
GigaScience

Bioinformatics Application on Apache Spark
--Manuscript Draft--

Manuscript Number: GIGA-D-18-00131

Full Title: Bioinformatics Application on Apache Spark

Article Type: Review

Funding Information: National Key R&D Program of China
(2017YFB0202600, 2016YFC1302500,
2016YFB0200400 and 2017YFB0202104)

Professor shaoliang peng

National Natural Science Foundation of
China
(61772543, U1435222, 61625202,
61272056 and 61771331)

Professor shaoliang peng

Guangdong Provincial Department of
Science and Technology
(2016B090918122)

Professor shaoliang peng

Abstract: With the rapid development of the next-generation sequencing (NGS), the ever-
increasing genomic data poses a tremendous challenge to data processing. Therefore,
there is an urgent need for highly scalable and powerful computational systems.
Among the state-of–the-art parallel computing platforms, Apache Spark is a fast,
general-purpose computing framework designed for large-scale data processing, which
ensures high fault-tolerance and high scalability by introducing resilient distributed
dataset (RDD) abstraction. Moreover, Spark can be up to 100x faster in memory
access and 10x faster in disk access than Hadoop. In this paper, we surveyed Spark-
based applications in the NGS and other biological domains, such as phylogeny, drug
discovery and more. In the end, we discussed the challenges faced in this field and the
future work on parallel computing of bioinformatics. We believe that this survey
provides a comprehensive guideline for bioinformatics researchers to apply Spark in
their own fields.
Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient
distributed dataset; memory computing

Corresponding Author: runxin guo

CHINA

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: runxin guo

First Author Secondary Information:

Order of Authors: runxin guo

yi zhao

xiangke liao

kenli li

quan zou

xiaodong fang

shaoliang peng

Order of Authors Secondary Information:

Additional Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Bioinformatics Application on Apache Spark
Runxin GUO1†, Yi ZHAO4†, Xiangke LIAO3, Kenli LI2, Quan ZOU5*, Xiaodong FANG6*,

Shaoliang PENG2,3†*
1College of Meteorology and Oceanology, National University of Defense Technology, Changsha

410073, China

2College of Computer Science and Electronic Engineering & National Supercomputer Centre in

Changsha, Hunan University, Changsha 410082, China

3College of Computer, National University of Defense Technology, Changsha 410073, China

4Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

5School of Computer Science and Technology, Tianjin University, Tianjin 300350, China

6BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China

pengshaoliang@nudt.edu.cn ; zouquan@nclab.net ; fangxd@bgitechsolutions.com

*: corresponding author; †: equal contributors

ABSTRACT

With the rapid development of the next-generation sequencing (NGS), the ever-increasing genomic

data poses a tremendous challenge to data processing. Therefore, there is an urgent need for highly

scalable and powerful computational systems. Among the state-of–the-art parallel computing

platforms, Apache Spark is a fast, general-purpose computing framework designed for large-scale

data processing, which ensures high fault-tolerance and high scalability by introducing resilient

distributed dataset (RDD) abstraction. Moreover, Spark can be up to 100x faster in memory access

and 10x faster in disk access than Hadoop. In this paper, we surveyed Spark-based applications in

the NGS and other biological domains, such as phylogeny, drug discovery and more. In the end, we

discussed the challenges faced in this field and the future work on parallel computing of

bioinformatics. We believe that this survey provides a comprehensive guideline for bioinformatics

researchers to apply Spark in their own fields.

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset;

memory computing

INTRODUCTION

NGS has generated huge amounts of biological sequence data. To use these data efficiently, we

need to store and analyze the data accurately and efficiently. However, the existing bioinformatics

tools cannot effectively handle such a large amount of data. In order to solve the issues, MapReduce,

a programming model for parallel computation of large datasets, has been proposed [1]. MapReduce

splits large-scale datasets into many key-value pairs through both the map and reduce phases,

Manuscript Click here to download Manuscript Bioinformatics Application
on Apache Spark.docx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:pengshaoliang@nudt.edu.cn
mailto:zouquan@nclab.net
mailto:fangxd@bgitechsolutions.com
http://www.editorialmanager.com/giga/download.aspx?id=38119&guid=793759ec-8044-45eb-9ab2-96a120587c16&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38119&guid=793759ec-8044-45eb-9ab2-96a120587c16&scheme=1

significantly improving performance and showing good scalability. Hadoop consists of two parts:

the Hadoop Distributed File System (HDFS) and MapReduce, where HDFS is mainly used for

distributed storage of massive datasets and MapReduce preforms distributed computing on these

datasets. Hadoop is a software framework that enables distributed processing of large amounts data

in a reliable, efficient, and scalable way. As a result, Hadoop has been adopted by the bioinformatics

community in several areas [2], such as alignment [3], mapping [4] and sequence analysis [5].

However, as in Figure 1, due to its disk-based I/O access pattern, intermediate calculation results

are also stored in HDFS. Therefore, Hadoop is only suitable for batch data processing, not enough

for interactive and real-time data processing, and shows poor performance for iterative data

processing. To resolve this problem, Apache Spark [6] has been proposed, which is a fast general-

purpose computational framework designed specifically to handle huge amounts of data. Unlike

Hadoop’s disk-based computing, Spark performs memory computing by introducing resilient

distributed dataset (RDD). RDD is a read-only and fault-tolerant data structure. These useful

differences make Spark even better for some workloads. In other words, in addition to providing

interactive queries, Spark also supports in-memory distributed datasets and optimizes iterative

workloads. Moreover, Spark can be up to 100x faster in memory access than Hadoop [6]. Even if

we compare between them based on the performance of the disk, the gap is more than 10 times [7].

THE SPARK FRAMEWORK

Spark is an open source cluster computing environment similar to Hadoop, developed by UC

Berkeley AMP lab. As in Figure 2, Spark architecture consists of three main components: (a) the

driver program, used to deploy the Spark operating environment and launch computation; (b) the

cluster manager, responsible for obtaining and allocating the computing resources; (c) the worker

nodes, in charge of performing real computations. It is implemented in the Scala language and uses

Scala as its application framework. Unlike Hadoop, Spark and Scala are tightly integrated, with

Scala operating distributed datasets just as easily as local collection objects. Moreover, Spark has

the benefits of Hadoop MapReduce, but unlike Hadoop MapReduce, intermediate calculation

results can be stored in memory, eliminating the need to read and write HDFS. So, Spark is better

suited for iterative algorithms such as data mining and machine learning. Besides, Spark adopts

directed acyclic graph (DAG) to optimize the execution process.

Spark implements in-memory operations based on the RDD abstraction. RDD is a read-only

collection of objects partitioned on different nodes in a cluster so that the data in the RDD can be

processed in parallel. The most important feature of RDD is that it provides fault tolerance and can

automatically recover from a node failure. That is, if an RDD partition on a node is lost because of

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

a node failure, the RDD automatically recalculates the partition from its own data source. All this

is transparent to the user. In addition, RDD data is stored in memory by default, but Spark

automatically writes RDD data to disk if memory resources are low. Spark provides two types of

operations on RDDs: transformations and actions. The former defines a new RDD, the latter returns

a result or writes RDD data to the storage system. Table 1 lists the commonly-used transformations

and actions supported by Spark. Transformations employ lazy operations [8], which means that the

operation of generating another RDD from one RDD transformation is not executed immediately,

and the calculation process is not actually started until an action is performed. Figure 3 shows

Spark’s task processing flow chart.

Besides, as in Figure 4, the Spark ecosystem, the BDAS (Berkeley Data Analysis Stack), includes

components such as Spark SQL, Spark Streaming, MLlib, and GraphX. These components provide

the real-time processing applications for Spark Streaming, the ad hoc query for Spark SQL, the

machine learning for MLlib, and the GraphX graph processing.

SPARK IN ALIGNMENT AND MAPPING

The rapid development of NGS technology has generated a large amount of sequence data (reads),

which has a tremendous impact on sequence alignment and mapping process. Currently, the

sequence alignment and mapping process still consume a lot of time.

The Smith-Waterman (SW) algorithm [9], which produces the optimal local alignment between two

strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics. However,

SW algorithm requires a high computational cost due to high computational complexity. To speed

up the algorithm, in 2015, Zhao G et al implemented the SW algorithm on Spark for the first time,

called as SparkSW [10]. It consisted of three phases: data preprocessing, SW as map tasks and top

K records as reduce tasks. Experimental results [10] showed that SparkSW was load-balancing and

scalable with computing resources increased.

However, SparkSW merely supports SW algorithm without the mapping location and traceback of

optimal alignment, as a result, SparkSW executes slowly. Therefore, in 2017, Xu Bo et al proposed

DSA [11], which employed Single Instruction Multiple Data (SIMD) instruction to parallel the

sequence alignment algorithm at each worker node. Experimental results [11] showed that DSA

achieved up to 201x speedup over SparkSW and almost linear speedup with the increase of cluster

nodes.

Subsequently, Xu Bo et al proposed CloudSW [12], an efficient distributed SW algorithm which

leveraged Spark and SIMD instructions to accelerate the algorithm and provided APIs service in

the cloud. Experimental results [12] showed that CloudSW achieved up to 3.29x speedup over DSA

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

and 621x speedup over SparkSW. And CloudSW also showed excellent scalability and achieved up

to 529 giga cell updates per second (GCUPS) in protein database search with 50 nodes in Aliyun.

Burrows-Wheeler aligner (BWA) is composed of BWA-backtrack [13], BWA-SW [14] and BWA-

MEM [15] for performing sequence alignment and mapping in bioinformatics. Before the advent of

Spark-based BWA tool, there were several other BWA tools based on big data technology, including

BigBWA [16], Halvade [17] and SEAL [18]. However, they were based on Hadoop showing limited

scalability and complex implementation.

As a result, in 2015, Al-Ars Zaid et al [19] implemented three different versions of BWA-MEM

and compared their performance: a native cluster-based version, a Hadoop version and a Spark

version. Three implementations were evaluated on the same IBM Power7 and Intel Xeon servers

with the WordCount example. Results [19] showed that simultaneous multithreading improved the

performance of three versions of BWA-MEM, and the Spark version with 80 threads increased

performance by up to 87% than the native cluster version using 16 threads. Furthermore, the Hadoop

version with 4 threads increased performance by 17% and the Spark version with more threads

increased performance by 27%.

After then, in 2016, Abuín JM et al proposed SparkBWA [20] which is composed of three main

phases: the RDDs creation phase, the map phase, and the reduce phase. Experimental results [20]

showed that for the BWA-backtrack algorithm, SparkBWA achieved the average speedup of 1.9x

and 1.4x compared with SEAL and pBWA respectively. For the BWA-MEM algorithm, SparkBWA

was 1.4x faster than BigBWA and Halvade tools on average.

However, SparkBWA required the data availability in the HDFS. In general, the input files were

given in gzip format, which required first uncompressing the file before uploading it to the HDFS.

Subsequently, this also slowed down the execution of BWA itself, since data on the HDFS had to

be reformatted as appropriate input to the BWA program tasks running on the cluster. Finally, the

output files produced by those BWA tasks required significant time to combine separately at the

end.

Therefore, in 2017, Alars HMA et al employed Spark to propose StreamBWA [21], where the input

data was being streamed directly from a compressed file. This file could either be located on the

master node or on a URL, which eliminated the cost of execution time of downloading the file and

then uncompressing it. Moreover, since the master node could stream data to the data nodes, the

overhead of uploading data to the HDFS could also be hidden. The master node could also start

combining the output files of BWA tasks running on the data nodes, in parallel, once they were

available, further reducing the overall time. Experimental results [21] showed that this streaming

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

distributed approach was approximately 2x faster than the non-streaming approach. Furthermore,

StreamBWA was 5x faster than SparkBWA.

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological

sequences, such as protein or nucleic acid sequences. One of representative tools for performing

MSA is PASTA [22]. PASTA is a derivative of SATé [23], which produces highly accurate

alignments in shared memory computers. However, PASTA is limited to processing small and

medium datasets, because the computing power of shared memory systems cannot meet the memory

and time requirements of large-scale datasets.

Therefore, in 2017, Abuín J M et al proposed PASTASpark [24], which allowed executions on a

distributed memory cluster taking advantage of Spark. It employed an in-memory RDD of key-

value pairs to parallel the calculating MSAs phase. Experiments were conducted on two different

clusters (CESGA and AWS). The results [24] showed that PASTASpark achieved up to 10x

speedups compared with single-threaded PASTA and was able to process 200,000 sequences in 24

hours using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance which

greatly reduced the time to obtain MSA.

The probabilistic pairwise model [25] is widely used in all consistency-based MSA tools, such as

MAFFT [26], ProbCons [27] and T-Coffee(TC) [28]. However, the global distributed memory

cannot meet the ever-increasing sequence datasets, which causes the need of specialized distributed

databases, such as HBase or Cassandra. As a result, in 2017, Lladós Jordi et al employed Spark to

propose a new tool, PPCAS [29], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [29] showed that

it was better with single node and provided almost linear speedup with the increase in the number

of nodes. In addition, it could compute more sequences using the same memory.

NCBI BLAST [30, 31] is widely used to implement algorithms for sequence comparison. Before

the Spark-based BLAST was created, several other BLAST tools had been proposed including

mpiBLAST [32], GPU-BLAST [33] and CloudBLAST [34]. However, with the increasing number

of genomic data, these tools showed limited scalability and efficiency.

As a result, in 2017, Castro MRD et al proposed SparkBLAST [35], which utilized cloud computing

and Spark framework to parallel BLAST. In SparkBLAST, Spark’s pipe operator and RDDs were

utilized to call BLAST as an external library and perform scalable sequence alignment. It was

compared with CloudBLAST on both Google and Microsoft Azure Clouds. Experimental results

[35] showed that SparkBLAST outperformed CloudBLAST in terms of speedup, scalability and

efficiency.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Metagenomics is crucial for studying genetic material directly from environmental samples.

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data

analysis. And in 2017, Zhou W et al proposed MetaSpark [36], which employed Spark to recruit

metagenomics reads to reference genomes.

MetaSpark utilized the RDD of Spark to cache datasets in memory and scaled well along dataset

size increments. It consisted of five steps including constructing k-mer RefindexRDD, constructing

k-mer ReadlistRDD, seeding, filtering, and banded alignment. It was evaluated on a ten-node cluster

working under the Spark standalone module where each node contained an 8-core CPU and 16 GB

RAM. It employed about one million 75bp Illumina reads dataset and two references (the 194

human gut genomes and the bacterial genomes) that were respectively 0.616GB and 1.3GB in size.

Experimental results [36] showed that MetaSpark recruited more reads than FR-HIT [37] with the

same parameters and 1 million reads. MetaSpark recruited 501,856 reads when there were 0.616

GB human gut genome references, while FR-HIT recruited 489,638 reads. MetaSpark increased

recruited reads by 2.5%. When references changed to a 1.3 GB bacterial genome, MetaSpark

recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark increased recruited

reads by 4%. Moreover, the results also showed that MetaSpark offered good scalability. Under a

0.616 GB reference, run time for 0.1 million reads was 51 min under 4 nodes, and decreased slightly

to 23.5 min under 10 nodes. For the 1 million read datasets, MetaSpark would crash under 4 nodes

due to limited memory. Under 6 nodes, it finished running after 312 min and would sharply decrease

to 201 min under 10 nodes.

SPARK IN ASSEMBLY

Due to short lengths of the NGS reads (<500 bp), they need to be assembled prior to further analysis,

which is another important phase in sequence analysis workflow. In general, there are two types of

assembly: the reference assembly and de novo assembly. The assembly algorithm includes two

categories: overlap-layout-consensus (OLC) algorithm and the de Bruijn graph algorithm. The

former is generally employed to assemble longer reads, while the latter shows a good performance

in assembling short reads.

Before Spark-based distributed memory de novo assemblers were created, although there were some

MPI-based assemblers (such as Ray [38], AbySS [39] and SWAP-Assembler [40]), they showed

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh Anas et

al proposed Spaler [41] taking advantage of Spark and GraphX API. It consisted of two main parts:

(a) de Bruijn graph construction, and (b) Contigs generating. And it was evaluated with other MPI-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

based tools in terms of quality, execution time, and scalability. Experiments results [41] showed

that Spaler had better scalability and it could achieve comparable or better assemble quality.

And in 2016, X Pan et al [42] put forward a new assembling algorithm based on Spark which

employed the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was

evaluated using 6 groups of DNA in the NCBI. Experimental results [42] showed that this strategy

not only solved the problem of low efficiency based on the MapReduce algorithm, but also

optimized the algorithm itself. The combination of these two aspects were very suitable for the

large-scale DNA sequence assembling. Besides, results also showed that the new sequence

assembling algorithm based on Spark could ensure accuracy of assembling results.

To address the problem of poor assembling precision and low efficiency, in 2017, Dong G et al [43]

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first

designed a precise assembling algorithm under the strategy of finding the source of reads based on

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences

which were randomly selected from animals, plants and microorganisms with base lengths from

hundreds to tens of thousands from NCBI. All matching rates of 54 sequences were 100%. For each

species, the algorithm also summarized the range of K which made the matching rates to be 100%.

In order to verify the range of K value of hepatitis C virus (HCV) and related variants, the randomly

selected eight HCV variants were calculated. The results confirmed the correctness of K range of

hepatitis C and related variants from NCBI. After that, SA-BR-Spark was put forward. Experimental

results [43] showed that SA-BR-Spark provided a superior computational speed compared with SA-

BR-MR.

To resolve the large memory requirement problem of most OLC de novo assemblers, in 2017, Paul

AJ et al [44] employed string graph reduction algorithms taking advantage of Spark. The proposed

Spark algorithms were evaluated with a very large sample dataset. Results showed that this dataset

was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours compared

to the 7.5 hours of OLC based Omega [45] assembler.

SPARK IN SEQUENCE ANALYSIS

Spark in variant analysis

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data

analysis. Before Spark-based GATK tools were created, while several other tools had been

developed to address the issue of scalability in the pipeline (such as Halvade [17] and Churchill

[46]), they showed limited scalability, accuracy and computational efficiency.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Therefore, in 2015, Mushtaq H et al [47] utilized Spark to propose a cluster-based GATK pipeline.

To reduce the execution time, this approach kept data active in the memory between the map and

reduce phases. By using runtime statistics of the active workload, it achieved a dynamic load

balancing algorithm that could better utilize system performance. Experimental results [47] showed

that this method achieved a 4.5x speedup compared to the multi-threaded GATK pipeline on a single

node. Besides, when executed on a 4-node cluster, this approach was 63% faster than Halvade.

After that, in 2016, Deng L et al proposed HiGene [48], which employed Spark to enable multi-

core and multi-node parallelization of the GATK pipeline. HiGene put forward a dynamic

computing resource scheduler and an efficient data skew mitigation method to improve performance.

Experiments were conducted with the NA12878 whole human genome dataset. Results [48] showed

that HiGene reduced the total running time from days to nearly an hour. Besides, compared with

Halvade, HiGene was also 2x faster. Meanwhile, Li X et al employed Spark to propose GATK-

Spark [49] to parallel the GATK pipeline by taking full account of compute, workload and I/O

characteristics. And it was built on top of ADAM format [50]. Experimental results [49] showed

that GATK-Spark shortened the total running time from 20 hours to 30 minutes on 256 CPU cores

which achieved more than 37 times speedup.

The advent of Spark provides the possibility of interactive processing for NGS data. And in 2014,

Wiewiórka MS et al proposed SparkSeq [51] to build and run genomic analysis pipelines in an

interactive way by using Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times

speedup than SeqPig. Besides, it could accelerate data querying up to 110x and reduce memory

consumption by 13x.

Spark in motif analysis

Due to the nature of NGS technology, the generated data are usually accompanied by some noises

or other types of errors which are known as uncertain data [52]. And among these uncertain data,

there are some frequently recurring patterns called motifs [53]. Mining motifs from these uncertain

data is an important problem but a computationally intensive task. Before Spark-based mining

algorithm was created, while several mining algorithms had been developed (such as HPSPM [54],

DGSP [55] and SPAMC [56]), they showed limited scalability. Therefore, Jiang F et al [57] utilized

Spark to propose a scalable algorithm for mining sequence motifs. This algorithm took advantage

of Spark’s RDDs and DAG, and allowed users to specify the minimum and maximum length of

motif. Experiments were conducted with human genome datasets and bacteria DNA sequence

datasets and results [57] showed this approach could take a short period of time to extract accurate

motifs.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

SPARK IN OTHER BIOLOGICAL APPLICATIONS

Spark in genomic inference

Efficient score statistic methods [58] are widely applied in high-throughput genomic data inference.

A typical method of estimating the sampling distribution of the statistics is to employ asymptotic

approximation, but it is inappropriate for small or uncommon variants. Although resampling

methods [59] are appropriate for genomic inference, they greatly increase the computational burden

of analysis. In order to tackle the computational challenge for resampling based inference, Bahmani

Amir et al proposed SparkScore [60], a distributed genomic inference approach taking advantage

of Spark. SparkScore leveraged the nature of asymptotic and resampling inference based on efficient

score statistics for distributed genomic inference. Experiments on synthetic datasets using Amazon

Elastic MapReduce (EMR) [60] demonstrated SparkScore’s efficiency and scalability.

Spark in epigenetics

CpG islands (CGI) are important epigenetic markers, which play an essential role in epigenetics

[61]. However, it is very challenging to investigate the CpG islands and their structures. Before

Spark-based applications were developed, while several methods had been proposed to determine

the CPG island (such as bisulfite modification-based methods), they were time-consuming and too

costly. Thus, Yu N et al [62] utilized Spark to propose a novel CpG box model and a Markov model

to redefine and investigate the CpG island which could greatly accelerate the analytic process.

Experiments were conducted with Human and mouse chromosome sequences, 24 chromosomes and

21 chromosomes. Results [62] showed this cloud-assisted method displayed considerable accuracy

and faster processing power (6-7 times faster with 10 cores) compared with sequential processing.

Spark in phylogeny

Phylogeny reconstruction plays an important role in molecular evolutionary studies but faces

significant computational challenges. Before Spark-based tools were created, while several tools

had been put forward for phylogeny reconstruction, they could not scale well with a significant

increase in data sets. Therefore, in 2016, Xu X et al proposed CloudPhylo [63], a fast and scalable

Phylogeny reconstruction tool making use of Spark. It evenly distributed the entire computational

workload among the working nodes. Experiment was conducted with the 5220 bacteria whole

genome DNA sequences. Results [63] showed that CloudPhylo took 24508 seconds with one worker

node and it could scale well as worker nodes increased. Moreover, CloudPhylo performed better

than several existing tools when using more worker nodes. Besides, CloudPhylo achieved higher

speedup on a larger dataset of about 100GB generated by simulation.

Spark in drug discovery

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

It is crucial to identify candidate molecules that affect disease-related proteins in drug discovery.

Although the Chemogenomics project tries to identify candidate molecules using machine learning

predictor programs [64-66], these programs spend a significant time and cannot be easily extended

to multiple nodes. To migrate existing programs to multi-node clusters without changing the original

programs, Harnie D et al proposed S-CHEMO [67] using Saprk. In S-CHEMO, the intermediate

data would be consumed again immediately on nodes that generated the data, reducing time and

network bandwidth consumption. Experiments [67] compared S-CHEMO with the original pipeline,

which showed almost linear speedup up to 8 nodes. Besides, this implementation also allowed easier

monitoring and checkpointing.

Spark in Single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes.

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a

greater number of cell profiles. Although there are already several RNA-seq processing pipelines

(such as Halvade, SparkSeq and SparkBWA), they cannot process such a large number of profiles.

Therefore, Falco [68] was created to process large-scale transcriptomic data in parallel by using

Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. Results [68]

showed compared with a highly optimized single-node analysis, Falco was at least 2.6 times faster.

Besides, as the number of computing nodes increased, running time decreased. Besides, it allowed

users to employ the low-cost spot instances of AWS which reduced the cost of analysis by 65%.

Spark in variant association and population genetics studies

Effectively analyzing thousands of individuals and millions of variants is a computationally

intensive problem. Traditional parallel strategies such as MPI/OpenMP show poor scalability.

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on

disk operations. Therefore, in 2015, O’Brien AR et al proposed VariantSpark [69] to parallel

population-scale tasks based on Spark and associated machine learning library, MLlib. Experiments

were conducted on 3000 individuals with 80 million variants, which showed that VariantSpark was

80% faster than ADAM, Hadoop/Mahout implementation and ADMIXTURE [70]. Besides,

compared with R and Python implementations it was more than 90 % faster. And in 2017, Di Z et

al proposed SEQSpark [71] to perform rare variant association analysis by using Spark. It was

evaluated with whole-genome and simulated exome sequence data. The former was completed in

1.5 hours and the latter in 1.75 hours. Moreover, it was always faster than Variant Association Tools

and PLINK/SEQ, and in some cases running time was reduced to one percent.

Spark in other works

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Biological simulations and experiments produce a large number of numerical datasets, and in 2017

Klein M et al proposed Biospark [72] to process these data. Biospark was based on Hadoop and

Spark, consisting of a set of Java, C++ and Python libraries. Besides, it provided the abstractions

for parallel analysis of standard data types, including multidimensional arrays and images. To help

parallel analysis of some common datasets, it also provided APIs and file conversion tools,

including Monte Carlo, molecular dynamics simulations and time-lapse microscopy.

Table 2 summarizes bioinformatics tools and algorithms based on Apache Spark.

CONCLUSION

In conclusion, the Apache Spark is very suitable for processing large-scale datasets, due to its high

performance, scalability and fault tolerance. With the rapid development of NGS technology, a large

number of bioinformatics data have been generated, which poses a great challenge to traditional

bioinformatics tools. For this reason, we have summarized the relevant works about Spark in

bioinformatics and made a guideline on this topic. First, we make a comparison between Spark and

Hadoop, and then introduce the Spark architecture, programming model, and processing mechanism

in detail. After that, we survey Spark-based applications in the NGS and other biological domains.

A researcher who wants to get involved in this field can have a general understanding of Spark in

bioinformatics through our survey. Currently, Spark has been widely used in the field of

bioinformatics and shows good results. We believe that bioinformatics applications based on Spark

will provide promising performance for biological researchers in the future.

Key Points

 The Apache Spark not only gives researchers a possibility of achieving efficient, scalable

and fault tolerant computing performance, but also supports various system workloads such

as batch processing, iterative, interactive and flow calculations.

 We introduce the Apache Spark framework in detail, helping researchers to understand its

architecture, programming model and processing mechanism.

 We present Spark-based applications that can be employed in bioinformatics and discuss

the future of parallel computing in bioinformatics.

COMPETING INTERESTS

The authors declare that they have no competing interests.

FUNDING

This work was supported by National Key R&D Program of China [grant numbers

2017YFB0202600, 2016YFC1302500, 2016YFB0200400 and 2017YFB0202104]; National

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Natural Science Foundation of China [grant numbers 61772543, U1435222, 61625202, 61272056

and 61771331]; and Guangdong Provincial Department of Science and Technology [grant number

2016B090918122].

REFERENCES

1. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.

Communications of the ACM 2008, 51(1):107-113.

2. Zou Q, Li X-B, Jiang W-R et al. Survey of MapReduce frame operation in bioinformatics.

Briefings in bioinformatics 2013, 15(4):637-647.

3. Zou Q, Hu Q, Guo M et al. HAlign: Fast multiple similar DNA/RNA sequence alignment

based on the centre star strategy. Bioinformatics 2015, 31(15):2475-2481.

4. Nguyen T, Shi W, Ruden D. CloudAligner: A fast and full-featured MapReduce based tool

for sequence mapping. BMC research notes 2011, 4(1):171.

5. Nordberg H, Bhatia K, Wang K et al. BioPig: a Hadoop-based analytic toolkit for large-scale

sequence data. Bioinformatics 2013, 29(23):3014-3019.

6. Zaharia M, Chowdhury M, Franklin MJ et al. Spark: Cluster computing with working sets.

HotCloud 2010, 10(10-10):95.

7. Han Z, Zhang Y. Spark: A Big Data Processing Platform Based on Memory Computing.

In: Seventh International Symposium on Parallel Architectures, Algorithms and Programming:

2016. 172-176.

8. Zaharia M, Chowdhury M, Das T et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation: 2012. USENIX Association: 2-2.

9. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of

Molecular Biology 1981, 147(1):195-197.

10. Zhao G, Ling C, Sun D. SparkSW: Scalable Distributed Computing System for Large-Scale

Biological Sequence Alignment. In: Ieee/acm International Symposium on Cluster, Cloud and

Grid Computing: 2015. 845-852.

11. Xu B, Li C, Zhuang H et al. DSA: Scalable Distributed Sequence Alignment System Using

SIMD Instructions. In: Ieee/acm International Symposium on Cluster, Cloud and Grid

Computing: 2017. 758-761.

12. Xu B, Li C, Zhuang H et al. Efficient Distributed Smith-Waterman Algorithm Based on

Apache Spark. In: IEEE International Conference on Cloud Computing: 2017. 608-615.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

13. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform:

Oxford University Press; 2009.

14. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform.

Bioinformatics 2010, 26(5):589-595.

15. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

2013, 1303.

16. Abuín JM, Pichel JC, Pena TF et al. BigBWA: approaching the Burrows–Wheeler aligner

to Big Data technologies. Bioinformatics 2015, 31(24):4003.

17. Decap D, Reumers J, Herzeel C et al. Halvade: scalable sequence analysis with MapReduce.

Bioinformatics 2015, 31(15):2482-2488.

18. Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and duplicate

removal tool. Bioinformatics 2011, 27(15):2159.

19. Al-Ars Z, Mushtaq H. Scalability Potential of BWA DNA Mapping Algorithm on Apache

Spark. In: SIMBig: 2015. 85-88.

20. Abuín JM, Pichel JC, Pena TF et al. SparkBWA: Speeding Up the Alignment of High-

Throughput DNA Sequencing Data. Plos One 2016, 11(5):e0155461.

21. Alars HMA. Streaming Distributed DNA Sequence Alignment Using Apache Spark. 2017.

22. Mirarab S, Nguyen N, Warnow T. PASTA: ultra-large multiple sequence alignment. In:

International Conference on Research in Computational Molecular Biology: 2014. Springer:

177-191.

23. Liu K, Warnow TJ, Holder MT et al. SATe-II: very fast and accurate simultaneous

estimation of multiple sequence alignments and phylogenetic trees. Systematic biology 2011,

61(1):90-106.

24. Abuín JM, Pena TF, Pichel JC. PASTASpark: multiple sequence alignment meets Big Data.

Bioinformatics 2017, 33(18):2948-2950.

25. Miyazawa S. A reliable sequence alignment method based on probabilities of residue

correspondences. Protein Engineering 1995, 8(10):999.

26. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:

Improvements in Performance and Usability. Molecular Biology & Evolution 2013,

30(4):772-780.

27. Do CB, Mahabhashyam MS, Brudno M et al. ProbCons: Probabilistic consistency-based

multiple sequence alignment. Genome Research 2005, 15(2):330.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

28. Tommaso PD, Moretti S, Xenarios I et al. T-Coffee: a web server for the multiple sequence

alignment of protein and RNA sequences using structural information and homology

extension. Nucleic Acids Research 2011, 39(Web Server issue):13-17.

29. Lladós J, Guirado F, Cores F et al. PPCAS: Implementation of a Probabilistic Pairwise

Model for Consistency-Based Multiple Alignment in Apache Spark; 2017.

30. Altschul S, Gish W, Miller W et al. Basic local alignment search tool. J. Mol. Biol. 1990.

31. C C, G C, V A et al. BLAST+: architecture and applications. Bmc Bioinformatics 2009,

10(1):421.

32. Darling AE, Carey L, Feng WC. The design, implementation, and evaluation of mpiBLAST.

In.: Los Alamos National Laboratory; 2003.

33. Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate protein

sequence alignment. Bioinformatics 2010, 27(2):182-188.

34. Matsunaga A, Tsugawa M, Fortes J. Cloudblast: Combining mapreduce and virtualization

on distributed resources for bioinformatics applications. In: eScience, 2008 eScience'08

IEEE Fourth International Conference on: 2008. IEEE: 222-229.

35. Castro MRD, Tostes CDS, Dávila AMR et al. SparkBLAST: scalable BLAST processing

using in-memory operations. Bmc Bioinformatics 2017, 18(1):318.

36. Zhou W, Li R, Yuan S et al. MetaSpark: a spark-based distributed processing tool to recruit

metagenomic reads to reference genomes. Bioinformatics 2017, 33(7):1090-1092.

37. Niu B, Zhu Z, Fu L et al. FR-HIT, a very fast program to recruit metagenomic reads to

homologous reference genomes. Bioinformatics 2011, 27(12):1704-1705.

38. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-

throughput sequencing technologies. Journal of Computational Biology A Journal of

Computational Molecular Cell Biology 2010, 17(11):1519.

39. Simpson JT, Wong K, Jackman SD et al. ABySS: a parallel assembler for short read

sequence data. Genome Research 2009, 19(6):1117.

40. Meng J, Wang B, Wei Y et al. SWAP-Assembler: scalable and efficient genome assembly

towards thousands of cores. Bmc Bioinformatics 2014, 15(S9):S2.

41. Abu-Doleh A, Çatalyürek ÜV. Spaler: Spark and GraphX based de novo genome assembler.

In: IEEE International Conference on Big Data: 2015. 1013-1018.

42. Pan X, Fu X-L, Dong G-F et al. DNA sequence splicing algorithm based on Spark. In:

Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information

Integration (ICIICII), 2016 International Conference on: 2016. IEEE: 52-56.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

43. Dong G, Fu X, Li H et al. An Accurate Sequence Assembly Algorithm for Livestock, Plants

and Microorganism Based on Spark. International Journal of Pattern Recognition &

Artificial Intelligence 2017, 31(8).

44. Paul AJ, Lawrence D, Ahn TH. Overlap Graph Reduction for Genome Assembly using

Apache Spark. In: The ACM International Conference: 2017. 613-613.

45. Haider B, Ahn TH, Bushnell B et al. Omega: an Overlap-graph de novo Assembler for

Metagenomics. Bioinformatics 2014, 30(19):2717-2722.

46. Kelly BJ, Fitch JR, Hu Y et al. Churchill: an ultra-fast, deterministic, highly scalable and

balanced parallelization strategy for the discovery of human genetic variation in clinical

and population-scale genomics. Genome biology 2015, 16(1):6.

47. Mushtaq H, Al-Ars Z. Cluster-based Apache Spark implementation of the GATK DNA

analysis pipeline. In: Bioinformatics and Biomedicine (BIBM), 2015 IEEE International

Conference on: 2015. IEEE: 1471-1477.

48. Deng L, Huang G, Zhuang Y et al. HiGene: A high-performance platform for genomic data

analysis. In: IEEE International Conference on Bioinformatics and Biomedicine: 2016. 576-

583.

49. Li X, Tan G, Zhang C et al. Accelerating large-scale genomic analysis with Spark. In:

Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on: 2016. IEEE:

747-751.

50. Massie M, Nothaft F, Hartl C et al. Adam: Genomics formats and processing patterns for

cloud scale computing. EECS Department, University of California, Berkeley, Tech Rep

UCB/EECS-2013-207 2013.

51. Wiewiórka MS, Messina A, Pacholewska A et al. SparkSeq: fast, scalable and cloud-ready

tool for the interactive genomic data analysis with nucleotide precision. Bioinformatics

2014, 30(18):2652-2653.

52. Leung CK-S. Uncertain frequent pattern mining. In: Frequent pattern mining. Springer;

2014: 339-367.

53. Das MK, Dai H-K. A survey of DNA motif finding algorithms. BMC bioinformatics 2007,

8(7):S21.

54. Shintani T, Kitsuregawa M. Mining algorithms for sequential patterns in parallel: Hash

based approach. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining: 1998.

Springer: 283-294.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

55. Qiao S, Tang C, Dai S et al. Partspan: Parallel sequence mining of trajectory patterns. In:

Fuzzy Systems and Knowledge Discovery, 2008 FSKD'08 Fifth International Conference on:

2008. IEEE: 363-367.

56. Chen C-C, Tseng C-Y, Chen M-S. Highly scalable sequential pattern mining based on

mapreduce model on the cloud. In: Big Data (BigData Congress), 2013 IEEE International

Congress on: 2013. IEEE: 310-317.

57. Jiang F, Leung CK, Sarumi OA et al. Mining sequential patterns from uncertain big DNA

in the spark framework. In: Bioinformatics and Biomedicine (BIBM), 2016 IEEE

International Conference on: 2016. IEEE: 874-881.

58. Rao CR. Large sample tests of statistical hypotheses concerning several parameters with

applications to problems of estimation. In: Mathematical Proceedings of the Cambridge

Philosophical Society: 1948. Cambridge University Press: 50-57.

59. Westfall PH, Young SS. Resampling-based multiple testing: Examples and methods for p-

value adjustment, vol. 279: John Wiley & Sons; 1993.

60. Bahmani A, Sibley AB, Parsian M et al. SparkScore: leveraging apache spark for

distributed genomic inference. In: Parallel and Distributed Processing Symposium

Workshops, 2016 IEEE International: 2016. IEEE: 435-442.

61. Erkek S, Hisano M, Liang C-Y et al. Molecular determinants of nucleosome retention at

CpG-rich sequences in mouse spermatozoa. Nature structural & molecular biology 2013,

20(7):868-875.

62. Yu N, Li B, Pan Y. A cloud-assisted application over apache spark for investigating

epigenetic markers on DNA genome sequences. In: Big Data and Cloud Computing

(BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and

Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International

Conferences on: 2016. IEEE: 67-74.

63. Xu X, Ji Z, Zhang Z. CloudPhylo: a fast and scalable tool for phylogeny reconstruction.

Bioinformatics 2016, 33(3):438-440.

64. Wale N. Machine learning in drug discovery and development. Drug Development Research

2011, 72(1):112-119.

65. Costello JC, Heiser LM, Georgii E et al. A community effort to assess and improve drug

sensitivity prediction algorithms. Nature biotechnology 2014, 32(12):1202-1212.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66. Sastry GM, Inakollu VS, Sherman W. Boosting virtual screening enrichments with data

fusion: coalescing hits from two-dimensional fingerprints, shape, and docking. Journal of

chemical information and modeling 2013, 53(7):1531-1542.

67. Harnie D, Saey M, Vapirev AE et al. Scaling machine learning for target prediction in drug

discovery using apache spark. Future Generation Computer Systems 2017, 67:409-417.

68. Yang A, Troup M, Lin P et al. Falco: a quick and flexible single-cell RNA-seq processing

framework on the cloud. Bioinformatics 2016, 33(5):767-769.

69. O’Brien AR, Saunders NFW, Guo Y et al. VariantSpark: population scale clustering of

genotype information. Bmc Genomics 2015, 16(1):1-9.

70. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated

individuals. Genome Research 2009, 19(9):1655.

71. Di Z, Zhao L, Li B et al. SEQSpark: A Complete Analysis Tool for Large-Scale Rare

Variant Association Studies Using Whole-Genome and Exome Sequence Data. American

Journal of Human Genetics 2017, 101(1):115.

72. Klein M, Sharma R, Bohrer CH et al. Biospark: scalable analysis of large numerical datasets

from biological simulations and experiments using Hadoop and Spark. Bioinformatics

2017, 33(2):303-305.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table List

Table 1 Commonly-used transformations and actions on RDDs in Apache Spark

Table 2 Apache Spark-based bioinformatics tools and algorithms

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1 Commonly-used transformations and actions on RDDs in Apache Spark

T
ra

n
sf

o
rm

a
ti

o
n

s

map (f): Apply the function f to each element of the RDD, and the return value is the new

RDD.

filter (f): Use the function f to filter out elements that do not meet the criteria. The return

value is the new RDD.

flatMap (f): Apply the function f to each element of the RDD, split the element data into

an iterator, and the return value is the new RDD.

mapPartitions (f): Similar to map, except that the input function of map () is applied to

each element in the RDD, and the input function of mapPartitions () is applied to each

partition.

sample (withReplacement, fraction, seed): Return a new RDD that was generated by

randomly sampling the original RDD.

distinct (): Deduplication of elements in RDD.

cartesian (other RDD): Find the Cartesian product of two RDDs.

union (other RDD): Return a new RDD that contains all the elements of two RDDs.

intersection (other RDD): Return a new RDD that contains the common elements of two

RDDs.

subtract (other RDD): Remove the same elements from the original RDD and the RDD

parameter.

A
ct

io
n

s

collect (): Return all elements of the RDD.

count (): Return the number of elements in the RDD.

countByValue(n): Return the number of occurrences of each element in the RDD.

take (n): Return an array of the first n elements of the RDD.

first (): Return the first element of the RDD.

reduce (f): Use function f to integrate all elements of the RDD, such as sum operations.

foreach (f): Run function f for each element of RDD.

takeOrdered (n, [ordering]): Return first n elements from the RDD by default

(ascending) or by specifying a collation.

takeSample (withReplacement, num, [seed]): Return an array of randomly sampled

num elements in the datasets.

saveAsTextFile (path): Save all elements of the RDD as a text file to the local file

system.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 2 Bioinformatics tools and algorithms based on Apache Spark

Function Name URL Reference

Sequence

alignment/mapping

SparkSW

DSA

CloudSW

SparkBWA

StreamBWA

PASTASpark

PPCAS

SparkBLAST

MetaSpark

https://github.com/s0897918/SparkSW/

https://github.com/xubo245/DSA

https://github.com/xubo245/CloudSW

https://github.com/citiususc/SparkBWA

https://github.com/HamidMushtaq/StreamBWA

https://github.com/citiususc/pastaspark

https://github.com/jllados/PPCAS

https://github.com/sparkblastproject/v2

https://github.com/zhouweiyg/metaspark

[10]

[11]

[12]

[20]

[21]

[24]

[29]

[35]

[36]

Sequence assembly Spaler

SA-BR-Spark

Not Available

Not Available

[41]

[43]

Sequence analysis HiGene

GATK-Spark

SparkSeq

Not Available

Not Available

https://bitbucket.org/mwiewiorka/sparkseq/

[48]

[49]

[51]

Genome inference SparkScore Not Available [72]

Phylogeny reconstruction

Drug discovery

CloudPhylo

S-CHEMO

https://github.com/XingjianXu/cloudphylo

Not Available

[63]

[67]

Single-cell RNA-seq

Variant association and

population genetics studies

Other

Falco

VariantSpark

SEQSpark

BioSpark

https://github.com/VCCRI/Falco/

https://github.com/BauerLab/VariantSpark

https://github.com/statgenetics/seqspark

https://www.assembla.com/spaces/roberts-lab-

public/ wiki/Biospark

[68]

[69]

[71]

[72]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://github.com/s0897918/SparkSW/
https://github.com/xubo245/DSA
https://github.com/xubo245/CloudSW
https://github.com/citiususc/SparkBWA
https://github.com/HamidMushtaq/StreamBWA
https://github.com/citiususc/pastaspark
https://github.com/jllados/PPCAS
https://github.com/sparkblastproject/v2
https://github.com/zhouweiyg/metaspark
https://bitbucket.org/mwiewiorka/sparkseq/
https://github.com/XingjianXu/cloudphylo
https://github.com/VCCRI/Falco/
https://github.com/BauerLab/VariantSpark
https://github.com/statgenetics/seqspark
https://www.assembla.com/spaces/roberts-lab-public/%20wiki/Biospark
https://www.assembla.com/spaces/roberts-lab-public/%20wiki/Biospark

Figure 1 The operating mechanism diagram of Hadoop

Figure Click here to download Figure Figure 1.docx

http://www.editorialmanager.com/giga/download.aspx?id=38120&guid=7173116b-029e-4e66-8b38-c5fc6e2abd43&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38120&guid=7173116b-029e-4e66-8b38-c5fc6e2abd43&scheme=1

Figure 2 The architecture of Spark

Figure Click here to download Figure Figure 2.docx

http://www.editorialmanager.com/giga/download.aspx?id=38121&guid=aadb6ff4-a546-4ec0-ac65-e7b183c2d2f6&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38121&guid=aadb6ff4-a546-4ec0-ac65-e7b183c2d2f6&scheme=1

Figure 3 The task processing flow chart of Spark

Figure Click here to download Figure Figure 3.docx

http://www.editorialmanager.com/giga/download.aspx?id=38122&guid=07234699-9498-4409-902f-21cc0c782888&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38122&guid=07234699-9498-4409-902f-21cc0c782888&scheme=1

Figure 4 The Spark ecosystem

Figure Click here to download Figure Figure 4.docx

http://www.editorialmanager.com/giga/download.aspx?id=38123&guid=296c873d-618f-450b-b66a-8aa5feb6da42&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=38123&guid=296c873d-618f-450b-b66a-8aa5feb6da42&scheme=1

cover letter

Click here to access/download
Supplementary Material

Cover Letter.docx

http://www.editorialmanager.com/giga/download.aspx?id=38124&guid=d121254c-8b51-4c0b-a925-770182b79990&scheme=1

GitHub wiki link

Click here to access/download
Supplementary Material

Home.md

http://www.editorialmanager.com/giga/download.aspx?id=38125&guid=7799efdc-306f-499f-8098-259e33f936fe&scheme=1

