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Supplementary Note 1 
 
Here we expand the Results section on “Speed-accuracy tradeoff, bias, and more complex decision 
models” to provide better intuition and mechanistic explanations for kernel dynamics caused by 
different parameters of competing accumulator models. 
 
Effect of input correlation of competing accumulators on psychophysical kernels: Sizeable distortions 
arise only when the input correlation approaches 0, in which case the kernel is initially inflated but later 
drops below the true sensory weight (Fig. 6e and Supplementary Fig. S8a). The inflation is caused by an 
effective increase in the diffusion noise because for low input correlations the noise in either integrator 
can facilitate a bound crossing. However, as time passes, the mean DV of unterminated decisions 
becomes increasingly more negative due to diffusion noise and attrition of trials whose DV exceeds the 
bound. The more negative DVs reduce the effect of new input for determining the outcome of the 
process, shrinking the kernel below the true sensory weights.  
 
Effect of lower reflective bound on psychophysical kernels: Unlike the input correlation, reflective 
bounds cause the psychophysical kernel to begin lower than the true sensory weight but exceed it later 
(Fig. 6g-i and Supplementary Fig. 8b). When the reflective bounds are far enough from the starting point 
of the integrators, they tend to have only a modest effect on the psychophysical kernel. However, their 
effect grows quickly as the reflective bound approaches the starting point. The initial underestimation 
happens because reflective bounds limit movements below the starting point and, thus, reduce both the 
effective noise and the effective counter-evidence for each choice. Later in the integration process, the 
integrators are on average closer to their decision bounds compared to a model without lower reflective 
bounds. This amplifies the psychophysical kernel because input fluctuations are more likely to lead to a 
decision bound crossing.  
 
Effect of mutual inhibition on psychophysical kernels: Mutual inhibition amplifies the difference of the 
two integrators and effectively prevents the losing integrator from gaining the upper hand1-3. This 
suppression can cause dramatic distortions in psychophysical kernels, especially early in the integration 
process, because the mutual inhibition magnifies the effect of early sensory evidence on the state of the 
two integrators (Fig. 6j-l brown lines and Supplementary Fig. 8c). As the integration process continues 
and the losing integrator drops far enough from its decision bound to exert significant inhibition on the 
other integrator, the behavior of the model converges to a simple DDM and the kernel converges on the 
true sensory weights.  
 
Effect of leak and its balance with mutual inhibition on psychophysical kernels: When mutual inhibition 
dominates (leak/inhibition ratio<1), psychophysical kernels show an early amplification but later 
converge on the true sensory weights (Fig. 6k, red lines), for the same reasons explained in the previous 
paragraph. When leak and inhibition balance each other out, the model acts similar to a line attractor and 
the psychophysical kernels resemble those of a DDM (Fig. 6k, black lines). Finally, when leak 
dominates, the integrators lose information and decisions are influenced less by input fluctuations, 
especially for early sensory evidence in the trial. Consequently, stimulus-aligned psychophysical kernels 
systematically underestimate the sensory weights (Fig. 6k, blue lines). However, the dynamics of the 
kernel qualitatively resemble the true sensory weight, except for the earliest times. On the other hand, 
the response-aligned kernels are distorted and accelerated compared to a DDM, reflecting the shorter 
integration time constant and stronger influence of later evidence on the decision4,5. 
 
 



Supplementary Discussion 
 
To maximize the information gained from psychophysical kernels, it is important to set up the model 
fitting and model prediction in such a way that minimizes overlap between the fitted and predicted 
aspects of the data. For example, using stimulus fluctuations on individual trials to predict the choice 
and calculating model kernels for the same stimulus fluctuations are unlikely to provide new insights 
because any model that fits the choices well could also replicate the kernels. However, by leaving the 
specific stimulus fluctuations aside for fitting the choices or by predicting kernels for a non-overlapping 
group of trials one can reveal potential discrepancies between the model and data. 
 
A key piece of information for proper interpretation of psychophysical kernels is to know which part of 
the stimulus is used for the decision-making process. Fixed duration tasks with long stimulus durations 
are generally unsuitable because the start and termination times of the decision-making process are 
opaque to the experimenter. When subjects commit to a choice by integration of sensory evidence 
toward a bound, they tend to ignore later evidence, causing a downward trend in the kernels. However, 
if the integration process also begins at variable times, the downward trend can be masked. Overall, the 
presence or absence of temporal dynamics in psychophysical kernels in fixed-duration tasks does not 
have a unique interpretation. It is more suitable to use tasks in which stimulus duration is controlled by 
the experimenter and varies randomly from trial to trial because they enable the experimenter to 
determine which part of the stimulus is used for the decision. However, one should be careful in using 
those designs because just the variability of stimulus duration in itself can introduce temporal dynamics 
in kernels (Eq. 14). Reaction time task designs are most suitable because they minimize ambiguity about 
which part of the stimulus was used for the decision-making process. 
 
We also note that tasks that use very brief stimulus presentations are not immune to the influence of the 
decision-making process on psychophysical kernels. Brief stimulus presentations are often used to infer 
the spatial structure of sensory filters at the cost of ignoring their temporal dynamics. However, brief 
stimulus presentations do not guarantee instantaneous decisions. Several studies have demonstrated that 
accumulation of evidence to a bound is at work even for brief stimuli6,7, as evidenced by large RT 
differences for different stimulus strengths. Even brief stimulus presentations produce extended trails of 
activity in sensory and action-planning neurons8-10. An extended decision-making process for a briefly 
presented stimulus makes the kernel susceptible to the deviations explained above. For example, a 
change in speed-accuracy tradeoff can amplify the inferred spatial filters without a real change in 
sensory processes. 
 
Using a fixed-duration design, several studies have found monotonically decreasing psychophysical 
kernels5,11,12. Kernel dynamics in those studies could have a sensory origin or be due to static sensory 
weights and a decision-making mechanism that terminates according to some criteria (e.g., Fig. 3g). It 
has been common to assume one possibility and ignore the other. Testing these two possibilities 
explicitly is likely to yield new insights and trends across experiments. Several other studies have 
reported a flat psychophysical kernel in fixed-duration designs and interpreted it as a signature of perfect 
integration of sensory evidence. This interpretation could be correct if subjects set their decision bound 
too high to reach during stimulus viewing, as shown in Brunton et al.13. However, a static kernel could 
also arise from a variety of sensory and decision-making mechanisms and does not uniquely support 
perfect integration of sensory evidence. Also, in addition to the mechanisms explained in Results, a 
static kernel in a non-RT task could be produced with probabilistic sampling of evidence rather than its 
integration. In general, it is best not to rely solely on qualitative patterns of psychophysical kernels. As 
we suggest in this paper, these qualitative signatures should be just a starting point for building 



mechanistic hypotheses, which should then be tested with detailed, quantitative modeling of behavior 
and electrophysiological studies of its underlying neural responses.  
 
 
	
Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Supplementary Figure 1. For an unbounded DDM, psychophysical kernels recover the true sensory 
weights. Related to Fig. 3a-b. This figure shows three simulated models with sensory weights that 
fluctuated at 0.2, 1, and 4 Hz. Any frequencies of weights could be accurately recovered by the 
psychophysical kernel. See Fig. 3c for the quantification of kernel distortions as a function of temporal 
frequency of weights. 
 



 
 
 
 
 
 
 

 
 
 
Supplementary Figure 2. Psychophysical kernels deviate from sensory weights because of incomplete 
knowledge about decision time. Related to Fig. 3i-m. The figure shows four simulated bounded DDMs 
with non-decision time and time varying sensory weights. The mean and standard deviation of non-
decision time are set to 300ms and 100ms, respectively, and decision bound is set to 30. The non-
decision time causes the psychophysical kernels to systematically underestimate the true sensory 
weights.  
 



Supplementary Figure 3. The distribution of non-decision times determines the shape of response-
aligned psychophysical kernels. Sensory and motor delays in a RT task cause the stimulus fluctuations 
immediately prior to the response not to bear on the choice. As a result, response-aligned kernels tend to 
show a peak before the behavioral response (Figs. 3-5). The time and shape of this peak are informative 
about the distribution of non-decision times. Here, we simulate DDMs with non-decision time 
distributions that vary in mean, variance, and skewness. Each row illustrates three sample distributions 
(left column), their corresponding kernels (middle column), and systematic effects on peak time as the 
non-decision time distribution changes (right column). (a-c) For a constant non-decision time, kernels 
show an abrupt drop before the response. The temporal gap between this drop and response is identical 
to the non-decision time. (d-f) When non-decision time is variable, changes in mean non-decision time 
shifts the kernel peak time with minimal changes in its shape. Standard deviation and skewness of the 
distributions are set to 100 and 0, respectively, in these simulations. (g-i) Larger variance of non-
decision time widens the kernel and shifts its peak away from the response. Mean and skewness of non-
decision time are set to 300ms and 0, respectively. (j-l) Skewness of non-decision time creates 
asymmetries in the peak. More positive skewness pushes the peak toward the response. Mean and 
standard deviation of non-decision time are set to 300ms and 100ms, respectively. In all simulations the 
sensory weight function is static (w t( ) = 1 ) and decision bound is set to 30. 



 
 
 
 
 
 
 
 
 
 
 

 
Supplementary Figure 4.  Mean motion energy is a linear function of net motion strength (coherence). 
(a) Time course of average motion energy for different coherence levels in the direction discrimination 
task. To calculate the scaling between motion coherence and motion energy, we computed the average 
motion energy 200-1000ms after stimulus onset (pink rectangle). (b) Average motion energy as a 
function of motion coherence.  
 



 
 
 
 
 
 
 

 
 
Supplementary Figure 5. An extended DDM can recover changes of sensory weights, when such 
changes are present. The figure shows four simulations with different weight dynamics and the 
recovered weights of the model. For each panel, we simulated a direction discrimination dataset with 
5000 trials. Like the real task explained in the paper, motion strength on each trial was selected 
randomly from a fixed set (0%, 3.2%, 6.4%, 12.8% or 25.6%). The weights in each trial could change 
according to a second order polynomial function. Simulated sensory evidence at each moment in a trial 
was a random draw from a Gaussian distribution with s.d. = 1 and mean = w τ( )s , where s is the motion 
coherence on the trial. Momentary evidence was accumulated until a positive or negative bound was 
reached (bound height, 30). The bound dictated the choice and time to bound was decision time. 
Reaction time was the sum of decision time and a random non-decision time drawn from a Gaussian 
distribution with mean = 300ms and s.d. = 100ms. We fit the extended DDM model with polynomial 
weight dynamics (Eq. 23 in Methods) to the distribution of choices and RTs of the 5000 simulated trials 
in each panel. 
 
 



 
 

 
 
Supplementary Figure 6. Scaling of psychophysical kernels by bound height and stimulus noise in a 
bounded DDM. As we prove in Methods, the psychophysical kernel of a bounded DDM without non-

decision time is proportional to the sensory weight and the constant of proportionality is 2σ s
2

B
 (Eq. 2 in 

Results). Here we confirm this relationship by simulating the model. (a-b) Higher decision bounds 
produce lower amplitudes of psychophysical kernel (a). The mean amplitude of the kernel is 
proportional to the inverse of decision bound (b). The gray line shows expected kernel amplitude based 
on Eq. 2 and the black lines and points show simulated amplitudes. σ 2

s  is set to 1 in these simulations. 
(c-d) Higher standard deviation of stimulus fluctuation raises the amplitude of psychophysical kernel 
(c). The kernel amplitude is a quadratic function of σ s  (d). B  is set to 30 for these simulations. (e) 
When stimulus noise (σ s ) changes within the trial, the psychophysical kernel co-varies with it, causing 
deviation from the true sensory weight. Note that in Figs. 3, 6, 7, Supplementary Figs. 1-2, and 7-9, we 
normalized the kernel based on Eq. 2 and Eq. 14 to remove the effect of bound height and stimulus 
variance in order to compare the kernel directly with the sensory weight. 
 



 
 
 

 
Supplementary Figure 7. The effect of bias and variability of the starting point of the DDM on 
psychophysical kernels. Conventions are similar to Fig. 6, where the first column shows the model 
variation, the second column shows example parameterizations of the model, and the third column 
shows the magnitude of distortion of the psychophysical kernel as a function of the parameter of 
interest. Decision bound is set to 30 in all simulations. (a-c) When choice bias is implemented by a shift 
of the starting point toward a decision bound, the kernel shows a small inflation around stimulus onset, 
because the closer distance of the starting point to one of the bounds increases the likelihood of bound 
crossing due to early stimulus fluctuations. (d-f) When choice bias is implemented by a constant change 
in drift rate, the kernel shows a DC offset. (g-i) Trial-to-trial variability of the starting point of the DDM 
does not cause a systematic distortion of psychophysical kernels, if the starting point distribution is 
centered on zero.  
 
 



 
 
 

 
 
Supplementary Figure 8. Additional examples of psychophysical kernels for various parameterizations 
of the competing accumulator model. To provide better intuition for the effects of model parameters in 
Fig. 6, we have plotted psychophysical kernels for multiple parameter values. a-d correspond to rows 2-
4 in Fig. 6. 
 



 
Supplementary Figure 9. A three-pronged approach based on the shape of psychophysical kernels and 
the distribution of choices and RTs can distinguish different mechanisms that contribute to the decision-
making process. (a) A diversity of mechanisms can lead to similar trends in psychophysical kernels but 
they usually lead to contrasting psychometric and chronometric functions, different RT distributions, 
and quantitative differences in the shape of kernels. The figure shows three mechanisms that cause a 
downward trend in stimulus-aligned kernels. The top row shows a DDM with mean non-decision time 
set to 300ms and s.d. of non-decision time to 100ms (B = 30). The middle row shows a competing 
accumulator model where the input correlation of the two accumulators is −0.1 (Leak and inhibition are 
set to 0; non-decision time, mean, 100ms, s.d., 33ms; B = 50). Bottom row shows a competing 



accumulator model where the leak to inhibition ratio is 0.8 ( L , 0.0027; I , 0.0033; input correlation, −1; 
non-decision time, mean, 100ms, s.d., 33ms; B = 80, v0 = 30 ). RT distributions in the right column are 
for trials with stimulus strength of 0, the same trials used for making the psychophysical kernels. The 
parameters of the three simulations are adjusted to have a more or less similar drop in psychophysical 
kernels. Kernels are normalized according to Eq. 2 in the main text. (b) A flat psychophysical kernel can 
emerge from a diversity of mechanisms, which often cause contrasting psychometric and chronometric 
functions, and different RT distributions. Top row shows a DDM with urgency (τ1/2 , 5,000ms, b , 50, 
u∞ , 50 in Eq. 15; non-decision time, mean, 100ms, s.d., 33ms). Bottom row show the competing 
accumulator model of Fig. 7d. 	
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