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Response to Reviewers: Dear Editor and Reviewers:
Thank you for your letter and for the reviewers’ comments concerning our manuscript
entitled “Bioinformatics Application on Apache Spark” (GIGAD1800131). Those
comments are all valuable and very helpful for revising and improving our paper, as
well as the important guiding significance to our research. We have studied the
comments carefully and have made correction which we hope meet with approval.
Revised portion are marked in red in the paper. The main corrections in the paper and
the responds to the editor and reviewers’ comments are as following:
To Editor:
Comment 1: While one of the reviewers doesn't like the figures, another thinks you
need more, and generally we side with the "more figures in a review the better". In
particular, we would encourage improvements and more infographic like detail if you
can. Improvements to the language and writing is also required, although if it passes
review we will send it to a copy editor.
Response: Appreciate for your comment, taking into account the reviewers’ comments
and your opinions, we have improved the figures, removed unnecessary figures, and
added a few necessary figures to help readers better understand the Spark framework
and operating mechanism. In addition, we have improved my language and writing.
To Reviewer 1:
Comment 1: The paper would benefit from a *slightly* deeper description of the Spark
architecture, in particular explaining the nature of DAGs and the way in which they
permit optimizations. Also, some mention of the two deploy modes (where the driver
program can either be run on the client machine, or on a worker node).
Response: Appreciate for your comment, in “THE SPARK FRAMEWORK” section, we
have made a more detailed description of the Spark architecture, explained the nature
of DAGs and the way in which they permit optimizations, introduced the two deploy
modes: cluster mode and client mode.
Comment 2: The paper would also benefit from a section that examines the potential
downsides of using Spark, for example the potential complexity in creating and
maintaining a Spark cluster, and the learning curve involved in learning a new API and
perhaps even language (especially given the Functional Programming nature of the
API).
Response: Appreciate for your comment, in “DISCUSSION” section, we have
discussed the disadvantages of Spark, including the applications that Spark is not
suitable for, the complexity of creating and maintaining a Spark cluster, the time cost of
large-scale input data from local to remote servers in slow networks, the complex
learning curve.
Comment 3: With regards to style, there are a number of places in the paper where the
definite article is used where it shouldn't, and vice versa. In the interest of readability
and not distracting the reader, these should be addressed. A similar point can be made
with regard to the overuse of certain prepositions (e.g. "besides"), which are called out
in detail in the next section.
Response: Appreciate for your comment, we have addressed the use of the definite
article in paper, and replaced “besides” with “in addition”, “moreover”, and
“furthermore”.
Comment 4: p.1 line 28: "data" is treated as a plural in the rest of the paper, therefore
"pose" rather than "poses".
Response: Appreciate for your comment, we have changed “poses” to “pose”.
Comment 5: p.1 line 34: "by introducing resilient distributed dataset" should be "by
introducing the resilient distributed dataset" (i.e. use of definite article)
Response: Appreciate for your comment, we have changed “by introducing resilient
distributed dataset” to “by introducing the resilient distributed dataset”.
Comment 6: p.1 line 40: In the end, we discussed the challenges...and the future
work...". I haven't found this discussion in the paper.
Response: Appreciate for your comment, we have deleted this sentence from
“ABSTACT” section, but added a “DISCUSSION” section to discuss the advantages
and disadvantages of Spark, some issues to be considered about cloud computing in
the future and other bioinformatics fields that have not yet been involved.
Comment 7: p.2 line 4: "MapReduce preforms" should be "MapReduce performs".
Response: Appreciate for your comment, we have changed “preforms” to “performs”.
Comment 8: p.2 line 21: "introducing resilient distributed dataset" should "introducing
the resilient distributed dataset".
Response: Appreciate for your comment, we have changed “introducing resilient
distributed dataset” to “introducing the RDD abstraction”.
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Comment 9: p.2 line 38: The documentation of Spark describes the driver program as
"The process running the main () function of the application and creating the
SparkContext". It does not "deploy the Spark operating environment". Perhaps the
authors meant "deploy TO the Spark operating environment" but even here this would
be incorrect, as the sparksubmit script does this.
Response: Appreciate for your comment, we have rewritten this part to provide the
correct description in “THE SPARK FRAMEWORK” section.
Comment 10: p.2, line 43: As well as Scala, Spark provides APIs in Java, Python and
more recently R. This flexibility is important to researchers when deciding whether to
use Spark or not.
Response: Appreciate for your comment, we have mentioned that Spark provides
advanced APIs in Java, Scala, Python and R in “THE SPARK FRAMEWORK” section.
Comment 11: p.2, line 58: It is questionable that "the most important feature of RDD" is
the fault tolerance. Certainly, it is "an important feature".
Response: Appreciate for your comment, we have changed this part to “RDD achieves
fault tolerance through a notion of lineage…” in “THE SPARK FRAMEWORK” section.
Comment 12: p.3, line 13: The referenced image appears to be an _example_ of a
spark task flow chart, rather than _the general_ Spark task processing flow. For the
reader's sake, the paper should either describe what this particular task is doing
(including the fact that it is reading and writing to HDFS in this case). Otherwise the
reader may form incorrect opinions or simply be confused. Alternatively, drop the figure
entirely.
Response: Appreciate for your comment, we have updated this figure to show an
example of how Spark computes job stages in “THE SPARK FRAMEWORK” section.
Comment 13: p.3, line 17: "Besides" as preposition. This is a little colloquial and has an
additional "in any case" meaning. To avoid distracting the reader, consider replacing
"besides" as a preposition with alternatives like "In addition", "Moreover",
"Furthermore". This can be applied to the rest of the paper, and I won't call any more
out by line number.
Response: Appreciate for your comment, we have replaced “besides” with “in addition”,
“moreover”, and “furthermore” in paper.
Comment 14: p.4, line 4: "BurrowWheeler aligner"  either "The BurrowWheeler
aligner" or "BurrowWheeler alignment" read better
Response: Appreciate for your comment, we have changed "BurrowWheeler aligner"
to “The BurrowWheeler aligner”.
Comment 15: p.4, line 19: "Results showed"  "The results showed"
Response: Appreciate for your comment, we have changed “Result showed” to “The
results showed”.
Comment 16: p.4, line 32: "achieved the average speedup of"  "achieved an average
speedup of"
Response: Appreciate for your comment, we have changed “achieved the average
speedup of” to “achieved an average speedup of”.
Comment 17: p.6, line 58: Drop "And" from the start of the sentence.
Response: We have dropped “And” from the start of the sentence.
Comment 18: p.7, line 1: "Experiments results"  "Experimental results”
Response: Appreciate for your comment, we have changed “Experiments results” to
“Experimental results”.
Comment 19: p.7, line 4: Perhaps it's worth pointing out that this is an example of the
platform itself suggesting a new algorithm, rather than simply re-implementing an
existing algorithm on the new platform. Similarly, for line 19 of this page.
Response: Appreciate for your comment, we have pointed out that these two are
examples of the Spark platform itself suggesting new algorithms in “SPARK IN
ASSEMBLY” section.
Comment 20: p.7, line 23: Is SABRMR running on Hadoop? (I ask because MR is a
valid algorithm on Spark as well).
Response: Appreciate for your comment, SA-BR-MR is running on Hadoop according
to the reference paper.
Comment 21: p.8, line 17: "Results..."  "The results..."
Response: Appreciate for your comment, we have changed “Results” to “The results”.
Comment 22: p.8, line 41: "noises"  "noise".
Response: Appreciate for your comment, we have changed “noises” to “noise”.
Comment 23: p.9, lines 2339: The epigenetics example just calls out the advantage of
parallelization compared to sequential processing. Was there a parallelized attempt,
perhaps using Hadoop, that the Yu N et al paper could demonstrate a superiority to?
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Response: Appreciate for your comment, we have reviewed lots of related papers, but
did not find some parallelized attempts.
Comment 24: p.10, line 8: "Saprk"  "Spark"
Response: Appreciate for your comment, we have changed “Saprk” to “Spark”.
Comment 25: p.10, line 15: The term "checkpointing" is not explained even in the body
of the referenced paper (Harnie D et al) and is probably best dropped.
Response: Appreciate for your comment, we have dropped the term “checkpointing”
from the sentence.
Comment 26: p.11, line 43: Key Points section: I would respectfully disagree with the
following statement: "We introduce the Apache Spark framework in detail, helping
researchers to understand its architecture, programming model and processing
mechanism." I think the authors do a good job of firstly, giving an *overview* of Spark
(notwithstanding earlier points about getting into more detail), but I don't think this
paper is a *detailed* description of Spark, its architecture or its programming model.
Indeed, I don't think it *needs* to be  the survey of *how Spark has successfully been
used* is probably of primary interest to most readers. But it's best to be clear about the
scope of the paper in the Key Points so as to set readers' expectations correctly.
Response: Appreciate for your comment, we have updated this key point to point out
that we outline the Apache Spark framework to researchers to understand its
architecture, programming model and processing mechanism, and we have made a
more detailed description of the Spark architecture in “THE SPARK FRAMEWORK”
section.
Comment 27: p.11, line 48: Key Points section: Similarly, to above, I would edit the
third Key Point to set readers' expectations correctly. The paper in its current form
does not include a "discussion on the future of parallel computing in bioinformatics"
(and in my opinion it does not need to).
Response: Appreciate for your comment, considering your opinions and that of other
reviewers, we have added a “DISCUSSION” section to discuss Spark’s strengths,
weaknesses, and challenges faced in this field.
To Reviewer 2:
Comment 1: While I agree, Spark has a lot of advantages over other parallel and
distributed computing frameworks such as MapReduce, I feel the current tone and
content are too one-sided. In my own experience, Spark is mostly only useful for
processing very large amount of data. For smaller data sets, the scalability gained by
Spark may not be enough to justify the upfront time required for setting up and
configuring a Spark-enabled system. Also, there is no discussion on computing
hardware requirement (local computer cluster or commercial cloud computing
platforms), and issues related to transfer of large data sets over the Internet. All these
issues need to be discussed.
Response: Appreciate for your comment, we have discussed the strengths and
weaknesses of Spark and issues related to transfer of large data sets over the Internet
on local computer cluster or commercial cloud computing in “DISCUSSION” section,
and pointed out the official proposal for hardware requirements in “THE SPARK
FRAMEWORK” section.
Comment 2: The sections on 'Spark in motif analysis' and 'Spark in genomic inference'
are poorly written. The terms 'motif' and 'genomic inference' are not properly defined.
Do they mean transcription factor binding motifs, or simply frequently occurring DNA
sequence some defined regions in the genome (e.g., promoters, enhancers, etc.)?
Also, the term 'genomic data inference' is not well defined. Presumably the authors are
referring to inference in a population genomics context.
Response: Appreciate for your comment, here, motif refers to transcription factor
binding sites (TFBS), genomic inference refers to the inference in population genomics
text. We have updated these two sections in the paper to provide correct descriptions
about the terms ‘motif’ and ‘genomic inference’.
Comment 3: The caption of all four figures are way too simple. In most cases,
especially for complicated flow diagrams like Fig 1 and Fig 3, there is no explanation or
description of the content of the figure. I believe the authors intends to illustrate the
inner working of Spark using these figures. Nonetheless, the content of these figures is
not explained in the caption nor the main text.
Response: Appreciate for your comment, considering your opinions and that of other
reviewers, we have updated the figures, removed unnecessary figures, and added a
few necessary figures to help readers better understand the Spark framework and
operating mechanism. Moreover, we have added some explanations and descriptions
of the content of the figures in the captions.
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Comment 4: Despite the authors claiming they 'discuss the future of parallel computing
in bioinformatics' (Key Points #3), the manuscript barely talks about the future, other
than saying 'Spark will provide promising performance for biological researchers in the
future' (Conclusions). I think this is a lost opportunity. What do the authors see as the
major limitations in the field at the moment? New hardware? Better integration with
cloud computing platforms? New application areas, such as proteomics, metabolomics,
biomedical text, electronic medical health record, etc.?
Response: Appreciate for your comment, we have updated the Key Points #3 and
discussed some issues to be considered about cloud computing in the future and
pointed out other bioinformatics fields that have not yet been involved.
Comment 5: In multiple occasions, the authors use 'And' to begin a sentence. I do not
think it is grammatically correct.
Response: Appreciate for your comment, we have dropped “And” from all related
sentences in paper.
Comment 6: Throughout the manuscript, author names are often cited as ([last name]
[first initials]), but sometimes they are cited as ([last name] [all initials]) or ([last name]
[first name]). Please make sure names are formatted consistently.
Response: Appreciate for your comment, we have updated author names as ([last
name] [first initial]) in paper to make sure names are formatted consistently.
To Reviewer 3:
Comment 1: The manuscript needs to be rewritten to provide more practical
information to bioinformatics research users how Apache Spark based bioinformatics
tools are actively used in specific bioinformatics research domains and what are the
advantages of using the Apache Spark.
Response: Appreciate for your comment, we have rewritten the paper to provide more
practical information to bioinformatics research users how Apache Spark based
bioinformatics tools are actively used in specific bioinformatics research domains and
what are the advantages of using the Apache Spark. In “THE SPARK FRAMEWORK”
section, we have made a more detailed description of the Spark architecture and the
main abstraction RDD, explained the nature of DAGs and the way in which they permit
optimizations, provided the official proposal for hardware requirements to help
researchers better understand and use Spark. Moreover, we have added the
“DISCUSSION” section to discuss the strengths and weaknesses of Spark, the
applications that Spark is suitable for, and some issues must be considered.
Researchers can comprehensively consider how to use Spark through these contents
combined with biological issues in their field.
Comment 2: Table 1 shows basic APIs of Apache Spark. The reviewer cannot get a
point why the authors included this table. Delete the table or keep the table with
presenting how the APIs could be used in the bioinformatics tools.
Response: Appreciate for your comment, we have removed the Table 1 from the
paper.
Comment 3: In the first paragraph of the Introduction section, "However, the existing
bioinformatics tools cannot effectively handle such a large amount of data. In order to
solve the issues, MapReduce, a programming model for parallel computation of large
datasets, has been proposed [1]." sentences should be updated. MapReduce has not
been proposed for bioinformatics tool. MapReduce framework was proposed for
general purpose big data analysis in the distributed manner.
Response: Appreciate for your comment, we have updated these sentences to point
out that MapReduce was proposed for processing large-scale datasets in a distributed
manner in information technology rather than for bioinformatics tools.
Comment 4: The manuscript did not mention about "DataFrames" API that is an
extension of RDD. Most of new Spark features use this new DataFrames, and it should
be addressed in the manuscript.
Response: Appreciate for your comment, we have mentioned the two extensions of
RDD: DataFrame and Dataset in “The SPARK FRAMEWORK” section. Users can
seamlessly switch between the three through simple API calls.
Comment 5: Table 2 only shows the application domain, program name, URL,
references. The table should be updated to include more meaningful informatics of
tools such as pros/cons or specific features or the tools.
Response: Appreciate for your comment, we have updated the Table 2 to provide
more meaningful informatics, including name, function, features, pros/cons and
reference of applications.
Comment 6: Figures 1 to 4 are not necessary in the manuscript. Instead of these
figures, the authors should consider how to express the relationship of bioinformatics
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tools and Apache Spark effectively using figures.
Response: Appreciate for your comment, considering the opinions of editor and other
reviewers, we have improved the figures, removed unnecessary figures, and added a
few necessary figures to help readers better understand the Spark framework and
operating mechanism. Figure 1 is mainly used to introduce Spark’s cluster architecture,
explain its main components and functions, and how the Spark application runs on the
cluster. Figure 2 is mainly used to show some examples of narrow and wide
dependencies to help readers understand RDD’s dependencies. Because these
dependencies are important in the splitting job stages of Spark, so we add this figure.
Figure 3 is mainly used to show an example of how Spark computes job stages to help
readers understand the RDD operating mechanism and DAG scheduling. So, we add
this figure. Moreover, we carefully considered your comments about how to express
the relationship of bioinformatics tools and Apache Spark effectively using figures. We
feel that the relationship between bioinformatics tools and Spark cannot be well
expressed in figures. Because the variated items in bioinformatics can cover almost all
sorts of computational optimization problems. The Spark framework represents a
possible solution for tasks in parallel computing with some certain characteristics. So,
we tried our best to provide readers with some practical advices on using Spark
framework based on computational characteristics of problems in “Discussion” section.
In “DISCUSSION” section, we have discussed the strengths and weaknesses of Spark,
the applications that Spark is suitable for, and some issues must be considered to help
researchers to consider how to use Spark combined with biological issues in their field.
We tried our best to improve the manuscript and made some changes in the
manuscript. These changes will not influence the content and framework of the paper.
And here we did not list the changes but marked in revise paper. We appreciate for
Editor/Reviewers’ warm work earnestly, and hope that the correction will meet with
approval. Once again, thank you very much for your comments and suggestions.
Yours
Sincerely
Runxin GUO, Yi ZHAO, Xiangke LIAO, Kenli LI, Quan ZOU, Xiaodong FANG,
Shaoliang PENG
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ABSTRACT 

With the rapid development of next-generation sequencing (NGS) technology, the ever-increasing 

genomic data pose a tremendous challenge to data processing. Therefore, there is an urgent need for 

highly scalable and powerful computational systems. Among the state-of–the-art parallel computing 

platforms, Apache Spark is a fast, general-purpose, in-memory, iterative computing framework for 

large-scale data processing, which ensures high fault tolerance and high scalability by introducing 

the resilient distributed dataset (RDD) abstraction. In terms of performance, Spark can be up to 100x 

faster in memory access and 10x faster in disk access than Hadoop. Moreover, it provides advanced 

APIs in Java, Scala, Python, and R. It also supports some advanced components, including Spark 

SQL for structured data processing, MLlib for machine learning, GraphX for graph computing, and 

Spark Streaming for stream computing. In this paper, we surveyed Spark-based applications in the 

NGS and other biological domains, such as epigenetics, phylogeny, and drug discovery. We believe 

that this survey provides a comprehensive guideline for bioinformatics researchers to apply Spark 

in their own fields. 

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset; 

memory computing 

INTRODUCTION 

NGS technology has generated huge amounts of biological sequence data. In order to use these data 

efficiently, we need to store and analyze the data accurately and efficiently. However, the existing 

bioinformatics tools cannot effectively handle such a large amount of data. Therefore, there is an 

urgent need for scalable and powerful distributed computing tools to solve this problem. In the field 

of information technology, MapReduce [1] is a distributed parallel programming model and 
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methodology for processing large-scale datasets. It splits large-scale datasets into many key-value 

pairs through both the map and reduce phases, significantly improving performance and showing 

good scalability. By combining the Hadoop Distributed File System (HDFS) and MapReduce, 

Apache Hadoop can enable distributed processing of large amounts data in a reliable, efficient, and 

scalable way, where HDFS is mainly used for distributed storage of massive datasets and 

MapReduce performs distributed computing on these datasets. As a result, Hadoop has been adopted 

by the bioinformatics community in several areas [2], such as alignment [3], mapping [4] and 

sequence analysis [5].  

However, due to its disk-based I/O access pattern, intermediate calculation results are not cached. 

Therefore, Hadoop is only suitable for batch data processing, and shows poor performance for 

iterative data processing. To resolve this problem, Apache Spark [6] has been proposed, which is a 

faster general-purpose computing framework designed specifically to handle huge amounts of data. 

Unlike Hadoop’s disk-based computing, Spark performs memory computing by introducing the 

RDD abstraction. Since it is possible to store intermediate results in memory, it is more efficient for 

iterative operations. In terms of performance, Spark can be up to 100x faster in memory access than 

Hadoop [6]. Even if we compare between them based on the performance of the disk, the gap is 

more than 10 times [7]. In terms of flexibility, Spark provides high-level APIs in Java, Scala, Python, 

and R, and interactive shell. In terms of generality, Spark provides structured data processing, 

machine learning, graph computing, and stream computing capabilities by supporting some 

advanced components.  

THE SPARK FRAMEWORK  

Spark is an open source cluster computing environment designed for large-scale data processing, 

developed by UC Berkeley AMP lab. It provides advanced APIs in Java, Scala, Python and R, and 

an optimized engine that supports general execution graphs. It also supports some advanced 

components, including Spark SQL for structured data processing, MLlib for machine learning, 

GraphX for graph computing, and Spark Streaming for stream computing. 

As in Figure 1, Spark application runs as independent processes on the cluster and are coordinated 

by the SparkContext in the driver program. There are two types of deploy modes depending on 

where the driver program is running: cluster mode and client mode. In the former, driver program 

runs on a worker node. In the latter, driver program runs on the client machine. First, SparkContext 

requests the executors on the worker nodes in the cluster from the cluster manager (either Spark’s 

own Standalone cluster manager, Apache Mesos, or Hadoop YARN). These executors are processes 

that can run tasks and store data in memory or on disk for application. Next, the SparkContext will 
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send tasks to the executors to perform. Finally, the executors return the results to the SparkContext 

after the tasks are executed. In Spark, an application generates multiple jobs. A job is split into 

several stages. Each stage is a task set containing several tasks, which performs some calculations 

and produces some intermediate results. Task is the smallest unit of work in Spark, completing a 

specific thing on an executor. 

As the main abstraction in Spark, RDD is a read-only collection of objects partitioned on different 

nodes in the cluster so that the data in RDD can be processed in parallel. The data in RDD are stored 

in memory by default, but Spark automatically writes RDD data to disk if memory resources are 

low. RDD achieves fault tolerance through a notion of lineage [6], that is, if an RDD partition on a 

node is lost because of a node failure, the RDD automatically recalculates the partition from its own 

data source. Moreover, Spark provides two types of operations on RDD: transformation and action. 

The former defines a new RDD, and the latter returns a result or writes RDD data to the storage 

system. Transformation employs lazy operation [8], which means that the operation of generating 

another RDD from one RDD transformation is not executed immediately, and the calculation 

process is not actually started until an action is performed. Furthermore, each transformation 

operation generates a new RDD, the newly generated RDD depends on the original RDD. According 

to the different types of transformation operations, RDD’s dependencies can be divided into narrow 

dependency and wide dependency. The former refers to that each partition in the generated RDD 

only depends on the parent RDD fixed partition, and the latter refers to the fact that each partition 

of the generated RDD depends on all partitions of the parent RDD. Figure 2 shows examples of 

narrow and wide dependencies. In addition, Spark also provides two extensions of RDD: DataFrame 

and Dataset. Spark users can seamlessly switch between the three through simple API calls. 

Furthermore, Spark adopts a directed acyclic graph (DAG) [9] to optimize execution process by 

splitting the submitted jobs into several stages according to the wide dependency. For narrow 

dependency, it divides related transformation operations into the same stage because they can 

perform pipelining operations and thus reduces the processing time of submitted jobs. Figure 3 

shows an example of how Spark computes job stages. In addition, if the partitions on a node are lost 

because of a node failure, Spark can utilize the DAG to recalculate the lost partitions.  

As for the hardware requirements, the official proposal is to have 4 to 8 disks per node, configure 

at least 8GB memory and 8 to 16 CPU cores per machine, and use a 10 Gigabit or higher network.  

SPARK IN ALIGNMENT AND MAPPING 
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The rapid development of NGS technology has generated a large amount of sequence data (reads), 

which has a tremendous impact on sequence alignment and mapping process. Currently, the 

sequence alignment and mapping process still consume a lot of time. 

The Smith-Waterman (SW) algorithm [10], which produces the optimal local alignment between 

two strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics. 

However, SW algorithm requires a high computational cost due to high computational complexity. 

To speed up the algorithm, in 2015, Zhao G et al implemented the SW algorithm on Spark for the 

first time, called as SparkSW [11]. It consisted of three phases: data preprocessing, SW as map tasks 

and top K records as reduce tasks. Experimental results [11] showed that SparkSW was load-

balancing and scalable with computing resources increased.  

However, SparkSW merely supports SW algorithm without the mapping location and traceback of 

optimal alignment, as a result, SparkSW executes slowly. Therefore, in 2017, Xu B et al proposed 

DSA [12], which employed Single Instruction Multiple Data (SIMD) instruction to parallel the 

sequence alignment algorithm at each worker node. Experimental results [12] showed that DSA 

achieved up to 201x speedup over SparkSW and almost linear speedup with the increase of cluster 

nodes.  

Subsequently, Xu B et al proposed CloudSW [13], an efficient distributed SW algorithm which 

leveraged Spark and SIMD instructions to accelerate the algorithm and provided APIs service in 

the cloud. Experimental results [13] showed that CloudSW achieved up to 3.29x speedup over DSA 

and 621x speedup over SparkSW. CloudSW also showed excellent scalability and achieved up to 

529 giga cell updates per second (GCUPS) in protein database search with 50 nodes in Aliyun.  

The Burrows-Wheeler aligner (BWA) is composed of BWA-backtrack [14], BWA-SW [15] and 

BWA-MEM [16] for performing sequence alignment and mapping in bioinformatics. Before the 

advent of Spark-based BWA tool, there were several other BWA tools based on big data technology, 

including BigBWA [17], Halvade [18] and SEAL [19]. However, they were based on Hadoop 

showing limited scalability and complex implementation.  

As a result, in 2015, Al-Ars Z et al [20] implemented three different versions of BWA-MEM and 

compared their performance: a native cluster-based version, a Hadoop version and a Spark version. 

Three implementations were evaluated on the same IBM Power7 and Intel Xeon servers with the 

WordCount example. The results [20] showed that simultaneous multithreading improved the 

performance of three versions of BWA-MEM, and the Spark version with 80 threads increased 

performance by up to 87% than the native cluster version using 16 threads. Furthermore, the Hadoop 
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version with 4 threads increased performance by 17% and the Spark version with more threads 

increased performance by 27%. 

After then, in 2016, Abuín J et al proposed SparkBWA [21] which is composed of three main phases: 

the RDDs creation phase, the map phase, and the reduce phase. Experimental results [21] showed 

that for the BWA-backtrack algorithm, SparkBWA achieved an average speedup of 1.9x and 1.4x 

compared with SEAL and pBWA respectively. For the BWA-MEM algorithm, SparkBWA was 

1.4x faster than BigBWA and Halvade tools on average. 

However, SparkBWA required the data availability in the HDFS. In general, the input files were 

given in gzip format, which required first uncompressing the file before uploading it to the HDFS. 

Subsequently, this also slowed down the execution of BWA itself, since data on the HDFS had to 

be reformatted as appropriate input to the BWA program tasks running on the cluster. Finally, the 

output files produced by those BWA tasks required significant time to combine separately at the 

end.  

Therefore, in 2017, Mushtaq H et al employed Spark to propose StreamBWA [22], where the input 

data was being streamed directly from a compressed file. This file could either be located on the 

master node or on a URL, which eliminated the cost of execution time of downloading the file and 

then uncompressing it. Moreover, since the master node could stream data to the data nodes, the 

overhead of uploading data to the HDFS could also be hidden. The master node could also start 

combining the output files of BWA tasks running on the data nodes, in parallel, once they were 

available, further reducing the overall time. Experimental results [22] showed that this streaming 

distributed approach was approximately 2x faster than the non-streaming approach. Furthermore, 

StreamBWA was 5x faster than SparkBWA. 

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological 

sequences, such as protein or nucleic acid sequences. One of representative tools for performing 

MSA is PASTA [23]. PASTA is a derivative of SATé [24], which produces highly accurate 

alignments in shared memory computers. However, PASTA is limited to processing small and 

medium datasets, because the computing power of shared memory systems cannot meet the memory 

and time requirements of large-scale datasets.  

Therefore, in 2017, Abuín J et al proposed PASTASpark [25], which allowed executions on a 

distributed memory cluster taking advantage of Spark. It employed an in-memory RDD of key-

value pairs to parallel the calculating MSAs phase. Experiments were conducted on two different 

clusters (CESGA and AWS). The results [25] showed that PASTASpark achieved up to 10x 

speedups compared with single-threaded PASTA and was able to process 200,000 sequences in 24 
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hours using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance which 

greatly reduced the time to obtain MSA. 

The probabilistic pairwise model [26] is widely used in all consistency-based MSA tools, such as 

MAFFT [27], ProbCons [28] and T-Coffee(TC) [29]. However, the global distributed memory 

cannot meet the ever-increasing sequence datasets, which causes the need of specialized distributed 

databases, such as HBase or Cassandra. As a result, in 2017, Lladós J et al employed Spark to 

propose a new tool, PPCAS [30], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [30] showed that 

it was better with single node and provided almost linear speedup with the increase in the number 

of nodes. In addition, it could compute more sequences using the same memory.  

NCBI BLAST [31, 32] is widely used to implement algorithms for sequence comparison. Before 

the Spark-based BLAST was created, several other BLAST tools had been proposed including 

mpiBLAST [33], GPU-BLAST [34] and CloudBLAST [35]. However, with the increasing number 

of genomic data, these tools showed limited scalability and efficiency.  

As a result, in 2017, Castro M et al proposed SparkBLAST [36], which utilized cloud computing 

and Spark framework to parallel BLAST. In SparkBLAST, Spark’s pipe operator and RDDs were 

utilized to call BLAST as an external library and perform scalable sequence alignment. It was 

compared with CloudBLAST on both Google and Microsoft Azure Clouds. Experimental results 

[36] showed that SparkBLAST outperformed CloudBLAST in terms of speedup, scalability and 

efficiency. 

Metagenomics is crucial for studying genetic material directly from environmental samples. 

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data 

analysis. In 2017, Zhou W et al proposed MetaSpark [37], which employed Spark to recruit 

metagenomics reads to reference genomes. 

MetaSpark utilized the RDD of Spark to cache datasets in memory and scaled well along dataset 

size increments. It consisted of five steps including constructing k-mer RefindexRDD, constructing 

k-mer ReadlistRDD, seeding, filtering, and banded alignment. It was evaluated on a ten-node cluster 

working under the Spark standalone module where each node contained an 8-core CPU and 16 GB 

RAM. It employed about one million 75bp Illumina reads dataset and two references (the 194 

human gut genomes and the bacterial genomes) that were respectively 0.616GB and 1.3GB in size.  

Experimental results [37] showed that MetaSpark recruited more reads than FR-HIT [38] with the 

same parameters and 1 million reads. MetaSpark recruited 501,856 reads when there were 0.616 

GB human gut genome references, while FR-HIT recruited 489,638 reads. MetaSpark increased 
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recruited reads by 2.5%. When references changed to a 1.3 GB bacterial genome, MetaSpark 

recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark increased recruited 

reads by 4%. Moreover, the results also showed that MetaSpark offered good scalability. Under a 

0.616 GB reference, run time for 0.1 million reads was 51 min under 4 nodes, and decreased slightly 

to 23.5 min under 10 nodes. For the 1 million read datasets, MetaSpark would crash under 4 nodes 

due to limited memory. Under 6 nodes, it finished running after 312 min and would sharply decrease 

to 201 min under 10 nodes.  

SPARK IN ASSEMBLY 

Due to short lengths of the NGS reads (<500 bp), they need to be assembled prior to further analysis, 

which is another important phase in sequence analysis workflow. In general, there are two types of 

assembly: the reference assembly and de novo assembly. The assembly algorithm includes two 

categories: overlap-layout-consensus (OLC) algorithm and the de Bruijn graph algorithm. The 

former is generally employed to assemble longer reads, while the latter shows a good performance 

in assembling short reads.  

Before Spark-based distributed memory de novo assemblers were created, although there were some 

MPI-based assemblers (such as Ray [39], AbySS [40] and SWAP-Assembler [41]), they showed 

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh A et al 

proposed Spaler [42] taking advantage of Spark and GraphX API. It consisted of two main parts: 

(a) de Bruijn graph construction, and (b) Contigs generating. It was evaluated with other MPI-based 

tools in terms of quality, execution time, and scalability. Experimental results [42] showed that 

Spaler had better scalability and it could achieve comparable or better assemble quality. 

To resolve the large memory requirement problem of most OLC de novo assemblers, in 2017, Paul 

A et al [43] employed string graph reduction algorithms taking advantage of Spark. The proposed   

Spark algorithms were evaluated with a very large sample dataset. The results showed that this 

dataset was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours 

compared to the 7.5 hours of OLC based Omega [44] assembler.   

In addition, some new assembly algorithms have also been proposed based on the Spark platform 

itself.  

In 2016, Pan X et al [45] put forward a new assembling algorithm based on Spark which employed 

the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was evaluated using 

6 groups of DNA in the NCBI. Experimental results [45] showed that this strategy not only solved 

the problem of low efficiency based on the MapReduce algorithm, but also optimized the algorithm 

itself. The combination of these two aspects were very suitable for the large-scale DNA sequence 
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assembling. Moreover, the results also showed that the new sequence assembling algorithm based 

on Spark could ensure accuracy of assembling results. 

To address the problem of poor assembling precision and low efficiency, in 2017, Dong G et al [46] 

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first 

designed a precise assembling algorithm under the strategy of finding the source of reads based on 

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences 

which were randomly selected from animals, plants and microorganisms with base lengths from 

hundreds to tens of thousands from NCBI. All matching rates of 54 sequences were 100%. For each 

species, the algorithm also summarized the range of K which made the matching rates to be 100%. 

In order to verify the range of K value of hepatitis C virus (HCV) and related variants, the randomly 

selected eight HCV variants were calculated. The results confirmed the correctness of K range of 

hepatitis C and related variants from NCBI. After that, SA-BR-Spark was put forward. Experimental 

results [46] showed that SA-BR-Spark provided a superior computational speed compared with SA-

BR-MR. 

SPARK IN SEQUENCE ANALYSIS 

Spark in variant analysis 

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data 

analysis. Before Spark-based GATK tools were created, while several other tools had been 

developed to address the issue of scalability in the pipeline (such as Halvade [18] and Churchill 

[47]), they showed limited scalability, accuracy and computational efficiency.  

Therefore, in 2015, Mushtaq H et al [48] utilized Spark to propose a cluster-based GATK pipeline. 

To reduce the execution time, this approach kept data active in the memory between the map and 

reduce phases. By using runtime statistics of the active workload, it achieved a dynamic load 

balancing algorithm that could better utilize system performance. Experimental results [48] showed 

that this method achieved a 4.5x speedup compared to the multi-threaded GATK pipeline on a single 

node. In addition, when executed on a 4-node cluster, this approach was 63% faster than Halvade.  

After that, in 2016, Deng L et al proposed HiGene [49], which employed Spark to enable multi-

core and multi-node parallelization of the GATK pipeline. HiGene put forward a dynamic 

computing resource scheduler and an efficient data skew mitigation method to improve performance. 

Experiments were conducted with the NA12878 whole human genome dataset. The results [49] 

showed that HiGene reduced the total running time from days to nearly an hour. Furthermore, 

compared with Halvade, HiGene was also 2x faster. Meanwhile, Li X et al employed Spark to 

propose GATK-Spark [50] to parallel the GATK pipeline by taking full account of compute, 
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workload and I/O characteristics. It was built on top of ADAM format [51]. Experimental results 

[50] showed that GATK-Spark shortened the total running time from 20 hours to 30 minutes on 256 

CPU cores which achieved more than 37 times speedup. 

The advent of Spark provides the possibility of interactive processing for NGS data. In 2014, 

Wiewiórka M et al proposed SparkSeq [52] to build and run genomic analysis pipelines in an 

interactive way by using Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times 

speedup than SeqPig. Moreover, it could accelerate data querying up to 110x and reduce memory 

consumption by 13x.  

Spark in motif analysis 

Due to the nature of NGS technology, the generated data are usually accompanied by some noise 

or other types of errors which are known as uncertain data [53]. Among these uncertain data, there 

are some frequently recurring motifs, also known as transcription factor binding sites (TFBS) [54]. 

Mining motifs from these uncertain data is an important problem but a computationally intensive 

task. Before Spark-based mining algorithm was created, while several mining algorithms had been 

developed (such as HPSPM [55], DGSP [56] and SPAMC [57]), they showed limited scalability. 

Therefore, Jiang F et al [58] utilized Spark to propose a scalable algorithm for mining sequence 

motifs. This algorithm took advantage of Spark’s RDDs and DAG, and allowed users to specify the 

minimum and maximum length of motif. Experiments were conducted with human genome datasets 

and bacteria DNA sequence datasets. The results [58] showed this approach could take a short 

period of time to extract accurate motifs. 

SPARK IN OTHER BIOLOGICAL APPLICATIONS 

Spark in population genomic inference 

Efficient score statistic methods [59] are widely applied in high-throughput population genomic 

data inference. A typical method of estimating the sampling distribution of the statistics is to employ 

asymptotic approximation, but it is inappropriate for small or uncommon variants. Although 

resampling methods [60] are appropriate for the inference in population genomics context, they 

greatly increase the computational burden of analysis. In order to tackle the computational challenge 

for resampling based inference, Bahmani A et al proposed SparkScore [61], a distributed population 

genomic inference approach taking advantage of Spark. SparkScore leveraged the nature of 

asymptotic and resampling inference based on efficient score statistics. Experiments on synthetic 

datasets using Amazon Elastic MapReduce (EMR) [61] demonstrated the efficiency and scalability 

of SparkScore. 

Spark in epigenetics 
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CpG islands (CGI) are important epigenetic markers, which play an essential role in epigenetics   

[62]. However, it is very challenging to investigate the CpG islands and their structures. Before 

Spark-based applications were developed, while several methods had been proposed to determine 

the CPG island (such as bisulfite modification-based methods), they were time-consuming and too 

costly. Thus, Yu N et al [63] utilized Spark to propose a novel CpG box model and a Markov model 

to redefine and investigate the CpG island which could greatly accelerate the analytic process. 

Experiments were conducted with Human and mouse chromosome sequences, 24 chromosomes and 

21 chromosomes. The results [63] showed this cloud-assisted method displayed considerable 

accuracy and faster processing power (6-7 times faster with 10 cores) compared with sequential 

processing.  

Spark in phylogeny 

Phylogeny reconstruction plays an important role in molecular evolutionary studies but faces 

significant computational challenges. Before Spark-based tools were created, while several tools 

had been put forward for phylogeny reconstruction, they could not scale well with a significant 

increase in data sets. Therefore, in 2016, Xu X et al proposed CloudPhylo [64], a fast and scalable 

Phylogeny reconstruction tool making use of Spark. It evenly distributed the entire computational 

workload among the working nodes. Experiment was conducted with the 5220 bacteria whole 

genome DNA sequences. The results [64] showed that CloudPhylo took 24508 seconds with one 

worker node and it could scale well as worker nodes increased. Moreover, CloudPhylo performed 

better than several existing tools when using more worker nodes. In addition, CloudPhylo achieved 

higher speedup on a larger dataset of about 100GB generated by simulation. 

Spark in drug discovery 

It is crucial to identify candidate molecules that affect disease-related proteins in drug discovery. 

Although the Chemogenomics project tries to identify candidate molecules using machine learning 

predictor programs [65-67], these programs spend a significant time and cannot be easily extended 

to multiple nodes. To migrate existing programs to multi-node clusters without changing the original 

programs, Harnie D et al proposed S-CHEMO [68] using Spark. In S-CHEMO, the intermediate 

data would be consumed again immediately on nodes that generated the data, reducing time and 

network bandwidth consumption. Experiments [68] compared S-CHEMO with the original pipeline, 

which showed almost linear speedup up to 8 nodes. Moreover, this implementation also allowed 

easier monitoring. 

Spark in Single-cell RNA sequencing 
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Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes. 

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a 

greater number of cell profiles. Although there are already several RNA-seq processing pipelines 

(such as Halvade, SparkSeq and SparkBWA), they cannot process such a large number of profiles. 

Therefore, Falco [69] was created to process large-scale transcriptomic data in parallel by using 

Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. The results 

[69] showed compared with a highly optimized single-node analysis, Falco was at least 2.6 times 

faster. Moreover, as the number of computing nodes increased, running time decreased. 

Furthermore, it allowed users to employ the low-cost spot instances of AWS which reduced the cost 

of analysis by 65%. 

Spark in variant association and population genetics studies 

Effectively analyzing thousands of individuals and millions of variants is a computationally 

intensive problem. Traditional parallel strategies such as MPI/OpenMP show poor scalability. 

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on 

disk operations. Therefore, in 2015, O’Brien A et al proposed VariantSpark [70] to parallel 

population-scale tasks based on Spark and associated machine learning library, MLlib. Experiments 

were conducted on 3000 individuals with 80 million variants, which showed that VariantSpark was 

80% faster than ADAM, Hadoop/Mahout implementation and ADMIXTURE [71]. Moreover, 

compared with R and Python implementations it was more than 90 % faster. And in 2017, Di Z et 

al proposed SEQSpark [72] to perform rare variant association analysis by using Spark. It was 

evaluated with whole-genome and simulated exome sequence data. The former was completed in 

1.5 hours and the latter in 1.75 hours. Moreover, it was always faster than Variant Association Tools 

and PLINK/SEQ, and in some cases running time was reduced to one percent. 

Spark in other works 

Biological simulations and experiments produce a large number of numerical datasets, and in 2017 

Klein M et al proposed Biospark [73] to process these data. Biospark was based on Hadoop and 

Spark, consisting of a set of Java, C++ and Python libraries. In addition, it provided the abstractions 

for parallel analysis of standard data types, including multidimensional arrays and images. To help 

parallel analysis of some common datasets, it also provided APIs and file conversion tools, 

including Monte Carlo, molecular dynamics simulations and time-lapse microscopy.  

DISCUSSION 

Spark is an in-memory iterative computing framework designed for large-scale data processing. It 

is suitable for applications that require iterative operations on specific datasets. The greater the 
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amount of data, the higher the computational intensity and the greater the benefit. When the data 

volume is small but the computational intensity is large, the benefit is relatively small. In addition, 

Spark is also suitable for applications where the amount of data is not particularly large but real-

time statistical analyses are required.  

However, due to the nature of RDD, Spark is not suitable for applications that require asynchronous 

fine-grained update in execution, such as web service storage or incremental web crawlers and 

indexes. In addition, we need to consider the potential complexity of creating and maintaining a 

Spark cluster. Moreover, when Spark runs on a commercial cloud computing platform such as AWS, 

there is a certain delay in the transmission of large-scale datasets over the Internet. This issue does 

not exist when Spark runs on a local computer cluster. Furthermore, we need to learn a new API 

and perhaps even language (especially given the functional programing nature of the API). 

Although Spark has been applied in some areas of bioinformatics and has achieved good results, 

other areas have not yet been involved, such as proteomics, biomedical text, and metabolomics. 

Moreover, as cloud computing and some web servers become more and more available, some issues 

must be considered, such as the time cost of large amounts of input data from local to remote servers 

in slow networks, cloud computing fees, data security and privacy. 

Table 1 summarizes the bioinformatics tools and algorithms based on Apache Spark. 

CONCLUSION 

With the rapid development of NGS technology, a large number of genomic data have been 

generated, which poses a great challenge to traditional bioinformatics tools. For this reason, we have 

summarized the relevant works about Spark in bioinformatics and made a guideline on this topic. 

First, we make a comparison between Spark and Hadoop, and then outline the Spark cluster 

architecture, programming model, and processing mechanism. After that, we survey Spark-based 

applications in the NGS and other biological domains. A researcher who wants to get involved in 

this field can have a general understanding of Spark in bioinformatics through our survey.  

In summary, Spark is a fast and general-purpose computing framework designed for large-scale 

data processing. It ensures high fault tolerance and high scalability by introducing the RDD 

abstraction and DAG scheduling. We believe that bioinformatics applications based on Spark will 

provide promising performance for biological researchers in the future. 
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Key Points 

 Apache Spark not only gives researchers a possibility of achieving efficient, scalable and 

fault-tolerant computing performance, but also supports various system workloads such as 

batch processing, iterative, interactive and stream computing. 

 We outline the Apache Spark framework to help researchers to understand its architecture, 

programming model and processing mechanism. 

 We present Spark-based applications that can be employed in bioinformatics and discuss 

the strengths and weaknesses of Spark and the challenges faced in this field. 
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Table 1 Bioinformatics tools and algorithms based on Apache Spark 

Name Function Features Pros/Cons Reference 

SparkSW Alignment 

and mapping 

Consists of three phases: data 

preprocessing, SW as map 

tasks and top K records as 

reduce tasks 

Load-balancing, scalable, 

but without the mapping 

location and traceback of 

optimal alignment  

[11] 

DSA Alignment 

and mapping 

Leverages data parallel 

strategy based on SIMD 

instruction  

Up to 201x speedup over 

SparkSW and almost linear 

speedup with the increase of 

cluster nodes 

[12] 

CloudSW Alignment 

and mapping 

Leverages SIMD instruction 

and provides APIs service in 

cloud 

Up to 3.29x speedup over 

DSA and 621x speedup over 

SparkSW, high scalability 

and efficiency 

[13] 

SparkBWA Alignment 

and mapping 

Consists of three main 

stages: RDDs creation, map, 

and reduce phases, employs 

two independent software 

layers 

For shorter reads, average 

1.9x and 1.4x faster than 

SEAL and pBWA. For 

longer reads, average 1.4x 

faster than BigBWA and 

Halvade, but requires the 

data availability in HDFS   

[21] 

StreamBWA Alignment 

and mapping 

The input data are being 

streamed into the cluster 

directly from a 

compressed file  

~2x faster than non-

streaming approach, and 

5x faster than SparkBWA 

[22] 

PASTASpark Alignment 

and mapping 

Employs an in-memory 

RDD of key-value pairs to 

parallel the calculating 

MSAs phase 

Up to 10x speedup than 

single-threaded PASTA, 

ensures scalability and 

fault tolerance 

[25] 

PPCAS Alignment 

and mapping 

Based on the MapReduce 

processing paradigm in 

Spark 

Better with single node 

and shows almost linear 

speedup with the increase 

of nodes   

[30] 

SparkBLAST Alignment 

and mapping 

Utilizes pipe operator and 

RDDs of Spark to call 

BLAST as an external 

library  

Outperforms 

CloudBLAST in terms of 

speedup, scalability and 

efficiency  

[36] 

MetaSpark Alignment 

and mapping 

Consists of five steps: 

constructing k-mer 

RefindexRDD, 

constructing k-mer 

ReadlistRDD, seeding, 

filtering, and banded 

alignment    

Recruits significantly 

more reads than SOAP2, 

BWA and LAST, and 

more reads by ~4 than 

FR-HIT, and shows good 

scalability and overall 

high performance  

[37] 

Spaler Assembly Employs GraphX API of 

Spark, consists of two 

main parts: de Bruijn 

graph construction and 

contigs generating 

Shows better scalability 

and achieves comparable 

or better assemble quality 

than ABySS, Ray, and 

SWAP-Assembler 

[42] 

SA-BR-Spark Assembly Under the strategy of 

finding the source of reads 

based Spark platform 

Shows a superior 

computational speed than 

SA-BR-MR 

[46] 

HiGene Variant 

analysis 

Puts forward a dynamic 

computing resource 

scheduler and an efficient 

data skew mitigation way 

Reduces total running 

time from days to nearly 

an hour, and 2x faster 

than Halvade 

[49] 
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GATK-Spark Variant 

analysis 

Takes full account of 

compute, workload, and 

I/O characteristics 

Achieves more than 37 

times speedup 

[50] 

SparkSeq Variant 

analysis 

Builds and runs genomic 

analysis pipelines in an 

interactive way by using 

Spark 

Achieves 8.4-9.15 times 

speedup than SeqPig, and 

accelerate data querying 

up to 110x and reduce 

memory consumption by 

13x  

[52] 

SparkScore Population 

genomic 

inference 

Employs asymptotic and 

resampling inference on 

the basis of efficient score 

statistics 

Shows good efficiency 

and scalability with EMR 

on synthetic datasets with 

EMR 

[61] 

CloudPhylo Phylogeny  Evenly distributes the 

entire workloads among 

the worker nodes 

Shows good scalability 

and high efficiency, and 

Spark version is better 

than Hadoop version  

[64] 

S-CHEMO Drug 

discovery 

Intermediate data is 

immediately consumed 

again on the nodes that 

produce, saving time and 

bandwidth 

Shows almost linear 

speedup up to 8 nodes 

compared with the 

original pipeline 

[68] 

Falco Single-cell 

RNA 

sequencing 

Consist of a splitting step, 

an optional pre-processing 

step and the main analysis 

step 

At least 2.6x faster than a 

highly optimized single-

node analysis, and with 

the increase of nodes, 

running time decreases 

[69] 

VariantSpark Variant 

association 

and 

population 

genetics 

studies 

Parallels population-scale 

tasks based on Spark and 

associated MLlib  

80% faster than ADAM, 

Hadoop/Mahout version 

and ADMIXTURE, and 

more than 90% faster 

than R and Python 

implementations  

[70] 

SEQSpark Variant 

association 

and 

population 

genetics 

studies 

Splits large-scale datasets 

into many small blocks to 

perform rare variant 

association analysis   

Always faster than 

Variant Association 

Tools and PLINK/SEQ, 

and in some cases, 

running time is reduced to 

one percent 

[72] 

BioSpark data-

parallel 

analysis on 

large 

numerical 

datasets  

Consists of a set of Java, 

C++ and Python libraries, 

abstractions for parallel 

analysis of standard data 

types, some APIs and file 

conversion tools  

Convenient, scalable, and 

useful, brings domain-

specific features for 

biology  

[73] 
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Figure 1: The cluster architecture of Spark 
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Figure 2: Examples of narrow and wide dependencies. Each box is an RDD, with partitions shown 

as shaded rectangles.  
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Figure 3: Example of how Spark computes job stages. Boxes with solid outlines are 

RDDs. Partitions are shaded rectangles, in black if they are already in memory. To run 

an action on RDD G, we build stages at wide dependencies and pipeline narrow 

transformation inside each stage. In this case, stage 1’s output RDD is already in RAM, 

so we run stage 2 and then stage 3. 
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