyces cacaolis	1.58-60
BLA46_KLEOX @	Beta-lactamase SHV-46	Kiebsiella oxytoca@	1./e-60
BLA34_ECOLX @	Beta-lactamase SHV-34	Escherichia coli 🖉	1.8e-60
BLA3_KLEPN 19	Beta-lactamase SHV-3	Klebsiella pneumoniae@	2.5e-60
BLA24_ECOLX B	Beta-lactamase SHV-24	Escherichia coli 🖗	2.7e-60
BLAC_KLEPN Ø	Beta-lactamase	Klebsiella pneumoniae@	5.2e-60
BLA4_KLEPN Ø	Beta-lactamase SHV-4	Klebsiella pneumoniae@	7.1e-60
BLA1_ENTCLe9	Beta-lactamase Ohio-1	Enterobacter cloacae 🖉	1.5e-59
BLA6_KLEPN 19	Beta-lactamase SHV-6 (Fragment)	Klebsiella pneumoniae@	1.9e-59
BLAF MYCFO@	Beta-lactamase	Mycobacterium fortuitum@	2.0e-58
BLAT SALTI®	Beta-lactamase TEM	Salmonella typhi@	3.4e-58
BLAT ECOLX P	Beta-lactamase TEM	Escherichia coli 0111:H- (strain 11128 / EHEC) R	3.4e-58
BLA2 STEMAR	Beta-lactamase I 2	Stepotrophomonas maltophillas?	3 86-58
	Beta-Jactamase	Strentomyces cellulosaeri	4.48-58
BLAT KLEOX	Bota Jactamase TEM 12	Kiebsielle exuteser®	3.40-57
BLAT_KEEOAB	Deta-lactamase FEM-12	Manchaine basedution 0	2.46-57
DLA1 HASIS	Beta lastamasa BOR 1	Harmenhilus influence d	5.98-57
	Deta-lactamase NOD-1	Actino bacillus plaurenzaurening gerature 7 (atenin 1070)-7	5.98-57
DLAI_ACTPLIG	Deta-lattamase KOB-1	Actinobacilius pieuropneumoniae serotype / (strain AP76)@	5.98-57
BLA1_AERHY@	Beta-lactamase AER-1	Aeromonas hydrophila@	3.1e-55
BLC3_PSEAI@	Beta-lactamase CARB-3	Pseudomonas aeruginosa@	4.5e-46
BLP4_PSEAI®	Beta-lactamase PSE-4	Pseudomonas aeruginosa@	9.2e-46
BLP1_PSEAI@	Beta-lactamase PSE-1	Pseudomonas aeruginosa@	1.6e-45
BLAC_RHOCA®	Beta-lactamase	Rhodobacter capsulatus	1.0e-43
BLAC_STAAU	Beta-lactamase	Staphylococcus aureus	1.1e-43
BLC4_PSEAIØ	Beta-lactamase CARB-4	Pseudomonas aeruginosa@	1.7e-43
BLC6_VIBCLt	Beta-lactamase CARB-6	Vibrio cholerae@	3.2e-43
BLA1_MORCA	Beta-lactamase BRO-1	Moraxella catarrhalis@	1.7e-30
BLE1 PSEAL	Extended-spectrum beta-lactamase PER-1	Pseudomonas aeruginosa@	1.8e-20
BLAC_BACUNG	Beta-lactamase	Bacteroides uniformis@	7.4e-15
BLAC BACVUR	Beta-lactamase	Bacteroides vulgatus?	1 7e-09

Supplementary Figure S2: Table generated by HMMER web server (version 1.8). The first column lists SwissProt codes of the sequences used for the alignment. For each SwissProt code a description of the protein name and/or family, organism's species and E-value have been associated for clarity and sake of completeness.

Supplementary Figure S3: Evolutionary tree of the sequences used in the alignment. Major families have been identified with different colours. All sequences belong to the class A β -lactamase family.

System	n Total Simulation Time (μs)	
	Unbiased Simulations	PT-metadynamics Simulations
WT	18.5	2.4
$\mathbf{A}^{77}N$	8.0	2.4
$L^{102}T$	8.0	2.4
$\mathrm{I}^{108}N$	8.0	2.4
dMUT	8.0	2.4
$L^{138}N$	8.0	2.4
$L^{199}R$	8.0	2.4
SPR-3-226	8.0	2.4

Table S1: Summary of simulations. The reported time corresponds to the accumulated simulation time of all the non-adaptive and adaptive simulations (unbiased simulations), and of all the replicas of the PT-metaD simulations (biased simulations).

Supplementary Figure S4: RMSF profiles of KPC-2 WT, mutants and ligand bound structures derived from the whole set of the unbiased simulations. Mean values are represented as lines and standard deviation is indicated by shading. The most flexible region S^{n} -A¹²³ with respect to the WT in most of the systems has been highlighted in the graphs and represented in grey in the crystal structure.

Figure S5: Immunoblots of periplasmic extract and whole cell lysate of DH10B cells expressing pBR322-catI-blaKPC-2 wild-type or variants ($A^{77}N$, $L^{102}T$, $I^{108}N$, $L^{138}N$, $L^{199}R$ or $L^{102}T/I^{108}N$). DnaK is a loading control. The whole cell lysate extract was run in two separate gels demarcated by the dashed lines and marked a and b).

Figure S6: Important interactions formed between the mutated/WT residues and neighbour residues over the course of the unbiased simulations. As neighbour residues were considered the ones that their heavy atoms were 3.50 Å away from the mutated residue.

Supplementary Figure S7: Collective variables used in metadynamics simulations. CV1 describes the distance between the centre of mass of the indole ring of the side chain of W^{105} and the C_{β} of L^{167} . CV2 describes the distance between the centre of mass of the indole ring of the side chain of W^{105} and the C_{β} of T^{216} .

Figure S8: Free-energy surfaces (FES) plots of the KPC-2 single mutants $A^{77}N$, $L^{138}N$, $L^{199}R$ and the KPC-2 bound to PSR-3-226. The FES have been reconstructed along the two variables, CV1 (distance between the center of mass of the indole ring of the side chain of W^{105} and C_{β} of L^{167}) and CV2 (distance between the center of mass of the indole ring of the side chain of W^{105} and C_{β} of T^{216}). Structures extracted from their corresponding basins have been illustrated. The mutated residues are shown in red sticks, while residues that have been reported to be important for the catalysis [] are shown in pink sticks.

Figure S9: Binding poses and ligand interaction diagrams resulting from the docking of the experimentally tested antibiotic cefepime to exemplar conformations corresponding to selected basins of the free energy surfaces (Figure 3, main text). Coloring explanation of the ligand interaction diagrams: green shading represents hydrophobic regions, blue shading represents hydrogen bond acceptor, white dashed arrows represents hydrogen bonds, grey parabolas represents accessible surface for large areas, broken thick line around ligand shape indicates accessible surface, while the size of residue ellipse represents the strength of the contact.

Figure S10: Sequence comparison of KPC variants. The difference between KPC2 and KPC3 is the H247Y mutation. There is complete conservation within the core and the hydrophobic nodes between the two variants.