
GigaScience

Bioinformatics applications on Apache Spark
--Manuscript Draft--

Manuscript Number: GIGA-D-18-00131R3

Full Title: Bioinformatics applications on Apache Spark

Article Type: Review

Funding Information: National Key R&D Program of China
(2017YFB0202600, 2016YFC1302500,
2016YFB0200400 and 2017YFB0202104)

Professor shaoliang peng

National Natural Science Foundation of
China
(61772543, U1435222, 61625202,
61272056 and 61771331)

Professor shaoliang peng

Guangdong Provincial Department of
Science and Technology
(2016B090918122)

Professor shaoliang peng

Abstract: With the rapid development of next-generation sequencing technology, ever-increasing
quantities of genomic data pose a tremendous challenge to data processing.
Therefore, there is an urgent need for highly scalable and powerful computational
systems. Among the state-of–the-art parallel computing platforms, Apache Spark is a
fast, general-purpose, in-memory, iterative computing framework for large-scale data
processing that ensures high fault tolerance and high scalability by introducing the
resilient distributed dataset abstraction. In terms of performance, Spark can be up to
100 times faster in terms of memory access, and 10 times faster in terms of disk
access than Hadoop. Moreover, it provides advanced application programming
interfaces in Java, Scala, Python, and R. It also supports some advanced components,
including Spark SQL for structured data processing, MLlib for machine learning,
GraphX for computing graphs, and Spark Streaming for stream computing. We
surveyed Spark-based applications used in next-generation sequencing and other
biological domains, such as epigenetics, phylogeny, and drug discovery. The results of
this survey are used to provide a comprehensive guideline allowing bioinformatics
researchers to apply Spark in their own fields.
Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient
distributed dataset; memory computing

Corresponding Author: runxin guo

CHINA

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author: runxin guo

First Author Secondary Information:

Order of Authors: runxin guo

yi zhao

quan zou

xiaodong fang

shaoliang peng

Order of Authors Secondary Information:

Response to Reviewers: Dear Editor and Reviewers:
Thank you for your letter and for the reviewers’ comments concerning our manuscript

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

entitled “Bioinformatics Application on Apache Spark” (GIGAD1800131R2). Those
comments are all valuable and very helpful for revising and improving our paper, as
well as the important guiding significance to our research. We have studied the
comments carefully and have made correction which we hope meet with approval.
Moreover, according to the copy edited manuscript, we have updated the paper for all
requested edits.
Yours
Sincerely
Runxin Guo, Yi Zhao, Quan Zou, Xiaodong Fang, Shaoliang Peng

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Guo et al.

Bioinformatics applications on Apache Spark

Bioinformatics applications on Apache Spark
Runxin Guo1†, Yi Zhao2†, Quan Zou3†, Xiaodong Fang4*, Shaoliang Peng1,5*
1College of Computer, National University of Defense Technology, Changsha 410073, China;

2Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

3School of Computer Science and Technology, Tianjin University, Tianjin 300350, China;

4BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China;

5College of Computer Science and Electronic Engineering & National Supercomputer Centre in

Changsha, Hunan University, Changsha 410082, China

*Correspondence address:

Xiaodong Fang, BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; E-mail:

fangxd@bgitechsolutions.com.

Shaoliang Peng, College of Computer, National University of Defense Technology, Changsha

410073, China; E-mail: pengshaoliang@nudt.edu.cn.

ORCID IDs: Runxin Guo, 0000-0002-1203-5038; Quan Zou, 0000-0001-6406-1142; Xiaodong

Fang, 0000-0001-7061-3337; and Shaoliang Peng, 0000-0002-4647-2615.

†: Equal contributors

ABSTRACT

With the rapid development of next-generation sequencing technology, ever-increasing quantities

of genomic data pose a tremendous challenge to data processing. Therefore, there is an urgent need

for highly scalable and powerful computational systems. Among the state-of–the-art parallel

computing platforms, Apache Spark is a fast, general-purpose, in-memory, iterative computing

framework for large-scale data processing that ensures high fault tolerance and high scalability by

introducing the resilient distributed dataset abstraction. In terms of performance, Spark can be up to

100 times faster in terms of memory access, and 10 times faster in terms of disk access than Hadoop.

Moreover, it provides advanced application programming interfaces in Java, Scala, Python, and R.

It also supports some advanced components, including Spark SQL for structured data processing,

MLlib for machine learning, GraphX for computing graphs, and Spark Streaming for stream

computing. We surveyed Spark-based applications used in next-generation sequencing and other

biological domains, such as epigenetics, phylogeny, and drug discovery. The results of this survey

Manuscript Click here to access/download;Manuscript;Bioinformatics
applications on Apache Spark.docx

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

mailto:fangxd@bgitechsolutions.com
mailto:pengshaoliang@nudt.edu.cn
http://www.editorialmanager.com/giga/download.aspx?id=46590&guid=f84c23c7-a60c-4d73-9f45-b939ae0a14e3&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46590&guid=f84c23c7-a60c-4d73-9f45-b939ae0a14e3&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2056&rev=3&fileID=46590&msid=692737c1-dbb9-481f-810d-7c4697e4b677

Guo et al.

Bioinformatics applications on Apache Spark

are used to provide a comprehensive guideline allowing bioinformatics researchers to apply Spark

in their own fields.

Keywords: next-generation sequencing; bioinformatics; Apache Spark; resilient distributed dataset;

memory computing

INTRODUCTION

Next-generation sequencing (NGS) technology has generated huge amounts of biological sequence

data. To use these data efficiently, we need accurate and efficient methods of storing and analyzing

such data. However, the existing bioinformatics tools cannot effectively handle such a large amount

of data. Therefore, there is an urgent need for scalable and powerful distributed computing tools to

solve this problem. In the field of information technology, MapReduce [1] is a distributed parallel

programming model and methodology for processing large-scale datasets. It splits large-scale

datasets into many key-value pairs through both the map and reduce phases, significantly improving

performance and showing good scalability. By combining the Hadoop Distributed File System

(HDFS) and MapReduce, Apache Hadoop can enable distributed processing of large amounts data

in a reliable, efficient, and scalable way. This is in contrast to HDFS, which is mainly used for

distributed storage of massive datasets, and MapReduce, which performs distributed computing on

these datasets. As a result, Hadoop has been adopted by the bioinformatics community in several

areas [2], including alignment [3–6], mapping [7–9], and sequence analysis [10–13].

Because of Hadoop’s disk-based I/O access pattern, however, intermediate calculation results are

not cached. Therefore, Hadoop is only suitable for batch data processing, and shows poor

performance for iterative data processing. To resolve this problem, Apache Spark [14] has been

proposed; a faster, general-purpose computing framework specifically designed to handle huge

amounts of data. Unlike Hadoop’s disk-based computing, Spark performs memory computing by

introducing resilient distributed dataset (RDD) abstraction. Since it is possible to store intermediate

results in memory, it is more efficient for iterative operations. In terms of performance, Spark can

be up to 100 times faster in terms of memory access than Hadoop [14]. The gap between Spark and

Hadoop is more than 10-fold greater, even if we compare between them based on disk performance

[15]. In terms of flexibility, Spark provides high-level application programming interfaces (APIs)

in Java, Scala, Python, and R, and interactive shell. In terms of generality, Spark provides structured

data processing, machine learning, graph computing, and stream computing capabilities by

supporting some advanced components.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

Table 1 summarizes the bioinformatics tools and algorithms based on Apache Spark.

THE SPARK FRAMEWORK

Designed by the Algorithms, Machines and People Lab at the University of California, Berkeley,

Spark is an open-source cluster computing environment designed for large-scale data processing,

developed by UC Berkeley AMP lab. It provides advanced APIs in Java, Scala, Python and R, and

an optimized engine that supports general execution graphs. It also supports some advanced

components, including Spark SQL for structured data processing, MLlib for machine learning,

GraphX for computing graphs, and Spark Streaming for stream computing.

As shown in Fig.1, each Spark application runs as an independent process on the cluster, coordinated

by SparkContext in the driver program. There are two deploy modes, depending on where the driver

program is running: cluster mode, and client mode. In the former mode, the driver program runs on

a worker node. In the latter, the driver program runs on the client machine. First, SparkContext

requests the executors on the worker nodes in the cluster from the cluster manager (either Spark’s

own standalone cluster manager, Apache Mesos, or Hadoop YARN). These executors are processes

that can run tasks and store data in memory, or on disk for application. Next, SparkContext will

send tasks to the executors to perform. Finally, the executors return the results to SparkContext after

the tasks are executed. In Spark, an application generates multiple jobs. A job is split into several

stages. Each stage is a task set containing several tasks, which performs calculations and produces

intermediate results. A task is the smallest unit of work in Spark, completing a specific job on an

executor. As for deployment of the Spark cluster, the official proposal for hardware requirements is

to have 4–8 disks per node, which configure at least 8 GB of memory and 8–16 central processing

unit (CPU) cores per machine, and use a 10 gigabit or higher network.

As the main abstraction in Spark, RDD is a read-only collection of objects partitioned on different

nodes in the cluster so that the data in RDD can be processed in parallel. The data in RDD are stored

in memory by default, but Spark automatically writes RDD data to disk if memory resources are

low. RDD achieves fault tolerance through a notion of lineage [14]; that is, if an RDD partition on

a node is lost because of a node failure, the RDD automatically recalculates the partition from its

own data source. Moreover, Spark provides two types of operations on RDD: transformation and

action. The former defines a new RDD, and the latter returns a result or writes RDD data to the

storage system. Transformation employs lazy operation [16], which means that the operation of

generating another RDD from one RDD transformation is not executed immediately, and the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

calculation process is not actually started until an action is performed. Furthermore, each

transformation operation generates a new RDD; the newly generated RDD depends on the original

RDD. According to the different types of transformation operation, RDD dependencies can be

divided into narrow dependency and wide dependency. The former refers to the fact that each

partition in the generated RDD depends only on the parent RDD fixed partition, and the latter refers

to the fact that each partition of the generated RDD depends on all partitions of the parent RDD.

Fig.2 shows examples of narrow and wide dependencies. In addition, Spark also provides two

extensions of RDD: DataFrame and Dataset. Spark users can seamlessly switch between these

through simple API calls.

Spark also adopts a directed acyclic graph (DAG) [17] to optimize execution processes by splitting

submitted jobs into several stages according to wide dependency. For narrow dependency, it divides

related transformation operations into the same stage; this is because they can perform pipelining

operations, and thus reduce the processing time of submitted jobs. Fig.3 shows an example of how

Spark computes job stages. In addition, if the partitions on a node are lost because of node failure,

Spark can utilize the DAG to recalculate the lost partitions.

SPARK IN ALIGNMENT AND MAPPING

The rapid development of NGS technology has generated a large amount of sequence data (reads),

which has a tremendous impact on sequence alignment and mapping processes. Currently, sequence

alignment and mapping remains time-consuming.

The Smith–Waterman (SW) algorithm [18], which produces optimal local alignment between two

strings of nucleic acid sequences or protein sequences, is widely used in bioinformatics. However,

this algorithm has a high computational cost because of high computational complexity. To speed

up the algorithm, Zhao et al. (2015) implemented the SW algorithm on Spark for the first time,

naming this SparkSW [19]. It consisted of three phases: data preprocessing, SW as map tasks, and

top K records as reduce tasks. Experimental results [19] showed that SparkSW was load-balancing

and scalable with increased computing resources. However, SparkSW merely supports the SW

algorithm without the mapping location and traceback of optimal alignment. As a result, SparkSW

executes slowly. Therefore, Xu et al. (2017) proposed DSA [20], which employed Single Instruction

Multiple Data (SIMD) to parallel the sequence alignment algorithm at each worker node.

Experimental results [20] showed that DSA achieved up to 201 times faster speeds over SparkSW,

and almost linearly increased speed with increased cluster nodes. Subsequently, Xu et al. proposed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

CloudSW [21], an efficient distributed SW algorithm that leveraged Spark and SIMD instructions

to accelerate the algorithm, and provided API services in the cloud. Experimental results [21]

showed that CloudSW achieved up to 3.29 times increased speed over DSA, and 621 times

increased speed over SparkSW. CloudSW also showed excellent scalability and achieved speeds of

up to 529 giga cell updates per second in a protein database search with 50 nodes using Aliyun

cloud.

The Burrows–Wheeler aligner (BWA) is composed of BWA-backtrack [22], BWA-SW [23] and

BWA-MEM [24] for performing sequence alignment and mapping in bioinformatics. Before the

advent of Spark-based BWA tools, there were several other BWA tools based on big data

technology, including BigBWA [25], Halvade [26] and SEAL [7]. However, these were based on

Hadoop, which showed limited scalability and complex implementation. As a result, Al-Ars et al.

(2015) [27] implemented three different versions of BWA-MEM and compared their performance:

a native cluster-based version, a Hadoop version and a Spark version. Three implementations were

evaluated on the same IBM Power7 and Intel Xeon servers, with WordCount as an example. The

results [27] showed that simultaneous multithreading improved the performance of three versions

of BWA-MEM, and the Spark version with 80 threads increased performance by up to 87% over

the native cluster version using 16 threads. Furthermore, the four-thread Hadoop version increased

performance by 17%, and the Spark version with even more threads increased performance by 27%.

Then, in 2016, Abuín et al. proposed SparkBWA [28], which is composed of three main phases: the

RDDs creation phase, the map phase, and the reduce phase. Experimental results [28] showed that

for the BWA-backtrack algorithm, SparkBWA achieved average increased speeds of 1.9 times and

1.4 times, compared with SEAL and pBWA, respectively. For the BWA-MEM algorithm,

SparkBWA was, on average, 1.4 times faster than BigBWA and Halvade tools. However,

SparkBWA required significant time to preprocess the input files and finally combine the output

files. Therefore, in 2017, Mushtaq et al. proposed StreamBWA [29], in which the input files were

streamed into the Spark cluster. This greatly reduced the time required to preprocess data and

combine the final results. Experimental results [29] showed that this streaming distributed strategy

gave roughly double the speed of the non-streaming strategy. Furthermore, StreamBWA achieved

a five-fold increased speed over SparkBWA.

Multiple sequence alignment (MSA) refers to the sequence alignment of three or more biological

sequences, such as protein or nucleic acid sequences. One representative tool for performing MSA

is PASTA [30]. PASTA is a derivative of SATé [31], which produces highly accurate alignments

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

in shared memory computers. However, PASTA is limited to processing small and medium datasets

because the computing power of shared memory systems cannot meet the memory and time

requirements of large-scale datasets. Therefore, in 2017, Abuín et al. proposed PASTASpark [32],

which allowed executions on a distributed memory cluster, taking advantage of Spark. It employed

an in-memory RDD of key-value pairs to parallel the calculating MSA phase. Experiments were

conducted on two different clusters, Centro de Supercomputación de la Galicia (CESGA) and

Amazon Web Services (AWS). The results [32] showed that PASTASpark achieved up to 10 times

faster speeds than single-threaded PASTA, and was able to process 200,000 sequences in 24 hours

using only AWS nodes. Therefore, PASTASpark ensured scalability and fault tolerance, which

greatly reduced the time to obtain MSA.

The probabilistic pairwise model [33] is widely used in all consistency-based MSA tools, such as

MAFFT [34], ProbCons [35] and T-Coffee [36]. However, global distributed memory cannot meet

the demands of ever-increasing sequence datasets, which leads to the need for specialized

distributed databases, such as HBase or Cassandra. As a result, Lladós et al. (2017) employed Spark

to propose a new tool, PPCAS [37], which could parallel the probabilistic pairwise model for large-

scale protein sequences and store it in a distributed platform. Experimental results [37] showed that

it was better with a single node, and provided almost linearly increased speeds with the increased

numbers of nodes. In addition, it could compute more sequences using the same amount of memory.

The National Center for Biotechnology Information’s (NCBI) BLAST tool [38, 39] is widely used

to implement algorithms for sequence comparison. Before the Spark-based BLAST was created,

several other BLAST tools had been proposed, including mpiBLAST [40], GPU-BLAST [41] and

CloudBLAST [42]. However, with the increasing amount of genomic data, these tools showed

limited scalability and efficiency. As a result, Castro et al. (2017) proposed SparkBLAST [43],

which utilized cloud computing and the Spark framework to parallel BLAST. In SparkBLAST,

Spark’s pipe operator and RDDs were utilized to call BLAST as an external library and perform

scalable sequence alignment. It was compared with CloudBLAST on both Google and Microsoft

Azure clouds. Experimental results [43] showed that SparkBLAST outperformed CloudBLAST in

terms of speed, scalability, and efficiency.

Metagenomics is crucial for directly studying genetic material from environmental samples.

Fragment recruitment is the process of aligning reads to reference genomes in metagenomics data

analysis. In 2017, Zhou et al. proposed MetaSpark [44], which employed Spark to recruit

metagenomics reads to reference genomes. MetaSpark utilized the RDD of Spark to cache datasets

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

in memory, and scaled well along dataset size increments. It consisted of five steps including

constructing k-mer RefindexRDD, constructing k-mer ReadlistRDD, seeding, filtering, and banded

alignment. It was evaluated on a 10-node cluster, working under the Spark standalone module, in

which each node contained an eight-core CPU and 16 GB RAM. It employed about 1 million 75 bp

Illumina read datasets, and two references: 194 human gut genomes and bacterial genomes that were

0.616 Gb and 1.3 Gb in size, respectively. Experimental results [44] showed that MetaSpark

recruited more reads than FR-HIT [45] with the same parameters and 1 million reads. MetaSpark

recruited 501,856 reads to 0.616 Gb human gut genome references, while FR-HIT recruited 489,638

reads. MetaSpark increased recruited reads by 2.5%. When references changed to a 1.3 Gb bacterial

genome, MetaSpark recruited 463,862 reads, while FR-HIT recruited 444,671 reads. MetaSpark

increased recruited reads by 4%. Moreover, the results also showed that MetaSpark offered good

scalability. Under a 0.616 Gb reference, run time for 100,000 reads was 51 minutes under four nodes,

and decreased slightly to 23.5 minutes under 10 nodes. For the 1 million read datasets, MetaSpark

would crash under four nodes because of limited memory. Under six nodes, it finished running after

312 minutes and would sharply decrease to 201 minutes under 10 nodes.

SPARK IN ASSEMBLY

Because NGS read lengths are short (<500 bp), they must be assembled before further analysis,

which is another important phase in the sequence analysis workflow. In general, there are two types

of assembly: the reference assembly, and de novo assembly. The assembly algorithm includes two

categories: the overlap–layout–consensus (OLC) algorithm, and the de Bruijn graph algorithm. The

former is generally employed to assemble longer reads, while the latter performs well in assembling

short reads.

Before Spark-based distributed memory de novo assemblers were created, although there were some

MPI-based assemblers (such as Ray [46], AbySS [47] and SWAP-Assembler [48]), they showed

limited scalability, accuracy, and computational efficiency. Therefore, in 2015, Abu-Doleh et al.

proposed Spaler [49], taking advantage of Spark and GraphX APIs. It consisted of two main parts:

de Bruijn graph construction, and contig generation. It was evaluated against other MPI-based tools

in terms of quality, execution time, and scalability. Experimental results [49] showed that Spaler

had better scalability, and could achieve comparable or better assembly quality.

To resolve the large memory requirement problem of most OLC de novo assemblers, Paul et al.

(2017) [50] employed string graph reduction algorithms, taking advantage of Spark. The proposed

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

Spark algorithms were evaluated against a very large sample dataset. The results showed that this

dataset was assembled by the proposed Spark algorithms using 15 virtual machines in 0.5 hours,

compared with the 7.5 hours achieved by the OLC-based Omega [51] assembler.

In addition, some new assembly algorithms have also been proposed, based on the Spark platform

itself. In 2016, Pan et al. [52] put forward a new assembling algorithm, based on Spark, which

employed the method of matching K-2 bit to simplify the de Bruijn graph. This algorithm was

evaluated using six groups of DNA data in the NCBI database. Experimental results [52] showed

that this strategy not only solved the problem of low efficiency based on the MapReduce algorithm,

but also optimized the algorithm itself. The combination of these two aspects was very suitable for

the large-scale assembly of DNA sequences. Moreover, the results also showed that the new Spark-

based sequence-assembling algorithm ensured the accuracy of assembling results.

To address the problem of poor assembling precision and low efficiency, Dong et al. (2017) [53]

proposed SA-BR-Spark, a new sequence assembly algorithm based on Spark. The authors first

designed a precise assembling algorithm using the strategy of finding the source of reads based on

the MapReduce and Eulerian path algorithm (SA-BR-MR). SA-BR-MR calculated 54 sequences,

randomly selected from animal, plant and microorganism sequences in the NCBI database, with

base lengths ranging from hundreds to tens of thousands. The matching rates of all 54 sequences

were 100%. For each species, the algorithm also summarized the range of K that made the matching

rates 100%. To verify the range of K values of hepatitis C virus and related variants, the K values

of eight randomly selected hepatitis C virus variants were calculated. The results confirmed that the

range of K of hepatitis C and related variants in NCBI were correct. After that, SA-BR-Spark was

put forward. Experimental results [53] showed that SA-BR-Spark provided superior computational

speed compared with SA-BR-MR.

SPARK IN SEQUENCE ANALYSIS

The GATK (Genome Analysis Toolkit) DNA analysis pipeline is widely used in genomic data

analysis. Before Spark-based GATK tools were created, while several other tools had been

developed to address the issue of scalability in the pipeline (such as Halvade [26] and Churchill

[54]), they showed limited scalability, accuracy, and computational efficiency.

Therefore, in 2015, Mushtaq et al. [55] utilized Spark to propose a cluster-based GATK pipeline.

To reduce the execution time, this approach kept data active in the memory between the map and

reduce phases. By using active workload runtime statistics, it achieved a dynamic load-balancing

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

algorithm that could better utilize system performance. Experimental results [55] showed that this

method achieved 4.5 times increased speed compared with the multi-threaded GATK pipeline on a

single node. In addition, when executed on a four-node cluster, this approach was 63% faster than

Halvade.

Then, in 2016, Deng et al. proposed HiGene [56], which employed Spark to enable multicore and

multinode parallelization of the GATK pipeline. HiGene put forward a dynamic computing resource

scheduler and an efficient data-skew mitigation method to improve performance. Experiments were

conducted with the NA12878 whole human genome dataset. The results [56] showed that HiGene

reduced the total running time from days to just under an hour. Furthermore, compared with Halvade,

HiGene was also two times faster. Meanwhile, Li et al. employed Spark to propose GATK-Spark

[57]. This paralleled the GATK pipeline by taking full account of compute, workload and I/O

characteristics. It was built on top of the ADAM format [58]. Experimental results [57] showed that

GATK-Spark decreased the total running time from 20 hours to 30 minutes on 256 CPU cores,

which achieved more than 37-fold increased speeds.

Spark provides the opportunity for interactive NGS data processing. In 2014, Wiewiórka et al.

proposed SparkSeq [59] to build and run genomic analysis pipelines in an interactive way by using

Spark. Experimental results showed that SparkSeq achieved 8.4–9.15 times faster speeds than

SeqPig. Moreover, it could accelerate data querying by up to 110 times, and reduce memory

consumption by 13 times.

SPARK IN OTHER BIOLOGICAL APPLICATIONS

Spark in epigenetics

CpG islands are important markers that are essential in epigenetics [60]. However, investigation of

CpG islands and their structures remains challenging. Before Spark-based applications were

developed, while several methods had been proposed to determine the CPG islands (such as bisulfite

modification-based methods), they were time-consuming and prohibitively expensive. Thus, Yu et

al. [61] utilized Spark to propose a novel CpG box model and a Markov model to redefine and

investigate the CpG island, which could greatly accelerate the analytic process. Experiments were

conducted with human and mouse chromosome sequences; 24 chromosomes and 21 chromosomes.

The results [61] showed that this cloud-assisted method had considerable accuracy and faster

processing power (6–7 times faster with 10 cores) compared with sequential processing.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

Spark in phylogeny

Phylogeny reconstruction is important in molecular evolutionary studies, but faces significant

computational challenges. Before Spark-based tools were created, while several tools had been put

forward for phylogeny reconstruction, they did not scale well, and there was a significant increase

in the number of datasets. Therefore, in 2016, Xu et al. proposed CloudPhylo [62], a fast and

scalable phylogeny reconstruction tool, making use of Spark. It evenly distributed the entire

computational workload between working nodes. An experiment was conducted using 5220 bacteria

whole genome DNA sequences. The results [62] showed that CloudPhylo took 24,508 seconds with

one worker node, and it was able to scale well with increasing numbers of worker nodes. Moreover,

CloudPhylo performed better than several existing tools when using more worker nodes. In addition,

CloudPhylo achieved faster speeds on a larger dataset of about 100 Gb generated by simulation.

Spark in drug discovery

The identification of candidate molecules that affect disease-related proteins is crucial in drug

discovery. Although the Chemogenomics project tries to identify candidate molecules using

machine-learning predictor programs [63–65], these programs are slow, and cannot be easily

extended to multiple nodes. To migrate existing programs to multinode clusters without changing

the original programs, Harnie et al. proposed S-CHEMO [66], using Spark. In S-CHEMO, the

intermediate data is immediately consumed again on the nodes that generated the data, reducing

time and network bandwidth consumption. Experiments [66] compared S-CHEMO with the original

pipeline, and showed almost linearly increased speeds on up to eight nodes. Moreover, this

implementation also allowed easier monitoring.

Spark in single-cell RNA sequencing

Single-cell RNA sequencing (scRNA-seq) is crucial for understanding biological processes.

Compared with standard bulk RNA-seq experiments, scRNA-seq experiments typically generate a

greater number of cell profiles. Although several RNA-seq processing pipelines are already

available (such as Halvade, SparkSeq and SparkBWA), they cannot process large numbers of

profiles. Therefore, Falco [67] was created to process large-scale transcriptomic data in parallel by

using Hadoop and Spark. Experiments were conducted with two public scRNA-seq datasets. The

results [67] showed that, compared with a highly optimized single-node analysis, Falco was at least

2.6 times faster. Moreover, as the number of computing nodes increased, running time decreased.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

Furthermore, it allowed users to employ the low-cost spot instances of AWS, which reduced the

cost of analysis by 65%.

Spark in variant association and population genetics studies

Effectively analyzing thousands of individuals and millions of variants is a computationally

intensive problem. Traditional parallel strategies, such as MPI/OpenMP show poor scalability.

While Hadoop provides an efficient and scalable computing framework, it is heavily dependent on

disk operations. Therefore, in 2015, O’Brien et al. proposed VariantSpark [68] to parallel

population-scale tasks based on Spark and an associated machine-learning library, MLlib.

Experiments were conducted on 3000 individuals with 80 million variants, and showed that

VariantSpark was 80% faster than ADAM, the Hadoop/Mahout implementation, and

ADMIXTURE [69]. Moreover, compared with R and Python implementations, it was more than

90 % faster. In 2017, Di et al. proposed SEQSpark [70] to perform rare variant association analysis

using Spark. It was evaluated with whole-genome and simulated exome sequence data. The former

was completed in 1.5 hours, and the latter in 1.75 hours. Moreover, it was always faster than Variant

Association Tools and PLINK/SEQ, and in some cases running time was reduced to 1%.

Spark in other works

Biological simulations and experiments produce a large number of numerical datasets, and in 2017,

Klein et al. proposed Biospark [71] to process these data. Biospark was based on Hadoop and Spark,

comprising a set of Java, C++ and Python libraries. In addition, it provided the abstractions for

parallel analysis of standard data types, including multidimensional arrays and images. To facilitate

parallel analysis of some common datasets, it also provided APIs and file conversion tools,

including Monte Carlo, molecular dynamics simulations, and time-lapse microscopy.

DISCUSSION

Spark is an in-memory iterative computing framework designed for large-scale data processing. It

is suitable for applications that require iterative operations on specific datasets: the greater the

amount of data, the higher the computational intensity, and the greater the benefits. When the data

volume is small but the computational intensity is large, the benefit is relatively small. In addition,

Spark is also suitable for applications where the amount of data is not particularly large, but real-

time statistical analyses are required.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

However, the nature of RDD means that Spark is not suitable for applications requiring

asynchronous, fine-grained updates in execution, such as web service storage or incremental web

crawlers and indexes. In addition, we must consider the potential complexity of creating and

maintaining a Spark cluster. Moreover, when Spark runs on a commercial cloud-computing

platform such as AWS, there is a certain delay in the transmission of large-scale datasets over the

Internet. This issue does not exist when Spark runs on a local computer cluster. Furthermore, we

need to learn a new API, and perhaps even a new language (especially given the functional

programing nature of the API).

Although Spark has been applied in some areas of bioinformatics, and has achieved good results,

its use in other areas––such as proteomics, biomedical texts, and metabolomics––has not yet been

explored. Moreover, as cloud computing, and some web servers, become more and more available,

some issues must be considered, such as the time cost of large amounts of input data from local to

remote servers in slow networks, cloud computing fees, data security and privacy.

CONCLUSION

With the rapid development of NGS technology, a large number of genomic datasets have been

generated, which poses a great challenge to traditional bioinformatics tools. For this reason, we have

summarized relevant works about the use of Spark in bioinformatics, and have created a guideline

on this topic. First, we make a comparison between Spark and Hadoop, and then outline the Spark

cluster architecture, programming model, and processing mechanism. Then, we survey the use of

Spark-based applications in NGS and other biological domains. Our survey means that researchers

who wish to become involved in this field can now obtain a general understanding of the use of

Spark in bioinformatics.

In summary, Spark is a fast and general-purpose computing framework designed for large-scale

data processing. It ensures high fault tolerance and high scalability by introducing RDD abstraction

and DAG scheduling. We believe that bioinformatics applications based on Spark will show

promise in terms of performance for biological researchers in the future.

ABBREVIATIONS

API: application programming interface; AWS: Amazon Web Services; BWA: Burrows–Wheeler

aligner; CPU: central processing unit; DAG: directed acyclic graph; GATK: Genome Analysis

Toolkit; Gb: gigabase; GB: gigabyte; HDFS: Hadoop Distributed File System; MSA: multiple

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

sequence alignment; NCBI: National Center for Biotechnology Information; NGS: next-generation

sequencing; OLC: overlap–layout–consensus; RDD: resilient distributed dataset; scRNA-seq:

single-cell RNA sequencing; SIMD: Single Instruction Multiple Data; SW: Smith-Waterman

algorithm.

ACKNOWLEDGEMENTS

The authors would like to thank the executive editor and the reviewers whose comments and

constructive criticism helped in improving the quality of the manuscript. In addition, the authors

thank Xiangke Liao and Kenli Li for their useful discussions and suggestions.

FUNDING

This work was supported by the National Key R&D Program of China (grant numbers

2017YFB0202600, 2016YFC1302500, 2016YFB0200400 and 2017YFB0202104); the National

Natural Science Foundation of China (grant numbers 61772543, U1435222, 61625202, 61272056

and 61771331); and the Guangdong Provincial Department of Science and Technology (grant

number 2016B090918122).

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

RG and SP conceived the project and organized the work. All authors wrote parts of the manuscript

and all authors have read and approved the final manuscript.

REFERENCES

1. Dean J, Ghemawat S: MapReduce: simplified data processing on large clusters.

Communications of the ACM 2008, 51(1):107-113.

2. Zou Q, Li X-B, Jiang W-R et al: Survey of MapReduce frame operation in bioinformatics.

Briefings in bioinformatics 2013, 15(4):637-647.

3. Zou Q, Hu Q, Guo M et al: HAlign: Fast multiple similar DNA/RNA sequence alignment based

on the centre star strategy. Bioinformatics 2015, 31(15):2475-2481.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

4. Gaggero M, Leo S, Manca S et al: Parallelizing bioinformatics applications with MapReduce.

Cloud Computing and Its Applications 2008:22-23.

5. Leo S, Santoni F, Zanetti G: Biodoop: bioinformatics on hadoop. In: Parallel Processing

Workshops, 2009 ICPPW'09 International Conference on: 2009. IEEE: 415-422.

6. Yang X-l, Liu Y-l, Yuan C-f et al: Parallelization of BLAST with MapReduce for long sequence

alignment. In: Parallel Architectures, Algorithms and Programming (PAAP), 2011 Fourth

International Symposium on: 2011. IEEE: 241-246.

7. Pireddu L, Leo S, Zanetti G: SEAL: a distributed short read mapping and duplicate removal

tool. Bioinformatics 2011, 27(15):2159.

8. Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics 2009,

25(11):1363-1369.

9. Nguyen T, Shi W, Ruden D: CloudAligner: A fast and full-featured MapReduce based tool for

sequence mapping. BMC research notes 2011, 4(1):171.

10. Nordberg H, Bhatia K, Wang K et al: BioPig: a Hadoop-based analytic toolkit for large-scale

sequence data. Bioinformatics 2013, 29(23):3014-3019.

11. Langmead B, Schatz MC, Lin J et al: Searching for SNPs with cloud computing. Genome

biology 2009, 10(11):R134.

12. Kim D-k, Yoon J-h, Kong J-h et al: Cloud-scale SNP detection from RNA-Seq data. In: Data

Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International

Conference on: 2011. IEEE: 321-323.

13. Hung C-L, Lin Y-L, Hua G-J et al: CloudTSS: a TagSNP selection approach on cloud

computing. In: Grid and Distributed Computing. Springer; 2011: 525-534.

14. Zaharia M, Chowdhury M, Franklin MJ et al: Spark: Cluster computing with working sets.

HotCloud 2010, 10(10-10):95.

15. Han Z, Zhang Y: Spark: A Big Data Processing Platform Based on Memory Computing. In:

Seventh International Symposium on Parallel Architectures, Algorithms and Programming:

2016. 172-176.

16. Zaharia M, Chowdhury M, Das T et al: Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation: 2012. USENIX Association: 2-2.

17. Convolbo MW, Chou J: Cost-aware DAG scheduling algorithms for minimizing execution cost

on cloud resources. Journal of Supercomputing 2016, 72(3):985-1012.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

18. Smith TF, Waterman MS: Identification of common molecular subsequences. Journal of

Molecular Biology 1981, 147(1):195-197.

19. Zhao G, Ling C, Sun D: SparkSW: Scalable Distributed Computing System for Large-Scale

Biological Sequence Alignment. In: Ieee/acm International Symposium on Cluster, Cloud and

Grid Computing: 2015. 845-852.

20. Xu B, Li C, Zhuang H et al: DSA: Scalable Distributed Sequence Alignment System Using

SIMD Instructions. In: Ieee/acm International Symposium on Cluster, Cloud and Grid

Computing: 2017. 758-761.

21. Xu B, Li C, Zhuang H et al: Efficient Distributed Smith-Waterman Algorithm Based on Apache

Spark. In: IEEE International Conference on Cloud Computing: 2017. 608-615.

22. Li H, Durbin R: Fast and accurate short read alignment with Burrows–Wheeler transform:

Oxford University Press; 2009.

23. Li H, Durbin R: Fast and accurate long-read alignment with Burrows–Wheeler transform.

Bioinformatics 2010, 26(5):589-595.

24. Li H: Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013,

1303.

25. Abuín JM, Pichel JC, Pena TF et al: BigBWA: approaching the Burrows–Wheeler aligner to

Big Data technologies. Bioinformatics 2015, 31(24):4003.

26. Decap D, Reumers J, Herzeel C et al: Halvade: scalable sequence analysis with MapReduce.

Bioinformatics 2015, 31(15):2482-2488.

27. Al-Ars Z, Mushtaq H: Scalability Potential of BWA DNA Mapping Algorithm on Apache

Spark. In: SIMBig: 2015. 85-88.

28. Abuín JM, Pichel JC, Pena TF et al: SparkBWA: Speeding Up the Alignment of High-

Throughput DNA Sequencing Data. Plos One 2016, 11(5):e0155461.

29. Alars HMA: Streaming Distributed DNA Sequence Alignment Using Apache Spark. 2017.

30. Mirarab S, Nguyen N, Warnow T: PASTA: ultra-large multiple sequence alignment. In:

International Conference on Research in Computational Molecular Biology: 2014. Springer:

177-191.

31. Liu K, Warnow TJ, Holder MT et al: SATe-II: very fast and accurate simultaneous estimation

of multiple sequence alignments and phylogenetic trees. Systematic biology 2011, 61(1):90-

106.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

32. Abuín JM, Pena TF, Pichel JC: PASTASpark: multiple sequence alignment meets Big Data.

Bioinformatics 2017, 33(18):2948-2950.

33. Miyazawa S: A reliable sequence alignment method based on probabilities of residue

correspondences. Protein Engineering 1995, 8(10):999.

34. Katoh K, Standley DM: MAFFT Multiple Sequence Alignment Software Version 7:

Improvements in Performance and Usability. Molecular Biology & Evolution 2013, 30(4):772-

780.

35. Do CB, Mahabhashyam MS, Brudno M et al: ProbCons: Probabilistic consistency-based

multiple sequence alignment. Genome Research 2005, 15(2):330.

36. Tommaso PD, Moretti S, Xenarios I et al: T-Coffee: a web server for the multiple sequence

alignment of protein and RNA sequences using structural information and homology extension.

Nucleic Acids Research 2011, 39(Web Server issue):13-17.

37. Lladós J, Guirado F, Cores F et al: PPCAS: Implementation of a Probabilistic Pairwise Model

for Consistency-Based Multiple Alignment in Apache Spark; 2017.

38. Altschul S, Gish W, Miller W et al: Basic local alignment search tool. J. Mol. Biol. 1990.

39. C C, G C, V A et al: BLAST+: architecture and applications. Bmc Bioinformatics 2009,

10(1):421.

40. Darling AE, Carey L, Feng WC: The design, implementation, and evaluation of mpiBLAST.

In.: Los Alamos National Laboratory; 2003.

41. Vouzis PD, Sahinidis NV: GPU-BLAST: using graphics processors to accelerate protein

sequence alignment. Bioinformatics 2010, 27(2):182-188.

42. Matsunaga A, Tsugawa M, Fortes J: Cloudblast: Combining mapreduce and virtualization on

distributed resources for bioinformatics applications. In: eScience, 2008 eScience'08 IEEE

Fourth International Conference on: 2008. IEEE: 222-229.

43. Castro MRD, Tostes CDS, Dávila AMR et al: SparkBLAST: scalable BLAST processing using

in-memory operations. Bmc Bioinformatics 2017, 18(1):318.

44. Zhou W, Li R, Yuan S et al: MetaSpark: a spark-based distributed processing tool to recruit

metagenomic reads to reference genomes. Bioinformatics 2017, 33(7):1090-1092.

45. Niu B, Zhu Z, Fu L et al: FR-HIT, a very fast program to recruit metagenomic reads to

homologous reference genomes. Bioinformatics 2011, 27(12):1704-1705.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

46. Boisvert S, Laviolette F, Corbeil J: Ray: simultaneous assembly of reads from a mix of high-

throughput sequencing technologies. Journal of Computational Biology A Journal of

Computational Molecular Cell Biology 2010, 17(11):1519.

47. Simpson JT, Wong K, Jackman SD et al: ABySS: a parallel assembler for short read sequence

data. Genome Research 2009, 19(6):1117.

48. Meng J, Wang B, Wei Y et al: SWAP-Assembler: scalable and efficient genome assembly

towards thousands of cores. Bmc Bioinformatics 2014, 15(S9):S2.

49. Abu-Doleh A, Çatalyürek ÜV: Spaler: Spark and GraphX based de novo genome assembler. In:

IEEE International Conference on Big Data: 2015. 1013-1018.

50. Paul AJ, Lawrence D, Ahn TH: Overlap Graph Reduction for Genome Assembly using Apache

Spark. In: The ACM International Conference: 2017. 613-613.

51. Haider B, Ahn TH, Bushnell B et al: Omega: an Overlap-graph de novo Assembler for

Metagenomics. Bioinformatics 2014, 30(19):2717-2722.

52. Pan X, Fu X-L, Dong G-F et al: DNA sequence splicing algorithm based on Spark. In: Industrial

Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration

(ICIICII), 2016 International Conference on: 2016. IEEE: 52-56.

53. Dong G, Fu X, Li H et al: An Accurate Sequence Assembly Algorithm for Livestock, Plants

and Microorganism Based on Spark. International Journal of Pattern Recognition & Artificial

Intelligence 2017, 31(8).

54. Kelly BJ, Fitch JR, Hu Y et al: Churchill: an ultra-fast, deterministic, highly scalable and

balanced parallelization strategy for the discovery of human genetic variation in clinical and

population-scale genomics. Genome biology 2015, 16(1):6.

55. Mushtaq H, Al-Ars Z: Cluster-based Apache Spark implementation of the GATK DNA analysis

pipeline. In: Bioinformatics and Biomedicine (BIBM), 2015 IEEE International Conference on:

2015. IEEE: 1471-1477.

56. Deng L, Huang G, Zhuang Y et al: HiGene: A high-performance platform for genomic data

analysis. In: IEEE International Conference on Bioinformatics and Biomedicine: 2016. 576-

583.

57. Li X, Tan G, Zhang C et al: Accelerating large-scale genomic analysis with Spark. In:

Bioinformatics and Biomedicine (BIBM), 2016 IEEE International Conference on: 2016. IEEE:

747-751.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

58. Massie M, Nothaft F, Hartl C et al: Adam: Genomics formats and processing patterns for cloud

scale computing. EECS Department, University of California, Berkeley, Tech Rep UCB/EECS-

2013-207 2013.

59. Wiewiórka MS, Messina A, Pacholewska A et al: SparkSeq: fast, scalable and cloud-ready tool

for the interactive genomic data analysis with nucleotide precision. Bioinformatics 2014,

30(18):2652-2653.

60. Erkek S, Hisano M, Liang C-Y et al: Molecular determinants of nucleosome retention at CpG-

rich sequences in mouse spermatozoa. Nature structural & molecular biology 2013, 20(7):868-

875.

61. Yu N, Li B, Pan Y: A cloud-assisted application over apache spark for investigating epigenetic

markers on DNA genome sequences. In: Big Data and Cloud Computing (BDCloud), Social

Computing and Networking (SocialCom), Sustainable Computing and Communications

(SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on:

2016. IEEE: 67-74.

62. Xu X, Ji Z, Zhang Z: CloudPhylo: a fast and scalable tool for phylogeny reconstruction.

Bioinformatics 2016, 33(3):438-440.

63. Wale N: Machine learning in drug discovery and development. Drug Development Research

2011, 72(1):112-119.

64. Costello JC, Heiser LM, Georgii E et al: A community effort to assess and improve drug

sensitivity prediction algorithms. Nature biotechnology 2014, 32(12):1202-1212.

65. Sastry GM, Inakollu VS, Sherman W: Boosting virtual screening enrichments with data fusion:

coalescing hits from two-dimensional fingerprints, shape, and docking. Journal of chemical

information and modeling 2013, 53(7):1531-1542.

66. Harnie D, Saey M, Vapirev AE et al: Scaling machine learning for target prediction in drug

discovery using apache spark. Future Generation Computer Systems 2017, 67:409-417.

67. Yang A, Troup M, Lin P et al: Falco: a quick and flexible single-cell RNA-seq processing

framework on the cloud. Bioinformatics 2016, 33(5):767-769.

68. O’Brien AR, Saunders NFW, Guo Y et al: VariantSpark: population scale clustering of

genotype information. Bmc Genomics 2015, 16(1):1-9.

69. Alexander DH, Novembre J, Lange K: Fast model-based estimation of ancestry in unrelated

individuals. Genome Research 2009, 19(9):1655.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

70. Di Z, Zhao L, Li B et al: SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant

Association Studies Using Whole-Genome and Exome Sequence Data. American Journal of

Human Genetics 2017, 101(1):115.

71. Klein M, Sharma R, Bohrer CH et al: Biospark: scalable analysis of large numerical datasets

from biological simulations and experiments using Hadoop and Spark. Bioinformatics 2017,

33(2):303-305.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

Table 1 Bioinformatics tools and algorithms based on Apache Spark

Name Function Features Pros/Cons Reference

SparkSW Alignment

and mapping

Consists of three phases: data

preprocessing, SW as map

tasks, and top K records as

reduce tasks

Load-balancing, scalable,

but without the mapping

location and traceback of

optimal alignment

[19]

DSA Alignment

and mapping

Leverages data parallel

strategy based on SIMD

instruction

Up to 201 times increased

speed over SparkSW and

almost linearly increased

speed with increasing

numbers of cluster nodes

[20]

CloudSW Alignment

and mapping

Leverages SIMD instruction,

and provides API services in

the cloud

Up to 3.29 times increased

speed over DSA and 621

times increased speed over

SparkSW; high scalability

and efficiency

[21]

SparkBWA Alignment

and mapping

Consists of three main

stages: RDD creation, map,

and reduce phases; employs

two independent software

layers

For shorter reads, averages

1.9x and 1.4x faster than

SEAL and pBWA. For

longer reads, averages 1.4x

faster than BigBWA and

Halvade, but requires the

data availability in HDFS

[28]

StreamBWA Alignment

and mapping

Input data are streamed into

the cluster directly from a

compressed file

~2x faster than non-

streaming approach, and 5x

faster than SparkBWA

[29]

PASTASpark Alignment

and mapping

Employs an in-memory RDD

of key-value pairs to parallel

the calculating MSA phase

Up to 10x faster than single-

threaded PASTA; ensures

scalability and fault

tolerance

[32]

PPCAS Alignment

and mapping

Based on the MapReduce

processing paradigm in

Spark

Better with a single node and

shows almost linearly

increased speeds with

increasing numbers of nodes

[37]

SparkBLAST Alignment

and mapping

Utilizes pipe operator and

Spark RDDs to call BLAST

as an external library

Outperforms CloudBLAST

in terms of speed, scalability

and efficiency

[43]

MetaSpark Alignment

and mapping

Consists of five steps:

constructing k-mer

RefindexRDD, constructing

k-mer ReadlistRDD,

seeding, filtering, and banded

alignment

Recruits significantly more

reads than SOAP2, BWA

and LAST, and more reads

by ~4 than FR-HIT; shows

good scalability and overall

high performance

[44]

Spaler Assembly Employs Spark’s GraphX

API; consists of two main

parts: de Bruijn graph

construction, and contig

generation

Shows better scalability and

achieves comparable or

better assembly quality than

ABySS, Ray, and SWAP-

Assembler

[49]

SA-BR-Spark Assembly Under the strategy of finding

the source of reads; based on

the Spark platform

Shows a superior

computational speed than

SA-BR-MR

[53]

HiGene Sequence

analysis

Puts forward a dynamic

computing resource

Reduces total running time

from days to just under

[56]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Guo et al.

Bioinformatics applications on Apache Spark

scheduler, and an efficient

way of mitigating data skew

nearly an hour; 2x faster

than Halvade

GATK-Spark Sequence

analysis

Takes full account of

compute, workload, and I/O

characteristics

Achieves more than 37 times

increased speed

[57]

SparkSeq Sequence

analysis

Builds and runs genomic

analysis pipelines in an

interactive way by using

Spark

Achieves 8.4–9.15 times

faster speeds than SeqPig;

accelerates data querying up

to 110 times and reduces

memory consumption by 13

times

[59]

CloudPhylo Phylogeny Evenly distributes entire

workloads between worker

nodes

Shows good scalability and

high efficiency; the Spark

version is better than the

Hadoop version

[62]

S-CHEMO Drug

discovery

Intermediate data are

immediately consumed again

on the producing nodes,

saving time and bandwidth

Shows almost linearly

increased speeds on up to 8

nodes compared with the

original pipeline

[66]

Falco Single-cell

RNA

sequencing

Consist of a splitting step, an

optional preprocessing step,

and the main analysis step

At least 2.6x faster than a

highly optimized single-

node analysis; running time

decreases with increasing

numbers of nodes

[67]

VariantSpark Variant

association

and

population

genetics

studies

Parallels population-scale

tasks based on Spark and the

associated MLlib

80% faster than ADAM

(Hadoop/Mahout version),

and ADMIXTURE; more

than 90% faster than R and

Python implementations

[68]

SEQSpark Variant

association

and

population

genetics

studies

Splits large-scale datasets

into many small blocks to

perform rare variant

association analyses

Always faster than Variant

Association Tools and

PLINK/SEQ, and in some

cases, running time is

reduced to 1%

[70]

BioSpark Data-parallel

analysis on

large,

numerical

datasets

Consists of a set of Java, C++

and Python libraries,

abstractions for parallel

analysis of standard data

types, some APIs and file

conversion tools

Convenient, scalable, and

useful; has domain-specific

features for biological

applications

[71]

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Figure 1: The cluster architecture of Spark.

Figure 1 Click here to access/download;Figure;Figure 1.docx

http://www.editorialmanager.com/giga/download.aspx?id=46587&guid=26d3a7dd-05c1-4ab8-a0dc-1510cb184c58&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46587&guid=26d3a7dd-05c1-4ab8-a0dc-1510cb184c58&scheme=1

Figure 2: Some examples of narrow and wide dependencies. Each box is an RDD, where the

partition is shown as a shaded rectangle.

Figure 2 Click here to access/download;Figure;Figure 2.docx

http://www.editorialmanager.com/giga/download.aspx?id=46588&guid=a1b6de5d-8695-4c2a-b0b0-ed4d50b7f3a9&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46588&guid=a1b6de5d-8695-4c2a-b0b0-ed4d50b7f3a9&scheme=1

Figure 3: An example of how Spark computes job stages. Boxes with solid outlines are

RDDs. Partitions are shaded rectangles and are black if they are already in memory. To

run an action on RDD G, we build stages at wide dependencies and pipeline narrow

transformation inside each stage. In this case, the output RDD of stage 1 is already in

memory, so we run stage 2, and then stage 3.

Figure 3 Click here to access/download;Figure;Figure 3.docx

http://www.editorialmanager.com/giga/download.aspx?id=46589&guid=d3dd15cc-8cba-49c0-84e3-c3f7b33dc909&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46589&guid=d3dd15cc-8cba-49c0-84e3-c3f7b33dc909&scheme=1

Cover Letter

Click here to access/download
Supplementary Material

Cover Letter.docx

http://www.editorialmanager.com/giga/download.aspx?id=46585&guid=1473f536-bde8-487c-9a7a-bb0db53352ae&scheme=1

