Supplementary Materials for

Intermolecular Selective Carboacylation of Alkenes via Nickel-Catalyzed Reductive Radical Relay

Chu et al

correspondence to: lingling.chu1@dhu.edu.cn

This PDF files includes:

Supplementary Methods

Supplementary Discussion

Supplementary Table 1 – 2

Supplementary Figure 1 – 87

Supplementary References

1. Supplementary Methods

General Considerations: Commercial reagents were purchased from Aldrich, TCI, Energy Chemical and J&K chemical, and were used as received. All reactions were carried out in oven-dried glassware under an atmosphere of nitrogen unless otherwise noted. Chromatographic purification of products was accomplished by flash chromatography using silica gel. Thin-layer chromatography (TLC) was performed on Silicycle 250 mm silica gel F-254 plates.¹H, ¹⁹F NMR, and ¹³C NMR spectra were recorded on Bruker 400 (400, 376, and 100 MHz) and Bruker 600 (600, 564, and 150 MHz), and are internally referenced to residual solvent signals (for CDCl₃, δ 7.26 and 77.0 ppm). Data for ¹H NMR and ¹⁹F NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, coupling constant (Hz). ¹³C spectra were reported as chemical shifts in ppm and multiplicity where appropriate. High resolution mass spectra were obtained at Shanghai Institute of Organic Chemistry mass spectrometry facilities. All alkenes were used from commercial suppliers or prepared using standard literature procedures or the preparation procedures descried in this supporting information. All acyl chlorides were used from commercial suppliers or prepared using standard literature procedures.

General procedure for the preparation of alkenes: The alkenes were prepared according to a literature procedure from the corresponding alcohol.¹ To a solution of alcohol (5 mmol, 1.0 equiv.) in THF was added pyridine (7 mmol, 1.4 equiv). The reaction mixture was cooled to 0 °C, and allyl chloroformate (6 mmol, 1.2 equiv) was added slowly. The reaction mixture was allowed to warm to r.t. and stirred for overnight. After addition of water, the reaction mixture was extracted with ethyl acetate. The combined organic layers were washed with 1 N HCl, saturated NaHCO₃,

and brine, dried over MgSO₄, and concentrated. The residue was purified by column chromatograph to afford the product.

General procedure for the Ni-catalyzed reductive carboacylation reaction: To a flame-dried 8 mL reaction vial was charged with NiCl₂•glyme (0.02 mmol, 10 mol%), 4,4'-di-*tert*-butyl-2,2'-dipyridyl (dtbbpy) (0.04 mmol, 20 mol%), and Mn (0.6 mmol, 3.0 equiv.). The vial was capped. After it was evacuated and backfilled nitrogen three times, CH₃CN [0.1 M] was added via a syringe, followed by the addition of acyl chloride (0.3 mmol, 1.5 equiv.). The reaction mixture was allowed to stir for approximately 1 minute before fluoroalkyl iodide (0.2 mmol, 1.0 equiv., if liquid) and alkene (0.2 mmol, 1.0 equiv. if liquid) were added. The reaction mixture was allowed to stir at 1500 rpm for 20 h at 25 °C. The reaction was quenched with 1 N HCl, extracted with ethyl acetate (EA) three times. The combined organic layers were dried with MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography to afford the product.

Note: keeping a stirring speed at 1500 rpm and reaction temperature around 25 °C is necessary for reproducibility.

General procedure for the optimization studies: To a flame-dried 8 mL reaction vial was charged with NiCl₂•glyme (2.2 mg, 0.01 mmol, 10 mol%), dtbbpy (5.4 mg, 0.02 mmol, 20 mol%), and Mn (16.5 mg, 0.3 mmol, 3.0 equiv.). The vial was capped. After it was evacuated and backfilled nitrogen three times, CH₃CN (1 mL) was added via a syringe, followed by the addition of 4-(*tert*-butyl)benzoyl chloride (29.5 μ L, 0.15 mmol, 1.5 equiv.). The reaction mixture was allowed to stir for approximately 1 minute before C₄F₉I (17.2 μ L, 0.1 mmol, 1.0 equiv.) and allyl heptanoate (19.2 μ L, 0.1 mmol, 1.0 equiv.) were added. The reaction mixture was allowed to stir at 1500

rpm for 20 h at 25 $^{\circ}$ C. The reaction mixtures were analyzed by ¹H NMR with an internal standard.

	tBu a	C_4F_9-1	10 mol% NiCl ₂ •glyme 20 mol% dtbbpy Mn, CH ₃ CN, 25 °C	C ₆ H ₁₃ C	G 4F9 HBU
alkene	u	Syl Ghieride			
	Entry	variations from standard of	condition	lition Yield of 1	
	1none2Zn, instead of Mn			93%	
			Mn	36%	
	3	TDAE, instead of Mn		0	
	4	Ni(acac)2, instead of N	liCl ₂ •glyme	60%	
	5	NiCl ₂ (PPh ₃) ₂ , instead of	NiCl ₂ •glyme	65%	
	6	NiCl ₂ (Py) ₄ , instead of I	NiCl ₂ •glyme	45%	
	7	DME, instead of C	CH ₃ CN	30%	
	8	dioxane, instead of	CH ₃ CN	65%	
	9	THF, instead of C	H ₃ CN	79%	
	10	DMA, instead of C	CH₃CN	23%	
	11	toluene, instead of	CH₃CN	0	
	12	no NiCl ₂ •glyn	ne	0	
	13	no dtbbpy		51%	
	14	no Mn		0	

Supplementary Table 1. Optimization studies.

[a] Conditions: 10 mol% NiCl₂•DME, 20% dtbbpy, alkene (1.0 equiv.), C₄F₉I (1.0 equiv.), acyl chloride (1.5 equiv.), Mn (3.0 equiv.), CH₃CN [0.1 M], 25 °C. [b] yields were determined by ¹H NMR using an internal standard. dtbbpy = 4,4'-di-*tert*-butyl-2,2'-bipyridine. TDAE = tetrakis(dimethylamino)ethylene

Analytical Data of Compounds

Allyl benzyl(phenyl)carbamate (S1): According to the general procedure, *N*-benzylaniline (916.3 mg, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 20:1) as a colorless oil (1.13 g, 85%); ¹H NMR (600 MHz, CDCl₃) δ 7.28 (t, *J* = 7.7 s4 Hz, 4H), 7.26 – 7.21 (m, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.12 (s, 2H), 5.87 (ddd, J = 15.9, 10.3, 5.1 Hz, 1H), 5.14 (t, J = 16.4 Hz, 2H), 4.87 (s, 2H), 4.63 (d, J = 4.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 155.49, 137.83, 132.62, 128.82, 128.41, 127.87, 127.28, 127.04, 126.95, 126.56, 117.11, 66.25, 54.30. HRMS (ESI⁺): calcd for C₁₇H₁₈NO₂⁺ (M+H) 268.1332, found 268.1333.

Allyl (4-bromo-3-chlorophenyl) carbonate (S2): According to the general procedure, 4-bromo-3-chlorophenol (1.04 g, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 30:1) as a pale-yellow solid (1.37 g, 94%); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 8.8 Hz, 1H), 7.35 (d, *J* = 2.7 Hz, 1H), 7.00 (dd, *J* = 8.8, 2.7 Hz, 1H), 5.99 (ddt, *J* = 16.4, 10.6, 5.9 Hz, 1H), 5.43 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.35 (d, *J* = 10.4 Hz, 1H), 4.74 (d, *J* = 5.9 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 152.68, 150.35, 135.01, 134.01, 130.71, 123.29, 120.89, 119.93, 119.46, 69.53. HRMS (ESI⁺): calcd for C₁₀H₉BrClO₃⁺ (M+H) 290.9418, found 290.9420.

Allyl ((3R,8R,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclo penta[a]phenanthren-3-yl) carbonate (S3): According to the general procedure, (3R,8R,9R,10R,13R,14R)-3-hydroxy-10,13-dimethylhexadecahydro-17H-cyclopenta[a]phenanthren-17-one (1.45 g, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40

equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 5:1) as a white solid (1.20 g, 64%); ¹H NMR (600 MHz, CDCl₃) δ 5.93 (dq, *J* = 11.0, 5.8 Hz, 1H), 5.35 (dd, *J* = 17.2, 1.1 Hz, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 4.61 (d, *J* = 5.7 Hz, 2H), 4.59 – 4.53 (m, 1H), 2.43 (dd, *J* = 19.3, 8.8 Hz, 1H), 2.11 – 2.02 (m, 1H), 1.96 – 1.88 (m, 2H), 1.84 – 1.77 (m, 3H), 1.72 (ddd, *J* = 12.0, 4.7, 2.6 Hz, 1H), 1.68 – 1.63 (m, 1H), 1.55 (ddd, *J* = 17.4, 16.0, 7.5 Hz, 3H), 1.47 (ddd, *J* = 28.4, 16.6, 7.7 Hz, 2H), 1.36 – 1.27 (m, 4H), 1.21 (dd, *J* = 12.6, 3.2 Hz, 1H), 1.07 – 0.97 (m, 2H), 0.85 (d, *J* = 8.3 Hz, 6H), 0.76 – 0.68 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 221.13, 154.43, 131.68, 118.70, 77.51, 68.12, 54.25, 51.33, 47.73, 44.58, 36.59, 35.80, 35.57, 34.98, 33.78, 31.49, 30.76, 28.22, 27.30, 21.73, 20.44, 13.79, 12.14. HRMS (ESI+): calcd for C₂₃H₃₅O₄⁺ (M+H) 375.2530, found 375.2517.

Allyl pent-4-en-1-yl carbonate (S4): According to the general procedure, pent-4-en-1-ol (0.52 mL, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil (842.5 mg, 99%); ¹H NMR (600 MHz, CDCl₃) δ 5.94 (ddt, *J* = 16.2, 10.5, 5.8 Hz, 1H), 5.80 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.37 (ddd, *J* = 17.2, 2.9, 1.5 Hz, 1H), 5.27 (ddd, *J* = 10.4, 2.4, 1.2 Hz, 1H), 5.03 (dddd, *J* = 26.4, 10.2, 3.2, 1.4 Hz, 2H), 4.63 (dt, *J* = 5.8, 1.4 Hz, 2H), 4.16 (t, *J* = 6.6 Hz, 2H), 2.15 (dd, *J* = 14.8, 6.8 Hz, 2H), 1.86 – 1.72 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 154.99, 137.18, 131.61, 118.78, 115.41, 68.29, 67.39, 29.73, 27.78. HRMS (ESI+): calcd for C₉H₁₅O₃⁺ (M+H) 171.1016, found 171.1009.

Allyl cyclohex-2-en-1-yl carbonate (S5): According to the general procedure, cyclohex-2-en-1-ol (1.04 g, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil liquid (930.1 mg, 99%); ¹H NMR (600 MHz, CDCl₃) δ 5.96 (ddt, J = 16.4, 10.9, 4.7 Hz, 2H), 5.80 – 5.75 (m, 1H), 5.36 (d, J = 17.4 Hz, 1H), 5.26 (d, J = 10.4 Hz, 1H), 5.13 (d, J = 3.0 Hz, 1H), 4.63 (t, J = 5.3 Hz, 2H), 2.13 – 2.06 (m, 1H), 2.03 – 1.95 (m, 1H), 1.93 – 1.87 (m, 1H), 1.86 – 1.80 (m, 1H), 1.80 – 1.72 (m, 1H), 1.68 – 1.59 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.69, 133.35, 131.75, 124.91, 118.71, 71.91, 68.21, 28.19, 24.83, 18.56. HRMS (EI): calcd for C₁₀H₁₄O₃ 182.0943, found 182.0945.

Allyl ((S)-2-((2R,8R,8aS)-8,8a-dimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2vl)propvl) **(S6):** According general carbonate to the procedure, (S)-2-((2R,8R,8aS)-8,8a-dimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propan-1-ol (200.1 mg, 0.90 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 80:1) as a colorless oil (222.0 mg, 80%); ¹H NMR (600 MHz, CDCl₃) δ 5.99 – 5.90 (m, 1H), 5.38 - 5.34 (m, 1H), 5.33 - 5.30 (m, 1H), 5.29 - 5.25 (m, 1H), 4.64 - 4.61 (m, 2H), 4.18 – 4.12 (m, 1H), 4.01 – 3.95 (m, 1H), 2.31 – 2.20 (m, 1H), 2.11 – 1.98 (m, 2H),

1.96 – 1.88 (m, 1H), 1.82 – 1.74 (m, 1H), 1.73 – 1.64 (m, 3H), 1.44 – 1.36 (m, 3H), 1.34 – 1.23 (m, 1H), 1.07 – 0.98 (m, 1H), 0.93 – 0.85 (m, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 155.21, 143.24 (d, *J* = 2.8 Hz), 131.70, 119.98 (d, *J* = 4.8 Hz), 118.82 (d, *J* = 4.2 Hz), 71.43 (d, *J* = 29.3 Hz), 68.31 (d, *J* = 2.5 Hz), 42.87 (d, *J* = 273.3 Hz), 41.03 (d, *J* = 1.8 Hz), 37.72 (d, *J* = 25.1 Hz), 37.45 (d, *J* = 5.6 Hz), 34.81 (d, *J* = 29.6 Hz), 32.57 (d, *J* = 21.3 Hz), 30.79 (d, *J* = 291.9 Hz), 27.12 (d, *J* = 3.6 Hz), 25.84 (s), 18.45 (d, *J* = 1.2 Hz), 15.66 (d, *J* = 3.2 Hz), 13.49 (d, *J* = 56.5 Hz). HRMS (ESI+): calcd for C₁₉H₃₁O₃⁺ (M+H) 307.2268, found 307.2255.

Allyl (2-oxo-2H-chromen-6-yl) carbonate (S7): According to the general procedure, 6-hydroxy-2H-chromen-2-one (810.7 mg, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by flash chromatography (PE: EA= 60:1) as a white solid (923.0 mg, 75%); ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, *J* = 9.6 Hz, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.23 (d, *J* = 2.2 Hz, 1H), 7.15 (dd, *J* = 8.5, 2.3 Hz, 1H), 6.41 (d, *J* = 9.6 Hz, 1H), 6.01 (ddt, *J* = 16.4, 10.5, 5.9 Hz, 1H), 5.46 (dd, *J* = 17.2, 1.3 Hz, 1H), 5.37 (dd, *J* = 10.4, 1.0 Hz, 1H), 4.79 – 4.73 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 160.16, 154.61, 153.30, 152.55, 142.69, 130.67, 128.63, 119.99, 117.66, 116.77, 116.21, 109.88, 69.59. HRMS (ESI+): calcd for C₁₃H₁₁O₅⁺ (M+H) 247.0601, found 247.0595.

Allyl ((3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,

15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (**S8**): According to the general procedure, (3S,8R,9S,10R,13S,14S)-3-hydroxy-10,13-

dimethyl-1,2,3,4,7,8,9,10,11,12,13,14,15,16-tetradecahydro-17H-cyclopenta[a]phena nthren-17-one (810.7 mg, 5 mmol, 1.0 equiv.), pyridine (0.56 mL, 7 mmol, 1.40 equiv), allyl carbonochloridate (0.64 mL, 6 mmol, 1.2 equiv.) in THF (5 mL) were used. After overnight, the product was isolated by recrystallization as white solid (965.0 mg, 65%); ¹H NMR (600 MHz, CDCl₃) 5.98 - 5.90 (m, 1H), 5.43 (d, J = 5.2 Hz, 1H), 5.36 (d, J = 17.1 Hz, 1H), 5.27 (d, J = 10.2 Hz, 1H), 4.62 (d, J = 5.8 Hz, 2H), 4.52 - 4.45 (m, 1H), 2.50 - 2.43 (m, 2H), 2.42 - 2.37 (m, 1H), 2.15 - 2.04 (m, 2H), 2.00 - 1.93 (m, 2H), 1.92 - 1.83 (m, 2H), 1.72 - 1.64 (m, 4H), 1.59 - 1.47 (m, 2H), 1.32 - 1.27 (m, 2H), 1.15 (t, J = 13.8 Hz, 1H), 1.04 (s, 3H), 1.04 - 1.00 (m, 1H), 0.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 220.95, 154.33, 139.62, 131.67, 122.17, 118.81, 77.65, 68.22, 51.71, 50.12, 47.52, 38.00, 36.81, 36.69, 35.84, 31.46, 31.41, 30.79, 27.67, 21.88, 20.34, 19.31, 13.56; HRMS (ESI+): calcd for C₂₃H₃₃O₄⁺ (M+H) 373.2373, found 373.2351.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (1)

According to the general procedure, allyl heptanoate (38.5 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a pale-yellow oil (102.4 mg, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.6 Hz, 2H), 7.52 (d, *J* = 8.6 Hz, 2H), 4.42 (dd, *J* = 10.8, 6.1 Hz, 1H), 4.29 –

4.20 (m, 1H), 4.15-4.17 (m, 1H), 3.10 - 2.90 (m, 1H), 2.41 - 2.26 (m, 1H), 2.22 (t, J = 7.6 Hz, 2H), 1.57 - 1.47 (m, 2H), 1.35 (s, 9H), 1.29 - 1.21 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.05 (t, J = 9.5 Hz, 3F), -112.25 - -112.71 (m, 2F), -124.16 - -124.57 (m, 2F), -125.80 - -126.13 (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 197.41, 173.43, 157.86, 133.02, 128.55, 125.93, 64.41, 38.25, 35.22, 34.01, 31.38, 31.02, 29.41 (t, J = 21.4 Hz), 28.70, 24.69, 22.42, 13.97. HRMS (ESI+): calcd for C₂₅H₃₂F₉O₃⁺ (M+H) 551.2202, found 551.2199.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl benzoate (2)

According to the general procedure, allyl benzoate (30.9 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a White solid (96.5 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.56 – 7.54 (m, 3H), 7.40 – 7.37 (m, 2H), 4.64 – 4.62 (m, 1H), 4.49 – 4.44 (m, 2H), 3.19 – 3.09 (m, 1H), 2.49 – 2.40 (m, 1H), 1.36 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, *J* = 8.3 Hz, 3F), -109.51 – -115.82 (m, 2F), -124.29 (s, 2F), -125.95 (d, *J* = 10.2 Hz, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 197.55, 165.96, 157.84, 133.28, 133.15, 129.54, 129.22, 128.56, 128.35, 125.91, 65.31, 38.17, 35.16, 30.97, 29.51 (t, *J* = 21.4 Hz). HRMS (ESI+): calcd for C₂₅H₂₄F₉O₃⁺ (M+H) 543.1576, found 543.1578.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl acetate (3)

According to the general procedure, allyl acetate (21.6 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 23 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a White solid (81.4 mg, 85%); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 4.46-4.40 (m, 1H), 4.29 – 4.22 (m, 1H), 4.18-4.15 (m, 1H), 3.09 – 2.93 (m, 1H), 2.43 – 2.28 (m, 1H), 2.01 (s, 3H), 1.37 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.07 (t, *J* = 9.5 Hz, 3F), -112.28 – -112.73 (m, 2F), -124.32 (d, *J* = 5.6 Hz, 2F), -125.81 – -126.08 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.32, 170.58, 157.88, 132.96, 128.51, 125.93, 64.54, 38.22, 35.21, 30.99, 29.44 (t, *J* = 21.4 Hz), 20.56. HRMS (ESI+): calcd for C₂₀H₂₂F₉O₃⁺ (M+H) 481.1420, found 481.1423.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl 2-phenoxyacetate (4)

According to the general procedure, allyl 2-phenoxyacetate (34.9 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (4 mL) were used. After 36 h, the product was isolated by flash chromatography (PE: EA= 20:1) as a pale-yellow oil liquid (82.1 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.4 Hz, 2H), 7.27 (t, *J* = 7.9 state)

Hz, 2H), 6.99 (t, J = 7.3 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 4.55 (d, J = 4.1 Hz, 2H), 4.54 – 4.50 (m, 1H), 4.31 – 4.22 (m, 2H), 3.06 – 2.80 (m, 1H), 2.38 – 2.20 (m, 1H), 1.34 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.00 (t, J = 9.6 Hz, 3F), -110.41 – -113.54 (m, 2F), -124.22 (s, 2F), -125.80 – -126.12 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 196.95, 168.69, 158.04, 157.58, 132.84, 129.60, 128.55, 126.01, 121.91, 114.49, 65.13, 64.96, 38.15, 35.23, 30.99, 29.48 (t, J = 21.7 Hz). HRMS (ESI+): calcd for C₂₆H₂₆F₉O₄⁺ (M+H) 573.1682, found 573.1688.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl pivalate (5)

According to the general procedure, allyl pivalate (34.2 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 40:1) as a pale-yellow liquid (74.1 mg, 71%); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 4.42 – 4.39 (m, 1H), 4.29 – 4.26 (m, 1H), 4.10 - 4.07 (m, 1H), 3.09 – 2.98 (m, 1H), 2.36 – 2.27 (m, 1H), 1.35 (s, 9H), 1.09 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.08 (t, *J* = 9.6 Hz, 3F), -112.42 – -113.06 (m, 2F), -124.46 (d, *J* = 3.0 Hz, 2F), -125.84 – -126.16 (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 197.43, 178.08, 157.86, 133.15, 128.56, 125.92, 64.62, 38.74, 38.26, 35.20, 31.00, 29.31 (t, *J* = 21.3 Hz), 26.88. HRMS (ESI+): calcd for C₂₃H₂₈F₉O₃⁺ (M+H) 523.1889, found 523.1891.

2-(4-(tert-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl benzyl(phenyl)carba

mate (6)

According to the general procedure, **S1** (46.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 eqiuv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 20:1) as a pale-yellow liquid (108.9 mg, 84%); ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.33 – 7.25 (m, 4H), 7.20 – 7.11 (m, 5H), 6.85 – 6.84 (m, 1H), 4.82 – 4.77 (m, 2H), 4.49 – 4.47 (m, 1H), 4.34 – 4.29 (m, 1H), 4.17 – 4.13 (m, 1H), 2.92 – 2.90 (m, 1H), 2.25 – 2.10 (m, 1H), 1.38 (s, 9H);); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.05 (t, J = 9.4 Hz, 3F), -111.83 – -113.22 (m, 2F), -124.42 (s, 2F), -125.86 – -126.08 (m, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 197.56, 157.60, 154.98, 137.30, 133.08, 128.86, 128.51, 128.43, 128.24, 128.20, 127.42, 127.20, 126.97, 125.85, 66.04, 54.39, 38.39, 35.14, 30.98, 29.22 (t, J = 21.3 Hz). HRMS (ESI+): calcd for C₃₂H₃₁F₉NO₃⁺ (M+H) 648.2155, found 648.2151.

2-(2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl)isoindoline-1,3-dio ne (7)

According to the general procedure, 2-allylisoindoline-1,3-dione (37.5 mg, 0.20 mmol, 1.0 equiv.), C_4F_9I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.4 mmol, 0.02 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 s13

equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 6:1) as a pale-yellow solid (54.4 mg, 49%); ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.4 Hz, 2H), 7.82 – 7.81 (m, 2H), 7.72 – 7.71 (m, 2H), 7.47 (d, J = 8.4 Hz, 2H), 4.44 – 4.41 (m, 1H), 3.99 – 3.96 (m, 1H), 3.90 – 3.86 (m, 1H), 3.24 – 3.14 (m, 1H), 2.33 – 2.24 (m, 1H), 1.29 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.09 (t, J = 9.4 Hz, 3F), -111.70 – -113.53 (m, 2F), -124.28 – -124.35 (m, 2F), -126.01 (t, J = 12.7 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 197.53, 167.97, 157.71, 134.21, 132.92, 131.56, 128.60, 125.81, 123.43, 40.15, 37.88, 35.10, 30.93, 30.03 (t, J = 21.6 Hz). HRMS (ESI+): calcd for C₂₆H₂₃F₉NO₃⁺ (M+H) 568.1529, found 568.1527.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl diethyl phosphate (8)

According to the general procedure, allyl diethyl phosphate (35.6 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (4 mL) were used. After 36 h, the product was isolated by flash chromatography (PE: EA= 5:1) as a brown liquid (61.2 mg, 54%); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 4.36 – 4.27 (m, 2H), 4.13 – 4.07 (m, 3H), 4.04 – 3.98 (m, 2H), 3.01 – 2.90 (m, 1H), 2.47 – 2.38 (m, 1H), 1.35 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.10 (t, *J* = 9.4 Hz, 3F), -111.59 – -113.30 (m, 2F), -124.36 – -124.49 (m, 2F), -125.99 (s, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 197.07, 157.90, 132.91, 128.54,

125.90, 67.20, 64.06, 39.56, 35.17, 30.94, 29.15 (t, J = 21.3 Hz), 15.92. HRMS (ESI+): calcd for C₂₂H₂₉F₉O₅P⁺ (M+H) 575.1603, found 575.1601.

1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(2-(phenylsulfonyl)ethyl)he ptan-1-one (9)

According to the general procedure, (but-3-en-1-ylsulfonyl)benzene (33.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (8.8 mg, 0.04 mmol, 0.2 equiv), dtbbpy (21.5 mg, 0.08 mmol, 0.4 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 10:1) as a pale-yellow liquid (47.2 mg, 42%); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.85 – 7.81 (m, 2H), 7.66 (t, *J* = 7.5 Hz, 1H), 7.59 – 7.46 (m, 4H), 4.16 – 4.12 (m, 1H), 3.08 – 2.96 (m, 2H), 2.88 – 2.75 (m, 1H), 2.25 – 2.17 (m, 1H), 2.14 – 2.03 (m, 2H), 1.36 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.02 (t, *J* = 9.6 Hz, 3F), -112.24 – -112.57 (m, 2F), -124.31 (s, 2F), -125.78 – -126.06 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 199.19, 158.15, 138.54, 133.98, 132.59, 129.40, 128.50, 128.00, 126.09, 52.95, 36.13, 35.25, 32.40, 32.26 (t, *J* = 21.4 Hz), 25.88. HRMS (ESI+): calcd for C₂₅H₂₆F₉O₃S⁺ (M+H) 577.1453, found 577.1456.

1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-phenoxyheptan-1-one (10)

According to the general procedure, (vinyloxy)benzene (24.6 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 100:1) as a pale-yellow liquid (63.2 mg, 63%); ¹H NMR (600 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.57 – 7.52 (m, 2H), 7.33 – 7.26 (m, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 2H), 5.84 - 5.82 (m, 1H), 2.98 – 2.77 (m, 2H), 1.37 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.00 (t, *J* = 9.5 Hz, 3F), -112.70 (s, 2F), -124.25 (s, 2F), -125.81 – -125.97 (m, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 194.51, 158.39, 156.69, 130.81, 129.73, 128.84, 126.11, 122.22, 115.38, 72.86, 35.29, 33.41 (t, *J* = 21.4 Hz), 30.94. HRMS (ESI+): calcd for C₂₃H₂₂F₉O₂⁺ (M+H) 501.1471, found 501.1471.

1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(4-methoxyphenoxy)hepta n-1-one (11)

According to the general procedure, 1-methoxy-4-(vinyloxy)benzene (30.6 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 30:1) as a pale-yellow liquid (80.6 mg, 76%); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 8.4 Hz, 2H), 6.86 – 6.78 (m, 4H), 5.70 – 5.68 (m, 1H), 3.73 (s, 3H), 2.89 – 2.74 (m, 2H), 1.34 (s, 9H); ¹⁹F NMR

(564 MHz, CDCl₃) δ -81.02 (t, J = 9.2 Hz, 3F), -111.93 – -113.49 (m, 2F), -124.27 (s, 2F), -125.90 (s, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 194.88, 158.29, 154.88, 150.84, 130.97, 128.86, 126.05, 116.89, 114.76, 73.96, 55.57, 35.27, 33.42 (t, J = 21.4 Hz), 30.94. HRMS (ESI+): calcd for C₂₄H₂₄F₉O₃⁺ (M+H) 531.1576, found 531.1579.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl methyl carbonate (12)

According to the general procedure, allyl methyl carbonate (22.6 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 eqiuv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 20:1) as a pale-yellow oil (93.2 mg, 94%); ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 4.50 – 4.47 (m, 1H), 4.29 – 4.27 (m, 1H), 4.17 – 4.14 (m, 1H), 3.77 (s, 3H), 3.04 – 2.94 (m, 1H), 2.43 – 2.34 (m, 1H), 1.35 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, *J* = 9.6 Hz, 3F), -111.80 – -113.32 (m, 2F), -124.31 (s, 2F), -125.92 – -126.03 (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 196.83, 157.97, 155.29, 132.78, 128.55, 125.97, 67.55, 55.08, 38.33, 35.22, 30.99, 29.39 (t, *J* = 21.4 Hz). HRMS (ESI+): calcd for C₂₀H₂₂F₉O₄⁺ (M+H) 497.1369, found 497.1374.

4-Bromo-3-chlorophenyl (2-(4-(*tert*-butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl) carbonate (13)

S17

According to the general procedure, **S2** (55.5 mg, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 22 h, the product was isolated by flash chromatography (PE: EA= 15:1) as a pale-yellow solid (99.5 mg, 74%); ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.28 (s, 1H), 6.95 – 6.93 (m, 1H), 4.64 – 4.61 (m, 1H), 4.44 – 4.33 (m, 2H), 3.12 – 2.97 (m, 1H), 2.49 – 2.41 (m, 1H), 1.38 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.06 (t, *J* = 9.5 Hz, 3F), -112.33 – -112.51 (m, 2F), -124.26 (s, 2F), -125.87 – -126.05 (m, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 194.09, 155.69, 150.00, 147.55, 132.60, 131.56, 130.19, 126.05, 123.54, 120.64, 118.22, 117.27, 66.06, 35.45, 32.70, 28.42, 26.98 (t, *J* = 21.7 Hz). HRMS (ESI+): calcd for C₂₅H₂₂BrClF₉O4⁺ (M+H) 671.0241, found 671.0232.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl (1,7,7-trimethylbicycle[2.2.1]heptan-2-yl) carbonate (14)

According to the general procedure, allyl ((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) carbonate (38.1 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 30:1) as a pale-yellow liquid (95.3 mg, 77%); ¹H NMR (600 MHz, CDCl₃) δ 8.00 – 7.98 (m, 2H), 7.56 – 7.49 (m, 2H), 4.81 – 4.76 (m, 1H), 518

4.48 -4.44 (m, 1H), 4.38 – 4.28 (m, 1H), 4.14 – 4.09 (m, 1H), 3.04 – 2.96 m, 1H), 2.46 – 2.28 (m, 2H), 1.89 – 1.81 (m, 1H), 1.76 – 1.69 (m, 1H), 1.67 (t, J = 4.5 Hz, 1H), 1.35 (s, 9H), 1.28 – 1.17 (m, 2H), 1.02 – 0.99 (m, 1H), 0.88 – 0.86 (m, 6H), 0.83 – 0.82 (m, 3H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.02 (t, J = 9.5 Hz, 3F), -111.58 – -113.05 (m, 2F), -124.27 (s, 2F), -125.87 – -126.01 (m, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 197.06, 157.89, 155.10, 132.92, 128.58, 125.96, 84.56, 67.31, 48.89, 47.94, 44.68, 38.34, 36.28, 35.22, 31.00, 29.44 (t, J = 21.6 Hz), 27.84, 26.74, 19.64, 18.77, 13.32. HRMS (ESI+): calcd for C₂₉H₃₉F₉NO₄⁺ (M+NH₄) 636.2730, found 636.2721.

2-(4-(tert-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl

(10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (15)

According to the general procedure, **S3** (74.8 mg, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 6:1) as a pale-yellow solid (101.2 mg, 67%); ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 4.58 – 4.50 (m, 1H), 4.49 – 4.43 (m, 1H), 4.34 – 4.27 (m, 1H), 4.17 – 4.09 (m, 1H), 3.08 – 2.94 (m, 1H), 2.47 – 2.33 (m, 2H), 2.11 – 2.03 (m, 1H), 1.96 – 1.73 (m, 6H), 1.69 – 1.63 (m, 2H), 1.56 – 1.48 (m, 3H), 1.41 – 1.37 (m, 1H), 1.35 (s, 9H), 1.32 – 1.24 (m, 4H), 1.21 – 1.14 (m, 1H), 1.05 – 0.97 (m, 2H), 519

0.86 (s, 3H), 0.83 (s, 3H), 0.74 – 0.67 (m, 1H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.97 – -81.17 (m, 3F), -111.55 – -113.36 (m, 2F), -124.28 (s, 2F), -125.87 – -126.10 (m, 3F). ¹³C NMR (150 MHz, CDCl₃) δ 221.07, 196.88, 157.87, 154.18, 132.81, 128.53, 125.93, 78.12, 67.20, 54.23, 51.32, 47.72, 44.55, 38.30, 36.53, 35.78, 35.53, 35.18, 34.97, 33.62, 31.47, 30.98, 30.73, 29.37 (t, *J* = 20.5 Hz), 28.18, 27.14, 21.72, 20.43, 13.76, 12.10. HRMS (ESI+): calcd for C₃₈H₄₈F₉O₅⁺ (M+H) 755.3353, found 755.3372.

2-Benzoyl-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (16)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), benzoyl chloride (34.8 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 22 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a pale-yellow oil liquid (80.1 mg, 81%); ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.7 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 2H), 4.45-4.41 (m, 1H), 4.31-4.25 (m, 1H), 4.19-4.14 (m, 1H), 3.08 – 2.95 (m, 1H), 2.41 – 2.32 (m, 1H), 2.24 (t, *J* = 7.8 Hz, 2H), 1.56 – 1.50 (m, 2H), 1.30 – 1.24 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.03 (t, *J* = 9.5 Hz, 3F), -112.43 (dd, *J* = 26.1, 13.1 Hz, 2F), -124.33 (s, 2F), -125.62 – -126.25 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 198.03, 173.37, 135.68, 133.95, 128.96, 128.53, 64.37, 38.30, 33.99, 31.37, 29.48 (t, *J* = 21.3 Hz), 28.69, 24.68, 22.42, 14.00. HRMS (ESI+): calcd for C₂₁H₂₄F₉O₃⁺ (M+H) 495.1576, found 495.1581.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-methylbenzoyl)heptyl heptanoate (17)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-methylbenzoyl chloride (39.7 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 50:1) as a colorless oil (74.1 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.43-4.36 (m, 1H), 4.27 – 4.19 (m, 1H), 4.16-4.10 (m, 1H), 3.09 – 2.87 (m, 1H), 2.43 (s, 3H), 2.38 – 2.27 (m, 1H), 2.22 (t, *J* = 7.6 Hz, 2H), 1.56 – 1.45 (m, 2H), 1.28 – 1.20 (m, 6H), 0.87 (t, *J* = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.06 (t, *J* = 9.5 Hz, 3F), -112.02 – -112.93 (m, 2F), -124.17 – -124.58 (m, 2F), -125.79 – -126.14 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.52, 173.34, 144.95, 133.22, 129.62, 128.66, 64.45, 38.17, 34.00, 31.37, 29.51 (t, *J* = 21.5 Hz), 28.69, 24.68, 22.40, 21.67, 13.95. HRMS (ESI+): calcd for C₂₂H₂₆F₉O₃⁺ (M+H) 509.1733, found 509.1708.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-fluorobenzoyl)heptyl heptanoate (18)

According to the general procedure, allyl heptanoate (38.5 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-fluorobenzoyl chloride (35.5 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 40 h, the product was isolated by flash chromatography (PE: S21

EA= 50:1) as a pale-yellow oil liquid (76.8 mg, 75%); ¹H NMR (600 MHz, CDCl₃) δ 8.06 (dd, J = 8.6, 5.4 Hz, 2H), 7.18 (t, J = 8.5 Hz, 2H), 4.42-4.36 (m, 1H), 4.27 – 4.21 (m, 1H), 4.23-4.17 (m, 1H), 4.13-4.08 (m, 1H), 3.04 – 2.91 (m, 1H), 2.39 – 2.27 (m, 1H), 2.22 (t, J = 7.5 Hz, 2H), 1.54 – 1.46 (m, 2H), 1.27 – 1.21 (m, 6H), 0.86 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.09 (t, J = 9.5 Hz, 3F), -103.46 – -103.61 (m, 1F), -112.08 – -112.98 (m, 2F), -124.39 (d, J = 9.3 Hz, 2F), -125.89 – -126.21 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.61, 173.50, 166.42 (d, J = 256.5 Hz), 132.33 (d, J = 2.9 Hz), 131.44 (d, J = 9.5 Hz), 116.28 (d, J = 22.0 Hz), 64.49, 38.46, 34.11, 31.50, 29.75 (t, J = 21.4 Hz), 28.82, 24.83, 22.53, 14.06. HRMS (ESI+): calcd for C₂₁H₂₃F₁₀O₃⁺ (M+) 513.1482, found 513.1487.

Methyl 4-(4,4,5,5,6,6,7,7,7-nonafluoro-2-((heptanoyloxy)methyl)heptanoyl)

Benzoate (19)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), methyl 4-(chlorocarbonyl) benzoate (32.1 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (4 mL) were used. After 26 h, the product was isolated by flash chromatography (PE: EA= 40:1) as a pale-yellow solid (54.1 mg, 49%); ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, *J* = 8.2 Hz, 2H), 8.08 (d, *J* = 8.2 Hz, 2H), 4.43 – 4.37 (m, 1H), 4.30 – 4.24 (m, 1H), 4.21-4.17 (m, 1H), 3.98 (s, 3H), 3.07 – 2.93 (m, 1H), 2.42 – 2.31 (m, 1H), 2.22 (t, *J* = 7.2 Hz, 2H), 1.53 – 1.48 (m, 2H), 1.27 – 1.22 (m, 6H), 0.88 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, *J* = 9.4 Hz, 3F), -112.13 – -112.50 (m, 2F), -124.35 (d, *J* = 6.1 Hz, 2F), -125.97 (s, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.84,

173.22, 165.96, 138.97, 134.59, 130.09, 128.40, 64.23, 52.53, 38.69, 33.93, 29.69, 29.60 (t, J = 21.3 Hz), 28.66, 24.65, 22.38, 13.93. HRMS (ESI+): calcd for $C_{23}H_{26}F_9O_5^+$ (M+H) 553.1631, found 553.1650.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-fluoro-3-methylbenzoyl)heptyl heptanoate (20)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-fluoro-3-methylbenzoyl chloride (41.3 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 70:1) as a colorless oil liquid (77.8 mg, 74%); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.2 Hz, 1H), 7.91 – 7.87 (m, 1H), 7.14 (t, *J* = 8.8 Hz, 1H), 4.43-4.39 (m, 1H), 4.25 – 4.19 (m, 1H), 4.16-4.11 (m, 1H), 3.08 – 2.90 (m, 1H), 2.37 (s, 3H), 2.35 – 2.27 (m, 1H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.57 – 1.49 (m, 2H), 1.30 – 1.22 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (s, 3F), -107.53 – -107.78 (m, 1F), -111.87 – -113.23 (m, 2F), -124.40 (s, 2F), -126.01 (s, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.65, 173.35, 165.77, 164.08, 132.43 (d, *J* = 6.8 Hz), 131.82 (d, *J* = 3.2 Hz), 128.59 (d, *J* = 9.5 Hz), 125.96 (d, *J* = 18.0 Hz), 64.38, 38.22, 34.00, 31.38, 29.53 (t, *J* = 21.2 Hz), 28.69, 24.70, 22.40, 14.61 (d, *J* = 3.1 Hz), 13.96. HRMS (ESI+): calcd for C₂₂H₂₅F₁₀O₃⁺ (M+H) 527.1639, found 527.1642.

2-(3-Chlorobenzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (21)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 3-chlorobenzoyl chloride (38.4 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (4 mL) were used. After 40 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a pale-yellow oil liquid (66.5 mg, 63%); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.49 (t, *J* = 7.9 Hz, 1H), 4.42 – 4.36 (m, 1H), 4.23 – 4.19 (m, 1H), 4.19 – 4.12 (m, 1H), 3.07 – 2.92 (m, 1H), 2.41 – 2.30 (m, 1H), 2.24 (t, *J* = 7.2 Hz, 2H), 1.57 – 1.49 (m, 2H), 1.29 – 1.22 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.11 (t, *J* = 9.4 Hz, 3F), -112.42 (dt, *J* = 26.1, 11.9 Hz, 2F), -124.40 (d, *J* = 9.5 Hz, 2F), -125.87 – -126.15 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.96, 173.24, 137.31, 135.39, 133.83, 130.24, 128.58, 126.56, 64.24, 38.55, 33.96, 31.35, 29.58 (t, *J* = 21.3 Hz), 28.68, 24.67, 22.39, 13.94. HRMS (ESI+): calcd for C₂₁H₂₃ClF₉O₃⁺ (M+H) 529.1187, found 529.1191.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(3-fluoro-4-methylbenzoyl)heptyl heptanoate (22)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 3-fluoro-4-methylbenzoyl chloride (42.7 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 27 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil liquid (87.9 mg, 83%); ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.67 (d, *J* = 10.1 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 1H), 4.41-4.37 (m, 1H), 4.22 – 4.18 (m, 1H), 4.18-4.14 (m, 1H), 3.07-2.89 (m, 1H), 2.38 (s, 3H), 2.35

- 2.27 (m, 1H), 2.25 (t, J = 7.5 Hz, 2H), 1.57 - 1.50 (m, 2H), 1.30 - 1.22 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.04 (t, J = 9.4 Hz, 3F), -111.77 - -113.31 (m, 2F), -115.48 (t, J = 8.6 Hz, 1F), -124.34 (d, J = 6.7 Hz, 2F), -125.94 (t, J = 15.8 Hz, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.69 (d, J = 1.8 Hz), 173.31, 161.40 (d, J = 247.3 Hz), 135.39 (d, J = 6.3 Hz), 132.07, 131.92 (d, J = 5.0Hz), 124.11 (d, J = 3.2 Hz), 114.89 (d, J = 23.5 Hz), 64.34, 38.31, 33.97, 31.37, 29.53 (t, J = 21.3 Hz), 28.69, 24.68, 22.40, 14.90 (d, J = 3.3 Hz), 13.95. HRMS (ESI+): calcd for C₂₂H₂₅F₁₀O₃⁺ (M+H) 527.1639, found 527.1641.

2-(3,5-Dimethylbenzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (23)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 3,5-dimethylbenzoyl chloride (47.9 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil (77.3 mg, 74%); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (s, 2H), 7.26 (s, 1H), 4.41-4.37 (m, 1H), 4.26 – 4.20 (m, 1H), 4.18-4.14 (m, 1H), 3.05 – 2.92 (m, 1H), 2.39 (s, 6H), 2.36 – 2.27 (m, 1H), 2.22 (t, *J* = 7.5 Hz, 2H), 1.55 – 1.48 (m, 2H), 1.28 – 1.19 (m, 6H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.09 (t, *J* = 9.6 Hz, 3F), -112.48 – -112.65 (m, 2F), -124.43 (s, 2F), -125.94 – -126.16 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 198.25, 173.34, 138.62, 135.74, 135.63, 126.29, 64.43, 38.36, 34.03, 31.38, 29.39 (t, *J* = 21.4 Hz), 28.71, 24.70, 22.41, 21.24, 13.97. HRMS (ESI+): calcd for C₂₃H₂₈F₉O₃⁺ (M+H) 523.1889, found 523.1891.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-methoxybenzoyl)heptyl heptanoate (24)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-methoxybenzoyl chloride (40.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (4 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a pale-yellow oil liquid (64.1 mg, 61%); ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 4.45-4.40 (m, 1H), 4.28 – 4.20 (m, 1H), 4.15-4.10 (m, 1H), 3.91 (s, 3H), 3.07 – 2.93 (m, 1H), 2.40 – 2.29 (m, 1H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.57 – 1.50 (m, 2H), 1.30 – 1.22 (m, 6H), 0.89 (t, *J* = 6.9 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.04 (t, *J* = 9.4 Hz, 3F), -112.43 – -112.61 (m, 2F), -124.34 (s, 2F), -125.89 – -126.06 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.25, 173.42, 164.22, 130.95, 128.66, 114.12, 64.56, 55.52, 37.93, 34.02, 31.38, 29.52 (t, *J* = 21.2 Hz), 28.69, 24.70, 22.40, 13.95. HRMS (ESI+): calcd for C₂₂H₂₆F₉O₄⁺ (M+H) 525.1682, found 525.1684.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(2-methylbenzoyl)heptyl heptanoate (25)

According to the general procedure, allyl heptanoate (38.5 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 2-methylbenzoyl chloride (39.1 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2

mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil liquid (55.3 mg, 54%); ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 7.7 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 7.7 Hz, 1H), 4.40-4.35 (m, 1H), 4.2-4.15 (m, 1H), 4.13 – 4.07 (m, 1H), 3.09 – 2.95 (m, 1H), 2.49 (s, 3H), 2.35 – 2.28 (m, 1H), 2.22 (t, *J* = 7.5 Hz, 2H), 1.56 – 1.50 (m, 2H), 1.31 – 1.24 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.08 (t, *J* = 9.5 Hz, 3F), -111.86 – -113.40 (m, 2F), -124.41 (s, 2F), -125.95 (t, *J* = 9.6 Hz, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 201.06, 173.21, 139.07, 136.51, 132.17, 132.03, 128.36, 125.92, 64.34, 41.15, 33.91, 31.36, 29.11 (t, *J* = 21.3 Hz), 28.69, 24.65, 22.40, 20.96, 13.93. HRMS (ESI+): calcd for C₂₂H₂₆F₉O₃⁺ (M+H) 509.1733, found 509.1707.

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C_4F_9I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(trifluoromethyl)benzoyl chloride (44.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (8.8 mg, 0.04 mmol, 0.2 equiv), dtbbpy (21.5 mg, 0.08 mmol, 0.4 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 80:1) as a colorless oil liquid (88.8 mg, 79%); ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.2 Hz, 2H), 7.81 (d, *J* = 8.2 Hz, 2H), 4.44-4.39 (m, 1H), 4.30 – 4.24 (m, 1H), 4.20-4.15 (m, 1H), 3.10 – 2.94 (m, 1H), 2.44 – 2.32 (m, 1H), 2.23 (t, *J* = 7.5 Hz, 2H), 1.55 – 1.48 (m, 2H), 1.30 – 1.22 (m, 6H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -63.33 (s, 3F), -81.07 (t, *J* = 9.6 Hz, 3F), -111.65 – -113.01 (m, 2F), -124.34 (d, *J* = 7.0 Hz, 2F), -125.96 (d, *J* = 10.9 Hz, 2F). ¹³C NMR (150 MHz,

CDCl₃) δ 197.38, 173.26, 138.46, 135.15 (q, *J* = 32.9 Hz), 128.85, 126.01 (q, *J* = 3.6 Hz), 123.42 (q, *J* = 272.8 Hz), 64.16, 38.71, 33.93, 31.33, 29.65 (t, *J* = 21.2 Hz), 28.66, 24.66, 22.38, 13.91. HRMS (ESI+): calcd for C₂₂H₂₃F₁₂O₃⁺ (M+H) 563.1450, found 563.1446.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(thiophene-2-carbonyl)heptyl heptanoate (27)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), thiophene-2-carbonyl chloride (32.1 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 70 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a yellow oil (72.1 mg, 72%); ¹H NMR (600 MHz, CDCl₃) δ 7.90 (d, *J* = 3.5 Hz, 1H), 7.76 (d, *J* = 4.6 Hz, 1H), 7.21 (t, *J* = 4.2 Hz, 1H), 4.47-4.42 (m, 1H), 4.22-4.17 (m, 1H), 4.11 – 4.04 (m, 1H), 3.04 – 2.91 (m, 1H), 2.40 – 2.31 (m, 1H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.58 – 1.51 (m, 2H), 1.30 – 1.25 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.06 (t, *J* = 9.6 Hz, 3F), -111.74 – -113.48 (m, 2F), -124.33 (d, *J* = 5.5 Hz, 2F), -125.89 – -126.04 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 190.36, 173.34, 142.99, 135.44, 133.08, 128.52, 64.52, 40.05, 34.00, 31.37, 29.48 (t, *J* = 21.4 Hz), 28.68, 24.67, 22.40, 13.95. HRMS (ESI+): calcd for C₁₉H₂₂F₉O₃S⁺ (M+H) 501.1140, found 501.1141.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(furan-2-carbonyl)heptyl heptanoate (28)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), furan-2-carbonyl chloride (29.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (8.8 mg, 0.04 mmol, 0.2 equiv), dtbbpy (21.5 mg, 0.08 mmol, 0.4 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 24 h, the product was isolated by flash chromatography (PE: EA= 40:1) as a pale-yellow oil (56.6 mg, 58%); ¹H NMR (600 MHz, CDCl₃) δ 7.67 (s, 1H), 7.37 (d, J = 3.5 Hz, 1H), 6.62 (t, J = 3.3 Hz, 1H), 4.40-4.36 (m, 1H), 4.31-4.26 (m, 1H), 4.08– 4.00 (m, 1H), 3.01 – 2.87 (m, 1H), 2.38 – 2.28 (m, 1H), 2.26 (t, J = 7.5 Hz, 2H), 1.59 – 1.52 (m, 2H), 1.32 – 1.23 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.09 (t, J = 9.6 Hz, 3F), -112.56 – -113.01 (m, 2F), -124.37 (s, 2F), -125.88 – -126.11 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 186.09, 173.31, 151.66, 147.47, 118.97, 112.82, 64.07, 39.16, 33.99, 31.38, 28.87 (t, J = 21.6 Hz), 28.70, 24.68, 22.42, 13.97. HRMS (ESI+): calcd for C₁₉H₂₂F₉O₄⁺ (M+H) 485.1369, found 485.1374.

4,4,5,5,6,6,7,7,7-Nonafluoro-2-(3-phenylpropanoyl)heptyl heptanoate (29)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 3-phenylpropanoyl chloride (44.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil liquid (43.8 mg, 42%); ¹H NMR (600 MHz, CDCl₃) δ 7.30 (t, *J* = 7.5 Hz, 2H), 7.24 – 7.19 (m, 3H), 4.25 – 4.18 (m, 2H), 3.28 – 3.22 (m, 1H), 3.00 – 2.86 (m, 4H), 2.84 – 2.72 (m, 1H), 2.27 (t, *J* = 7.6 Hz, 2H), 2.22 – 2.11 (m, 1H), s²²⁹

1.61 – 1.57 (m, 2H), 1.32 – 1.28 (m, 6H), 0.91 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.02 (t, J = 9.5 Hz, 3F), -112.35 – -112.98 (m, 2F), -124.38 (s, 2F), -125.85 – -126.10 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 207.06, 173.13, 140.55, 128.53, 128.28, 126.26, 63.60, 44.43, 43.45, 33.93, 31.39, 29.33, 28.90 (t, J = 21.8 Hz), 28.72, 24.74, 22.43, 13.94. HRMS (ESI+): calcd for C₂₃H₂₈F₉O₃⁺ (M+H) 523.1889, found 523.1993.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,6-heptafluorohexyl heptanoate (30)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), C₃F₇I (28.9 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 90:1) as a yellow oil (92.1 mg, 91%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 8.1 Hz, 2H), 4.47-4.41 (m, 1H), 4.31 – 4.23 (m, 1H), 4.16-4.12 (m, 1H), 3.10 – 2.92 (m, 1H), 2.40-2.28 (m, 1H), 2.24 (t, J = 7.2 Hz, 2H), 1.57 – 1.50 (m, 2H), 1.37 (s, 9H), 1.29 – 1.22 (m, 6H), 0.89 (t, J = 6.9 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.49 (t, J = 9.7 Hz, 3F), -110.93 – -115.79 (m, 2F), -127.65 – -127.76 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.43, 173.39, 157.83, 133.04, 128.52, 125.90, 64.42, 38.21, 35.21, 34.00, 31.37, 31.01, 29.27 (t, J = 21.3 Hz), 28.69, 24.68, 22.41, 13.96. HRMS (ESI+): calcd for C₂₄H₃₂F₇O₃⁺ (M+H) 501.2234, found 501.2236.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyl heptanoate (31)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), C₆F₁₃I (43.2 µL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 24 h, the product was isolated by flash chromatography (PE: EA= 80:1) as a yellow oil (111.1 mg, 85%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.6 Hz, 2H), 7.55 (d, *J* = 8.6 Hz, 2H), 4.47-4.42 (m, 1H), 4.30 – 4.24 (m, 1H), 4.15-4.11 (m, 1H), 3.10 – 2.95 (m, 1H), 2.41 – 2.29 (m, 1H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.57 – 1.51 (m, 2H), 1.37 (s, 9H), 1.30 – 1.23 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.79 (t, *J* = 10.0 Hz, 3F), -112.33 (dd, *J* = 27.9, 14.3 Hz, 2F), -121.86 (s, 2F), -122.90 (s, 2F), -123.44 (s, 2F), -126.18 (d, *J* = 14.6 Hz, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.38, 173.40, 157.82, 133.00, 128.54, 125.91, 64.40, 38.24, 35.20, 34.00, 31.38, 30.99, 29.48 (t, *J* = 21.2 Hz), 28.71, 24.69, 22.42, 13.95. HRMS (ESI+): calcd for C₂₇H₃₂F₁₃O₃⁺ (M+H) 651.2138, found 651.2138.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroun decyl heptanoate (32)

According to the general procedure, allyl heptanoate (38.5 μ L, 0.20 mmol, 1.0 equiv.), C₈F₁₇I (52.8 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, s₃₁ 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 24 h, the product was isolated by flash chromatography (PE: EA= 80:1) as a white solid (117.1 mg, 78%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 4.46-4.42 (m, 1H), 4.31 – 4.24 (m, 1H), 4.15-4.11 (m, 1H), 3.10 – 2.95 (m, 1H), 2.41 – 2.28 (m, 1H), 2.25 (t, *J* = 7.5 Hz, 2H), 1.57 – 1.50 (m, 2H), 1.37 (s, 9H), 1.30 – 1.23 (m, 6H), 0.89 (t, *J* = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.75 (t, *J* = 9.8 Hz, 3F), -112.15 – -112.45 (m, 2F), -121.63 (s, 2F), -121.95 (s, 4F), -122.75 (s, 2F), -123.38 (s, 2F), -126.15 (d, *J* = 12.7 Hz, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 197.37, 173.39, 157.81, 133.01, 128.53, 125.90, 64.40, 38.24, 35.19, 33.99, 31.38, 30.96, 29.47 (t, *J* = 21.3 Hz), 28.70, 24.69, 22.40, 13.91. HRMS (ESI+): calcd for C₂₉H₃₂F₁₇O₃⁺ (M+H) 751.2075, found 751.2071.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-henicos afluorotridecyl heptanoate (33)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), $C_{10}F_{21}I$ (129.2 mg, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN/DME(4:1) (2 mL) were used. After 48 h, the product was isolated by flash chromatography (PE: EA= 80:1) as a White solid (123.0 mg, 71%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 4.47-4.42 (m, 1H), 4.31 – 4.23 (m, 1H), 4.16-4.11 (m, 1H), 3.14 – 2.93 (m, 1H), 2.41 – 2.30 (m, 1H), 2.24 (t, *J* = 7.5 Hz, 2H), 1.57 – 1.49 (m, 2H), 1.37 (s, 9H), 1.30 – 1.23 (m, 6H), 0.88 (t,

J = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.95 (t, J = 9.6 Hz, 3F), -111.71 – -113.21 (m, 2F), -121.71 (s, 2F), -121.90 (s, 5F), -122.04 (s, 3F), -122.87 (s, 2F), -123.48 (s, 2F), -126.30 (s, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.37, 173.38, 157.80, 133.02, 128.52, 125.89, 64.40, 38.25, 35.18, 33.99, 31.37, 30.96, 29.49 (t, J =21.6 Hz), 28.70, 24.68, 22.39, 13.89. HRMS (ESI⁺): calcd for C₃₁H₃₂F₂₁O₃⁺ (M+H) 851.2011, found 851.2011.

2-(4-(tert-Butyl)benzoyl)-5-ethoxy-4,4-difluoro-5-oxopentyl heptanoate (34)

According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), ICF₂CO₂Et (29.4 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 40:1) as a yellow oil (73.3 mg, 81%); ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.1 Hz, 2H), 7.52 (d, J = 8.1 Hz, 2H), 4.42-4.37 (m, 1H), 4.31 – 4.21 (m, 2H), 4.21 – 4.17 (m, 1H), 4.16-4.12 (m, 1H), 2.96 – 2.83 (m, 1H), 2.39 – 2.28 (m, 1H), 2.22 (t, J = 7.2 Hz, 2H), 1.55 – 1.49 (m, 2H), 1.36 (s, 9H), 1.29 (t, J = 7.1 Hz, 3H), 1.26 – 1.23 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -104.39 (ddq, J = 260.5, 20.9, 13.0 Hz, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 198.12, 173.40, 163.68 (t, J = 32.4 Hz), 157.53, 133.40, 128.51, 125.79, 115.21 (t, J = 251.1 Hz), 64.66, 63.09, 39.24, 35.18, 34.02, 33.24 (t, J = 23.5 Hz), 31.38, 31.04, 28.71, 24.67, 22.43, 14.00, 13.79. HRMS (ESI+): calcd for C₂₅H₃₇F₂O₅⁺ (M+H) 455.2604, found 455.2607.

2-(4-(*tert*-Butyl)benzoyl)-4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl heptanoate (35)

According to the general procedure, allyl heptanoate (38.5 µL, 0.20 mmol, 1.0 equiv.), ICF(CF₃)₂ (28.5 µL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 24 h, the product was isolated by flash chromatography (PE: EA= 120:1) as a yellow oil (90.9 mg, 91%); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 2H), 7.54 (d, *J* = 7.9 Hz, 2H), 4.48-4.42 (m, 1H), 4.32 – 4.24 (m, 1H), 4.01-3.95 (m, 1H), 3.26 – 3.14 (m, 1H), 2.38 – 2.29 (m, 1H), 2.26 (t, *J* = 7.5 Hz, 2H), 1.59 – 1.53 (m, 2H), 1.37 (s, 9H), 1.30 – 1.24 (m, 6H), 0.90 (t, *J* = 6.8 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -76.95 (dt, *J* = 16.1, 7.6 Hz, 6F), -183.81 – -183.97 (m, 1F). ¹³C NMR (150 MHz, CDCl₃) δ 196.76, 173.40, 157.80, 132.83, 128.49, 125.91, 64.60, 39.57, 35.19, 33.96, 31.37, 30.99, 28.71, 26.29 (d, *J* = 19.3 Hz), 24.64, 22.42, 13.95. HRMS (ESI⁺): calcd for C₂₄H₃₂FrO₃⁺ (M+H) 501.2234, found 501.2241.

3-(4-(*tert*-Butyl)benzoyl)-5,5,6,6,7,7,8,8,8-nonafluorooctyl benzoate (36)

According to the general procedure, but-3-en-1-yl benzoate (35.6 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 27 h, the product was isolated by flash s34

chromatography (PE: EA= 60:1) as a colorless oil (97.9 mg, 88%); ¹H NMR (600 MHz, CDCl₃) δ 7.98 – 7.92 (m, 4H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 – 7.42 (m, 4H), 4.43 – 4.37 (m, 1H), 4.35 – 4.30 (m, 1H), 4.18 – 4.13 (m, 1H), 3.13 – 2.97 (m, 1H), 2.39 – 2.28 (m, 2H), 2.14 – 2.06 (m, 1H), 1.33 (s, 9H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, J = 9.6 Hz, 3F), -111.80 – -113.45 (m, 2F), -124.38 (s, 2F), -125.89 – -126.01 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 199.83, 166.12, 157.59, 133.09, 132.97, 129.74, 129.52, 128.40, 128.35, 125.82, 62.09, 35.24, 35.11, 32.50, 32.39 (t, J = 21.1 Hz), 30.97. HRMS (ESI+): calcd for C₂₆H₂₆F₉O₃⁺ (M+H) 557.1733, found 557.1706.

4-(4-(*tert*-Butyl)benzoyl)-6,6,7,7,8,8,9,9,9-nonafluorononyl benzoate (37)

According to the general procedure, pent-4-en-1-yl benzoate (37.7 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 23 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a white solid (65.4 mg, 57%); ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 2H), 7.95 (d, *J* = 8.6 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.44 (t, *J* = 7.8 Hz, 2H), 4.34 – 4.27 (m, 2H), 4.02 – 3.94 (m, 1H), 3.09 – 2.93 (m, 1H), 2.34 – 2.17 (m, 1H), 2.03 – 1.96 (m, 1H), 1.85 – 1.80 (m, 1H), 1.80 – 1.76 (m, 2H), 1.36 (s, 9H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.04 (t, *J* = 9.5 Hz, 3F), -111.77 – -113.21 (m, 2F), -124.35 (s, 2F), -125.87 – -126.00 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 200.20, 166.48, 157.53, 133.17, 133.01, 130.05,

129.54, 128.37, 128.36, 125.90, 64.05, 37.46, 35.17, 31.87 (t, J = 21.2 Hz), 31.02, 29.94, 25.96. HRMS (ESI⁺): calcd for C₂₇H₂₈F₉O₃⁺ (M+H) 571.1889, found 571.1855.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl pent-4-en-1-yl carbonate (41)

According to the general procedure, **S4** (36.0 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 eqiuv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a pale-yellow liquid (47.3 mg, 43%); ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 5.94 – 5.88 (m, 1H), 5.34 (dd, J = 17.2, 1.2 Hz, 1H), 5.26 (dd, J = 10.4, 0.8 Hz, 1H), 4.60 (d, J = 5.8 Hz, 2H), 4.10 (t, J = 6.0 Hz, 2H), 3.93 – 3.90 (m, 1H), 3.02 – 2.91 (m, 1H), 2.19 – 2.13 (m, 1H), 1.90 – 1.85 (m, 1H), 1.72 – 1.63 (m, 3H), 1.35 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, J = 9.6 Hz, 3F), -111.78 – -113.31 (m, 2F), -124.40 (s, 2F), -125.92 – -126.04 (m, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 200.22, 157.52, 154.86, 133.23, 131.44, 128.35, 125.89, 118.97, 68.45, 67.24, 37.32, 35.16, 32.05 (t, J = 21.1 Hz), 31.01, 29.82, 25.95. HRMS (ESI⁺): calcd for C₂₄H₂₈F₉O₄⁺ (M+H) 551.1838, found 551.1833.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl cyclohex-2-en-1-yl carbonate (42)

According to the general procedure, S5 (36.9 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 37 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a colorless oil (73.1 mg, 65%); ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.3 Hz, 2H), 6.03 - 5.97 (m, 1H), 5.77 - 5.71 (m, 1H), 5.17 - 5.07 (m, 1H), 4.52 – 4.46 (m, 1H), 4.37 – 4.29 (m, 1H), 4.22 – 4.07 (m, 1H), 3.12 – 2.96 (m, 1H), 2.51 – 2.35 (m, 1H), 2.13 – 2.07 (m, 1H), 2.03 – 1.97 (m, 1H), 1.91 – 1.85 (m, 1H), 1.83 – 1.77 (m, 1H), 1.76 – 1.70 (m, 1H), 1.67 – 1.59 (m, 1H), 1.37 (s, 9H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, J = 9.4 Hz, 3F), -112.19 - -112.63 (m, 2F), -124.27 (s, 2F), -125.97 (t, J = 11.3 Hz, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 196.95 (d, J = 5.3 Hz), 157.89 (d, J = 1.4 Hz), 154.43, 133.70 (d, J = 5.6 Hz), 132.86 (d, J = 2.7Hz), 128.58 (d, J = 2.8 Hz), 125.95, 124.48 (d, J = 3.6 Hz), 72.56, 67.30 (d, J = 3.2 Hz), 38.38, 35.21, 30.99, 29.42 (t, J = 21.6 Hz), 28.04 (d, J = 4.7 Hz), 24.77 (d, J =2.2 Hz), 18.46 (d, J = 6.1 Hz). HRMS (ESI+): calcd for C₂₅H₂₈F₉O₄⁺ (M+H) 563.1838, found 563.1833.

2-(4-(tert-Butyl)benzoyl)-3,3,4,4,5,5,6,6,6-nonafluorohexyl (2-8,8a-dimethyl

-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propyl) carbonate (43)

According to the general procedure, S6 (70.2 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN/DME (4:1) (4 mL) were used. After 48 h, the product was isolated by flash chromatography (hexanes: Et₂O= 60:1) as a colorless oil liquid (64.4 mg, 47%); ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 5.37 - 5.28 (m, 1H), 4.55 - 4.47 (m, 1H), 4.36 – 4.30 (m, 1H), 4.19 – 4.11 (m, 2H), 4.02 – 3.93 (m, 1H), 3.10 – 2.94 (m, 1H), 2.50 – 2.35 (m, 1H), 2.30 – 2.22 (m, 1H), 2.10 – 1.94 (m, 3H), 1.81 – 1.75 (m, 1H), 1.71 – 1.63 (m, 3H), 1.44 – 1.40 (m, 2H), 1.37 (s, 9H), 1.30 – 1.27 (m, 1H), 1.06 -0.96 (m, 1H), 0.94 - 0.90 (m, 4H), 0.90 - 0.87 (m, 5H), 0.84 - 0.75 (m, 1H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.03 (t, J = 9.3 Hz), -112.10 - -112.79 (m), -124.28 (s), -125.84 – -126.06 (m). ¹³C NMR (150 MHz, CDCl₃) δ 196.85, 157.94, 154.97, 143.15, 132.80, 128.58, 125.97, 120.06 (d, J = 4.8 Hz), 72.03 (d, J = 3.7 Hz), 71.85, 67.34, 43.73 (d, J = 3.1 Hz), 41.90 (d, J = 11.1 Hz), 41.05 (d, J = 2.1 Hz), 38.45, 37.38, 35.23, 32.11 (d, J = 111.5 Hz), 31.02, 29.39 (t, J = 21.7 Hz), 27.12 (d, J = 3.3 Hz), 25.85, 18.40, 15.64 (d, J = 4.4 Hz), 13.53 (d, J = 7.8 Hz), 13.25 (d, J = 3.3 Hz). HRMS (ESI+): calcd for $C_{34}H_{44}F_9O_4^+$ (M+H) 687.3090, found 687.3093.

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl(2-oxo-2H-chromen-6yl) carbonate (44)

According to the general procedure, S7 (49.2 mg, 0.20 mmol, 1.0 equiv.), C_4F_9I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol,

0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 4:1) as a yellow solid (85.1 mg, 68%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 9.0 Hz, 1H), 7.55 (d, *J* = 8.2 Hz, 2H), 7.48 (d, *J* = 9.0 Hz, 1H), 7.14 (s, 1H), 7.06 (d, *J* = 9.0 Hz, 1H), 6.41 (d, *J* = 9.0 Hz, 1H), 4.64 – 4.60 (m, 1H), 4.40 – 4.35 (m, 2H), 3.07 – 2.97 (m, 1H), 2.48 – 2.39 (m, 1H), 1.36 (s, 9H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.07 (t, *J* = 9.6 Hz, 3F), -112.37 – -112.60 (m, 2F), -124.31 (s, 2F), -125.92 – -126.03 (m, 2F). ¹³C NMR (100 MHz, CDCl₃) δ 196.60, 160.02, 158.24, 154.60, 152.96, 152.38, 142.58, 132.65, 126.07, 117.48, 116.98, 116.41, 109.81, 68.56, 37.98, 35.23, 30.95, 29.50 (t, *J* = 21.7 Hz). HRMS (ESI+): calcd for C₂₈H₂₄F₉O₆⁺ (M+H) 627.1424, found 627.1421.

2-(4-(*tert*-butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl

(9,13,14-trimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl) carbonate (45)

According to the general procedure, **S8** (74.5 mg, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN/DME (4:1) (4 mL) were used. After 48 h, the product was isolated by flash chromatography (CH₂Cl₂: Et₂O= 120:1) as a colorless oil (94.8 mg, 63%); ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, *J* = 8.5 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 5.44 (d, *J* = 4.6 Hz, 1H), 4.50 – 4.44 (m,

2H), 4.36 – 4.28 (m, 1H), 4.18 – 4.12 (m, 1H), 3.09 – 2.95 (m, 1H), 2.50 – 2.46 (m, 1H), 2.43 – 2.32 (m, 3H), 2.15 – 2.07 (m, 2H), 2.04 – 1.85 (m, 5H), 1.70 – 1.66 (m, 3H), 1.62 – 1.46 (m, 3H), 1.37 (s, 9H), 1.31 – 1.26 (m, 2H), 1.17 – 1.12 (m, 1H), 1.04 (s, 3H), 0.90 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.03 (t, *J* = 9.1 Hz), -112.08 – -112.74 (m), -124.25 (s), -125.84 – -126.02 (m). ¹³C NMR (150 MHz, CDCl₃) δ 220.89, 196.89, 157.91, 154.07, 139.39 (d, *J* = 5.6 Hz), 132.83, 128.57, 125.97, 122.34 (d, *J* = 2.6 Hz), 78.21, 67.30, 51.70, 50.10, 47.51, 38.32, 37.81 (d, *J* = 12.2 Hz), 36.75, 36.65, 35.82, 35.23, 31.44, 31.39, 31.01, 30.76, 29.42 (t, *J* = 21.4 Hz), 27.46 (d, *J* = 8.5 Hz), 21.87, 20.33, 19.26, 13.54. HRMS (ESI+): calcd for C₃₈H₄₉F₉NO₅⁺ (M+NH₄) 770.3462, found 770.3453.

2-(4-(tert-butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl

(10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetr adecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (46)

According to the general procedure, allyl ((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((S)-6-methylheptan-2-yl)-2,3,4,7, 8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (94.1 mg, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv) in MeCN/DME (4:1) (4 mL) were used. After 48 h, the product was isolated by flash chromatography (hexanes: Et₂O= 60:1) as a colorless oil (88.5 mg, 52%); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* =

8.5 Hz, 2H), 5.44 – 5.39 (m, 1H), 4.51 – 4.43 (m, 2H), 4.36 – 4.30 (m, 1H), 4.19 – 4.12 (m, 1H), 3.12 - 2.94 (m, 1H), 2.47 - 2.31 (m, 3H), 2.07 - 1.99 (m, 2H), 1.93 - 1.83 (m, 3H), 1.66 - 1.42 (m, 9H), 1.37 (s, 9H), 1.32 - 1.25 (m, 2H), 1.23 - 1.06 (m, 8H), 1.02 (s, 3H), 0.94 (d, J = 6.4 Hz, 3H), 0.90 - 0.87 (m, 6H), 0.70 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.03 (t, J = 9.3 Hz), -112.08 – -112.69 (m), -124.24 (s), -125.84 – -126.03 (m). ¹³C NMR (150 MHz, CDCl₃) δ 196.95, 157.90 , 154.10, 139.12 (d, J = 5.4 Hz), 132.86, 128.58, 125.97, 123.12 (d, J = 2.6 Hz), 78.53, 67.27, 56.69, 56.15, 50.00, 42.32, 39.72, 39.53, 38.34, 37.87 (d, J = 12.5 Hz), 36.82, 36.51, 36.19, 35.80, 35.23, 31.87 (d, J = 8.9 Hz), 31.02, 29.43 (t, J = 21.4 Hz), 28.23, 28.02, 27.55 (d, J = 8.8 Hz), 24.28, 23.84, 22.69 (d, J = 38.7 Hz), 21.05, 19.24, 18.72, 11.86. HRMS (ESI+): calcd for C₄₆H₆₇F₉NO₄⁺ (M+NH₄) 868.4921, found 868.4911.

Derivations of compound 3.

Supplementary Figure 1. Deprotection of the acetyl group

A mixture of **3** (48.0 mg, 0.1 mmol), MeOH (0.12 ml), H₂O (11 μ L, 0.6 mmol, 6.0 equiv.), and concentrated sulfuric acid (9 μ L, 0.15 mmol, 1.5 equiv.) was stirred at room temperature for 23 h. A saturated aqueous solution of NaHCO₃ was cautiously added and the mixture was partitioned between EtOAc and H₂O. The separated organic layer was washed with brine and dried over anhydrous magnesium sulfate. The solvents were removed *in vacuo* and the residual oil was chromatographed on silica gel (PE: EA= 5:1) to afford the product as a colorless oil liquid (41.7 mg, 95%).

1-(4-(tert-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(hydroxymethyl)heptan-1one (47). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.5 Hz, 2H), 7.52 (d, J = 8.5 Hz, 2H), 4.10 – 4.04 (m, 1H), 3.96 – 3.90 (m, 1H), 3.89 – 3.83 (m, 1H), 2.91 – 2.76 (m, 1H), 2.57 – 2.42 (m, 1H), 2.10 (s, 1H), 1.35 (s, 9H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.04 (t, J = 9.6 Hz, 3F), -111.84 – -113.33 (m, 2F), -124.34 (s, 2F), -125.83 – -126.06 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 200.18, 157.93, 132.92, 128.58, 125.95, 63.43, 40.44, 35.23, 31.02, 29.32 (t, J = 21.2 Hz). HRMS (ESI+): calcd for C₁₈H₂₀F₉O₂⁺ (M+H) 439.1314, found 439.1320.

Supplementary Figure 2. Reduction of ketone

In a 10 mL round-bottom flask equipped with a magnetic stirrer bar were placed with **3** (48.0 mg, 0.1 mmol, 1.0 equiv.) in MeOH (1 mL) under an N₂ atmosphere, and the solution was cooled at -10 °C. NaBH₄ (18.8 mg, 0.5 mmol, 5.0 equiv.) was added, and the solution was stirred at -10 °C for 4 h. Then, saturated NaHCO₃ solution and DCM were added, and the mixture was stirred for 5 min. The organic layer was concentrated under reduced pressure, the product was isolated by flash chromatography (PE : EA = 8:1) as a colorless oil (38.6 mg, 80%, d.r. 4:1);

2-((4-(tert-Butyl)phenyl)(hydroxy)methyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl

acetate (48) ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 4.85 – 4.76 (m, 1H), 4.40 – 4.31 (m, 0.8H), 4.31 – 4.25 (m, 0.2H), 4.14 – 4.09 (m, 0.8H), 3.97 – 3.90 (m, 0.2H), 2.64 – 2.08 (m, 4H), 2.06 (s, 0.8H), 2.01 (s, 2.4H), 1.32 (s, 9H); ¹⁹F NMR (375 MHz, CDCl₃) δ -80.80 – -81.20 (m), -111.10 –

-114.57 (m), -124.46 (d, J = 8.6 Hz), -125.83 – -126.15 (m); ¹³C NMR (100 MHz, CDCl₃) δ 171.03, 151.21, 138.11, 125.80, 125.73, 125.59, 73.49, 72.93, 63.90, 62.73, 38.61, 38.08, 34.54, 31.25, 28.31 (t, J = 21.2 Hz), 20.71. HRMS (ESI+): calcd for C₂₀H₂₄F₉O₃⁺ (M+H) 483.1576, found 483.1579.

Supplementary Figure 3. Nucleophilic substitution with benzylamine

In a 10 mL round-bottom flask equipped with a magnetic stirrer bar were placed with **3** (48.0 mg, 0.1 mmol, 1.0 equiv.), aniline (36.0 μ L, 0.3 mmol, 3.0 equiv.) and 4Å molecular sieves (50 mg) in toluene (1 mL) under an N₂ atmosphere. The reaction mixture was heated to reflux for 4 h. Then the mixture was cooled, and filtered through Celite, washed with EA, and concentrated in vacuum. The product was isolated by flash chromatography (PE: EA = 30:1 with 3% Et₃N) as a pale-yellow oil (36.9 mg, 70%);

2-((Benzylamino)methyl)-1-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluorohep tan-1-one (49) ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.5 Hz, 2H), 7.31 – 7.19 (m, 5H), 4.07 – 3.97 (m, 1H), 3.75 (s, 2H), 3.03 – 2.97 (m, 1H), 2.97 – 2.82 (m, 1H), 2.81 – 2.72 (m, 1H), 2.58 – 2.40 (m, 1H), 1.56 (brs, 1H), 1.35 (s, 9H); ¹⁹F NMR (375 MHz, CDCl₃) δ -80.02 (t, J = 9.5Hz, 3F), -111.39 – -113.38 (m, 2F), -124.26 – -124.41 (m, 2F), -125.94 (dd, J = 22.9, 11.0 Hz, 2F); ¹³C NMR (100 MHz, CDCl₃) δ 200.09, 157.39, 139.76, 133.44, 128.39, 127.99, 127.08, 125.78, 53.59, 51.19, 38.97, 35.15, 31.03, 30.33 (t, J = 21.3 Hz). HRMS (ESI+): calcd for C₂₅H₂₇F₉ON⁺ (M+H) 528.1943, found 528.1942.

Supplementary Figure 4. Conversion to thioether

To a solution of **3** (48.0 mg, 0.1 mmol) in 2 ml DCM, *t*-BuOK (33.7 mg, 0.3 mmol, 3.0 equiv.) was added in portions at 0 °C under N₂ atmosphere, followed by the addition of (4-methoxyphenyl)methanethiol (27.8 μ L, 0.2 mmol, 3.0 equiv.) at 0 °C. The mixture was stirred overnight at room temperature. Then, water was added, the layer was separated and the aqueous layer was extracted three times with DCM. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. Purification by flash chromatography (PE: EA= 40:1) yielded the product as a colorless oil liquid (31.0 mg, 56%).

1-(4-(tert-Butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoro-2-(((4-methoxybenzyl)thio)m ethyl)heptan-1-one (50) ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.5 Hz, 2H), 7.46 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8.6 Hz, 2H), 3.92 – 3.85 (m, 1H), 3.80 (s, 3H), 3.67 (s, 2H), 2.95 – 2.80 (m, 2H), 2.58 – 2.42 (m, 2H), 1.35 (s, 9H). ¹⁹F NMR (375 MHz, CDCl₃) δ -81.01 (t, J = 9.5 Hz, 3F), -111.07 – -113.18 (m, 2F), -124.31 (d, J = 7.9 Hz, 2F), -125.77 – -126.26 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 199.02, 158.88, 157.57, 132.89, 129.98, 129.23, 128.44, 125.78, 114.07, 55.24, 38.07, 35.92, 35.17, 33.86, 31.23 (t, J = 20.9 Hz), 31.02. HRMS (ESI+): calcd for $C_{26}H_{28}F_9O_2S^+$ (M+H) 575.1661, found 575.1668.

Supplementary Discussion

Evaluation of the stirring rates:

To a flame-dried 8 mL reaction vial was charged with NiCl₂•glyme (2.2 mg, 0.01 mmol, 10 mol%), dtbbpy (5.4 mg, 0.02 mmol, 20 mol%), and Mn (16.5 mg, 0.3 mmol, 3.0 equiv.). The vial was capped. After it was evacuated and backfilled nitrogen three times, CH₃CN (1 mL) was added via a syringe, followed by the addition of 4-(*tert*-butyl)benzoyl chloride (29.5 μ L, 0.15 mmol, 1.5 equiv.). The reaction mixture was allowed to stir for approximately 1 minute before C₄F₉I (17.2 μ L, 0.1 mmol, 1.0 equiv.) and allyl heptanoate (19.2 μ L, 0.1 mmol, 1.0 equiv.) were added. The reaction mixture was allowed to stir at 1500 rpm for 20 h at 25 °C. The reaction mixture was analyzed by ¹H NMR with an internal standard.

Supplementary Table 2. Evaluation of the stirring rates

Conclusion: A stirring rate of 1500 rpm is necessary for high reaction efficiency and reproducibility. We also sometimes observed that the reaction mixtures remained clear with low stirring rates, which led to no formation of products.

Other successful and unsuccessful substrates:

Acyclic internal alkenes:

Supplementary Figure 5. Reaction of acyclic internal alkenes

The reaction of (*E*)-but-2-en-1-yl benzoate under the standard condition afforded the desired product **S9** in 40% yield as well as the regioisomeric product **S10** in 28% yield (r.r. 10:7).

2-(4-(tert-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoro-3-methylheptyl benzoate (S9). According to the general procedure, (Z/E)-but-2-en-1-yl benzoate (34.0 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 µL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a white solid (44.5 mg, 40%); ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.52 – 7.47 (m, 3H), 7.31 (t, J = 7.8 Hz, 2H), 4.72 - 4.67 (m, 1H), 4.67 - 4.61 (m, 1H), 4.38 - 4.32 (m, 1H),3.31 – 3.18 (m, 1H), 1.34 (s, 9H), 1.31 – 1.29 (m, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.87 (t, J = 9.8 Hz, 3F), -108.81 - -119.33 (m, 2F), -120.47 - -122.04 (m, 2F), -124.63 - -127.54 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.97, 166.03, 157.61, 133.15, 133.10, 129.55, 129.43, 128.45, 128.25, 125.93, 62.63, 42.07, 35.97 (t, J =20.4 Hz), 35.20, 31.05, 29.71. HRMS (ESI+): calcd for C₂₆H₂₆F₉O₃⁺ (M+H) 557.1733, found 557.1730.

2-(1-(4-(tert-Butyl)phenyl)-1-oxopropan-2-yl)-3,3,4,4,5,5,6,6,6-nonafluorohexyl benzoate (S10). According to the general procedure, (Z/E)-but-2-en-1-yl benzoate (34.0 μL, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 60:1) as a white solid (31.2 mg, 28%); ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 8.5 Hz, 2H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 2H), 7.47 (t, *J* = 7.8 Hz, 2H), 4.69 (d, *J* = 3.7 Hz, 2H), 4.16 – 4.09 (m, 1H), 3.60 (d, *J* = 24.0 Hz, 1H), 1.35 (s, 9H), 1.26 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -80.87 (t, *J* = 9.8 Hz, 3F), -107.68 – -116.02 (m, 2F), -120.67 – -123.22 (m, 2F), -124.22 – -127.80 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 200.01, 165.89, 157.34, 133.32, 132.34, 129.70, 129.48, 128.49, 128.38, 125.87, 59.50, 41.32 (t, J = 19.8 Hz), 35.17, 31.05, 29.71, 14.40. HRMS (ESI+): calcd for C₂₆H₂₆F₉O₃⁺ (M+H) 557.1733, found 557.1730.

Trifluoroiodomethane:

Supplementary Figure 6. Reaction of CF₃I

The reaction of CF_3I under the standard condition afforded the desired trifluoromethylacylated product **S11** in 29% yield (37% ¹⁹F NMR yield).

2-(4-(tert-Butyl)benzoyl)-4,4,4-trifluorobutyl heptanoate (S11). According to the general procedure, allyl heptanoate (38.5 μL, 0.20 mmol, 1.0 equiv.), CF₃I balloon, 4-(tert-butyl)benzoyl chloride (58.6 μL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. After 20 h, the product was isolated by flash chromatography (PE: EA= 80:1) as a yellow oil liquid (23.5 mg, 29%); ¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 4.43 – 4.39 (m, 1H), 4.19 – 4.11 (m, 2H), 2.97 – 2.86 (m, 1H), 2.45 – 2.35 (m, 1H), 2.24 (td, J = 7.5, 3.1 Hz, 2H), 1.56 – 1.50 (m, 2H), 1.37 (s, 9H), 1.28 – 1.25 (m, 6H), 0.89 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -64.72 (t, J = 10.9 Hz, 3F). ¹³C NMR (150 MHz, CDCl₃) δ 197.51, 173.40, 157.80, 133.20, 128.49, 126.35 (q, J = 276.7 Hz), 125.90, 64.17, 39.58, 35.22, 34.01, 32.56 (q, J = 29.3 Hz), 31.38 , 31.03, 28.71, 24.69, 22.44, 14.01. HRMS (ESI+): calcd for C₂₂H₃₂F₃O₃⁺ (M+H) 401.2298, found 401.2303.

Tertiary alkyl halides:

Simple tertiary alkyl bromides were also viable coupling partners under slightly modified conditions. For example, the reaction of ethyl 2-bromo-2-methylpropanoate gave the desired carboacylated product **S12** in 36% yield.

Supplementary Figure 7. Reaction of tertiary alkyl bromides.

2-(4-(tert-Butyl)benzoyl)-5-ethoxy-4,4-dimethyl-5-oxopentyl heptanoate (S12): According to the general procedure, allyl heptanoate (76.9 µL, 0.40 mmol, 2.0 equiv.), ethvl 2-bromo-2-methylpropanoate (29.4)μL, 0.20 mmol, 1.0 equiv.), 4-(tert-butyl)benzoyl chloride (58.6 µL, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in DME (2 mL) were used. After 24 h, the product was isolated by flash chromatography (PE: EA= 40:1) as a colorless oil liquid (32.2 mg, 36%): ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.21 - 4.17 (m, 1H), 4.11 - 4.06 (m, 1H), 4.04 - 3.97 (m, 2H), 3.92 - 3.86 (m, 1H), 2.31 – 2.25 (m, 1H), 2.16 – 2.05 (m, 2H), 1.78 – 1.73 (m, 1H), 1.46 – 1.40 (m, 2H), 1.33 (s, 9H), 1.27 – 1.21 (m, 6H), 1.18 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 1.07 (s, 3H), 0.84 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 200.84 (s), 177.21, 173.54, 157.03, 134.44, 128.38, 125.65, 66.27, 60.58, 42.00, 41.98, 38.81, 35.12, 34.07, 31.38, 31.07, 28.73, 26.30, 25.04, 24.61, 22.43, 14.05, 14.00. HRMS (ESI+): calcd for $C_{27}H_{43}O_5^+$ (M+H) 447.3105, found 447.3111.

Unsuccessful alkenes and acyl electrophiles:

alkenes w or w/o directing group:

Supplementary Figure 8. Failed substrates.

Evaluation of bis-functionalization of diene with excess amounts of reagents:

Supplementary Figure 9. Bis-functionalization of diene.

According to the general procedure, allyl pent-4-en-1-yl carbonate (36.6 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (68.8 μ L, 0.40 mmol, 2.0 equiv.), 4-(tert-butyl)benzoyl chloride (117.2 μ L, 0.60 mmol, 3.0 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. After 24 h, the products were isolated by flash chromatography (PE: EA = 20:1). Mono-functionalization product **41** (pale-yellow liquid, 46.0 mg, 42%); bis-functionalization product **S13** (yellow oil, 25.7 mg, 14%).

2-(4-(tert-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl (4-(4-(tert-butyl) benzoyl)-6,6,7,7,8,8,9,9,9-nonafluorononyl) carbonate (S13).

¹H NMR (600 MHz, CDCl₃) δ 7.97 – 7.93 (m, 2H), 7.91 (d, J = 7.5 Hz, 2H), 7.54 – 7.48 (m, 4H), 4.49 – 4.43 (m, 1H), 4.29 – 4.23 (m, 1H), 4.17 – 4.10 (m, 1H), 4.10 – 4.03 (m, 2H), 3.94 – 3.88 (m, 1H), 3.04 – 2.87 (m, 2H), 2.45 – 2.30 (m, 1H), 2.23 – 2.10 (m, 1H), 1.89 – 1.78 (m, 1H), 1.71 – 1.60 (m, 3H), 1.36 – 1.33 (m, 18H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.00-81.14 (m, 6F), -112.32 – -112.78 (m, 4F), -124.17--124.93 (m, 4F), -125.91- -126.03 (m, 4F). ¹³C NMR (150 MHz, CDCl₃) δ 200.23, 196.69, 158.00, 157.61, 154.62, 133.25, 132.67, 128.53, 128.34, 125.97, 125.92, 67.76, 67.41, 38.35, 37.27, 35.22, 35.17, 31.01, 30.99, 29.75, 29.70, 29.37 (t, J = 20.7Hz), 25.85. HRMS (ESI+): calcd for C₃₉H₄₁F₁₈O₅⁺ (M+H) 931.2661, found 931.2669.

Regioselectivity discussions:

Regarding the regioselectivity issue, we have carefully reevaluated all NMR data, GC-MS data, and several crude NMR and GC-MS data, and can conclude that regioselectivity is very high for these terminal alkenes. Some of the relevant analysis has been highlighted bellows:

Crude NMR analysis:

Since the ¹⁹F NMR spectra of the regioisomers should be identifiably different, we have carefully reevaluated the ¹⁹F NMR spectra of the crude reaction mixtures, especially for the cases of ICF₂CO₂Et and CF₃I.

For the case of ICF_2CO_2Et , the CF_2 group for the desired product should be doublet of triplets (dt), while the CF_2 group for the regioisomer would be doublet of doublets of doublets (ddd). In the crude ¹⁹F NMR of the reaction mixture, only one set of ¹⁹F NMR peaks (dt) has been observed, which is the same as the final pure product compound (dt).

The crude ¹⁹F NMR of ICF₂CO₂Et:

Supplementary Figure 10. The crude ¹⁹F NMR of ICF₂CO₂Et

For the case of CF_3I , the CF_3 group for the desired product is triplet (t), while the CF_3 group for the regioisomer should be doublet (d).

In the crude ¹⁹F NMR, the desired CF₃-product is present (-64.25 ppm, triplet, (J = 11.3 Hz)). There are some unidentified byproducts which appear as singlet peaks in the crude ¹⁹F NMR, which does not suggest the presence of the regioisomer.

Besides CF₃H (-78.41 ppm, doublet, J = 39.5 Hz), only one double peak (-68.97 ppm, doublet, J = 2.8 Hz) has been observed in low yield (1% yield in ¹⁹F NMR). This doublet peak was inseparable to the desired product, and the ratio of these two compounds is 1:150 in the final spectrum of the isolated product. We couldn't rule out the possibility that this minor peak is the regioisomeric product. Nevertheless, the regioselectivity for this transformation is still high (grear than the limit of precision by NMR analysis).

Supplementary Figure 11. The crude ¹⁹F NMR of CF₃I

For the case of C_4F_9I , only one set of ¹⁹F NMR peaks, which is the same as the final product, has been observed in the crude ¹⁹F NMR of the reaction mixture.

The crude ¹⁹F NMR of C₄F₉I:

Supplementary Figure 12. The crude ¹⁹F NMR of C₄F₉I

Characterization of impurities

One reviewer questioned whether the minor impurities showed in the spectra of several products are the regioisomeric products or not.

For the cases of **19** and **25**, we have successfully isolated the primary impurities appeared in ¹H NMR spectra. The primary impurities are the β -eliminated byproducts of the final products, not the regioisomeric products.

Supplementary Figure 13. The primary impurity of 19 in ¹H NMR spectra

Methyl 4-(4,4,5,5,6,6,7,7,7-nonafluoro-2-methyleneheptanoyl)benzoate (S14).

¹H NMR (600 MHz, CDCl₃) δ 8.13 (d, J = 8.3 Hz, 2H), 7.81 (d, J = 8.3 Hz, 2H), 6.26 (s, 1H), 6.00 (s, 1H), 3.96 (s, 3H), 3.39 (t, J = 18.7 Hz, 2H); ¹⁹F NMR (564 MHz, CDCl₃) δ -80.86 - -81.44 (m, J = 9.4, 2.8 Hz, 3F), -112.44 - -112.84 (m, 2F), -123.73 - -124.05 (m, 2F), -125.71 - -126.07 (m, 2F); ¹³C NMR (150 MHz, CDCl₃) δ 195.08, 166.15, 140.16, 136.77, 133.57, 133.35, 129.60, 129.40, 52.48, 32.55 (t, J = 21.9 Hz); GC-MS: 422 (6), 391 (14), 363 (2),203 (4), 163 (100), 135 (18), 120 (6).

Supplementary Figure 14. The primary impurity of 25 in ¹H NMR spectra

4,4,5,5,6,6,7,7,7-Nonafluoro-2-methylene-1-(o-tolyl)heptan-1-one (S15).

¹H NMR (600 MHz, CDCl₃) δ 7.36 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 6.9 Hz, 1H), 7.25 (d, J = 7.4 Hz, 1H), 7.23 (t, J = 7.5 Hz, 1H), 6.27 (s, 1H), 5.98 (s, 1H), 3.37 (t, J = 19.1 Hz, 2H), 2.33 (s, 3H). ¹⁹F NMR (564 MHz, CDCl₃) δ -81.04 (t, J = 9.6 Hz, 3F), -112.80 - -113.22 (m, 2F), -123.87 - -124.15 (m, 2F), -125.67 - -126.18 (m, 2F). ¹³C NMR (150 MHz, CDCl₃) δ 197.80, 138.21, 137.36, 136.74, 135.34, 131.03, 130.41, 128.32, 125.17, 30.72 (t, J = 22.0 Hz), 19.66. GC-MS: 378.1.

Mechanistic investigations.

Plausible mechanisms involving radical intermediates

Two plausible pathways involving radical intermediates have been outlined in Supplementary Figure 15 and 16.

Pathway I:

Supplementary Figure 15. Plausible mechanisms of pathway I

Oxidative addition of the active Ni(0) species **P1** to acyl chloride affords Ni^{II} complex **P2**. Concurrently, Ni(0)- or Ni^I-mediated single-electron reduction of C₄F₉I generates the electrophilic C₄F₉ radical, and subsequent radical addition to the alkene coupling partner would deliver the alkyl radical species **P3**. At this juncture, we expected that Ni^{II} complex **P2** could be intercepted by the nucleophilic alkyl radical **P3** to yield Ni^{III} adduct **P4**, which would undergo reductive elimination to deliver the final product **P6** and Ni^I species **P5**. Single-electron reduction of Ni^I **P5** (E_{red} [Ni^{II}/Ni⁰] = -1.2 V vs SCE in DMF)² by Mn dust (E_{red} = -1.4 V vs SCE in MeCN) would regenerate Ni(0) species and complete the catalytic cycle.

Supplementary Figure 16. Plausible mechanisms of pathway II

Being different from pathway **I**, in pathway **II**, alkyl radical **P3** could be captured by Ni(0) to form Ni^I complex **P7**, followed by oxidative addition of acyl chloride to deliver the crucial Ni^{III} adduct **P4**.

Preliminary mechanistic studies

Stoichiometric reaction of isolated Ac-Ni^{II} complex

The stoichiometric reaction of Ac-Ni^{II} complex **55** (prepared according to the previously reported procedure³) with alkene and C_4F_9I in the presence of Mn dust gave the desired coupling product **16** in 42% yield.

Supplementary Figure 17. The stoichiometric reaction of Ac-Ni^{II} complex 55.

In a nitrogen-filled glovebox, to a flame-dried 8 mL reaction vial was charged with Mn (8.2 mg, 0.15 mmol, 3.0 equiv.), **55** (23.4 mg, 0.05 mmol), and CH₃CN (0.5 mL). Then C₄F₉I (34.4 μ L, 0.2 mmol, 4.0 equiv.) and allyl heptanoate (38.5 μ L, 0.2 mmol, 4.0 equiv.) were added sequentially. The reaction mixture was allowed to stir at 1500 rpm for 20 h at 25 °C. The reaction was quenched with 1 N HCl, extracted with ethyl acetate (EA) three times. The combined organic layers were dried with MgSO₄, filtered, and concentrated in vacuo. The crude material was purified by flash chromatography to afford the product.

Radical inhibition experiment

Addition of TEMPO (1.0 equiv.) completely shut down the desired transformation, and TEMPO-C₄F₉ adduct was detected in 79% ¹⁹F NMR yield.

Supplementary Figure 18. Radical inhibition experiment with TEMPO

To a flame-dried 8 mL reaction vial was charged with NiCl₂•glyme (2.2 mg, 0.01 mmol, 10 mol%), dtbbpy (5.4 mg, 0.02 mmol, 20 mol%), and Mn (16.5 mg, 0.3 mmol, 3.0 equiv.) and TEMPO (1.0 equiv.). The vial was capped. After evacuated and backfilled nitrogen three times, CH₃CN (1 mL) was added via a syringe, followed by the addition of 4-(*tert*-butyl)benzoyl chloride (29.5 μ L, 0.15 mmol, 1.5 equiv.). The reaction mixture was allowed to stir for approximately 1 minute before C₄F₉I (17.2 μ L, 0.1 mmol, 1.0 equiv.) and allyl heptanoate (19.2 μ L, 0.1 mmol, 1.0 equiv.) were added. The reaction mixture was allowed to stir at 1500 rpm for 20 h at 25 °C. The reaction mixtures were analyzed by ¹H NMR and ¹⁹F NMR with internal standards.

Radical clock experiment

Diene **52** underwent radical addition and cyclization, furnishing the expected coupling product **53** in 23% yield as well as alkyl iodide **54** in 49% yield.

Supplementary Figure 19. Radical clock experiment

According to the general procedure, diethyl 2,2-diallylmalonate (48.3 μ L, 0.20 mmol, 1.0 equiv.), C₄F₉I (34.4 μ L, 0.20 mmol, 1.0 equiv.), 4-(*tert*-butyl)benzoyl s59

chloride (58.6 μ L, 0.30 mmol, 1.5 equiv.), NiCl₂•glyme (4.4 mg, 0.02 mmol, 0.1 equiv.), dtbbpy (10.7 mg, 0.04 mmol, 0.2 equiv.), and Mn power (33.0 mg, 0.3 mmol, 3.0 equiv.) in MeCN (2 mL) were used. Products were obtained by flash chromatography.

Diethyl 3-(2-(4-(tert-butyl)phenyl)-2-oxoethyl)-4-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)cyclopentane-1,1-dicarboxylate (53)

A pale-yellow oil (28.6 mg, 23%); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 4.23 – 4.18 (m, 2H), 4.17 – 4.12 (m, 2H), 3.02 – 2.80 (m, 3H), 2.65 – 2.53 (m, 3H), 2.26 – 2.10 (m, 3H), 2.07 – 1.95 (m, 1H), 1.34 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹⁹F NMR (564 MHz, CDCl₃) δ -81.03 (t, J = 9.3 Hz), -111.93 – -114.82 (m), -124.42 (d, J = 6.7 Hz), -125.95 (dt, J = 26.7, 13.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 198.32, 172.69, 172.16, 157.01, 134.40, 127.96, 125.60, 61.71, 61.66, 58.45, 39.13, 38.94, 38.02, 37.67, 35.10, 34.70, 31.07, 30.54 (t, J = 21.4 Hz), 13.96, 13.89. HRMS (ESI+): calcd for C₂₈H₃₄F₉O₅⁺ (M+H) 621.2257, found 621.2263.

Diethyl 3-(iodomethyl)-4-(2,2,3,3,4,4,5,5,5-nonafluoropentyl)cyclopentane-1,1-Dicarboxylate (54)

$$C_4F_9$$

EtO₂C CO₂Et

A pale-yellow oil (PE:EA = 15:1) (57.8 mg, 49%); ¹H NMR (600 MHz, CDCl₃) δ 4.25 - 4.20 (m, 4H), 3.20 - 3.14 (m, 1H), 3.07 (t, *J* = 9.8 Hz, 1H), 2.66 - 2.48 (m, 4H), 2.36 – 2.31 (m, 1H), 2.31 – 2.18 (m, 2H), 2.12 – 2.04 (m, 1H), 1.30 – 1.26 (m, 6H); ¹⁹F NMR (375 MHz, CDCl₃) δ -80.71 – -81.25 (m), -112.10 – -115.04 (m), -124.39 (d, J = 8.1 Hz), -125.77 – -126.11 (m); ¹³C NMR (150 MHz, CDCl₃) δ 172.27, 171.95, 61.91, 61.82, 58.26, 45.36, 39.70, 38.33, 35.33, 29.58(t, J = 21.5 Hz), 13.99, 13.97, 5.52. HRMS (ESI+): calcd for C₁₇H₂₁F₉IO₅⁺ (M+H) 587.0335, found 587.0040.

Evaluation of the generation of C₄F₉ radical in the absence of Ni

Supplementary Figure 20. Control experiment without nickel catalyst.

In the absence of nickel catalyst, alkene remained untouched. Mn(0) couldn't promote the generation of C_4F_9 radical. We assumed that Ni(0) is responsible for the generation of C_4F_9 radical in this transformation.

Evaluation of the chelating group effect

Six-membered and seven-membered chelating substrates gave the optimal yields. For the case of the eight-membered chelating substrate, the formation of C_4F_9 -alkene byproduct (36% isolated yield) as well as C_4F_9 -alkane byproduct (detected by GC-MS) has also been observed.

Supplementary Figure 21. Reaction of pent-4-en-1-yl benzoate

For the substrate without directing group, only a trace amount of the desired product was observed, major byproducts were C_4F_9 -alkene and C_4F_9 -alkane (detected by GC-MS).

Supplementary Figure 22. Reaction of pent-4-en-1-ylbenzene

These results indicate that the chelating effect does not promote the generation of C_4F_9 radical. We envision that the chelating effect would facilitate the capture of alkyl radical to Ni complex.

On the basis of these experimental results, we reasoned that pathway I proceeding via oxidative addition of Ni(0) species with acyl chloride could be operative.

Discussion on another possible pathway:

Pathway III:

Supplementary Figure 23. Plausible mechanisms of pathway III

Similar to the previous Ni-catalyzed reductive cross-coupling of acyl chlorides and alkyl iodides works developed by the Gong⁴ and Reisman⁵ group, a third alternative involves a sequential oxidative addition pathway. Oxidative addition of Ni(0) with acyl chloride would afford Ni^{II} complex **P2**, which would be reduced by Mn dust to yield Ni^I species **P8**. At the same time, ATRA reaction of alkene with C₄F₉I mediated by Ni(0) would generate alkyl iodide **P9**. Subsequent oxidative addition of Ni^I **P8** with alkyl iodide would generate Ni^{III} complex **P10**, which would undergo facile reductive elimination to furnish the final product as well as Ni^I intermediate **P11**. Single-electron reduction of Ni^I **P11** by Mn dust would regenerate Ni(0) species **PI** and complete the catalytic cycle. Based on Gong and Reisman's work, alkene substrates with or without directing groups should afford similar results, which were not true in our cases. In addition, GC-MS analysis of the crude reaction mixtures (standard alkene substrates bearing directing groups) indicated that no formation of alkyl iodides in our system. We believe that pathway **II** involving radical species could give a better elucidation for our experimental results. Spectral Data.

Supplementary Figure 24: NMR Spectra of Allyl benzyl(phenyl)carbamate (S1) 564

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 25: NMR Spectra of Allyl (4-bromo-3-chlorophenyl) carbonate (S2)

Supplementary Figure 26: NMR Spectra of Allyl ((3R,8R,9R,10R,13R,14R)-10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (S3)

Supplementary Figure 27: NMR Spectra of Allyl pent-4-en-1-yl carbonate (S4)

Supplementary Figure 28: NMR Spectra of Allyl cyclohex-2-en-1-yl carbonate (S5)

Supplementary Figure 29: NMR Spectra of Allyl ((S)-2-((2R,8R,8aS)-8,8adimethyl-1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propyl) carbonate (S6)

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 30: NMR Spectra of Allyl (2-oxo-2H-chromen-6-yl) carbonate (S7)

Supplementary Figure 31: NMR Spectra of Allyl ((3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15,16,1 7-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (S8)

¹³C NMR (100 MHz, CDCl₃)

Supplementary Figure 32: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (1)

2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl benzoate (2)

Supplementary Figure 35: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl 2-phenoxyacetate (4)

Supplementary Figure 36: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl pivalate (5)

Supplementary Figure 37: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5, 6,6,7,7,7-nonafluoroheptyl benzyl(phenyl)carbamate (6)

¹³C NMR (100 MHz, CDCl₃)

Supplementary Figure 38: NMR Spectra of 2-(2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5, 6,6,7,7,7-nonafluoroheptyl)isoindoline-1,3-dione (7)

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 39: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl diethyl phosphate (8)

Supplementary Figure 40: NMR Spectra of 1-(4-(*tert*-Butyl)phenyl)-4,4,5,5, 6,6,7,7,7-nonafluoro-2-(2-(phenylsulfonyl)ethyl)heptan-1-one (9)

Supplementary Figure 41: NMR Spectra of 1-(4-(*tert*-Butyl)phenyl)-4,4,5,5, 6,6,7,7,7-nonafluoro-2-phenoxyheptan-1-one (10)

¹⁹F NMR (564 MHz, CDCl₃)

Supplementary Figure 42: NMR Spectra of 1-(4-(*tert*-Butyl)phenyl)-4,4,5,5,6,6,7, 7,7-nonafluoro-2-(4-methoxyphenoxy)heptan-1-one (11)

Supplementary Figure 43: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl methyl carbonate (12)

Supplementary Figure 44: NMR Spectra of 4-Bromo-3-chlorophenyl (2-(4-(*tert*-butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl) carbonate (13)

S91

Supplementary Figure 45: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6, 7,7,7-nonafluoroheptyl (1,7,7-trimethylbicycle[2.2.1]heptan-2-yl) carbonate (14)

¹³C NMR (150 MHz, CDCl₃)

Supplementary Figure 46: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6, 7,7,7-nonafluoroheptyl (10,13-dimethyl-17-oxohexadecahydro-1H-cyclopenta [a]phenanthren-3-yl) carbonate (15)

Supplementary Figure 47: NMR Spectra of 2-Benzoyl-4,4,5,5,6,6, 7,7,7-nonafluoroheptyl heptanoate (16)

¹⁹F NMR (376 MHz, CDCl₃)

Supplementary Figure 48: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-methylbenzoyl)heptyl heptanoate (17)

Supplementary Figure 49: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro

-2-(4-fluorobenzoyl)heptyl heptanoate (18)

Supplementary Figure 51: NMR Spectra of 4,4,5,5,6,6,7,7,7

-Nonafluoro-2-(4-fluoro-3-methylbenzoyl)heptyl heptanoate (20)

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 52: NMR Spectra of 2-(3-Chlorobenzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (21)

¹³C NMR (150 MHz, CDCl₃)

Supplementary Figure 53: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro -2-(3-fluoro-4-methylbenzoyl)heptyl heptanoate (22)

4,4,5,5,6,6,7,7,7-nonafluoroheptyl heptanoate (23)

-2-(4-methoxybenzoyl)heptyl heptanoate (24)

¹³C NMR (150 MHz, CDCl₃)

S110

Supplementary Figure 57: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro-2-(4-(trifluoromethyl)benzoyl)heptyl heptanoate (26)

S112

Supplementary Figure 58: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro-2-(thiophene-2-carbonyl)heptyl heptanoate (27)

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 60: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro-2-(3-phenylpropanoyl)heptyl heptanoate (29)

6,6,6-heptafluorohexyl heptanoate (30)

Supplementary Figure 63: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6, 7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl heptanoate (32)

S122

Supplementary Figure 64: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13,13-henicosafluorotridecyl heptanoate (33)

Supplementary Figure 65: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-5ethoxy-4,4-difluoro-5-oxopentyl heptanoate (34)

¹H NMR (600 MHz, CDCl₃)

S126

)-4,5,5,5-tetrafluoro-4-(trifluoromethyl)pentyl heptanoate (35)

¹⁹F NMR (564 MHz, CDCl₃)

Supplementary Figure 67: NMR Spectra of 3-(4-(*tert*-Butyl)benzoyl)-5,5,6,6,7,7, 8,8,8-nonafluorooctyl benzoate (36)

S129

8,8,9,9,9-nonafluorononyl benzoate (37)

¹³C NMR (150 MHz, CDCl₃)

Supplementary Figure 69: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl) -4,4,5,5,6,6,7,7,7-nonafluoroheptyl pent-4-en-1-yl carbonate (41)

S133

5,5,6,6,7,7,7-nonafluoroheptyl cyclohex-2-en-1-yl carbonate (42)

¹H NMR (600 MHz, CDCl₃)

2-(4-(*tert*-Butyl)benzoyl)-3,3,4,4,5,5,6,6,6-nonafluorohexyl (2-8,8a-dimethyl -1,2,3,4,6,7,8,8a-octahydronaphthalen-2-yl)propyl) carbonate (43)

¹⁹F NMR (564 MHz, CDCl₃)

Supplementary Figure 72: NMR Spectra of 2-(4-(*tert*-Butyl)benzoyl)-4,4,5,5, 6,6,7,7,7-nonafluoroheptyl(2-oxo-2H-chromen-6-yl) carbonate (44)

2.28

-130

-160

-190

-100 fl (ppm)

3.00-

-80

¹³C NMR (150 MHz, CDCl₃)

-20

-40

-60

0

7,7,7-nonafluoroheptyl (9,13,14-trimethyl-17-oxo-2,3,4,7,8,9,10,11,12,13,14,15, 16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (45)

¹³C NMR (150 MHz, CDCl₃)

Supplementary Figure 74: NMR Spectra of 2-(4-(*tert*-butyl)benzoyl)-4,4,5,5, 6,6,7,7,7-nonafluoroheptyl (10,13-dimethyl-17-(6-methylheptan-2-yl)-2,3,4,7,8,9, 10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl) carbonate (46)

¹³C NMR (150 MHz, CDCl₃)

5,6,6,7,7,7-nonafluoro-2-(hydroxymethyl)heptan-1-one (47)

Supplementary Figure 76: NMR Spectra of 2-((4-(tert-Butyl)phenyl) (hydroxy)methyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl acetate (48)

¹⁹F NMR (375 MHz, CDCl₃)

Supplementary Figure 77: NMR Spectra of 2-((Benzylamino)methyl)-1-(4-(tert-butyl)phenyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptan-1-one (49)

Supplementary Figure 78: NMR Spectra of 1-(4-(tert-Butyl)phenyl)-4, 4,5,5,6,6,7,7,7-nonafluoro-2-(((4-methoxybenzyl)thio)methyl)heptan-1-one (50)

Supplementary Figure 79: NMR Spectra of 2-(4-(tert-Butyl)benzoyl) -4,4,5,5,6,6,7,7,7-nonafluoro-3-methylheptyl benzoate (S9)

Supplementary Figure 80: NMR Spectra of 2-(1-(4-(tert-Butyl)phenyl) -1-oxopropan-2-yl)-3,3,4,4,5,5,6,6,6-nonafluorohexyl benzoate (S10)

¹³C NMR (150 MHz, CDCl₃)

Supplementary Figure 81: NMR Spectra of 2-(4-(tert-Butyl)benzoyl) -4,4,4-trifluorobutyl heptanoate (S11)

Supplementary Figure 82: NMR Spectra of 2-(4-(tert-Butyl)benzoyl)-5ethoxy-4,4-dimethyl-5-oxopentyl heptanoate (S12)

Supplementary Figure 83: NMR Spectra of 2-(4-(tert-Butyl)benzoyl)-4,4,5,5,6,6,7,7,7-nonafluoroheptyl (4-(4-(tert-butyl) benzoyl)-6,6,7,7,8,8,9,9,9-nonafluorononyl) carbonate (S13)

¹H NMR (600 MHz, CDCl₃)

Supplementary Figure 84: NMR Spectra of Methyl 4-(4,4,5,5,6,6,7,7,7-nonafluoro-2-methyleneheptanoyl)benzoate (S14)

Supplementary Figure 85: NMR Spectra of 4,4,5,5,6,6,7,7,7-Nonafluoro-2-methylene-1-(o-tolyl)heptan-1-one (S15)

¹³C NMR (100 MHz, CDCl₃)

Supplementary Figure 86: NMR Spectra of Diethyl 3-(2-(4-(tert-butyl)phenyl)-2oxoethyl)-4-(2,2,3,3,4,4,5,5,5-nonafluoropen-tyl)cyclopentane-1,1-dicarboxylate (53)

Supplementary Figure 87: NMR Spectra of Diethyl 3-(iodomethyl)-4-(2,2, 3,3,4,4,5,5,5-nonafluoropentyl)cyclopentane-1,1-Dicarboxylate (54)

3. Supplementary References

(1) Dieskau, A. P., Plietker, B. A Mild Ligand-Free Iron-Catalyzed Liberation of Alcohols from Allylcarbonates. *Org. Lett.* **13**, 5544-5547 (2010).

(2) Durandetti, M., Devaud, M. & Perichon, J. Investigation of the reductive coupling of aryl halides and/or ethyl chloroacetate electrocatalyzed by the precursor NiX₂(bpy) with $X^- = Cl^-$, Br⁻ or MeSO₃⁻ and bpy =2,2'-dipyridyl. *New J. Chem.* **20**, 659–667 (1996).

(3) Sun, Z., Kumagai, N., Shibasaki, M. Photocatalytic α-Acylation of Ethers. *Org Lett.* **19**, 3727-3730 (2017).

(4) Wu, F., Lu, W., Qian, Q., Ren, Q., Gong, H. Ketone Formation via Mild Nickel-Catalyzed Reductive Coupling of Alkyl Halides with Aryl Acid Chlorides. *Org. Lett.* **14**, 3044-3047 (2012).

(5) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Catalytic Asymmetric Reductive Acyl Cross-Coupling: Synthesis of Enantioenriched Acyclic α,α -Disubstituted Ketones. *J. Am. Chem. Soc.* **135**, 7442-7445 (2013).