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ABSTRACT 

With the rapid development of next-generation sequencing technology, ever-increasing quantities 

of genomic data pose a tremendous challenge to data processing. Therefore, there is an urgent need 

for highly scalable and powerful computational systems. Among the state-of–the-art parallel 

computing platforms, Apache Spark is a fast, general-purpose, in-memory, iterative computing 

framework for large-scale data processing that ensures high fault tolerance and high scalability by 

introducing the resilient distributed dataset abstraction. In terms of performance, Spark can be up to 

100 times faster in terms of memory access, and 10 times faster in terms of disk access than Hadoop. 

Moreover, it provides advanced application programming interfaces in Java, Scala, Python, and R. 

It also supports some advanced components, including Spark SQL for structured data processing, 

MLlib for machine learning, GraphX for computing graphs, and Spark Streaming for stream 

computing. We surveyed Spark-based applications used in next-generation sequencing and other 

biological domains, such as epigenetics, phylogeny, and drug discovery. The results of this survey 
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are used to provide a comprehensive guideline allowing bioinformatics researchers to apply Spark 

in their own fields. 

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset; 

memory computing 

 

INTRODUCTION 

Next-generation sequencing (NGS) technology has generated huge amounts of biological sequence 

data. To use these data efficiently, we need accurate and efficient methods of storing and analyzing 

such data. However, the existing bioinformatics tools cannot effectively handle such a large amount 

of data. Therefore, there is an urgent need for scalable and powerful distributed computing tools to 

solve this problem. In the field of information technology, MapReduce [1] is a distributed parallel 

programming model and methodology for processing large-scale datasets. It splits large-scale 

datasets into many key-value pairs through both the map and reduce phases, significantly improving 

performance and showing good scalability. By combining the Hadoop Distributed File System 

(HDFS) and MapReduce, Apache Hadoop can enable distributed processing of large amounts data 

in a reliable, efficient, and scalable way. This is in contrast to HDFS, which is mainly used for 

distributed storage of massive datasets, and MapReduce, which performs distributed computing on 

these datasets. As a result, Hadoop has been adopted by the bioinformatics community in several 

areas [2], including alignment [3–6], mapping [7–9], and sequence analysis [10–13].  

Because of Hadoop’s disk-based I/O access pattern, however, intermediate calculation results are 

not cached. Therefore, Hadoop is only suitable for batch data processing, and shows poor 

performance for iterative data processing. To resolve this problem, Apache Spark [14] has been 

proposed; a faster, general-purpose computing framework specifically designed to handle huge 

amounts of data. Unlike Hadoop’s disk-based computing, Spark performs memory computing by 

introducing resilient distributed dataset (RDD) abstraction. Since it is possible to store intermediate 

results in memory, it is more efficient for iterative operations. In terms of performance, Spark can 

be up to 100 times faster in terms of memory access than Hadoop [14]. The gap between Spark and 

Hadoop is more than 10-fold greater, even if we compare between them based on disk performance 

[15]. In terms of flexibility, Spark provides high-level application programming interfaces (APIs) 

in Java, Scala, Python, and R, and interactive shell. In terms of generality, Spark provides structured 

data processing, machine learning, graph computing, and stream computing capabilities by 

supporting some advanced components.  
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Table 1 summarizes the bioinformatics tools and algorithms based on Apache Spark. 

 

THE SPARK FRAMEWORK  

Designed by the Algorithms, Machines and People Lab at the University of California, Berkeley, 

Spark is an open-source cluster computing environment designed for large-scale data processing, 

developed by UC Berkeley AMP lab. It provides advanced APIs in Java, Scala, Python and R, and 

an optimized engine that supports general execution graphs. It also supports some advanced 

components, including Spark SQL for structured data processing, MLlib for machine learning, 

GraphX for computing graphs, and Spark Streaming for stream computing. 

As shown in Fig.1, each Spark application runs as an independent process on the cluster, coordinated 

by SparkContext in the driver program. There are two deploy modes, depending on where the driver 

program is running: cluster mode, and client mode. In the former mode, the driver program runs on 

a worker node. In the latter, the driver program runs on the client machine. First, SparkContext 

requests the executors on the worker nodes in the cluster from the cluster manager (either Spark’s 

own standalone cluster manager, Apache Mesos, or Hadoop YARN). These executors are processes 

that can run tasks and store data in memory, or on disk for application. Next, SparkContext will 

send tasks to the executors to perform. Finally, the executors return the results to SparkContext after 

the tasks are executed. In Spark, an application generates multiple jobs. A job is split into several 

stages. Each stage is a task set containing several tasks, which performs calculations and produces 

intermediate results. A task is the smallest unit of work in Spark, completing a specific job on an 

executor. As for deployment of the Spark cluster, the official proposal for hardware requirements is 

to have 4–8 disks per node, which configure at least 8 GB of memory and 8–16 central processing 

unit (CPU) cores per machine, and use a 10 gigabit or higher network.  

As the main abstraction in Spark, RDD is a read-only collection of objects partitioned on different 

nodes in the cluster so that the data in RDD can be processed in parallel. The data in RDD are stored 

in memory by default, but Spark automatically writes RDD data to disk if memory resources are 

low. RDD achieves fault tolerance through a notion of lineage [14]; that is, if an RDD partition on 

a node is lost because of a node failure, the RDD automatically recalculates the partition from its 

own data source. Moreover, Spark provides two types of operations on RDD: transformation and 

action. The former defines a new RDD, and the latter returns a result or writes RDD data to the 

storage system. Transformation employs lazy operation [16], which means that the operation of 

generating another RDD from one RDD transformation is not executed immediately, and the 
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calculation process is not actually started until an action is performed. Furthermore, each 

transformation operation generates a new RDD; the newly generated RDD depends on the original 

RDD. According to the different types of transformation operation, RDD dependencies can be 

divided into narrow dependency and wide dependency. The former refers to the fact that each 

partition in the generated RDD depends only on the parent RDD fixed partition, and the latter refers 

to the fact that each partition of the generated RDD depends on all partitions of the parent RDD. 

Fig.2 shows examples of narrow and wide dependencies. In addition, Spark also provides two 

extensions of RDD: DataFrame and Dataset. Spark users can seamlessly switch between these 

through simple API calls. 

Spark also adopts a directed acyclic graph (DAG) [17] to optimize execution processes by splitting 

submitted jobs into several stages according to wide dependency. For narrow dependency, it divides 

related transformation operations into the same stage; this is because they can perform pipelining 

operations, and thus reduce the processing time of submitted jobs. Fig.3 shows an example of how 

Spark computes job stages. In addition, if the partitions on a node are lost because of node failure, 

Spark can utilize the DAG to recalculate the lost partitions.  

 

SPARK IN ALIGNMENT AND MAPPING 

The rapid development of NGS technology has generated a large amount of sequence data (reads), 

which has a tremendous impact on sequence alignment and mapping processes. Currently, sequence 

alignment and mapping remains time-consuming. 

The Smith–Waterman (SW) algorithm [18], which produces optimal local alignment between two 

strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics. However, 

this algorithm has a high computational cost because of high computational complexity. To speed 

up the algorithm, Zhao et al. (2015) implemented the SW algorithm on Spark for the first time, 

naming this SparkSW [19]. It consisted of three phases: data preprocessing, SW as map tasks, and 

top K records as reduce tasks. Experimental results [19] showed that SparkSW was load-balancing 

and scalable with increased computing resources. However, SparkSW merely supports the SW 

algorithm without the mapping location and traceback of optimal alignment. As a result, SparkSW 

executes slowly. Therefore, Xu et al. (2017) proposed DSA [20], which employed Single Instruction 

Multiple Data (SIMD) to parallel the sequence alignment algorithm at each worker node. 

Experimental results [20] showed that DSA achieved up to 201 times faster speeds over SparkSW, 

and almost linearly increased speed with increased cluster nodes. Subsequently, Xu et al. proposed 
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CloudSW [21], an efficient distributed SW algorithm that leveraged Spark and SIMD instructions 

to accelerate the algorithm, and provided API services in the cloud. Experimental results [21] 

showed that CloudSW achieved up to 3.29 times increased speed over DSA, and 621 times 

increased speed over SparkSW. CloudSW also showed excellent scalability and achieved speeds of 

up to 529 giga cell updates per second in a protein database search with 50 nodes using Aliyun 

cloud.  

The Burrows–Wheeler aligner (BWA) is composed of BWA-backtrack [22], BWA-SW [23] and 

BWA-MEM [24] for performing sequence alignment and mapping in bioinformatics. Before the 

advent of Spark-based BWA tools, there were several other BWA tools based on big data 

technology, including BigBWA [25], Halvade [26] and SEAL [7]. However, these were based on 

Hadoop, which showed limited scalability and complex implementation. As a result, Al-Ars et al. 

(2015) [27] implemented three different versions of BWA-MEM and compared their performance: 

a native cluster-based version, a Hadoop version and a Spark version. Three implementations were 

evaluated on the same IBM Power7 and Intel Xeon servers, with WordCount as an example. The 

results [27] showed that simultaneous multithreading improved the performance of three versions 

of BWA-MEM, and the Spark version with 80 threads increased performance by up to 87% over 

the native cluster version using 16 threads. Furthermore, the four-thread Hadoop version increased 

performance by 17%, and the Spark version with even more threads increased performance by 27%. 

Then, in 2016, Abuín et al. proposed SparkBWA [28], which is composed of three main phases: the 

RDDs creation phase, the map phase, and the reduce phase. Experimental results [28] showed that 

for the BWA-backtrack algorithm, SparkBWA achieved average increased speeds of 1.9 times and 

1.4 times, compared with SEAL and pBWA, respectively. For the BWA-MEM algorithm, 

SparkBWA was, on average, 1.4 times faster than BigBWA and Halvade tools. However, 

SparkBWA required significant time to preprocess the input files and finally combine the output 

files. Therefore, in 2017, Mushtaq et al. proposed StreamBWA [29], in which the input files were 

streamed into the Spark cluster. This greatly reduced the time required to preprocess data and 

combine the final results. Experimental results [29] showed that this streaming distributed strategy 

gave roughly double the speed of the non-streaming strategy. Furthermore, StreamBWA achieved 

a five-fold increased speed over SparkBWA. 

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological 

sequences, such as protein or nucleic acid sequences. One representative tool for performing MSA 

is PASTA [30]. PASTA is a derivative of SATé [31], which produces highly accurate alignments 
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in shared memory computers. However, PASTA is limited to processing small and medium datasets 

because the computing power of shared memory systems cannot meet the memory and time 

requirements of large-scale datasets. Therefore, in 2017, Abuín et al. proposed PASTASpark [32], 

which allowed executions on a distributed memory cluster, taking advantage of Spark. It employed 

an in-memory RDD of key-value pairs to parallel the calculating MSA phase. Experiments were 

conducted on two different clusters, Centro de Supercomputación de la Galicia (CESGA) and 

Amazon Web Services (AWS). The results [32] showed that PASTASpark achieved up to 10 times 

faster speeds than single-threaded PASTA, and was able to process 200,000 sequences in 24 hours 

using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance, which 

greatly reduced the time to obtain MSA. 

The probabilistic pairwise model [33] is widely used in all consistency-based MSA tools, such as 

MAFFT [34], ProbCons [35] and T-Coffee [36]. However, global distributed memory cannot meet 

the demands of ever-increasing sequence datasets, which leads to the need for specialized 

distributed databases, such as HBase or Cassandra. As a result, Lladós et al. (2017) employed Spark 

to propose a new tool, PPCAS [37], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [37] showed that 

it was better with a single node, and provided almost linearly increased speeds with the increased 

numbers of nodes. In addition, it could compute more sequences using the same amount of memory.  

The National Center for Biotechnology Information’s (NCBI) BLAST tool [38, 39] is widely used 

to implement algorithms for sequence comparison. Before the Spark-based BLAST was created, 

several other BLAST tools had been proposed, including mpiBLAST [40], GPU-BLAST [41] and 

CloudBLAST [42]. However, with the increasing amount of genomic data, these tools showed 

limited scalability and efficiency. As a result, Castro et al. (2017) proposed SparkBLAST [43], 

which utilized cloud computing and the Spark framework to parallel BLAST. In SparkBLAST, 

Spark’s pipe operator and RDDs were utilized to call BLAST as an external library and perform 

scalable sequence alignment. It was compared with CloudBLAST on both Google and Microsoft 

Azure clouds. Experimental results [43] showed that SparkBLAST outperformed CloudBLAST in 

terms of speed, scalability, and efficiency. 

Metagenomics is crucial for directly studying genetic material from environmental samples. 

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data 

analysis. In 2017, Zhou et al. proposed MetaSpark [44], which employed Spark to recruit 

metagenomics reads to reference genomes. MetaSpark utilized the RDD of Spark to cache datasets 
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in memory, and scaled well along dataset size increments. It consisted of five steps including 

constructing k-mer RefindexRDD, constructing k-mer ReadlistRDD, seeding, filtering, and banded 

alignment. It was evaluated on a 10-node cluster, working under the Spark standalone module, in 

which each node contained an eight-core CPU and 16 GB RAM. It employed about 1 million 75 bp 

Illumina read datasets, and two references: 194 human gut genomes and bacterial genomes that were 

0.616 Gb and 1.3 Gb in size, respectively. Experimental results [44] showed that MetaSpark 

recruited more reads than FR-HIT [45] with the same parameters and 1 million reads. MetaSpark 

recruited 501,856 reads to 0.616 Gb human gut genome references, while FR-HIT recruited 489,638 

reads. MetaSpark increased recruited reads by 2.5%. When references changed to a 1.3 Gb bacterial 

genome, MetaSpark recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark 

increased recruited reads by 4%. Moreover, the results also showed that MetaSpark offered good 

scalability. Under a 0.616 Gb reference, run time for 100,000 reads was 51 minutes under four nodes, 

and decreased slightly to 23.5 minutes under 10 nodes. For the 1 million read datasets, MetaSpark 

would crash under four nodes because of limited memory. Under six nodes, it finished running after 

312 minutes and would sharply decrease to 201 minutes under 10 nodes. 

  

SPARK IN ASSEMBLY 

Because NGS read lengths are short (<500 bp), they must be assembled before further analysis, 

which is another important phase in the sequence analysis workflow. In general, there are two types 

of assembly: the reference assembly, and de novo assembly. The assembly algorithm includes two 

categories: the overlap–layout–consensus (OLC) algorithm, and the de Bruijn graph algorithm. The 

former is generally employed to assemble longer reads, while the latter performs well in assembling 

short reads.  

Before Spark-based distributed memory de novo assemblers were created, although there were some 

MPI-based assemblers (such as Ray [46], AbySS [47] and SWAP-Assembler [48]), they showed 

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh et al. 

proposed Spaler [49], taking advantage of Spark and GraphX APIs. It consisted of two main parts: 

de Bruijn graph construction, and contig generation. It was evaluated against other MPI-based tools 

in terms of quality, execution time, and scalability. Experimental results [49] showed that Spaler 

had better scalability, and could achieve comparable or better assembly quality. 

To resolve the large memory requirement problem of most OLC de novo assemblers, Paul et al. 

(2017) [50] employed string graph reduction algorithms, taking advantage of Spark. The proposed   
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Spark algorithms were evaluated against a very large sample dataset. The results showed that this 

dataset was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours, 

compared with the 7.5 hours achieved by the OLC-based Omega [51] assembler.   

In addition, some new assembly algorithms have also been proposed, based on the Spark platform 

itself. In 2016, Pan et al. [52] put forward a new assembling algorithm, based on Spark, which 

employed the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was 

evaluated using six groups of DNA data in the NCBI database. Experimental results [52] showed 

that this strategy not only solved the problem of low efficiency based on the MapReduce algorithm, 

but also optimized the algorithm itself. The combination of these two aspects was very suitable for 

the large-scale assembly of DNA sequences. Moreover, the results also showed that the new Spark-

based sequence-assembling algorithm ensured the accuracy of assembling results. 

To address the problem of poor assembling precision and low efficiency, Dong et al. (2017) [53] 

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first 

designed a precise assembling algorithm using the strategy of finding the source of reads based on 

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences, 

randomly selected from animal, plant and microorganism sequences in the NCBI database, with 

base lengths ranging from hundreds to tens of thousands. The matching rates of all 54 sequences 

were 100%. For each species, the algorithm also summarized the range of K that made the matching 

rates 100%. To verify the range of K values of hepatitis C virus and related variants, the K values 

of eight randomly selected hepatitis C virus variants were calculated. The results confirmed that the 

range of K of hepatitis C and related variants in NCBI were correct. After that, SA-BR-Spark was 

put forward. Experimental results [53] showed that SA-BR-Spark provided superior computational 

speed compared with SA-BR-MR. 

 

SPARK IN SEQUENCE ANALYSIS 

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data 

analysis. Before Spark-based GATK tools were created, while several other tools had been 

developed to address the issue of scalability in the pipeline (such as Halvade [26] and Churchill 

[54]), they showed limited scalability, accuracy, and computational efficiency.  

Therefore, in 2015, Mushtaq et al. [55] utilized Spark to propose a cluster-based GATK pipeline. 

To reduce the execution time, this approach kept data active in the memory between the map and 

reduce phases. By using active workload runtime statistics, it achieved a dynamic load-balancing 
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algorithm that could better utilize system performance. Experimental results [55] showed that this 

method achieved 4.5 times increased speed compared with the multi-threaded GATK pipeline on a 

single node. In addition, when executed on a four-node cluster, this approach was 63% faster than 

Halvade.  

Then, in 2016, Deng et al. proposed HiGene [56], which employed Spark to enable multicore and 

multinode parallelization of the GATK pipeline. HiGene put forward a dynamic computing resource 

scheduler and an efficient data-skew mitigation method to improve performance. Experiments were 

conducted with the NA12878 whole human genome dataset. The results [56] showed that HiGene 

reduced the total running time from days to just under an hour. Furthermore, compared with Halvade, 

HiGene was also two times faster. Meanwhile, Li et al. employed Spark to propose GATK-Spark 

[57]. This paralleled the GATK pipeline by taking full account of compute, workload and I/O 

characteristics. It was built on top of the ADAM format [58]. Experimental results [57] showed that 

GATK-Spark decreased the total running time from 20 hours to 30 minutes on 256 CPU cores, 

which achieved more than 37-fold increased speeds. 

Spark provides the opportunity for interactive NGS data processing. In 2014, Wiewiórka et al. 

proposed SparkSeq [59] to build and run genomic analysis pipelines in an interactive way by using 

Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times faster speeds than 

SeqPig. Moreover, it could accelerate data querying by up to 110 times, and reduce memory 

consumption by 13 times.  

 

SPARK IN OTHER BIOLOGICAL APPLICATIONS 

Spark in epigenetics 

CpG islands are important markers that are essential in epigenetics [60]. However, investigation of 

CpG islands and their structures remains challenging. Before Spark-based applications were 

developed, while several methods had been proposed to determine the CPG islands (such as bisulfite 

modification-based methods), they were time-consuming and prohibitively expensive. Thus, Yu et 

al. [61] utilized Spark to propose a novel CpG box model and a Markov model to redefine and 

investigate the CpG island, which could greatly accelerate the analytic process. Experiments were 

conducted with human and mouse chromosome sequences; 24 chromosomes and 21 chromosomes. 

The results [61] showed that this cloud-assisted method had considerable accuracy and faster 

processing power (6–7 times faster with 10 cores) compared with sequential processing.  
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Spark in phylogeny 

Phylogeny reconstruction is important in molecular evolutionary studies, but faces significant 

computational challenges. Before Spark-based tools were created, while several tools had been put 

forward for phylogeny reconstruction, they did not scale well, and there was a significant increase 

in the number of datasets. Therefore, in 2016, Xu et al. proposed CloudPhylo [62], a fast and 

scalable phylogeny reconstruction tool, making use of Spark. It evenly distributed the entire 

computational workload between working nodes. An experiment was conducted using 5220 bacteria 

whole genome DNA sequences. The results [62] showed that CloudPhylo took 24,508 seconds with 

one worker node, and it was able to scale well with increasing numbers of worker nodes. Moreover, 

CloudPhylo performed better than several existing tools when using more worker nodes. In addition, 

CloudPhylo achieved faster speeds on a larger dataset of about 100 Gb generated by simulation. 

 

Spark in drug discovery 

The identification of candidate molecules that affect disease-related proteins is crucial in drug 

discovery. Although the Chemogenomics project tries to identify candidate molecules using 

machine-learning predictor programs [63–65], these programs are slow, and cannot be easily 

extended to multiple nodes. To migrate existing programs to multinode clusters without changing 

the original programs, Harnie et al. proposed S-CHEMO [66], using Spark. In S-CHEMO, the 

intermediate data is immediately consumed again on the nodes that generated the data, reducing 

time and network bandwidth consumption. Experiments [66] compared S-CHEMO with the original 

pipeline, and showed almost linearly increased speeds on up to eight nodes. Moreover, this 

implementation also allowed easier monitoring. 

 

Spark in single-cell RNA sequencing 

Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes. 

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a 

greater number of cell profiles. Although several RNA-seq processing pipelines are already 

available (such as Halvade, SparkSeq and SparkBWA), they cannot process large numbers of 

profiles. Therefore, Falco [67] was created to process large-scale transcriptomic data in parallel by 

using Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. The 

results [67] showed that, compared with a highly optimized single-node analysis, Falco was at least 

2.6 times faster. Moreover, as the number of computing nodes increased, running time decreased. 
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Furthermore, it allowed users to employ the low-cost spot instances of AWS, which reduced the 

cost of analysis by 65%. 

 

Spark in variant association and population genetics studies 

Effectively analyzing thousands of individuals and millions of variants is a computationally 

intensive problem. Traditional parallel strategies, such as MPI/OpenMP show poor scalability. 

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on 

disk operations. Therefore, in 2015, O’Brien et al. proposed VariantSpark [68] to parallel 

population-scale tasks based on Spark and an associated machine-learning library, MLlib. 

Experiments were conducted on 3000 individuals with 80 million variants, and showed that 

VariantSpark was 80% faster than ADAM, the Hadoop/Mahout implementation, and 

ADMIXTURE [69]. Moreover, compared with R and Python implementations, it was more than 

90 % faster. In 2017, Di et al. proposed SEQSpark [70] to perform rare variant association analysis 

using Spark. It was evaluated with whole-genome and simulated exome sequence data. The former 

was completed in 1.5 hours, and the latter in 1.75 hours. Moreover, it was always faster than Variant 

Association Tools and PLINK/SEQ, and in some cases running time was reduced to 1%. 

 

Spark in other works 

Biological simulations and experiments produce a large number of numerical datasets, and in 2017, 

Klein et al. proposed Biospark [71] to process these data. Biospark was based on Hadoop and Spark, 

comprising a set of Java, C++ and Python libraries. In addition, it provided the abstractions for 

parallel analysis of standard data types, including multidimensional arrays and images. To facilitate 

parallel analysis of some common datasets, it also provided APIs and file conversion tools, 

including Monte Carlo, molecular dynamics simulations, and time-lapse microscopy.  

 

DISCUSSION 

Spark is an in-memory iterative computing framework designed for large-scale data processing. It 

is suitable for applications that require iterative operations on specific datasets: the greater the 

amount of data, the higher the computational intensity, and the greater the benefits. When the data 

volume is small but the computational intensity is large, the benefit is relatively small. In addition, 

Spark is also suitable for applications where the amount of data is not particularly large, but real-

time statistical analyses are required.  
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However, the nature of RDD means that Spark is not suitable for applications requiring 

asynchronous, fine-grained updates in execution, such as web service storage or incremental web 

crawlers and indexes. In addition, we must consider the potential complexity of creating and 

maintaining a Spark cluster. Moreover, when Spark runs on a commercial cloud-computing 

platform such as AWS, there is a certain delay in the transmission of large-scale datasets over the 

Internet. This issue does not exist when Spark runs on a local computer cluster. Furthermore, we 

need to learn a new API, and perhaps even a new language (especially given the functional 

programing nature of the API). 

Although Spark has been applied in some areas of bioinformatics, and has achieved good results, 

its use in other areas––such as proteomics, biomedical texts, and metabolomics––has not yet been 

explored. Moreover, as cloud computing, and some web servers, become more and more available, 

some issues must be considered, such as the time cost of large amounts of input data from local to 

remote servers in slow networks, cloud computing fees, data security and privacy. 

 

CONCLUSION 

With the rapid development of NGS technology, a large number of genomic datasets have been 

generated, which poses a great challenge to traditional bioinformatics tools. For this reason, we have 

summarized relevant works about the use of Spark in bioinformatics, and have created a guideline 

on this topic. First, we make a comparison between Spark and Hadoop, and then outline the Spark 

cluster architecture, programming model, and processing mechanism. Then, we survey the use of 

Spark-based applications in NGS and other biological domains. Our survey means that researchers 

who wish to become involved in this field can now obtain a general understanding of the use of 

Spark in bioinformatics.  

In summary, Spark is a fast and general-purpose computing framework designed for large-scale 

data processing. It ensures high fault tolerance and high scalability by introducing RDD abstraction 

and DAG scheduling. We believe that bioinformatics applications based on Spark will show 

promise in terms of performance for biological researchers in the future. 

 

ABBREVIATIONS 

API: application programming interface; AWS: Amazon Web Services; BWA: Burrows–Wheeler 

aligner; CPU: central processing unit; DAG: directed acyclic graph; GATK: Genome Analysis 

Toolkit; Gb: gigabase; GB: gigabyte; HDFS: Hadoop Distributed File System; MSA: multiple 
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sequence alignment; NCBI: National Center for Biotechnology Information; NGS: next-generation 

sequencing; OLC: overlap–layout–consensus; RDD: resilient distributed dataset; scRNA-seq: 

single-cell RNA sequencing; SIMD: Single Instruction Multiple Data; SW: Smith-Waterman 

algorithm. 
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Table 1 Bioinformatics tools and algorithms based on Apache Spark 

Name Function Features Pros/Cons Reference 

SparkSW Alignment 

and mapping 

Consists of three phases: data 

preprocessing, SW as map 

tasks, and top K records as 

reduce tasks 

Load-balancing, scalable, 

but without the mapping 

location and traceback of 

optimal alignment  

[19] 

DSA Alignment 

and mapping 

Leverages data parallel 

strategy based on SIMD 

instruction  

Up to 201 times increased 

speed over SparkSW and 

almost linearly increased 

speed with increasing 

numbers of cluster nodes 

[20] 

CloudSW Alignment 

and mapping 

Leverages SIMD instruction, 

and provides API services in 

the cloud 

Up to 3.29 times increased 

speed over DSA and 621 

times increased speed over 

SparkSW; high scalability 

and efficiency 

[21] 

SparkBWA Alignment 

and mapping 

Consists of three main 

stages: RDD creation, map, 

and reduce phases; employs 

two independent software 

layers 

For shorter reads, averages 

1.9x and 1.4x faster than 

SEAL and pBWA. For 

longer reads, averages 1.4x 

faster than BigBWA and 

Halvade, but requires the 

data availability in HDFS   

[28] 

StreamBWA Alignment 

and mapping 

Input data are streamed into 

the cluster directly from a 

compressed file  

~2x faster than non-

streaming approach, and 5x 

faster than SparkBWA 

[29] 

PASTASpark Alignment 

and mapping 

Employs an in-memory RDD 

of key-value pairs to parallel 

the calculating MSA phase 

Up to 10x faster than single-

threaded PASTA; ensures 

scalability and fault 

tolerance 

[32] 

PPCAS Alignment 

and mapping 

Based on the MapReduce 

processing paradigm in 

Spark 

Better with a single node and 

shows almost linearly 

increased speeds with 

increasing numbers of nodes   

[37] 

SparkBLAST Alignment 

and mapping 

Utilizes pipe operator and 

Spark RDDs to call BLAST 

as an external library  

Outperforms CloudBLAST 

in terms of speed, scalability 

and efficiency  

[43] 

MetaSpark Alignment 

and mapping 

Consists of five steps: 

constructing k-mer 

RefindexRDD, constructing 

k-mer ReadlistRDD, 

seeding, filtering, and banded 

alignment    

Recruits significantly more 

reads than SOAP2, BWA 

and LAST, and more reads 

by ~4 than FR-HIT; shows 

good scalability and overall 

high performance  

[44] 

Spaler Assembly Employs Spark’s GraphX 

API; consists of two main 

parts: de Bruijn graph 

construction, and contig 

generation 

Shows better scalability and 

achieves comparable or 

better assembly quality than 

ABySS, Ray, and SWAP-

Assembler 

[49] 

SA-BR-Spark Assembly Under the strategy of finding 

the source of reads; based on 

the Spark platform 

Shows a superior 

computational speed than 

SA-BR-MR 

[53] 

HiGene Sequence 

analysis 

Puts forward a dynamic 

computing resource 

Reduces total running time 

from days to just under 

[56] 
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scheduler, and an efficient 

way of mitigating data skew 

nearly an hour; 2x faster 

than Halvade 

GATK-Spark Sequence 

analysis 

Takes full account of 

compute, workload, and I/O 

characteristics 

Achieves more than 37 times 

increased speed 

[57] 

SparkSeq Sequence 

analysis 

Builds and runs genomic 

analysis pipelines in an 

interactive way by using 

Spark 

Achieves 8.4–9.15 times 

faster speeds than SeqPig; 

accelerates data querying up 

to 110 times and reduces 

memory consumption by 13 

times  

[59] 

CloudPhylo Phylogeny  Evenly distributes entire 

workloads between worker 

nodes 

Shows good scalability and 

high efficiency; the Spark 

version is better than the 

Hadoop version  

[62] 

S-CHEMO Drug 

discovery 

Intermediate data are 

immediately consumed again 

on the producing nodes, 

saving time and bandwidth 

Shows almost linearly 

increased speeds on up to 8 

nodes compared with the 

original pipeline 

[66] 

Falco Single-cell 

RNA 

sequencing 

Consist of a splitting step, an 

optional preprocessing step, 

and the main analysis step 

At least 2.6x faster than a 

highly optimized single-

node analysis; running time 

decreases with increasing 

numbers of nodes 

[67] 

VariantSpark Variant 

association 

and 

population 

genetics 

studies 

Parallels population-scale 

tasks based on Spark and the 

associated MLlib  

80% faster than ADAM 

(Hadoop/Mahout version), 

and ADMIXTURE; more 

than 90% faster than R and 

Python implementations  

[68] 

SEQSpark Variant 

association 

and 

population 

genetics 

studies 

Splits large-scale datasets 

into many small blocks to 

perform rare variant 

association analyses   

Always faster than Variant 

Association Tools and 

PLINK/SEQ, and in some 

cases, running time is 

reduced to 1% 

[70] 

BioSpark Data-parallel 

analysis on 

large, 

numerical 

datasets  

Consists of a set of Java, C++ 

and Python libraries, 

abstractions for parallel 

analysis of standard data 

types, some APIs and file 

conversion tools  

Convenient, scalable, and 

useful; has domain-specific 

features for biological 

applications  

[71] 
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Figure 1: The cluster architecture of Spark. 
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Figure 2: Some examples of narrow and wide dependencies. Each box is an RDD, where the 

partition is shown as a shaded rectangle. 
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Figure 3: An example of how Spark computes job stages. Boxes with solid outlines are 

RDDs. Partitions are shaded rectangles and are black if they are already in memory. To 

run an action on RDD G, we build stages at wide dependencies and pipeline narrow 

transformation inside each stage. In this case, the output RDD of stage 1 is already in 

memory, so we run stage 2, and then stage 3. 
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