
GigaScience

Bioinformatics Application on Apache Spark
--Manuscript Draft--

Manuscript Number: GIGA-D-18-00131R1

Full Title: Bioinformatics Application on Apache Spark

Article Type: Review

Funding Information: National Key R&D Program of China
(2017YFB0202600, 2016YFC1302500,
2016YFB0200400 and 2017YFB0202104)

Professor shaoliang peng

National Natural Science Foundation of
China
(61772543, U1435222, 61625202,
61272056 and 61771331)

Professor shaoliang peng

Guangdong Provincial Department of
Science and Technology
(2016B090918122)

Professor shaoliang peng

Abstract: With the rapid development of next-generation sequencing (NGS) technology, the
ever-increasing genomic data pose a tremendous challenge to data processing.
Therefore, there is an urgent need for highly scalable and powerful computational
systems. Among the state-of–the-art parallel computing platforms, Apache Spark is a
fast, general-purpose, in-memory, iterative computing framework for large-scale data
processing, which ensures high fault tolerance and high scalability by introducing the
resilient distributed dataset (RDD) abstraction. In terms of performance, Spark can be
up to 100x faster in memory access and 10x faster in disk access than Hadoop.
Moreover, it provides advanced APIs in Java, Scala, Python, and R. It also supports
some advanced components, including Spark SQL for structured data processing,
MLlib for machine learning, GraphX for graph computing, and Spark Streaming for
stream computing. In this paper, we surveyed Spark-based applications in the NGS
and other biological domains, such as epigenetics, phylogeny, and drug discovery. We
believe that this survey provides a comprehensive guideline for bioinformatics
researchers to apply Spark in their own fields.
Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient
distributed dataset; memory computing

Corresponding Author: runxin guo

CHINA

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: runxin guo

First Author Secondary Information:

Order of Authors: runxin guo

yi zhao

xiangke liao

kenli li

quan zou

xiaodong fang

shaoliang peng

Order of Authors Secondary Information:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response to Reviewers: Dear Editor and Reviewers:
Thank you for your letter and for the reviewers’ comments concerning our manuscript
entitled “Bioinformatics Application on Apache Spark” (GIGAD1800131). Those
comments are all valuable and very helpful for revising and improving our paper, as
well as the important guiding significance to our research. We have studied the
comments carefully and have made correction which we hope meet with approval.
Revised portion are marked in red in the paper. The main corrections in the paper and
the responds to the editor and reviewers’ comments are as following:
To Editor:
Comment 1: While one of the reviewers doesn't like the figures, another thinks you
need more, and generally we side with the "more figures in a review the better". In
particular, we would encourage improvements and more infographic like detail if you
can. Improvements to the language and writing is also required, although if it passes
review we will send it to a copy editor.
Response: Appreciate for your comment, taking into account the reviewers’ comments
and your opinions, we have improved the figures, removed unnecessary figures, and
added a few necessary figures to help readers better understand the Spark framework
and operating mechanism. In addition, we have improved my language and writing.
To Reviewer 1:
Comment 1: The paper would benefit from a *slightly* deeper description of the Spark
architecture, in particular explaining the nature of DAGs and the way in which they
permit optimizations. Also, some mention of the two deploy modes (where the driver
program can either be run on the client machine, or on a worker node).
Response: Appreciate for your comment, in “THE SPARK FRAMEWORK” section, we
have made a more detailed description of the Spark architecture, explained the nature
of DAGs and the way in which they permit optimizations, introduced the two deploy
modes: cluster mode and client mode.
Comment 2: The paper would also benefit from a section that examines the potential
downsides of using Spark, for example the potential complexity in creating and
maintaining a Spark cluster, and the learning curve involved in learning a new API and
perhaps even language (especially given the Functional Programming nature of the
API).
Response: Appreciate for your comment, in “DISCUSSION” section, we have
discussed the disadvantages of Spark, including the applications that Spark is not
suitable for, the complexity of creating and maintaining a Spark cluster, the time cost of
large-scale input data from local to remote servers in slow networks, the complex
learning curve.
Comment 3: With regards to style, there are a number of places in the paper where the
definite article is used where it shouldn't, and vice versa. In the interest of readability
and not distracting the reader, these should be addressed. A similar point can be made
with regard to the overuse of certain prepositions (e.g. "besides"), which are called out
in detail in the next section.
Response: Appreciate for your comment, we have addressed the use of the definite
article in paper, and replaced “besides” with “in addition”, “moreover”, and
“furthermore”.
Comment 4: p.1 line 28: "data" is treated as a plural in the rest of the paper, therefore
"pose" rather than "poses".
Response: Appreciate for your comment, we have changed “poses” to “pose”.
Comment 5: p.1 line 34: "by introducing resilient distributed dataset" should be "by
introducing the resilient distributed dataset" (i.e. use of definite article)
Response: Appreciate for your comment, we have changed “by introducing resilient
distributed dataset” to “by introducing the resilient distributed dataset”.
Comment 6: p.1 line 40: In the end, we discussed the challenges...and the future
work...". I haven't found this discussion in the paper.
Response: Appreciate for your comment, we have deleted this sentence from
“ABSTACT” section, but added a “DISCUSSION” section to discuss the advantages
and disadvantages of Spark, some issues to be considered about cloud computing in
the future and other bioinformatics fields that have not yet been involved.
Comment 7: p.2 line 4: "MapReduce preforms" should be "MapReduce performs".
Response: Appreciate for your comment, we have changed “preforms” to “performs”.
Comment 8: p.2 line 21: "introducing resilient distributed dataset" should "introducing
the resilient distributed dataset".
Response: Appreciate for your comment, we have changed “introducing resilient
distributed dataset” to “introducing the RDD abstraction”.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Comment 9: p.2 line 38: The documentation of Spark describes the driver program as
"The process running the main () function of the application and creating the
SparkContext". It does not "deploy the Spark operating environment". Perhaps the
authors meant "deploy TO the Spark operating environment" but even here this would
be incorrect, as the sparksubmit script does this.
Response: Appreciate for your comment, we have rewritten this part to provide the
correct description in “THE SPARK FRAMEWORK” section.
Comment 10: p.2, line 43: As well as Scala, Spark provides APIs in Java, Python and
more recently R. This flexibility is important to researchers when deciding whether to
use Spark or not.
Response: Appreciate for your comment, we have mentioned that Spark provides
advanced APIs in Java, Scala, Python and R in “THE SPARK FRAMEWORK” section.
Comment 11: p.2, line 58: It is questionable that "the most important feature of RDD" is
the fault tolerance. Certainly, it is "an important feature".
Response: Appreciate for your comment, we have changed this part to “RDD achieves
fault tolerance through a notion of lineage…” in “THE SPARK FRAMEWORK” section.
Comment 12: p.3, line 13: The referenced image appears to be an _example_ of a
spark task flow chart, rather than _the general_ Spark task processing flow. For the
reader's sake, the paper should either describe what this particular task is doing
(including the fact that it is reading and writing to HDFS in this case). Otherwise the
reader may form incorrect opinions or simply be confused. Alternatively, drop the figure
entirely.
Response: Appreciate for your comment, we have updated this figure to show an
example of how Spark computes job stages in “THE SPARK FRAMEWORK” section.
Comment 13: p.3, line 17: "Besides" as preposition. This is a little colloquial and has an
additional "in any case" meaning. To avoid distracting the reader, consider replacing
"besides" as a preposition with alternatives like "In addition", "Moreover",
"Furthermore". This can be applied to the rest of the paper, and I won't call any more
out by line number.
Response: Appreciate for your comment, we have replaced “besides” with “in addition”,
“moreover”, and “furthermore” in paper.
Comment 14: p.4, line 4: "BurrowWheeler aligner" either "The BurrowWheeler
aligner" or "BurrowWheeler alignment" read better
Response: Appreciate for your comment, we have changed "BurrowWheeler aligner"
to “The BurrowWheeler aligner”.
Comment 15: p.4, line 19: "Results showed" "The results showed"
Response: Appreciate for your comment, we have changed “Result showed” to “The
results showed”.
Comment 16: p.4, line 32: "achieved the average speedup of" "achieved an average
speedup of"
Response: Appreciate for your comment, we have changed “achieved the average
speedup of” to “achieved an average speedup of”.
Comment 17: p.6, line 58: Drop "And" from the start of the sentence.
Response: We have dropped “And” from the start of the sentence.
Comment 18: p.7, line 1: "Experiments results" "Experimental results”
Response: Appreciate for your comment, we have changed “Experiments results” to
“Experimental results”.
Comment 19: p.7, line 4: Perhaps it's worth pointing out that this is an example of the
platform itself suggesting a new algorithm, rather than simply re-implementing an
existing algorithm on the new platform. Similarly, for line 19 of this page.
Response: Appreciate for your comment, we have pointed out that these two are
examples of the Spark platform itself suggesting new algorithms in “SPARK IN
ASSEMBLY” section.
Comment 20: p.7, line 23: Is SABRMR running on Hadoop? (I ask because MR is a
valid algorithm on Spark as well).
Response: Appreciate for your comment, SA-BR-MR is running on Hadoop according
to the reference paper.
Comment 21: p.8, line 17: "Results..." "The results..."
Response: Appreciate for your comment, we have changed “Results” to “The results”.
Comment 22: p.8, line 41: "noises" "noise".
Response: Appreciate for your comment, we have changed “noises” to “noise”.
Comment 23: p.9, lines 2339: The epigenetics example just calls out the advantage of
parallelization compared to sequential processing. Was there a parallelized attempt,
perhaps using Hadoop, that the Yu N et al paper could demonstrate a superiority to?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Response: Appreciate for your comment, we have reviewed lots of related papers, but
did not find some parallelized attempts.
Comment 24: p.10, line 8: "Saprk" "Spark"
Response: Appreciate for your comment, we have changed “Saprk” to “Spark”.
Comment 25: p.10, line 15: The term "checkpointing" is not explained even in the body
of the referenced paper (Harnie D et al) and is probably best dropped.
Response: Appreciate for your comment, we have dropped the term “checkpointing”
from the sentence.
Comment 26: p.11, line 43: Key Points section: I would respectfully disagree with the
following statement: "We introduce the Apache Spark framework in detail, helping
researchers to understand its architecture, programming model and processing
mechanism." I think the authors do a good job of firstly, giving an *overview* of Spark
(notwithstanding earlier points about getting into more detail), but I don't think this
paper is a *detailed* description of Spark, its architecture or its programming model.
Indeed, I don't think it *needs* to be the survey of *how Spark has successfully been
used* is probably of primary interest to most readers. But it's best to be clear about the
scope of the paper in the Key Points so as to set readers' expectations correctly.
Response: Appreciate for your comment, we have updated this key point to point out
that we outline the Apache Spark framework to researchers to understand its
architecture, programming model and processing mechanism, and we have made a
more detailed description of the Spark architecture in “THE SPARK FRAMEWORK”
section.
Comment 27: p.11, line 48: Key Points section: Similarly, to above, I would edit the
third Key Point to set readers' expectations correctly. The paper in its current form
does not include a "discussion on the future of parallel computing in bioinformatics"
(and in my opinion it does not need to).
Response: Appreciate for your comment, considering your opinions and that of other
reviewers, we have added a “DISCUSSION” section to discuss Spark’s strengths,
weaknesses, and challenges faced in this field.
To Reviewer 2:
Comment 1: While I agree, Spark has a lot of advantages over other parallel and
distributed computing frameworks such as MapReduce, I feel the current tone and
content are too one-sided. In my own experience, Spark is mostly only useful for
processing very large amount of data. For smaller data sets, the scalability gained by
Spark may not be enough to justify the upfront time required for setting up and
configuring a Spark-enabled system. Also, there is no discussion on computing
hardware requirement (local computer cluster or commercial cloud computing
platforms), and issues related to transfer of large data sets over the Internet. All these
issues need to be discussed.
Response: Appreciate for your comment, we have discussed the strengths and
weaknesses of Spark and issues related to transfer of large data sets over the Internet
on local computer cluster or commercial cloud computing in “DISCUSSION” section,
and pointed out the official proposal for hardware requirements in “THE SPARK
FRAMEWORK” section.
Comment 2: The sections on 'Spark in motif analysis' and 'Spark in genomic inference'
are poorly written. The terms 'motif' and 'genomic inference' are not properly defined.
Do they mean transcription factor binding motifs, or simply frequently occurring DNA
sequence some defined regions in the genome (e.g., promoters, enhancers, etc.)?
Also, the term 'genomic data inference' is not well defined. Presumably the authors are
referring to inference in a population genomics context.
Response: Appreciate for your comment, here, motif refers to transcription factor
binding sites (TFBS), genomic inference refers to the inference in population genomics
text. We have updated these two sections in the paper to provide correct descriptions
about the terms ‘motif’ and ‘genomic inference’.
Comment 3: The caption of all four figures are way too simple. In most cases,
especially for complicated flow diagrams like Fig 1 and Fig 3, there is no explanation or
description of the content of the figure. I believe the authors intends to illustrate the
inner working of Spark using these figures. Nonetheless, the content of these figures is
not explained in the caption nor the main text.
Response: Appreciate for your comment, considering your opinions and that of other
reviewers, we have updated the figures, removed unnecessary figures, and added a
few necessary figures to help readers better understand the Spark framework and
operating mechanism. Moreover, we have added some explanations and descriptions
of the content of the figures in the captions.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Comment 4: Despite the authors claiming they 'discuss the future of parallel computing
in bioinformatics' (Key Points #3), the manuscript barely talks about the future, other
than saying 'Spark will provide promising performance for biological researchers in the
future' (Conclusions). I think this is a lost opportunity. What do the authors see as the
major limitations in the field at the moment? New hardware? Better integration with
cloud computing platforms? New application areas, such as proteomics, metabolomics,
biomedical text, electronic medical health record, etc.?
Response: Appreciate for your comment, we have updated the Key Points #3 and
discussed some issues to be considered about cloud computing in the future and
pointed out other bioinformatics fields that have not yet been involved.
Comment 5: In multiple occasions, the authors use 'And' to begin a sentence. I do not
think it is grammatically correct.
Response: Appreciate for your comment, we have dropped “And” from all related
sentences in paper.
Comment 6: Throughout the manuscript, author names are often cited as ([last name]
[first initials]), but sometimes they are cited as ([last name] [all initials]) or ([last name]
[first name]). Please make sure names are formatted consistently.
Response: Appreciate for your comment, we have updated author names as ([last
name] [first initial]) in paper to make sure names are formatted consistently.
To Reviewer 3:
Comment 1: The manuscript needs to be rewritten to provide more practical
information to bioinformatics research users how Apache Spark based bioinformatics
tools are actively used in specific bioinformatics research domains and what are the
advantages of using the Apache Spark.
Response: Appreciate for your comment, we have rewritten the paper to provide more
practical information to bioinformatics research users how Apache Spark based
bioinformatics tools are actively used in specific bioinformatics research domains and
what are the advantages of using the Apache Spark. In “THE SPARK FRAMEWORK”
section, we have made a more detailed description of the Spark architecture and the
main abstraction RDD, explained the nature of DAGs and the way in which they permit
optimizations, provided the official proposal for hardware requirements to help
researchers better understand and use Spark. Moreover, we have added the
“DISCUSSION” section to discuss the strengths and weaknesses of Spark, the
applications that Spark is suitable for, and some issues must be considered.
Researchers can comprehensively consider how to use Spark through these contents
combined with biological issues in their field.
Comment 2: Table 1 shows basic APIs of Apache Spark. The reviewer cannot get a
point why the authors included this table. Delete the table or keep the table with
presenting how the APIs could be used in the bioinformatics tools.
Response: Appreciate for your comment, we have removed the Table 1 from the
paper.
Comment 3: In the first paragraph of the Introduction section, "However, the existing
bioinformatics tools cannot effectively handle such a large amount of data. In order to
solve the issues, MapReduce, a programming model for parallel computation of large
datasets, has been proposed [1]." sentences should be updated. MapReduce has not
been proposed for bioinformatics tool. MapReduce framework was proposed for
general purpose big data analysis in the distributed manner.
Response: Appreciate for your comment, we have updated these sentences to point
out that MapReduce was proposed for processing large-scale datasets in a distributed
manner in information technology rather than for bioinformatics tools.
Comment 4: The manuscript did not mention about "DataFrames" API that is an
extension of RDD. Most of new Spark features use this new DataFrames, and it should
be addressed in the manuscript.
Response: Appreciate for your comment, we have mentioned the two extensions of
RDD: DataFrame and Dataset in “The SPARK FRAMEWORK” section. Users can
seamlessly switch between the three through simple API calls.
Comment 5: Table 2 only shows the application domain, program name, URL,
references. The table should be updated to include more meaningful informatics of
tools such as pros/cons or specific features or the tools.
Response: Appreciate for your comment, we have updated the Table 2 to provide
more meaningful informatics, including name, function, features, pros/cons and
reference of applications.
Comment 6: Figures 1 to 4 are not necessary in the manuscript. Instead of these
figures, the authors should consider how to express the relationship of bioinformatics

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

tools and Apache Spark effectively using figures.
Response: Appreciate for your comment, considering the opinions of editor and other
reviewers, we have improved the figures, removed unnecessary figures, and added a
few necessary figures to help readers better understand the Spark framework and
operating mechanism. Figure 1 is mainly used to introduce Spark’s cluster architecture,
explain its main components and functions, and how the Spark application runs on the
cluster. Figure 2 is mainly used to show some examples of narrow and wide
dependencies to help readers understand RDD’s dependencies. Because these
dependencies are important in the splitting job stages of Spark, so we add this figure.
Figure 3 is mainly used to show an example of how Spark computes job stages to help
readers understand the RDD operating mechanism and DAG scheduling. So, we add
this figure. Moreover, we carefully considered your comments about how to express
the relationship of bioinformatics tools and Apache Spark effectively using figures. We
feel that the relationship between bioinformatics tools and Spark cannot be well
expressed in figures. Because the variated items in bioinformatics can cover almost all
sorts of computational optimization problems. The Spark framework represents a
possible solution for tasks in parallel computing with some certain characteristics. So,
we tried our best to provide readers with some practical advices on using Spark
framework based on computational characteristics of problems in “Discussion” section.
In “DISCUSSION” section, we have discussed the strengths and weaknesses of Spark,
the applications that Spark is suitable for, and some issues must be considered to help
researchers to consider how to use Spark combined with biological issues in their field.
We tried our best to improve the manuscript and made some changes in the
manuscript. These changes will not influence the content and framework of the paper.
And here we did not list the changes but marked in revise paper. We appreciate for
Editor/Reviewers’ warm work earnestly, and hope that the correction will meet with
approval. Once again, thank you very much for your comments and suggestions.
Yours
Sincerely
Runxin GUO, Yi ZHAO, Xiangke LIAO, Kenli LI, Quan ZOU, Xiaodong FANG,
Shaoliang PENG

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources

Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Bioinformatics Application on Apache Spark
Runxin GUO1†, Yi ZHAO3†, Xiangke LIAO1, Kenli LI2, Quan ZOU4*, Xiaodong FANG5*,

Shaoliang PENG1,2†*
1College of Computer, National University of Defense Technology, Changsha 410073, China

2College of Computer Science and Electronic Engineering & National Supercomputer Centre in

Changsha, Hunan University, Changsha 410082, China

3Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China

4School of Computer Science and Technology, Tianjin University, Tianjin 300350, China

5BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China

pengshaoliang@nudt.edu.cn ; zouquan@nclab.net ; fangxd@bgitechsolutions.com

*: corresponding author; †: equal contributors

ABSTRACT

With the rapid development of next-generation sequencing (NGS) technology, the ever-increasing

genomic data pose a tremendous challenge to data processing. Therefore, there is an urgent need for

highly scalable and powerful computational systems. Among the state-of–the-art parallel computing

platforms, Apache Spark is a fast, general-purpose, in-memory, iterative computing framework for

large-scale data processing, which ensures high fault tolerance and high scalability by introducing

the resilient distributed dataset (RDD) abstraction. In terms of performance, Spark can be up to 100x

faster in memory access and 10x faster in disk access than Hadoop. Moreover, it provides advanced

APIs in Java, Scala, Python, and R. It also supports some advanced components, including Spark

SQL for structured data processing, MLlib for machine learning, GraphX for graph computing, and

Spark Streaming for stream computing. In this paper, we surveyed Spark-based applications in the

NGS and other biological domains, such as epigenetics, phylogeny, and drug discovery. We believe

that this survey provides a comprehensive guideline for bioinformatics researchers to apply Spark

in their own fields.

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset;

memory computing

INTRODUCTION

NGS technology has generated huge amounts of biological sequence data. In order to use these data

efficiently, we need to store and analyze the data accurately and efficiently. However, the existing

bioinformatics tools cannot effectively handle such a large amount of data. Therefore, there is an

urgent need for scalable and powerful distributed computing tools to solve this problem. In the field

of information technology, MapReduce [1] is a distributed parallel programming model and

Manuscript Click here to download Manuscript Bioinformatics Application
on Apache Spark.docx

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:pengshaoliang@nudt.edu.cn
mailto:zouquan@nclab.net
mailto:fangxd@bgitechsolutions.com
http://www.editorialmanager.com/giga/download.aspx?id=42518&guid=4c1076d1-5d63-4924-b91c-bc3cec003908&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42518&guid=4c1076d1-5d63-4924-b91c-bc3cec003908&scheme=1

methodology for processing large-scale datasets. It splits large-scale datasets into many key-value

pairs through both the map and reduce phases, significantly improving performance and showing

good scalability. By combining the Hadoop Distributed File System (HDFS) and MapReduce,

Apache Hadoop can enable distributed processing of large amounts data in a reliable, efficient, and

scalable way, where HDFS is mainly used for distributed storage of massive datasets and

MapReduce performs distributed computing on these datasets. As a result, Hadoop has been adopted

by the bioinformatics community in several areas [2], such as alignment [3], mapping [4] and

sequence analysis [5].

However, due to its disk-based I/O access pattern, intermediate calculation results are not cached.

Therefore, Hadoop is only suitable for batch data processing, and shows poor performance for

iterative data processing. To resolve this problem, Apache Spark [6] has been proposed, which is a

faster general-purpose computing framework designed specifically to handle huge amounts of data.

Unlike Hadoop’s disk-based computing, Spark performs memory computing by introducing the

RDD abstraction. Since it is possible to store intermediate results in memory, it is more efficient for

iterative operations. In terms of performance, Spark can be up to 100x faster in memory access than

Hadoop [6]. Even if we compare between them based on the performance of the disk, the gap is

more than 10 times [7]. In terms of flexibility, Spark provides high-level APIs in Java, Scala, Python,

and R, and interactive shell. In terms of generality, Spark provides structured data processing,

machine learning, graph computing, and stream computing capabilities by supporting some

advanced components.

THE SPARK FRAMEWORK

Spark is an open source cluster computing environment designed for large-scale data processing,

developed by UC Berkeley AMP lab. It provides advanced APIs in Java, Scala, Python and R, and

an optimized engine that supports general execution graphs. It also supports some advanced

components, including Spark SQL for structured data processing, MLlib for machine learning,

GraphX for graph computing, and Spark Streaming for stream computing.

As in Figure 1, Spark application runs as independent processes on the cluster and are coordinated

by the SparkContext in the driver program. There are two types of deploy modes depending on

where the driver program is running: cluster mode and client mode. In the former, driver program

runs on a worker node. In the latter, driver program runs on the client machine. First, SparkContext

requests the executors on the worker nodes in the cluster from the cluster manager (either Spark’s

own Standalone cluster manager, Apache Mesos, or Hadoop YARN). These executors are processes

that can run tasks and store data in memory or on disk for application. Next, the SparkContext will

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

send tasks to the executors to perform. Finally, the executors return the results to the SparkContext

after the tasks are executed. In Spark, an application generates multiple jobs. A job is split into

several stages. Each stage is a task set containing several tasks, which performs some calculations

and produces some intermediate results. Task is the smallest unit of work in Spark, completing a

specific thing on an executor.

As the main abstraction in Spark, RDD is a read-only collection of objects partitioned on different

nodes in the cluster so that the data in RDD can be processed in parallel. The data in RDD are stored

in memory by default, but Spark automatically writes RDD data to disk if memory resources are

low. RDD achieves fault tolerance through a notion of lineage [6], that is, if an RDD partition on a

node is lost because of a node failure, the RDD automatically recalculates the partition from its own

data source. Moreover, Spark provides two types of operations on RDD: transformation and action.

The former defines a new RDD, and the latter returns a result or writes RDD data to the storage

system. Transformation employs lazy operation [8], which means that the operation of generating

another RDD from one RDD transformation is not executed immediately, and the calculation

process is not actually started until an action is performed. Furthermore, each transformation

operation generates a new RDD, the newly generated RDD depends on the original RDD. According

to the different types of transformation operations, RDD’s dependencies can be divided into narrow

dependency and wide dependency. The former refers to that each partition in the generated RDD

only depends on the parent RDD fixed partition, and the latter refers to the fact that each partition

of the generated RDD depends on all partitions of the parent RDD. Figure 2 shows examples of

narrow and wide dependencies. In addition, Spark also provides two extensions of RDD: DataFrame

and Dataset. Spark users can seamlessly switch between the three through simple API calls.

Furthermore, Spark adopts a directed acyclic graph (DAG) [9] to optimize execution process by

splitting the submitted jobs into several stages according to the wide dependency. For narrow

dependency, it divides related transformation operations into the same stage because they can

perform pipelining operations and thus reduces the processing time of submitted jobs. Figure 3

shows an example of how Spark computes job stages. In addition, if the partitions on a node are lost

because of a node failure, Spark can utilize the DAG to recalculate the lost partitions.

As for the hardware requirements, the official proposal is to have 4 to 8 disks per node, configure

at least 8GB memory and 8 to 16 CPU cores per machine, and use a 10 Gigabit or higher network.

SPARK IN ALIGNMENT AND MAPPING

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

The rapid development of NGS technology has generated a large amount of sequence data (reads),

which has a tremendous impact on sequence alignment and mapping process. Currently, the

sequence alignment and mapping process still consume a lot of time.

The Smith-Waterman (SW) algorithm [10], which produces the optimal local alignment between

two strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics.

However, SW algorithm requires a high computational cost due to high computational complexity.

To speed up the algorithm, in 2015, Zhao G et al implemented the SW algorithm on Spark for the

first time, called as SparkSW [11]. It consisted of three phases: data preprocessing, SW as map tasks

and top K records as reduce tasks. Experimental results [11] showed that SparkSW was load-

balancing and scalable with computing resources increased.

However, SparkSW merely supports SW algorithm without the mapping location and traceback of

optimal alignment, as a result, SparkSW executes slowly. Therefore, in 2017, Xu B et al proposed

DSA [12], which employed Single Instruction Multiple Data (SIMD) instruction to parallel the

sequence alignment algorithm at each worker node. Experimental results [12] showed that DSA

achieved up to 201x speedup over SparkSW and almost linear speedup with the increase of cluster

nodes.

Subsequently, Xu B et al proposed CloudSW [13], an efficient distributed SW algorithm which

leveraged Spark and SIMD instructions to accelerate the algorithm and provided APIs service in

the cloud. Experimental results [13] showed that CloudSW achieved up to 3.29x speedup over DSA

and 621x speedup over SparkSW. CloudSW also showed excellent scalability and achieved up to

529 giga cell updates per second (GCUPS) in protein database search with 50 nodes in Aliyun.

The Burrows-Wheeler aligner (BWA) is composed of BWA-backtrack [14], BWA-SW [15] and

BWA-MEM [16] for performing sequence alignment and mapping in bioinformatics. Before the

advent of Spark-based BWA tool, there were several other BWA tools based on big data technology,

including BigBWA [17], Halvade [18] and SEAL [19]. However, they were based on Hadoop

showing limited scalability and complex implementation.

As a result, in 2015, Al-Ars Z et al [20] implemented three different versions of BWA-MEM and

compared their performance: a native cluster-based version, a Hadoop version and a Spark version.

Three implementations were evaluated on the same IBM Power7 and Intel Xeon servers with the

WordCount example. The results [20] showed that simultaneous multithreading improved the

performance of three versions of BWA-MEM, and the Spark version with 80 threads increased

performance by up to 87% than the native cluster version using 16 threads. Furthermore, the Hadoop

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

version with 4 threads increased performance by 17% and the Spark version with more threads

increased performance by 27%.

After then, in 2016, Abuín J et al proposed SparkBWA [21] which is composed of three main phases:

the RDDs creation phase, the map phase, and the reduce phase. Experimental results [21] showed

that for the BWA-backtrack algorithm, SparkBWA achieved an average speedup of 1.9x and 1.4x

compared with SEAL and pBWA respectively. For the BWA-MEM algorithm, SparkBWA was

1.4x faster than BigBWA and Halvade tools on average.

However, SparkBWA required the data availability in the HDFS. In general, the input files were

given in gzip format, which required first uncompressing the file before uploading it to the HDFS.

Subsequently, this also slowed down the execution of BWA itself, since data on the HDFS had to

be reformatted as appropriate input to the BWA program tasks running on the cluster. Finally, the

output files produced by those BWA tasks required significant time to combine separately at the

end.

Therefore, in 2017, Mushtaq H et al employed Spark to propose StreamBWA [22], where the input

data was being streamed directly from a compressed file. This file could either be located on the

master node or on a URL, which eliminated the cost of execution time of downloading the file and

then uncompressing it. Moreover, since the master node could stream data to the data nodes, the

overhead of uploading data to the HDFS could also be hidden. The master node could also start

combining the output files of BWA tasks running on the data nodes, in parallel, once they were

available, further reducing the overall time. Experimental results [22] showed that this streaming

distributed approach was approximately 2x faster than the non-streaming approach. Furthermore,

StreamBWA was 5x faster than SparkBWA.

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological

sequences, such as protein or nucleic acid sequences. One of representative tools for performing

MSA is PASTA [23]. PASTA is a derivative of SATé [24], which produces highly accurate

alignments in shared memory computers. However, PASTA is limited to processing small and

medium datasets, because the computing power of shared memory systems cannot meet the memory

and time requirements of large-scale datasets.

Therefore, in 2017, Abuín J et al proposed PASTASpark [25], which allowed executions on a

distributed memory cluster taking advantage of Spark. It employed an in-memory RDD of key-

value pairs to parallel the calculating MSAs phase. Experiments were conducted on two different

clusters (CESGA and AWS). The results [25] showed that PASTASpark achieved up to 10x

speedups compared with single-threaded PASTA and was able to process 200,000 sequences in 24

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

hours using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance which

greatly reduced the time to obtain MSA.

The probabilistic pairwise model [26] is widely used in all consistency-based MSA tools, such as

MAFFT [27], ProbCons [28] and T-Coffee(TC) [29]. However, the global distributed memory

cannot meet the ever-increasing sequence datasets, which causes the need of specialized distributed

databases, such as HBase or Cassandra. As a result, in 2017, Lladós J et al employed Spark to

propose a new tool, PPCAS [30], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [30] showed that

it was better with single node and provided almost linear speedup with the increase in the number

of nodes. In addition, it could compute more sequences using the same memory.

NCBI BLAST [31, 32] is widely used to implement algorithms for sequence comparison. Before

the Spark-based BLAST was created, several other BLAST tools had been proposed including

mpiBLAST [33], GPU-BLAST [34] and CloudBLAST [35]. However, with the increasing number

of genomic data, these tools showed limited scalability and efficiency.

As a result, in 2017, Castro M et al proposed SparkBLAST [36], which utilized cloud computing

and Spark framework to parallel BLAST. In SparkBLAST, Spark’s pipe operator and RDDs were

utilized to call BLAST as an external library and perform scalable sequence alignment. It was

compared with CloudBLAST on both Google and Microsoft Azure Clouds. Experimental results

[36] showed that SparkBLAST outperformed CloudBLAST in terms of speedup, scalability and

efficiency.

Metagenomics is crucial for studying genetic material directly from environmental samples.

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data

analysis. In 2017, Zhou W et al proposed MetaSpark [37], which employed Spark to recruit

metagenomics reads to reference genomes.

MetaSpark utilized the RDD of Spark to cache datasets in memory and scaled well along dataset

size increments. It consisted of five steps including constructing k-mer RefindexRDD, constructing

k-mer ReadlistRDD, seeding, filtering, and banded alignment. It was evaluated on a ten-node cluster

working under the Spark standalone module where each node contained an 8-core CPU and 16 GB

RAM. It employed about one million 75bp Illumina reads dataset and two references (the 194

human gut genomes and the bacterial genomes) that were respectively 0.616GB and 1.3GB in size.

Experimental results [37] showed that MetaSpark recruited more reads than FR-HIT [38] with the

same parameters and 1 million reads. MetaSpark recruited 501,856 reads when there were 0.616

GB human gut genome references, while FR-HIT recruited 489,638 reads. MetaSpark increased

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

recruited reads by 2.5%. When references changed to a 1.3 GB bacterial genome, MetaSpark

recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark increased recruited

reads by 4%. Moreover, the results also showed that MetaSpark offered good scalability. Under a

0.616 GB reference, run time for 0.1 million reads was 51 min under 4 nodes, and decreased slightly

to 23.5 min under 10 nodes. For the 1 million read datasets, MetaSpark would crash under 4 nodes

due to limited memory. Under 6 nodes, it finished running after 312 min and would sharply decrease

to 201 min under 10 nodes.

SPARK IN ASSEMBLY

Due to short lengths of the NGS reads (<500 bp), they need to be assembled prior to further analysis,

which is another important phase in sequence analysis workflow. In general, there are two types of

assembly: the reference assembly and de novo assembly. The assembly algorithm includes two

categories: overlap-layout-consensus (OLC) algorithm and the de Bruijn graph algorithm. The

former is generally employed to assemble longer reads, while the latter shows a good performance

in assembling short reads.

Before Spark-based distributed memory de novo assemblers were created, although there were some

MPI-based assemblers (such as Ray [39], AbySS [40] and SWAP-Assembler [41]), they showed

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh A et al

proposed Spaler [42] taking advantage of Spark and GraphX API. It consisted of two main parts:

(a) de Bruijn graph construction, and (b) Contigs generating. It was evaluated with other MPI-based

tools in terms of quality, execution time, and scalability. Experimental results [42] showed that

Spaler had better scalability and it could achieve comparable or better assemble quality.

To resolve the large memory requirement problem of most OLC de novo assemblers, in 2017, Paul

A et al [43] employed string graph reduction algorithms taking advantage of Spark. The proposed

Spark algorithms were evaluated with a very large sample dataset. The results showed that this

dataset was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours

compared to the 7.5 hours of OLC based Omega [44] assembler.

In addition, some new assembly algorithms have also been proposed based on the Spark platform

itself.

In 2016, Pan X et al [45] put forward a new assembling algorithm based on Spark which employed

the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was evaluated using

6 groups of DNA in the NCBI. Experimental results [45] showed that this strategy not only solved

the problem of low efficiency based on the MapReduce algorithm, but also optimized the algorithm

itself. The combination of these two aspects were very suitable for the large-scale DNA sequence

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

assembling. Moreover, the results also showed that the new sequence assembling algorithm based

on Spark could ensure accuracy of assembling results.

To address the problem of poor assembling precision and low efficiency, in 2017, Dong G et al [46]

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first

designed a precise assembling algorithm under the strategy of finding the source of reads based on

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences

which were randomly selected from animals, plants and microorganisms with base lengths from

hundreds to tens of thousands from NCBI. All matching rates of 54 sequences were 100%. For each

species, the algorithm also summarized the range of K which made the matching rates to be 100%.

In order to verify the range of K value of hepatitis C virus (HCV) and related variants, the randomly

selected eight HCV variants were calculated. The results confirmed the correctness of K range of

hepatitis C and related variants from NCBI. After that, SA-BR-Spark was put forward. Experimental

results [46] showed that SA-BR-Spark provided a superior computational speed compared with SA-

BR-MR.

SPARK IN SEQUENCE ANALYSIS

Spark in variant analysis

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data

analysis. Before Spark-based GATK tools were created, while several other tools had been

developed to address the issue of scalability in the pipeline (such as Halvade [18] and Churchill

[47]), they showed limited scalability, accuracy and computational efficiency.

Therefore, in 2015, Mushtaq H et al [48] utilized Spark to propose a cluster-based GATK pipeline.

To reduce the execution time, this approach kept data active in the memory between the map and

reduce phases. By using runtime statistics of the active workload, it achieved a dynamic load

balancing algorithm that could better utilize system performance. Experimental results [48] showed

that this method achieved a 4.5x speedup compared to the multi-threaded GATK pipeline on a single

node. In addition, when executed on a 4-node cluster, this approach was 63% faster than Halvade.

After that, in 2016, Deng L et al proposed HiGene [49], which employed Spark to enable multi-

core and multi-node parallelization of the GATK pipeline. HiGene put forward a dynamic

computing resource scheduler and an efficient data skew mitigation method to improve performance.

Experiments were conducted with the NA12878 whole human genome dataset. The results [49]

showed that HiGene reduced the total running time from days to nearly an hour. Furthermore,

compared with Halvade, HiGene was also 2x faster. Meanwhile, Li X et al employed Spark to

propose GATK-Spark [50] to parallel the GATK pipeline by taking full account of compute,

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

workload and I/O characteristics. It was built on top of ADAM format [51]. Experimental results

[50] showed that GATK-Spark shortened the total running time from 20 hours to 30 minutes on 256

CPU cores which achieved more than 37 times speedup.

The advent of Spark provides the possibility of interactive processing for NGS data. In 2014,

Wiewiórka M et al proposed SparkSeq [52] to build and run genomic analysis pipelines in an

interactive way by using Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times

speedup than SeqPig. Moreover, it could accelerate data querying up to 110x and reduce memory

consumption by 13x.

Spark in motif analysis

Due to the nature of NGS technology, the generated data are usually accompanied by some noise

or other types of errors which are known as uncertain data [53]. Among these uncertain data, there

are some frequently recurring motifs, also known as transcription factor binding sites (TFBS) [54].

Mining motifs from these uncertain data is an important problem but a computationally intensive

task. Before Spark-based mining algorithm was created, while several mining algorithms had been

developed (such as HPSPM [55], DGSP [56] and SPAMC [57]), they showed limited scalability.

Therefore, Jiang F et al [58] utilized Spark to propose a scalable algorithm for mining sequence

motifs. This algorithm took advantage of Spark’s RDDs and DAG, and allowed users to specify the

minimum and maximum length of motif. Experiments were conducted with human genome datasets

and bacteria DNA sequence datasets. The results [58] showed this approach could take a short

period of time to extract accurate motifs.

SPARK IN OTHER BIOLOGICAL APPLICATIONS

Spark in population genomic inference

Efficient score statistic methods [59] are widely applied in high-throughput population genomic

data inference. A typical method of estimating the sampling distribution of the statistics is to employ

asymptotic approximation, but it is inappropriate for small or uncommon variants. Although

resampling methods [60] are appropriate for the inference in population genomics context, they

greatly increase the computational burden of analysis. In order to tackle the computational challenge

for resampling based inference, Bahmani A et al proposed SparkScore [61], a distributed population

genomic inference approach taking advantage of Spark. SparkScore leveraged the nature of

asymptotic and resampling inference based on efficient score statistics. Experiments on synthetic

datasets using Amazon Elastic MapReduce (EMR) [61] demonstrated the efficiency and scalability

of SparkScore.

Spark in epigenetics

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

CpG islands (CGI) are important epigenetic markers, which play an essential role in epigenetics

[62]. However, it is very challenging to investigate the CpG islands and their structures. Before

Spark-based applications were developed, while several methods had been proposed to determine

the CPG island (such as bisulfite modification-based methods), they were time-consuming and too

costly. Thus, Yu N et al [63] utilized Spark to propose a novel CpG box model and a Markov model

to redefine and investigate the CpG island which could greatly accelerate the analytic process.

Experiments were conducted with Human and mouse chromosome sequences, 24 chromosomes and

21 chromosomes. The results [63] showed this cloud-assisted method displayed considerable

accuracy and faster processing power (6-7 times faster with 10 cores) compared with sequential

processing.

Spark in phylogeny

Phylogeny reconstruction plays an important role in molecular evolutionary studies but faces

significant computational challenges. Before Spark-based tools were created, while several tools

had been put forward for phylogeny reconstruction, they could not scale well with a significant

increase in data sets. Therefore, in 2016, Xu X et al proposed CloudPhylo [64], a fast and scalable

Phylogeny reconstruction tool making use of Spark. It evenly distributed the entire computational

workload among the working nodes. Experiment was conducted with the 5220 bacteria whole

genome DNA sequences. The results [64] showed that CloudPhylo took 24508 seconds with one

worker node and it could scale well as worker nodes increased. Moreover, CloudPhylo performed

better than several existing tools when using more worker nodes. In addition, CloudPhylo achieved

higher speedup on a larger dataset of about 100GB generated by simulation.

Spark in drug discovery

It is crucial to identify candidate molecules that affect disease-related proteins in drug discovery.

Although the Chemogenomics project tries to identify candidate molecules using machine learning

predictor programs [65-67], these programs spend a significant time and cannot be easily extended

to multiple nodes. To migrate existing programs to multi-node clusters without changing the original

programs, Harnie D et al proposed S-CHEMO [68] using Spark. In S-CHEMO, the intermediate

data would be consumed again immediately on nodes that generated the data, reducing time and

network bandwidth consumption. Experiments [68] compared S-CHEMO with the original pipeline,

which showed almost linear speedup up to 8 nodes. Moreover, this implementation also allowed

easier monitoring.

Spark in Single-cell RNA sequencing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes.

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a

greater number of cell profiles. Although there are already several RNA-seq processing pipelines

(such as Halvade, SparkSeq and SparkBWA), they cannot process such a large number of profiles.

Therefore, Falco [69] was created to process large-scale transcriptomic data in parallel by using

Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. The results

[69] showed compared with a highly optimized single-node analysis, Falco was at least 2.6 times

faster. Moreover, as the number of computing nodes increased, running time decreased.

Furthermore, it allowed users to employ the low-cost spot instances of AWS which reduced the cost

of analysis by 65%.

Spark in variant association and population genetics studies

Effectively analyzing thousands of individuals and millions of variants is a computationally

intensive problem. Traditional parallel strategies such as MPI/OpenMP show poor scalability.

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on

disk operations. Therefore, in 2015, O’Brien A et al proposed VariantSpark [70] to parallel

population-scale tasks based on Spark and associated machine learning library, MLlib. Experiments

were conducted on 3000 individuals with 80 million variants, which showed that VariantSpark was

80% faster than ADAM, Hadoop/Mahout implementation and ADMIXTURE [71]. Moreover,

compared with R and Python implementations it was more than 90 % faster. And in 2017, Di Z et

al proposed SEQSpark [72] to perform rare variant association analysis by using Spark. It was

evaluated with whole-genome and simulated exome sequence data. The former was completed in

1.5 hours and the latter in 1.75 hours. Moreover, it was always faster than Variant Association Tools

and PLINK/SEQ, and in some cases running time was reduced to one percent.

Spark in other works

Biological simulations and experiments produce a large number of numerical datasets, and in 2017

Klein M et al proposed Biospark [73] to process these data. Biospark was based on Hadoop and

Spark, consisting of a set of Java, C++ and Python libraries. In addition, it provided the abstractions

for parallel analysis of standard data types, including multidimensional arrays and images. To help

parallel analysis of some common datasets, it also provided APIs and file conversion tools,

including Monte Carlo, molecular dynamics simulations and time-lapse microscopy.

DISCUSSION

Spark is an in-memory iterative computing framework designed for large-scale data processing. It

is suitable for applications that require iterative operations on specific datasets. The greater the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

amount of data, the higher the computational intensity and the greater the benefit. When the data

volume is small but the computational intensity is large, the benefit is relatively small. In addition,

Spark is also suitable for applications where the amount of data is not particularly large but real-

time statistical analyses are required.

However, due to the nature of RDD, Spark is not suitable for applications that require asynchronous

fine-grained update in execution, such as web service storage or incremental web crawlers and

indexes. In addition, we need to consider the potential complexity of creating and maintaining a

Spark cluster. Moreover, when Spark runs on a commercial cloud computing platform such as AWS,

there is a certain delay in the transmission of large-scale datasets over the Internet. This issue does

not exist when Spark runs on a local computer cluster. Furthermore, we need to learn a new API

and perhaps even language (especially given the functional programing nature of the API).

Although Spark has been applied in some areas of bioinformatics and has achieved good results,

other areas have not yet been involved, such as proteomics, biomedical text, and metabolomics.

Moreover, as cloud computing and some web servers become more and more available, some issues

must be considered, such as the time cost of large amounts of input data from local to remote servers

in slow networks, cloud computing fees, data security and privacy.

Table 1 summarizes the bioinformatics tools and algorithms based on Apache Spark.

CONCLUSION

With the rapid development of NGS technology, a large number of genomic data have been

generated, which poses a great challenge to traditional bioinformatics tools. For this reason, we have

summarized the relevant works about Spark in bioinformatics and made a guideline on this topic.

First, we make a comparison between Spark and Hadoop, and then outline the Spark cluster

architecture, programming model, and processing mechanism. After that, we survey Spark-based

applications in the NGS and other biological domains. A researcher who wants to get involved in

this field can have a general understanding of Spark in bioinformatics through our survey.

In summary, Spark is a fast and general-purpose computing framework designed for large-scale

data processing. It ensures high fault tolerance and high scalability by introducing the RDD

abstraction and DAG scheduling. We believe that bioinformatics applications based on Spark will

provide promising performance for biological researchers in the future.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Key Points

 Apache Spark not only gives researchers a possibility of achieving efficient, scalable and

fault-tolerant computing performance, but also supports various system workloads such as

batch processing, iterative, interactive and stream computing.

 We outline the Apache Spark framework to help researchers to understand its architecture,

programming model and processing mechanism.

 We present Spark-based applications that can be employed in bioinformatics and discuss

the strengths and weaknesses of Spark and the challenges faced in this field.

COMPETING INTERESTS

The authors declare that they have no competing interests.

FUNDING

This work was supported by National Key R&D Program of China [grant numbers

2017YFB0202600, 2016YFC1302500, 2016YFB0200400 and 2017YFB0202104]; National

Natural Science Foundation of China [grant numbers 61772543, U1435222, 61625202, 61272056

and 61771331]; and Guangdong Provincial Department of Science and Technology [grant number

2016B090918122].

REFERENCES

1. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters.

Communications of the ACM 2008, 51(1):107-113.

2. Zou Q, Li X-B, Jiang W-R et al. Survey of MapReduce frame operation in bioinformatics.

Briefings in bioinformatics 2013, 15(4):637-647.

3. Zou Q, Hu Q, Guo M et al. HAlign: Fast multiple similar DNA/RNA sequence alignment

based on the centre star strategy. Bioinformatics 2015, 31(15):2475-2481.

4. Nguyen T, Shi W, Ruden D. CloudAligner: A fast and full-featured MapReduce based tool

for sequence mapping. BMC research notes 2011, 4(1):171.

5. Nordberg H, Bhatia K, Wang K et al. BioPig: a Hadoop-based analytic toolkit for large-scale

sequence data. Bioinformatics 2013, 29(23):3014-3019.

6. Zaharia M, Chowdhury M, Franklin MJ et al. Spark: Cluster computing with working sets.

HotCloud 2010, 10(10-10):95.

7. Han Z, Zhang Y. Spark: A Big Data Processing Platform Based on Memory Computing.

In: Seventh International Symposium on Parallel Architectures, Algorithms and Programming:

2016. 172-176.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8. Zaharia M, Chowdhury M, Das T et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation: 2012. USENIX Association: 2-2.

9. Convolbo MW, Chou J. Cost-aware DAG scheduling algorithms for minimizing execution

cost on cloud resources. Journal of Supercomputing 2016, 72(3):985-1012.

10. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of

Molecular Biology 1981, 147(1):195-197.

11. Zhao G, Ling C, Sun D. SparkSW: Scalable Distributed Computing System for Large-Scale

Biological Sequence Alignment. In: Ieee/acm International Symposium on Cluster, Cloud and

Grid Computing: 2015. 845-852.

12. Xu B, Li C, Zhuang H et al. DSA: Scalable Distributed Sequence Alignment System Using

SIMD Instructions. In: Ieee/acm International Symposium on Cluster, Cloud and Grid

Computing: 2017. 758-761.

13. Xu B, Li C, Zhuang H et al. Efficient Distributed Smith-Waterman Algorithm Based on

Apache Spark. In: IEEE International Conference on Cloud Computing: 2017. 608-615.

14. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform:

Oxford University Press; 2009.

15. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform.

Bioinformatics 2010, 26(5):589-595.

16. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

2013, 1303.

17. Abuín JM, Pichel JC, Pena TF et al. BigBWA: approaching the Burrows–Wheeler aligner

to Big Data technologies. Bioinformatics 2015, 31(24):4003.

18. Decap D, Reumers J, Herzeel C et al. Halvade: scalable sequence analysis with MapReduce.

Bioinformatics 2015, 31(15):2482-2488.

19. Pireddu L, Leo S, Zanetti G. SEAL: a distributed short read mapping and duplicate

removal tool. Bioinformatics 2011, 27(15):2159.

20. Al-Ars Z, Mushtaq H. Scalability Potential of BWA DNA Mapping Algorithm on Apache

Spark. In: SIMBig: 2015. 85-88.

21. Abuín JM, Pichel JC, Pena TF et al. SparkBWA: Speeding Up the Alignment of High-

Throughput DNA Sequencing Data. Plos One 2016, 11(5):e0155461.

22. Alars HMA. Streaming Distributed DNA Sequence Alignment Using Apache Spark. 2017.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

23. Mirarab S, Nguyen N, Warnow T. PASTA: ultra-large multiple sequence alignment. In:

International Conference on Research in Computational Molecular Biology: 2014. Springer:

177-191.

24. Liu K, Warnow TJ, Holder MT et al. SATe-II: very fast and accurate simultaneous

estimation of multiple sequence alignments and phylogenetic trees. Systematic biology 2011,

61(1):90-106.

25. Abuín JM, Pena TF, Pichel JC. PASTASpark: multiple sequence alignment meets Big Data.

Bioinformatics 2017, 33(18):2948-2950.

26. Miyazawa S. A reliable sequence alignment method based on probabilities of residue

correspondences. Protein Engineering 1995, 8(10):999.

27. Katoh K, Standley DM. MAFFT Multiple Sequence Alignment Software Version 7:

Improvements in Performance and Usability. Molecular Biology & Evolution 2013,

30(4):772-780.

28. Do CB, Mahabhashyam MS, Brudno M et al. ProbCons: Probabilistic consistency-based

multiple sequence alignment. Genome Research 2005, 15(2):330.

29. Tommaso PD, Moretti S, Xenarios I et al. T-Coffee: a web server for the multiple sequence

alignment of protein and RNA sequences using structural information and homology

extension. Nucleic Acids Research 2011, 39(Web Server issue):13-17.

30. Lladós J, Guirado F, Cores F et al. PPCAS: Implementation of a Probabilistic Pairwise

Model for Consistency-Based Multiple Alignment in Apache Spark; 2017.

31. Altschul S, Gish W, Miller W et al. Basic local alignment search tool. J. Mol. Biol. 1990.

32. C C, G C, V A et al: BLAST+: architecture and applications. Bmc Bioinformatics 2009,

10(1):421.

33. Darling AE, Carey L, Feng WC. The design, implementation, and evaluation of mpiBLAST.

In.: Los Alamos National Laboratory; 2003.

34. Vouzis PD, Sahinidis NV. GPU-BLAST: using graphics processors to accelerate protein

sequence alignment. Bioinformatics 2010, 27(2):182-188.

35. Matsunaga A, Tsugawa M, Fortes J. Cloudblast: Combining mapreduce and virtualization

on distributed resources for bioinformatics applications. In: eScience, 2008 eScience'08

IEEE Fourth International Conference on: 2008. IEEE: 222-229.

36. Castro MRD, Tostes CDS, Dávila AMR et al. SparkBLAST: scalable BLAST processing

using in-memory operations. Bmc Bioinformatics 2017, 18(1):318.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

37. Zhou W, Li R, Yuan S et al. MetaSpark: a spark-based distributed processing tool to recruit

metagenomic reads to reference genomes. Bioinformatics 2017, 33(7):1090-1092.

38. Niu B, Zhu Z, Fu L et al. FR-HIT, a very fast program to recruit metagenomic reads to

homologous reference genomes. Bioinformatics 2011, 27(12):1704-1705.

39. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-

throughput sequencing technologies. Journal of Computational Biology A Journal of

Computational Molecular Cell Biology 2010, 17(11):1519.

40. Simpson JT, Wong K, Jackman SD et al. ABySS: a parallel assembler for short read

sequence data. Genome Research 2009, 19(6):1117.

41. Meng J, Wang B, Wei Y et al. SWAP-Assembler: scalable and efficient genome assembly

towards thousands of cores. Bmc Bioinformatics 2014, 15(S9):S2.

42. Abu-Doleh A, Çatalyürek ÜV. Spaler: Spark and GraphX based de novo genome assembler.

In: IEEE International Conference on Big Data: 2015. 1013-1018.

43. Paul AJ, Lawrence D, Ahn TH. Overlap Graph Reduction for Genome Assembly using

Apache Spark. In: The ACM International Conference: 2017. 613-613.

44. Haider B, Ahn TH, Bushnell B et al. Omega: an Overlap-graph de novo Assembler for

Metagenomics. Bioinformatics 2014, 30(19):2717-2722.

45. Pan X, Fu X-L, Dong G-F et al. DNA sequence splicing algorithm based on Spark. In:

Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information

Integration (ICIICII), 2016 International Conference on: 2016. IEEE: 52-56.

46. Dong G, Fu X, Li H et al. An Accurate Sequence Assembly Algorithm for Livestock, Plants

and Microorganism Based on Spark. International Journal of Pattern Recognition &

Artificial Intelligence 2017, 31(8).

47. Kelly BJ, Fitch JR, Hu Y et al. Churchill: an ultra-fast, deterministic, highly scalable and

balanced parallelization strategy for the discovery of human genetic variation in clinical

and population-scale genomics. Genome biology 2015, 16(1):6.

48. Mushtaq H, Al-Ars Z. Cluster-based Apache Spark implementation of the GATK DNA

analysis pipeline. In: Bioinformatics and Biomedicine (BIBM), 2015 IEEE International

Conference on: 2015. IEEE: 1471-1477.

49. Deng L, Huang G, Zhuang Y et al. HiGene: A high-performance platform for genomic data

analysis. In: IEEE International Conference on Bioinformatics and Biomedicine: 2016. 576-

583.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

50. Li X, Tan G, Zhang C et al. Accelerating large-scale genomic analysis with Spark. In:

Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on: 2016. IEEE:

747-751.

51. Massie M, Nothaft F, Hartl C et al. Adam: Genomics formats and processing patterns for

cloud scale computing. EECS Department, University of California, Berkeley, Tech Rep

UCB/EECS-2013-207 2013.

52. Wiewiórka MS, Messina A, Pacholewska A et al. SparkSeq: fast, scalable and cloud-ready

tool for the interactive genomic data analysis with nucleotide precision. Bioinformatics

2014, 30(18):2652-2653.

53. Leung CK-S. Uncertain frequent pattern mining. In: Frequent pattern mining. Springer;

2014: 339-367.

54. Das MK, Dai H-K. A survey of DNA motif finding algorithms. BMC bioinformatics 2007,

8(7):S21.

55. Shintani T, Kitsuregawa M. Mining algorithms for sequential patterns in parallel: Hash

based approach. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining: 1998.

Springer: 283-294.

56. Qiao S, Tang C, Dai S et al. Partspan: Parallel sequence mining of trajectory patterns. In:

Fuzzy Systems and Knowledge Discovery, 2008 FSKD'08 Fifth International Conference on:

2008. IEEE: 363-367.

57. Chen C-C, Tseng C-Y, Chen M-S. Highly scalable sequential pattern mining based on

mapreduce model on the cloud. In: Big Data (BigData Congress), 2013 IEEE International

Congress on: 2013. IEEE: 310-317.

58. Jiang F, Leung CK, Sarumi OA et al. Mining sequential patterns from uncertain big DNA

in the spark framework. In: Bioinformatics and Biomedicine (BIBM), 2016 IEEE

International Conference on: 2016. IEEE: 874-881.

59. Rao CR. Large sample tests of statistical hypotheses concerning several parameters with

applications to problems of estimation. In: Mathematical Proceedings of the Cambridge

Philosophical Society: 1948. Cambridge University Press: 50-57.

60. Westfall PH, Young SS. Resampling-based multiple testing: Examples and methods for p-

value adjustment, vol. 279: John Wiley & Sons; 1993.

61. Bahmani A, Sibley AB, Parsian M et al. SparkScore: leveraging apache spark for

distributed genomic inference. In: Parallel and Distributed Processing Symposium

Workshops, 2016 IEEE International: 2016. IEEE: 435-442.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

62. Erkek S, Hisano M, Liang C-Y et al. Molecular determinants of nucleosome retention at

CpG-rich sequences in mouse spermatozoa. Nature structural & molecular biology 2013,

20(7):868-875.

63. Yu N, Li B, Pan Y. A cloud-assisted application over apache spark for investigating

epigenetic markers on DNA genome sequences. In: Big Data and Cloud Computing

(BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and

Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International

Conferences on: 2016. IEEE: 67-74.

64. Xu X, Ji Z, Zhang Z. CloudPhylo: a fast and scalable tool for phylogeny reconstruction.

Bioinformatics 2016, 33(3):438-440.

65. Wale N. Machine learning in drug discovery and development. Drug Development Research

2011, 72(1):112-119.

66. Costello JC, Heiser LM, Georgii E et al. A community effort to assess and improve drug

sensitivity prediction algorithms. Nature biotechnology 2014, 32(12):1202-1212.

67. Sastry GM, Inakollu VS, Sherman W. Boosting virtual screening enrichments with data

fusion: coalescing hits from two-dimensional fingerprints, shape, and docking. Journal of

chemical information and modeling 2013, 53(7):1531-1542.

68. Harnie D, Saey M, Vapirev AE et al. Scaling machine learning for target prediction in drug

discovery using apache spark. Future Generation Computer Systems 2017, 67:409-417.

69. Yang A, Troup M, Lin P et al. Falco: a quick and flexible single-cell RNA-seq processing

framework on the cloud. Bioinformatics 2016, 33(5):767-769.

70. O’Brien AR, Saunders NFW, Guo Y et al. VariantSpark: population scale clustering of

genotype information. Bmc Genomics 2015, 16(1):1-9.

71. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated

individuals. Genome Research 2009, 19(9):1655.

72. Di Z, Zhao L, Li B et al. SEQSpark: A Complete Analysis Tool for Large-Scale Rare

Variant Association Studies Using Whole-Genome and Exome Sequence Data. American

Journal of Human Genetics 2017, 101(1):115.

73. Klein M, Sharma R, Bohrer CH et al. Biospark: scalable analysis of large numerical datasets

from biological simulations and experiments using Hadoop and Spark. Bioinformatics

2017, 33(2):303-305.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 1 Bioinformatics tools and algorithms based on Apache Spark

Name Function Features Pros/Cons Reference

SparkSW Alignment

and mapping

Consists of three phases: data

preprocessing, SW as map

tasks and top K records as

reduce tasks

Load-balancing, scalable,

but without the mapping

location and traceback of

optimal alignment

[11]

DSA Alignment

and mapping

Leverages data parallel

strategy based on SIMD

instruction

Up to 201x speedup over

SparkSW and almost linear

speedup with the increase of

cluster nodes

[12]

CloudSW Alignment

and mapping

Leverages SIMD instruction

and provides APIs service in

cloud

Up to 3.29x speedup over

DSA and 621x speedup over

SparkSW, high scalability

and efficiency

[13]

SparkBWA Alignment

and mapping

Consists of three main

stages: RDDs creation, map,

and reduce phases, employs

two independent software

layers

For shorter reads, average

1.9x and 1.4x faster than

SEAL and pBWA. For

longer reads, average 1.4x

faster than BigBWA and

Halvade, but requires the

data availability in HDFS

[21]

StreamBWA Alignment

and mapping

The input data are being

streamed into the cluster

directly from a

compressed file

~2x faster than non-

streaming approach, and

5x faster than SparkBWA

[22]

PASTASpark Alignment

and mapping

Employs an in-memory

RDD of key-value pairs to

parallel the calculating

MSAs phase

Up to 10x speedup than

single-threaded PASTA,

ensures scalability and

fault tolerance

[25]

PPCAS Alignment

and mapping

Based on the MapReduce

processing paradigm in

Spark

Better with single node

and shows almost linear

speedup with the increase

of nodes

[30]

SparkBLAST Alignment

and mapping

Utilizes pipe operator and

RDDs of Spark to call

BLAST as an external

library

Outperforms

CloudBLAST in terms of

speedup, scalability and

efficiency

[36]

MetaSpark Alignment

and mapping

Consists of five steps:

constructing k-mer

RefindexRDD,

constructing k-mer

ReadlistRDD, seeding,

filtering, and banded

alignment

Recruits significantly

more reads than SOAP2,

BWA and LAST, and

more reads by ~4 than

FR-HIT, and shows good

scalability and overall

high performance

[37]

Spaler Assembly Employs GraphX API of

Spark, consists of two

main parts: de Bruijn

graph construction and

contigs generating

Shows better scalability

and achieves comparable

or better assemble quality

than ABySS, Ray, and

SWAP-Assembler

[42]

SA-BR-Spark Assembly Under the strategy of

finding the source of reads

based Spark platform

Shows a superior

computational speed than

SA-BR-MR

[46]

HiGene Variant

analysis

Puts forward a dynamic

computing resource

scheduler and an efficient

data skew mitigation way

Reduces total running

time from days to nearly

an hour, and 2x faster

than Halvade

[49]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

GATK-Spark Variant

analysis

Takes full account of

compute, workload, and

I/O characteristics

Achieves more than 37

times speedup

[50]

SparkSeq Variant

analysis

Builds and runs genomic

analysis pipelines in an

interactive way by using

Spark

Achieves 8.4-9.15 times

speedup than SeqPig, and

accelerate data querying

up to 110x and reduce

memory consumption by

13x

[52]

SparkScore Population

genomic

inference

Employs asymptotic and

resampling inference on

the basis of efficient score

statistics

Shows good efficiency

and scalability with EMR

on synthetic datasets with

EMR

[61]

CloudPhylo Phylogeny Evenly distributes the

entire workloads among

the worker nodes

Shows good scalability

and high efficiency, and

Spark version is better

than Hadoop version

[64]

S-CHEMO Drug

discovery

Intermediate data is

immediately consumed

again on the nodes that

produce, saving time and

bandwidth

Shows almost linear

speedup up to 8 nodes

compared with the

original pipeline

[68]

Falco Single-cell

RNA

sequencing

Consist of a splitting step,

an optional pre-processing

step and the main analysis

step

At least 2.6x faster than a

highly optimized single-

node analysis, and with

the increase of nodes,

running time decreases

[69]

VariantSpark Variant

association

and

population

genetics

studies

Parallels population-scale

tasks based on Spark and

associated MLlib

80% faster than ADAM,

Hadoop/Mahout version

and ADMIXTURE, and

more than 90% faster

than R and Python

implementations

[70]

SEQSpark Variant

association

and

population

genetics

studies

Splits large-scale datasets

into many small blocks to

perform rare variant

association analysis

Always faster than

Variant Association

Tools and PLINK/SEQ,

and in some cases,

running time is reduced to

one percent

[72]

BioSpark data-

parallel

analysis on

large

numerical

datasets

Consists of a set of Java,

C++ and Python libraries,

abstractions for parallel

analysis of standard data

types, some APIs and file

conversion tools

Convenient, scalable, and

useful, brings domain-

specific features for

biology

[73]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: The cluster architecture of Spark

Figure 1 Click here to download Figure Figure 1.docx

http://www.editorialmanager.com/giga/download.aspx?id=42480&guid=56be5bc3-5cb0-4db8-93be-0015b3c1b9cd&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42480&guid=56be5bc3-5cb0-4db8-93be-0015b3c1b9cd&scheme=1

Figure 2: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown

as shaded rectangles.

Figure 2 Click here to download Figure Figure 2.docx

http://www.editorialmanager.com/giga/download.aspx?id=42481&guid=ae6fb86c-5689-4452-8185-7fc25ccff649&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42481&guid=ae6fb86c-5689-4452-8185-7fc25ccff649&scheme=1

Figure 3: Example of how Spark computes job stages. Boxes with solid outlines are

RDDs. Partitions are shaded rectangles, in black if they are already in memory. To run

an action on RDD G, we build stages at wide dependencies and pipeline narrow

transformation inside each stage. In this case, stage 1’s output RDD is already in RAM,

so we run stage 2 and then stage 3.

Figure 3 Click here to download Figure Figure 3.docx

http://www.editorialmanager.com/giga/download.aspx?id=42482&guid=69700b8c-8ce9-4f20-8134-e9740abc4405&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=42482&guid=69700b8c-8ce9-4f20-8134-e9740abc4405&scheme=1

Cover Letter

Click here to access/download
Supplementary Material

Cover Letter.docx

http://www.editorialmanager.com/giga/download.aspx?id=42515&guid=1473f536-bde8-487c-9a7a-bb0db53352ae&scheme=1

GitHub wiki link

Click here to access/download
Supplementary Material

Home.md

http://www.editorialmanager.com/giga/download.aspx?id=42478&guid=7799efdc-306f-499f-8098-259e33f936fe&scheme=1

