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ABSTRACT 

With the rapid development of the next-generation sequencing (NGS), the ever-increasing genomic 

data poses a tremendous challenge to data processing. Therefore, there is an urgent need for highly 

scalable and powerful computational systems. Among the state-of–the-art parallel computing 

platforms, Apache Spark is a fast, general-purpose computing framework designed for large-scale 

data processing, which ensures high fault-tolerance and high scalability by introducing resilient 

distributed dataset (RDD) abstraction. Moreover, Spark can be up to 100x faster in memory access 

and 10x faster in disk access than Hadoop. In this paper, we surveyed Spark-based applications in 

the NGS and other biological domains, such as phylogeny, drug discovery and more. In the end, we 

discussed the challenges faced in this field and the future work on parallel computing of 

bioinformatics. We believe that this survey provides a comprehensive guideline for bioinformatics 

researchers to apply Spark in their own fields. 

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset; 

memory computing 

INTRODUCTION 

NGS has generated huge amounts of biological sequence data. To use these data efficiently, we 

need to store and analyze the data accurately and efficiently. However, the existing bioinformatics 

tools cannot effectively handle such a large amount of data. In order to solve the issues, MapReduce, 

a programming model for parallel computation of large datasets, has been proposed [1]. MapReduce 

splits large-scale datasets into many key-value pairs through both the map and reduce phases, 
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significantly improving performance and showing good scalability. Hadoop consists of two parts: 

the Hadoop Distributed File System (HDFS) and MapReduce, where HDFS is mainly used for 

distributed storage of massive datasets and MapReduce preforms distributed computing on these 

datasets. Hadoop is a software framework that enables distributed processing of large amounts data 

in a reliable, efficient, and scalable way. As a result, Hadoop has been adopted by the bioinformatics 

community in several areas [2], such as alignment [3], mapping [4] and sequence analysis [5].  

However, as in Figure 1, due to its disk-based I/O access pattern, intermediate calculation results 

are also stored in HDFS. Therefore, Hadoop is only suitable for batch data processing, not enough 

for interactive and real-time data processing, and shows poor performance for iterative data 

processing. To resolve this problem, Apache Spark [6] has been proposed, which is a fast general-

purpose computational framework designed specifically to handle huge amounts of data. Unlike 

Hadoop’s disk-based computing, Spark performs memory computing by introducing resilient 

distributed dataset (RDD). RDD is a read-only and fault-tolerant data structure. These useful 

differences make Spark even better for some workloads. In other words, in addition to providing 

interactive queries, Spark also supports in-memory distributed datasets and optimizes iterative 

workloads. Moreover, Spark can be up to 100x faster in memory access than Hadoop [6]. Even if 

we compare between them based on the performance of the disk, the gap is more than 10 times [7].  

THE SPARK FRAMEWORK  

Spark is an open source cluster computing environment similar to Hadoop, developed by UC 

Berkeley AMP lab. As in Figure 2, Spark architecture consists of three main components: (a) the 

driver program, used to deploy the Spark operating environment and launch computation; (b) the 

cluster manager, responsible for obtaining and allocating the computing resources; (c) the worker 

nodes, in charge of performing real computations. It is implemented in the Scala language and uses 

Scala as its application framework. Unlike Hadoop, Spark and Scala are tightly integrated, with 

Scala operating distributed datasets just as easily as local collection objects. Moreover, Spark has 

the benefits of Hadoop MapReduce, but unlike Hadoop MapReduce, intermediate calculation 

results can be stored in memory, eliminating the need to read and write HDFS. So, Spark is better 

suited for iterative algorithms such as data mining and machine learning. Besides, Spark adopts 

directed acyclic graph (DAG) to optimize the execution process.  

Spark implements in-memory operations based on the RDD abstraction. RDD is a read-only 

collection of objects partitioned on different nodes in a cluster so that the data in the RDD can be 

processed in parallel. The most important feature of RDD is that it provides fault tolerance and can 

automatically recover from a node failure. That is, if an RDD partition on a node is lost because of 
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a node failure, the RDD automatically recalculates the partition from its own data source. All this 

is transparent to the user. In addition, RDD data is stored in memory by default, but Spark 

automatically writes RDD data to disk if memory resources are low. Spark provides two types of 

operations on RDDs: transformations and actions. The former defines a new RDD, the latter returns 

a result or writes RDD data to the storage system. Table 1 lists the commonly-used transformations 

and actions supported by Spark. Transformations employ lazy operations [8], which means that the 

operation of generating another RDD from one RDD transformation is not executed immediately, 

and the calculation process is not actually started until an action is performed. Figure 3 shows 

Spark’s task processing flow chart. 

Besides, as in Figure 4, the Spark ecosystem, the BDAS (Berkeley Data Analysis Stack), includes 

components such as Spark SQL, Spark Streaming, MLlib, and GraphX. These components provide 

the real-time processing applications for Spark Streaming, the ad hoc query for Spark SQL, the 

machine learning for MLlib, and the GraphX graph processing.  

SPARK IN ALIGNMENT AND MAPPING 

The rapid development of NGS technology has generated a large amount of sequence data (reads), 

which has a tremendous impact on sequence alignment and mapping process. Currently, the 

sequence alignment and mapping process still consume a lot of time. 

The Smith-Waterman (SW) algorithm [9], which produces the optimal local alignment between two 

strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics. However, 

SW algorithm requires a high computational cost due to high computational complexity. To speed 

up the algorithm, in 2015, Zhao G et al implemented the SW algorithm on Spark for the first time, 

called as SparkSW [10]. It consisted of three phases: data preprocessing, SW as map tasks and top 

K records as reduce tasks. Experimental results [10] showed that SparkSW was load-balancing and 

scalable with computing resources increased.  

However, SparkSW merely supports SW algorithm without the mapping location and traceback of 

optimal alignment, as a result, SparkSW executes slowly. Therefore, in 2017, Xu Bo et al proposed 

DSA [11], which employed Single Instruction Multiple Data (SIMD) instruction to parallel the 

sequence alignment algorithm at each worker node. Experimental results [11] showed that DSA 

achieved up to 201x speedup over SparkSW and almost linear speedup with the increase of cluster 

nodes.  

Subsequently, Xu Bo et al proposed CloudSW [12], an efficient distributed SW algorithm which 

leveraged Spark and SIMD instructions to accelerate the algorithm and provided APIs service in 

the cloud. Experimental results [12] showed that CloudSW achieved up to 3.29x speedup over DSA 
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and 621x speedup over SparkSW. And CloudSW also showed excellent scalability and achieved up 

to 529 giga cell updates per second (GCUPS) in protein database search with 50 nodes in Aliyun.  

Burrows-Wheeler aligner (BWA) is composed of BWA-backtrack [13], BWA-SW [14] and BWA-

MEM [15] for performing sequence alignment and mapping in bioinformatics. Before the advent of 

Spark-based BWA tool, there were several other BWA tools based on big data technology, including 

BigBWA [16], Halvade [17] and SEAL [18]. However, they were based on Hadoop showing limited 

scalability and complex implementation.  

As a result, in 2015, Al-Ars Zaid et al [19] implemented three different versions of BWA-MEM 

and compared their performance: a native cluster-based version, a Hadoop version and a Spark 

version. Three implementations were evaluated on the same IBM Power7 and Intel Xeon servers 

with the WordCount example. Results [19] showed that simultaneous multithreading improved the 

performance of three versions of BWA-MEM, and the Spark version with 80 threads increased 

performance by up to 87% than the native cluster version using 16 threads. Furthermore, the Hadoop 

version with 4 threads increased performance by 17% and the Spark version with more threads 

increased performance by 27%. 

After then, in 2016, Abuín JM et al proposed SparkBWA [20] which is composed of three main 

phases: the RDDs creation phase, the map phase, and the reduce phase. Experimental results [20] 

showed that for the BWA-backtrack algorithm, SparkBWA achieved the average speedup of 1.9x 

and 1.4x compared with SEAL and pBWA respectively. For the BWA-MEM algorithm, SparkBWA 

was 1.4x faster than BigBWA and Halvade tools on average. 

However, SparkBWA required the data availability in the HDFS. In general, the input files were 

given in gzip format, which required first uncompressing the file before uploading it to the HDFS. 

Subsequently, this also slowed down the execution of BWA itself, since data on the HDFS had to 

be reformatted as appropriate input to the BWA program tasks running on the cluster. Finally, the 

output files produced by those BWA tasks required significant time to combine separately at the 

end.  

Therefore, in 2017, Alars HMA et al employed Spark to propose StreamBWA [21], where the input 

data was being streamed directly from a compressed file. This file could either be located on the 

master node or on a URL, which eliminated the cost of execution time of downloading the file and 

then uncompressing it. Moreover, since the master node could stream data to the data nodes, the 

overhead of uploading data to the HDFS could also be hidden. The master node could also start 

combining the output files of BWA tasks running on the data nodes, in parallel, once they were 

available, further reducing the overall time. Experimental results [21] showed that this streaming 
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distributed approach was approximately 2x faster than the non-streaming approach. Furthermore, 

StreamBWA was 5x faster than SparkBWA. 

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological 

sequences, such as protein or nucleic acid sequences. One of representative tools for performing 

MSA is PASTA [22]. PASTA is a derivative of SATé [23], which produces highly accurate 

alignments in shared memory computers. However, PASTA is limited to processing small and 

medium datasets, because the computing power of shared memory systems cannot meet the memory 

and time requirements of large-scale datasets.  

Therefore, in 2017, Abuín J M et al proposed PASTASpark [24], which allowed executions on a 

distributed memory cluster taking advantage of Spark. It employed an in-memory RDD of key-

value pairs to parallel the calculating MSAs phase. Experiments were conducted on two different 

clusters (CESGA and AWS). The results [24] showed that PASTASpark achieved up to 10x 

speedups compared with single-threaded PASTA and was able to process 200,000 sequences in 24 

hours using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance which 

greatly reduced the time to obtain MSA. 

The probabilistic pairwise model [25] is widely used in all consistency-based MSA tools, such as 

MAFFT [26], ProbCons [27] and T-Coffee(TC) [28]. However, the global distributed memory 

cannot meet the ever-increasing sequence datasets, which causes the need of specialized distributed 

databases, such as HBase or Cassandra. As a result, in 2017, Lladós Jordi et al employed Spark to 

propose a new tool, PPCAS [29], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [29] showed that 

it was better with single node and provided almost linear speedup with the increase in the number 

of nodes. In addition, it could compute more sequences using the same memory.  

NCBI BLAST [30, 31] is widely used to implement algorithms for sequence comparison. Before 

the Spark-based BLAST was created, several other BLAST tools had been proposed including 

mpiBLAST [32], GPU-BLAST [33] and CloudBLAST [34]. However, with the increasing number 

of genomic data, these tools showed limited scalability and efficiency.  

As a result, in 2017, Castro MRD et al proposed SparkBLAST [35], which utilized cloud computing 

and Spark framework to parallel BLAST. In SparkBLAST, Spark’s pipe operator and RDDs were 

utilized to call BLAST as an external library and perform scalable sequence alignment. It was 

compared with CloudBLAST on both Google and Microsoft Azure Clouds. Experimental results 

[35] showed that SparkBLAST outperformed CloudBLAST in terms of speedup, scalability and 

efficiency. 
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Metagenomics is crucial for studying genetic material directly from environmental samples. 

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data 

analysis. And in 2017, Zhou W et al proposed MetaSpark [36], which employed Spark to recruit 

metagenomics reads to reference genomes. 

MetaSpark utilized the RDD of Spark to cache datasets in memory and scaled well along dataset 

size increments. It consisted of five steps including constructing k-mer RefindexRDD, constructing 

k-mer ReadlistRDD, seeding, filtering, and banded alignment. It was evaluated on a ten-node cluster 

working under the Spark standalone module where each node contained an 8-core CPU and 16 GB 

RAM. It employed about one million 75bp Illumina reads dataset and two references (the 194 

human gut genomes and the bacterial genomes) that were respectively 0.616GB and 1.3GB in size.  

Experimental results [36] showed that MetaSpark recruited more reads than FR-HIT [37] with the 

same parameters and 1 million reads. MetaSpark recruited 501,856 reads when there were 0.616 

GB human gut genome references, while FR-HIT recruited 489,638 reads. MetaSpark increased 

recruited reads by 2.5%. When references changed to a 1.3 GB bacterial genome, MetaSpark 

recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark increased recruited 

reads by 4%. Moreover, the results also showed that MetaSpark offered good scalability. Under a 

0.616 GB reference, run time for 0.1 million reads was 51 min under 4 nodes, and decreased slightly 

to 23.5 min under 10 nodes. For the 1 million read datasets, MetaSpark would crash under 4 nodes 

due to limited memory. Under 6 nodes, it finished running after 312 min and would sharply decrease 

to 201 min under 10 nodes.  

SPARK IN ASSEMBLY 

Due to short lengths of the NGS reads (<500 bp), they need to be assembled prior to further analysis, 

which is another important phase in sequence analysis workflow. In general, there are two types of 

assembly: the reference assembly and de novo assembly. The assembly algorithm includes two 

categories: overlap-layout-consensus (OLC) algorithm and the de Bruijn graph algorithm. The 

former is generally employed to assemble longer reads, while the latter shows a good performance 

in assembling short reads.  

Before Spark-based distributed memory de novo assemblers were created, although there were some 

MPI-based assemblers (such as Ray [38], AbySS [39] and SWAP-Assembler [40]), they showed 

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh Anas et 

al proposed Spaler [41] taking advantage of Spark and GraphX API. It consisted of two main parts: 

(a) de Bruijn graph construction, and (b) Contigs generating. And it was evaluated with other MPI-
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based tools in terms of quality, execution time, and scalability. Experiments results [41] showed 

that Spaler had better scalability and it could achieve comparable or better assemble quality.  

And in 2016, X Pan et al [42] put forward a new assembling algorithm based on Spark which 

employed the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was 

evaluated using 6 groups of DNA in the NCBI. Experimental results [42] showed that this strategy 

not only solved the problem of low efficiency based on the MapReduce algorithm, but also 

optimized the algorithm itself. The combination of these two aspects were very suitable for the 

large-scale DNA sequence assembling. Besides, results also showed that the new sequence 

assembling algorithm based on Spark could ensure accuracy of assembling results. 

To address the problem of poor assembling precision and low efficiency, in 2017, Dong G et al [43] 

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first 

designed a precise assembling algorithm under the strategy of finding the source of reads based on 

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences 

which were randomly selected from animals, plants and microorganisms with base lengths from 

hundreds to tens of thousands from NCBI. All matching rates of 54 sequences were 100%. For each 

species, the algorithm also summarized the range of K which made the matching rates to be 100%. 

In order to verify the range of K value of hepatitis C virus (HCV) and related variants, the randomly 

selected eight HCV variants were calculated. The results confirmed the correctness of K range of 

hepatitis C and related variants from NCBI. After that, SA-BR-Spark was put forward. Experimental 

results [43] showed that SA-BR-Spark provided a superior computational speed compared with SA-

BR-MR. 

To resolve the large memory requirement problem of most OLC de novo assemblers, in 2017, Paul 

AJ et al [44] employed string graph reduction algorithms taking advantage of Spark. The proposed   

Spark algorithms were evaluated with a very large sample dataset. Results showed that this dataset 

was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours compared 

to the 7.5 hours of OLC based Omega [45] assembler.  

SPARK IN SEQUENCE ANALYSIS 

Spark in variant analysis 

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data 

analysis. Before Spark-based GATK tools were created, while several other tools had been 

developed to address the issue of scalability in the pipeline (such as Halvade [17] and Churchill 

[46]), they showed limited scalability, accuracy and computational efficiency.  
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Therefore, in 2015, Mushtaq H et al [47] utilized Spark to propose a cluster-based GATK pipeline. 

To reduce the execution time, this approach kept data active in the memory between the map and 

reduce phases. By using runtime statistics of the active workload, it achieved a dynamic load 

balancing algorithm that could better utilize system performance. Experimental results [47] showed 

that this method achieved a 4.5x speedup compared to the multi-threaded GATK pipeline on a single 

node. Besides, when executed on a 4-node cluster, this approach was 63% faster than Halvade.  

After that, in 2016, Deng L et al proposed HiGene [48], which employed Spark to enable multi-

core and multi-node parallelization of the GATK pipeline. HiGene put forward a dynamic 

computing resource scheduler and an efficient data skew mitigation method to improve performance. 

Experiments were conducted with the NA12878 whole human genome dataset. Results [48] showed 

that HiGene reduced the total running time from days to nearly an hour. Besides, compared with 

Halvade, HiGene was also 2x faster. Meanwhile, Li X et al employed Spark to propose GATK-

Spark [49] to parallel the GATK pipeline by taking full account of compute, workload and I/O 

characteristics. And it was built on top of ADAM format [50]. Experimental results [49] showed 

that GATK-Spark shortened the total running time from 20 hours to 30 minutes on 256 CPU cores 

which achieved more than 37 times speedup. 

The advent of Spark provides the possibility of interactive processing for NGS data. And in 2014, 

Wiewiórka MS et al proposed SparkSeq [51] to build and run genomic analysis pipelines in an 

interactive way by using Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times 

speedup than SeqPig. Besides, it could accelerate data querying up to 110x and reduce memory 

consumption by 13x.  

Spark in motif analysis 

Due to the nature of NGS technology, the generated data are usually accompanied by some noises 

or other types of errors which are known as uncertain data [52]. And among these uncertain data, 

there are some frequently recurring patterns called motifs [53]. Mining motifs from these uncertain 

data is an important problem but a computationally intensive task. Before Spark-based mining 

algorithm was created, while several mining algorithms had been developed (such as HPSPM [54], 

DGSP [55] and SPAMC [56]), they showed limited scalability. Therefore, Jiang F et al [57] utilized 

Spark to propose a scalable algorithm for mining sequence motifs. This algorithm took advantage 

of Spark’s RDDs and DAG, and allowed users to specify the minimum and maximum length of 

motif. Experiments were conducted with human genome datasets and bacteria DNA sequence 

datasets and results [57] showed this approach could take a short period of time to extract accurate 

motifs. 
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SPARK IN OTHER BIOLOGICAL APPLICATIONS 

Spark in genomic inference 

Efficient score statistic methods [58] are widely applied in high-throughput genomic data inference. 

A typical method of estimating the sampling distribution of the statistics is to employ asymptotic 

approximation, but it is inappropriate for small or uncommon variants. Although resampling 

methods [59] are appropriate for genomic inference, they greatly increase the computational burden 

of analysis. In order to tackle the computational challenge for resampling based inference, Bahmani 

Amir et al proposed SparkScore [60], a distributed genomic inference approach taking advantage 

of Spark. SparkScore leveraged the nature of asymptotic and resampling inference based on efficient 

score statistics for distributed genomic inference. Experiments on synthetic datasets using Amazon 

Elastic MapReduce (EMR) [60] demonstrated SparkScore’s efficiency and scalability. 

Spark in epigenetics 

CpG islands (CGI) are important epigenetic markers, which play an essential role in epigenetics   

[61]. However, it is very challenging to investigate the CpG islands and their structures. Before 

Spark-based applications were developed, while several methods had been proposed to determine 

the CPG island (such as bisulfite modification-based methods), they were time-consuming and too 

costly. Thus, Yu N et al [62] utilized Spark to propose a novel CpG box model and a Markov model 

to redefine and investigate the CpG island which could greatly accelerate the analytic process. 

Experiments were conducted with Human and mouse chromosome sequences, 24 chromosomes and 

21 chromosomes. Results [62] showed this cloud-assisted method displayed considerable accuracy 

and faster processing power (6-7 times faster with 10 cores) compared with sequential processing.  

Spark in phylogeny 

Phylogeny reconstruction plays an important role in molecular evolutionary studies but faces 

significant computational challenges. Before Spark-based tools were created, while several tools 

had been put forward for phylogeny reconstruction, they could not scale well with a significant 

increase in data sets. Therefore, in 2016, Xu X et al proposed CloudPhylo [63], a fast and scalable 

Phylogeny reconstruction tool making use of Spark. It evenly distributed the entire computational 

workload among the working nodes. Experiment was conducted with the 5220 bacteria whole 

genome DNA sequences. Results [63] showed that CloudPhylo took 24508 seconds with one worker 

node and it could scale well as worker nodes increased. Moreover, CloudPhylo performed better 

than several existing tools when using more worker nodes. Besides, CloudPhylo achieved higher 

speedup on a larger dataset of about 100GB generated by simulation. 

Spark in drug discovery 
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It is crucial to identify candidate molecules that affect disease-related proteins in drug discovery. 

Although the Chemogenomics project tries to identify candidate molecules using machine learning 

predictor programs [64-66], these programs spend a significant time and cannot be easily extended 

to multiple nodes. To migrate existing programs to multi-node clusters without changing the original 

programs, Harnie D et al proposed S-CHEMO [67] using Saprk. In S-CHEMO, the intermediate 

data would be consumed again immediately on nodes that generated the data, reducing time and 

network bandwidth consumption. Experiments [67] compared S-CHEMO with the original pipeline, 

which showed almost linear speedup up to 8 nodes. Besides, this implementation also allowed easier 

monitoring and checkpointing.     

Spark in Single-cell RNA sequencing 

Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes. 

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a 

greater number of cell profiles. Although there are already several RNA-seq processing pipelines 

(such as Halvade, SparkSeq and SparkBWA), they cannot process such a large number of profiles. 

Therefore, Falco [68] was created to process large-scale transcriptomic data in parallel by using 

Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. Results [68] 

showed compared with a highly optimized single-node analysis, Falco was at least 2.6 times faster. 

Besides, as the number of computing nodes increased, running time decreased. Besides, it allowed 

users to employ the low-cost spot instances of AWS which reduced the cost of analysis by 65%. 

Spark in variant association and population genetics studies 

Effectively analyzing thousands of individuals and millions of variants is a computationally 

intensive problem. Traditional parallel strategies such as MPI/OpenMP show poor scalability. 

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on 

disk operations. Therefore, in 2015, O’Brien AR et al proposed VariantSpark [69] to parallel 

population-scale tasks based on Spark and associated machine learning library, MLlib. Experiments 

were conducted on 3000 individuals with 80 million variants, which showed that VariantSpark was 

80% faster than ADAM, Hadoop/Mahout implementation and ADMIXTURE [70]. Besides, 

compared with R and Python implementations it was more than 90 % faster. And in 2017, Di Z et 

al proposed SEQSpark [71] to perform rare variant association analysis by using Spark. It was 

evaluated with whole-genome and simulated exome sequence data. The former was completed in 

1.5 hours and the latter in 1.75 hours. Moreover, it was always faster than Variant Association Tools 

and PLINK/SEQ, and in some cases running time was reduced to one percent. 

Spark in other works 
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Biological simulations and experiments produce a large number of numerical datasets, and in 2017 

Klein M et al proposed Biospark [72] to process these data. Biospark was based on Hadoop and 

Spark, consisting of a set of Java, C++ and Python libraries. Besides, it provided the abstractions 

for parallel analysis of standard data types, including multidimensional arrays and images. To help 

parallel analysis of some common datasets, it also provided APIs and file conversion tools, 

including Monte Carlo, molecular dynamics simulations and time-lapse microscopy.  

Table 2 summarizes bioinformatics tools and algorithms based on Apache Spark. 

CONCLUSION 

In conclusion, the Apache Spark is very suitable for processing large-scale datasets, due to its high 

performance, scalability and fault tolerance. With the rapid development of NGS technology, a large 

number of bioinformatics data have been generated, which poses a great challenge to traditional 

bioinformatics tools. For this reason, we have summarized the relevant works about Spark in 

bioinformatics and made a guideline on this topic. First, we make a comparison between Spark and 

Hadoop, and then introduce the Spark architecture, programming model, and processing mechanism 

in detail. After that, we survey Spark-based applications in the NGS and other biological domains. 

A researcher who wants to get involved in this field can have a general understanding of Spark in 

bioinformatics through our survey. Currently, Spark has been widely used in the field of 

bioinformatics and shows good results. We believe that bioinformatics applications based on Spark 

will provide promising performance for biological researchers in the future. 

Key Points 

 The Apache Spark not only gives researchers a possibility of achieving efficient, scalable 

and fault tolerant computing performance, but also supports various system workloads such 

as batch processing, iterative, interactive and flow calculations. 

 We introduce the Apache Spark framework in detail, helping researchers to understand its 

architecture, programming model and processing mechanism. 

 We present Spark-based applications that can be employed in bioinformatics and discuss 

the future of parallel computing in bioinformatics. 
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Table 1 Commonly-used transformations and actions on RDDs in Apache Spark 

Table 2 Apache Spark-based bioinformatics tools and algorithms 
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Table 1 Commonly-used transformations and actions on RDDs in Apache Spark 

T
ra

n
sf

o
rm

a
ti

o
n

s 

 

map (f): Apply the function f to each element of the RDD, and the return value is the new 

RDD. 

filter (f): Use the function f to filter out elements that do not meet the criteria. The return 

value is the new RDD. 

flatMap (f): Apply the function f to each element of the RDD, split the element data into 

an iterator, and the return value is the new RDD. 

mapPartitions (f): Similar to map, except that the input function of map () is applied to 

each element in the RDD, and the input function of mapPartitions () is applied to each 

partition. 

sample (withReplacement, fraction, seed): Return a new RDD that was generated by 

randomly sampling the original RDD. 

distinct (): Deduplication of elements in RDD. 

cartesian (other RDD): Find the Cartesian product of two RDDs. 

union (other RDD): Return a new RDD that contains all the elements of two RDDs. 

intersection (other RDD): Return a new RDD that contains the common elements of two 

RDDs.  

subtract (other RDD): Remove the same elements from the original RDD and the RDD 

parameter. 

A
ct

io
n

s 

 

collect (): Return all elements of the RDD.  

count (): Return the number of elements in the RDD. 

countByValue(n): Return the number of occurrences of each element in the RDD. 

take (n): Return an array of the first n elements of the RDD.  

first (): Return the first element of the RDD. 

reduce (f): Use function f to integrate all elements of the RDD, such as sum operations. 

foreach (f): Run function f for each element of RDD. 

takeOrdered (n, [ordering]): Return first n elements from the RDD by default 

(ascending) or by specifying a collation. 

takeSample (withReplacement, num, [seed]): Return an array of randomly sampled 

num elements in the datasets. 

saveAsTextFile (path): Save all elements of the RDD as a text file to the local file 

system. 
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Table 2 Bioinformatics tools and algorithms based on Apache Spark 

Function Name URL Reference 

Sequence 

alignment/mapping 

SparkSW 

DSA 

CloudSW 

SparkBWA 

StreamBWA 

PASTASpark 

PPCAS 

SparkBLAST 

MetaSpark 

https://github.com/s0897918/SparkSW/ 

https://github.com/xubo245/DSA 

https://github.com/xubo245/CloudSW 

https://github.com/citiususc/SparkBWA 

https://github.com/HamidMushtaq/StreamBWA 

https://github.com/citiususc/pastaspark 

https://github.com/jllados/PPCAS 

https://github.com/sparkblastproject/v2 

https://github.com/zhouweiyg/metaspark 

[10] 

[11] 

[12] 

[20] 

[21] 

[24] 

[29] 

[35] 

[36] 

Sequence assembly Spaler 

SA-BR-Spark 

Not Available 

Not Available 

[41] 

[43] 

Sequence analysis HiGene 

GATK-Spark 

SparkSeq 

Not Available 

Not Available 

https://bitbucket.org/mwiewiorka/sparkseq/ 

[48] 

[49] 

[51] 

Genome inference SparkScore Not Available [72] 

Phylogeny reconstruction 

Drug discovery 

CloudPhylo 

S-CHEMO 

https://github.com/XingjianXu/cloudphylo 

Not Available 

[63] 

[67] 

Single-cell RNA-seq 

Variant association and 

population genetics studies 

 

Other 

Falco 

VariantSpark 

SEQSpark 

 

BioSpark 

https://github.com/VCCRI/Falco/ 

https://github.com/BauerLab/VariantSpark 

https://github.com/statgenetics/seqspark 

https://www.assembla.com/spaces/roberts-lab-

public/ wiki/Biospark 

[68] 

[69] 

[71] 

[72] 
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Figure 1 The operating mechanism diagram of Hadoop 

 

Figure Click here to download Figure Figure 1.docx 

http://www.editorialmanager.com/giga/download.aspx?id=38120&guid=7173116b-029e-4e66-8b38-c5fc6e2abd43&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38120&guid=7173116b-029e-4e66-8b38-c5fc6e2abd43&scheme=1


 

Figure 2 The architecture of Spark 
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Figure 3 The task processing flow chart of Spark 
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Figure 4 The Spark ecosystem 
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