Stabilized Photoanodes for Water Oxidation by Integrating Organic Dyes, Water Oxidation Catalysts, and Electron Transfer Mediators

Degao Wang,¹¶ Michael S. Eberhart,¹¶ Matthew V. Sheridan,¹ Ke Hu,² Benjamin D.

Sherman,^{1#} Animesh Nayak,¹ Ying Wang,¹Seth L. Marquard,¹ Christopher J. Dares,³

Thomas J. Meyer^{1*}

- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
- 2. Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- 3. Department of Chemistry and Biochemistry, Florida International University,

11200 SW Eighth Street, Miami, Florida 33199, United States

¶: Degao Wang and Michael S. Eberhart contributed equally to this work.

#: Current address, Department Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA

Corresponding author Email: tjmeyer@unc.edu

This PDF file includes:

Supplementary text Figs. S1 to S31 Schemes S1 to S2

Supplementary Information Experimental section:

Uv-Vis spectroscopy

Samples for optical measurements were fabricated in the same way as the devices described as above.

Incident photon to current efficiency (IPCE) measurements

IPCE measurements were performed with a 75 W xenon lamp (Oriel) and Oriel

Cornerstone 260

monochromator. Photocurrent data was taken at 10 nm increments and the light intensity at each wavelength was recorded using a UDT S370 optometer coupled to a UDT 260 detector. A CH Instruments 660D potentiostat was used to record the photocurrent transients and a bias of 0.4V vs. Ag/AgCl was used to collect the IPCE data.

Generator/collector O2 detection

The generator/collector experiments for O₂ detection used a four electrode setup along with a bipotentiostat. Two FTO working electrodes in conjunction with a Pt counter and Ag/AgCl reference electrode were used. One FTO (generator) electrode was prepared as described for the core/shell photoanodes used in this study; the other FTO (collector) electrode was unmodified. Assembly of the generator/collector setup involved placing the two FTO electrodes with the conductive sides facing with narrow 1 mm thick glass spacers between the lateral edges and sealing the sides with epoxy (Hysol).

To measure the faradaic efficiency for O₂ production, the charge passed at the generator electrode during the illumination phase of the experiment was compared to the total charge passed at the collector electrode (poised at -0.85 V vs. Ag/AgCl) during the entire experiment. The faradaic efficiency was corrected for the collection efficiency of the generator/collector setup (70%) that was determined experimentally.

Transient Absorption.

When TA was carried out, the slides were inserted at a 45° angle into a standard 1 cm² Pyrex cuvette. The top of the cuvette was fit with an O-ring seal with a Kontes valve inlet to allow the contents to be purged with Argon (Airgas, UHP). Measurements were performed by using 425nm nanosecond laser pulses produced by a Nd:YAG laser combined with a VersaScan OPO (5–7 ns, operated at 1 Hz, beam diameter 0.5 cm) integrated into a commercially available Edinburgh LP920 laser flash photolysis spectrometer system. A white light probe pulse was generated by a pulsed 450 W Xe lamp. The probe light was passed through a 400 nm long pass filter before reaching the sample to avoid direct band gap excitation of TiO₂, then detected by a photomultiplier tube (Hamamatsu R928).

Fig. S1. The UV-Visible spectroscopy of the Organic dye on *nano* ITO.

Fig. S2. O_2 measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|1.1nm Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 49%.

Fig. S3. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|1.44nm Al₂O₃|- WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4V versus Ag/AgCl. The currenttime response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 43%.

Fig. S4. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|0.36nm Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.2 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 55%.

Fig. S5. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|0.72nm ALD Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 93%.

Fig. S6. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|1.44nm Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 97%.

Fig. S7. Current–time (I-t) traces over 10 s dark–light cycles for water oxidation by the electrodes, $FTO|SnO_2/TiO_2|-Org2-|x A_2O_3|-RuP^{2+}-WOC(A)$, at an applied bias of 0.4 V versus Ag/AgCl; pH = 4.65, 0.1 M acetate, 0.4 M NaClO₄. WOC(A)is the catalyst, [Ru(bda)(4-O(CH₂)₃P(O₃H₂)₂-pyr)₂].

Fig. S8. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org2-|0.36nm Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 55%.

Fig. S9. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org2-|0.72nm Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 96%.

Fig. S10. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org2-|1.1nm Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 100%.

Fig. S11. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org2-|1.44nm Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 100%.

Fig. S12. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org2-|15cycles ALD Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 49%.

Fig. S13. Current–time (I-t) traces over 10 s dark–light cycles for water oxidation by the electrodes, $FTO|SnO_2/TiO_2|$ -Org3-|x A₂O₃|-RuP²⁺-WOC(A), at an applied bias of 0.4 V versus Ag/AgCl; pH = 4.65, 0.1 M acetate, 0.4 M NaClO₄. WOC(A) is the catalyst, [Ru(bda)(4-O(CH₂)₃P(O₃H₂)₂-pyr)₂].

Fig. S14. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org3-|1.1nm Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 100%.

Fig. S15. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org3-|1.44nm Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 100%.

Fig. S16. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org3-|9cycles ALD Al₂O₃|-RuP²⁺-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 95%.

Scheme S1:One series of experiments, electrodes were prepared with the position of the dyes reversed. In this assembly, with \mathbf{RuP}^{2+} as the light absorber, followed by ALD deposition of an Al₂O₃ overlayer of **Org1** by adsorption, gave the electrode, -

FTO|SnO₂/TiO₂|-RuP²⁺|1.1nmAl₂O₃|-Org1-WOC(A).

Fig. S17. Current–time (I-t) traces over 10 s dark–light cycles for water oxidation by the electrodes, $FTO|SnO_2/TiO_2|-RuP^{2+}-|Al_2O_3|-Org1-|0.36nm Al_2O_3|-WOC(A)$, at an applied bias of 0.4 V versus Ag/AgCl; pH = 4.65, 0.1 M acetate, 0.4 M NaClO₄

Fig. S18. O₂ measurements for water oxidation from (black), **FTO**|**SnO**₂/**TiO**₂|-**RuP**²⁺-|**0.36nm Al**₂**O**₃|-**Org1**-|**0.36nm Al**₂**O**₃|-**WOC**(**A**), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 67%.

Fig. S19. O₂ measurements for water oxidation from (black), **FTO**|**SnO**₂/**TiO**₂|-**RuP**²⁺-|**0.72nm Al**₂**O**₃|-**Org1**-|**0.36nm Al**₂**O**₃|-**WOC**(**A**), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 61%.

Fig. S20.O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-RuP²⁺-|1.1nm Al₂O₃|-Org1-|0.36nm Al₂O₃|-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 58%.

Scheme S2. The structures of the other electron transfer mediators $RuPMe^{2+}$ and $RuCP^{2+}$

Fig. S21. O₂ measurements for water oxidation from (black), **FTO**|**SnO₂/TiO₂|-Org1-**|**1.1nm Al₂O₃|-RuCP²⁺-WOC(A)**, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 95%.

Fig. S22. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Org1-|1.1nm Al₂O₃|-RuCP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 78%.

Fig. S23. IPCE results for, **SnO₂/TiO₂|-Org2-|1.1nm Al₂O₃|-RuP²⁺-WOC**, at an applied bias of 0.4 V versus Ag/AgCl at pH = 4.65 0.1 M in acetate, 0.4 M NaClO₄.

Fig. S24. IPCE results for, **FTO**|**SnO**₂/**TiO**₂|-**Org3**-|**1.1nm Al**₂**O**₃|-**RuP**²⁺-**WOC**(**A**), at an applied bias of 0.4 V versus Ag/AgCl at $pH = 4.65 \ 0.1 \ M$ in acetate, 0.4 M NaClO₄.

Fig. S25. The photo-responds of the electrode, $FTO|SnO_2/TiO_2|-Org1-|1.1nmAl_2O_3|-RuP^{2+}-WOC$ under different light intensity. The measurement was performed, at an applied bias of 0.4 V versus Ag/AgCl at pH = 4.65 0.1 M in acetate, 0.4 M NaClO₄. I₀ is the one sun illumination. And the I is the applied light intensity using filter to modulate the photons pass.

Fig. S26.The energy diagram of the organic dye Org1 and RuP^{2+} molecular.

Fig. S27. The Transient absorption spectrum of the electrode: $FTO|SnO_2/TiO_2|$ -Organic dye- $|1.1nm Al_2O_3|$ -X

Fig. S28. Differential pulse voltammograms of $FTO|TiO_2|PP$. The TiO2/FTO electrodes with a TiO2 thickness of 4 µm were prepared by doctor blade technique. The electrochemical measurements were carried out in pH4.65, 0.1M acetate buffer with 0.4M NaClO₄.

Fig. S29. O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Porphrin-|9cycles ALD Al₂O₃|-WOC, on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 0%.

Fig. S30.O₂ measurements for water oxidation from (black), FTO|SnO₂/TiO₂|-Porphrin-|1.1nm Al₂O₃|-RuP²⁺-WOC(A), on 1 cm² slides illuminated with 100 mW cm⁻² white light with a 400 nm cutoff filter from 30 to 3630 s at a bias of 0.4 V versus Ag/AgCl. The current-time response in red is for an O₂ sensing electrode, 1 mm from the photoanode biased at -0.85 V versus Ag/AgCl; in 0.1 M acetic acid/acetate buffer at pH 4.65 in 0.4 M NaClO₄. FE of O₂ production is around 78%.

Fig. S31. IPCE results for, **FTO**|**SnO**₂/**TiO**₂|**-PP-**|**1.1nmAl**₂**O**₃|**-WOC**(**A**) at an applied bias of 0.4 V versus Ag/AgCl at $pH = 4.65 \ 0.1 \ M$ in acetate, 0.4 M NaClO₄. A 400 nm cutoff filter was used.