
Supplementary Methods for Predicting 102 Novel Public GvL Restricted mHA: 

mHA Prediction Algorithm Overview 

The minor histocompatibility antigen (mHA) prediction algorithm presented here consists of a 

stepwise pipeline designed to capture single nucleotide polymorphism (SNP) genetic variation 

between allogeneic stem cell transplant (allo-SCT) recipients and their HLA-matched donors. It 

then predicts ‘public GvL restricted’ mHA peptides based on in silico peptide binding to cognate 

HLA, their parent gene expression in relevant tissues, and their occurrence at optimal population 

frequency on common HLA.   

 

Capturing Genetic Variation and Patient Cohort Censoring 

The mHA prediction algorithm was applied retrospectively to a clinical data set consisting of 139 

patients who received allo-SCT for myeloid leukemia (AML, CML, MDS) at M.D. Anderson 

under an IRB-approved protocol (LAB99-062). This data set included Illumina NS-12 

microarray SNP genotype information at 13,917 common coding SNPs for all SCT recipients 

and their matched donors, with analysis performed at the University of Texas at Houston School 

of Medicine microarray core facility.1 From this retrospective data set, 21 patients were censored 

who had greater than 5% Illumina NS-12 microarray SNP genotype failure or had 100-fold 

smaller donor-recipient genetic variation than the mean. An additional 17 patients were censored 

who received either cord blood SCT, allo-SCT with less than 8 for 8 HLA match, repeat SCT 

from a second donor different than the original, or who did not have HLA-A*02:01. The SNP 

genotype data from the remaining 101 HLA-matched donor recipient pairs (DRPs) were 

considered for further analysis. Additional overall survival (OS) curves demonstrate results 



typical of a cohort of SCT recipients for myelogenous leukemia (Figure 2, Supplementary 

Figure 1).    

 

Filtering for Coding SNPs 

The ENSEMBL Variant Effect Predictor (VEP), used with human genome assembly GRCh37, 

identified SNPs likely to result in actual peptide sequence differences (coding SNPs or cSNPs) 

between recipients and their matched donors.2 Both the VEP and the mHA prediction algorithm 

more generally accept SNP data in reference SNP ID number (rs number) format as well as 

whole exome sequencing (WES) data in variant call format (VCF) and mutant annotation format 

(MAF).  Only those SNPs identified by the VEP as likely to result in ‘protein coding missense 

variants’ were considered. 11,336 cSNPs of the 13,917 rs numbers tested by the Illumina NS-12 

microarray met this criterion. Of these 11,336 cSNPs, only 11,172 cSNPs corresponded 

unambiguously with a single chromosomal base location, strand, and open reading frame (ORF) 

within UCSC hg19 annotation and were considered for further analysis.3 

 

In Silico Peptide Generation 

For every cSNP with appropriate genetic variation within at least one clinical DRP, all possible 

8-11, 16, 20, and 24-mer donor and recipient peptides were enumerated based on the human 

reference genome GENCODE v19 (GRCh37.p13)4 using custom software.  Appropriate genetic 

variation consisted of recipient allelic variation which was not also found in that recipient’s 

HLA-matched donor.  Genetic variation was found in at least one clinical DRP arising from 

9,575 cSNPs of the 11,172 cSNPs considered.  These 9,575 cSNPs corresponded to 17,111 

messenger RNA transcripts.  For each identified transcript, every 24, 27, 30, 33, 48, 60, and 72 

base pair (bp) sequence that both overlapped an identified cSNP, and that was found in the 



appropriate ORF, was translated in silico to its corresponding 8-11, 16, 20, and 24-mer peptides 

for both the donor and recipient alleles.  This set of peptides was considered for further analysis. 

 

Predicting Peptide HLA Binding 

The set of enumerated peptides were screened in silico for predicted binding to cognate DRP 

HLA using NetMHCpan v2.8 for peptides with 8-11 amino acids (AA) and using NetMHCIIpan 

v3.0 for peptides with 16, 20, and 24 AA.5,6  HLA with sensitivity ≥ 0.5 and specificity ≥ 0.7 

were considered ‘verified’ (Supplementary Figure 2A-D). In order to predict mHA that could 

be further investigated biochemically and biologically, we prioritized specificity over sensitivity. 

When patients only had HLA antigen level typing, we resorted to imputation to the most 

common subtype to determine allele level sequences. Studies have shown that the MHC binding 

pocket tertiary structure, electrostatic properties, and disease associations are generally well 

conserved across HLA subtypes given the same HLA type.7-9  Our studies using publicly 

available NetMHC validation data from benchmarking studies10,11 have shown that the actual 

peptide binding profiles for different HLA subtypes are similar (Supplementary Figure 3A-D).  

Only peptides binding these verified HLA were considered for further analysis. 

 

Tissue Restriction: Expression Thresholds vs Pearson Gene Inclusion/Exclusion Model 

GvL restricted mHA were considered to be those mHA likely to be found in any prospective 

GvL tissue but unlikely to be found in all tissues commonly affected by GVHD.  Gene 

expression is likely the first order determinant for whether or not a protein’s peptide fragments 

are successfully processed and presented on cell surfaces within a given tissue.13 Normal bone 

marrow, testis, and AML sample tissues were considered ‘GvL tissues.’  Normal skin, 



hepatobiliary, and colonic tissues were considered ‘GvH tissues.’  AML tissue expression values 

were generated using mean RNAseq levels from 8 AML samples of various subtype with patient 

leukemia blasts taken at the time of diagnosis as part of an IRB approved protocol at MD 

Anderson Cancer Center.12 Normal tissue expression values were taken from Human Protein 

Atlas RNAseq data developed under EMBL-EBI ArrayExpress / Expression Atlas Experiment 

E-MTAB-2836, sampling 32 tissues from 122 healthy individuals.14 mHA peptides were filtered 

to ensure they had ‘high expression’ in at least one GvL tissue, defined as mHA parent gene 

expression greater than 50 transcripts per million (TPM).  Similarly, mHA peptides were filtered 

to ensure they had ‘low expression’ in all common GVHD tissues, defined as mHA parent gene 

expression less than 5 TPM. These expression thresholds are similar to the thresholds used by 

various RNAseq tissue expression databases. The Human Protein Atlas labeled genes greater 

than 50 FPKM as having ‘high expression’ and less than 10 FPKM as ‘low expression’ 

(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∗ 106 ∑ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺⁄ . There was 

no association between OS or relapse and the number of predicted GVL or total mHA (Figure 2)  

Determining ‘GvL restricted genes,’ (ie the set of genes from which GvL restricted mHA 

peptides arise) from tissue gene expression alone gives results similar to using the more 

complicated MHC associated peptide (MAP) gene inclusion/exclusion model developed by 

Pearson et al (Pearson model).14 The Pearson model takes into account many factors beyond 

gene expression, such as the potential for nonsense mediated decay as well as protein structure.  

For genes with ‘high’ and ‘low’ expression, the Pearson model largely reduces to a question of 

gene expression. When the Pearson model is applied to the clinical data set, there is only 1.1% 

disagreement regarding 4,410 ‘source’ GvL genes and only 3.9% disagreement regarding 1,111 

‘non-source’ GvH genes compared to relying on expression thresholds alone.  Integrating the 



Pearson model into the mHA prediction algorithm presented here yielded similar results 

(Supplementary Figure 7A-F) as when considering tissue expression alone, with the potentially 

notable exception of a newly statistically significant relationship between the number of GvH 

mHA and GVHD for MUD that we consider to be a preliminary finding (Supplementary 

Figure 7F). 

 

Predicting ‘Public’ GvL restricted mHA  

For a given predicted mHA to be considered ‘public,’ the genetic condition for a minor mismatch 

(gMM) giving rise to a mHA peptide, as well as its cognate HLA, would both need to occur with 

relatively high frequency in the general population. The vast majority of predicted mHA are 

‘private.’ Most HLA occur at low population frequency and most genetic variation is rare; less 

than 5% of known cSNPs have the appropriate allele frequency to result in ‘public’ mHA.  Even 

with an optimal gMM allele frequency, only 25% of MUD SCT would actually contain the 

gMM, with the rate being slightly depressed for MRD SCT.  Assuming optimal gMM allele 

frequency and HLA-A*02:01, which occurs with a high population frequency of 24%, an ‘ideal’ 

public mHA would be found in approximately 6% of allo-SCT. By filtering the set of predicted 

GvL restricted mHA for HLA that occur with a population frequency of at least 10% and for 

gMM recipient allele frequencies between 10% and 70% (resulting in a gMM population 

frequency of at least 10%), the resulting ‘public’ GvL restricted mHA should occur in at least 

1% of allo-SCT.15,16  Of the 13,917 genetic locations tested across our patient cohort, 102 cSNPs 

were predicted to lead to novel ‘public’ GvL restricted mHA peptides, variously presented on 7 

high frequency HLA (HLA-A*02:01, A*03:01, A*11:01, A*24:02, B*07:02, B*35:01, and 

B*44:03). These public GvL restricted mHA are common in SCTs (Supplementary Figure 8). 



Supplementary Methods for Confirming UNC-GRK4-V 

Tissue Expression of GRK4 mRNA 

Tissue specific RNA was purchased (Ambion, Applied Stem Cell) or purified from de-identified 

primary human AML cells obtained from the UNC Hematologic Malignancies Tissue 

Procurement Facility (UNC-TPF) using the Qiagen RNeasy kit. RT-PCR was performed on 100 

ng of each RNA sample using the SuperScript III One-Step RT-PCR kit (Ambion) with the 

following primers: left = 5’-ATCAACTTCAGGAGGCTGGA, right = 5’-

AGACACACCCGGTAGCAAAC. Thermocyler conditions for RT-PCR were RT: 50°C × 

30min; PCR: 94°C × 30s, 60°C × 30s, 68°C × 60s (40 cycles); final extension 68 °C × 5min. 

 

Protein expression of GRK4 

Human testis protein lysate was purchased from AbCAM, and protein lysates were prepared 

from primary human AML cells using RIPA buffer. 50µg of each lysate were loaded onto 4-15% 

pre-cast polyacrylamide gels (BioRad) and run in Tris/Glycine/SDS buffer. Proteins were 

transferred to a PVDF membrane. GRK4 was probed using mouse anti-GRK4 (clone A-5, Santa 

Cruz) and detected using ECL. β-Actin was probed using anti-β-actin (Sigma). 

 

Isolation of class I peptide epitopes 

U937 cells transfected with HLA-A*02:01 (U937.A2) were genotyped at rs1801058 by Sanger 

sequencing of a PCR product containing the cSNP: primers left = 5’-

GCGTTTCATTCTTGGGAACT, right = 5’-TCCTTACAGTAAACGGCATGA, thermocyler 

conditions: preheat: 94°C × 2min, PCR: 94°C × 30s, 60°C × 30s, 68°C × 3min (40 cycles), final 

extension: 68 °C × 7min. The cell line was found to be heterozygous. Roughly 2×108 U937.A2 



cells were grown in RPMI 1640 media, lysed and cleared by centrifugation. Anti-class I HLA 

antibody (W6/32) was added to the cleared lysate and incubated on a rocker at 4°C overnight. 

Protein G separose resin was added to the lysate for immunoprecipitation over 4 hours. The resin 

was washed and loaded onto columns. Peptide/HLA complexes were released by washing with 

10% acetic acid. Glacial acetic acid was then added dropwise to achieve a pH of ~2.5. The 

mixture was filtered through 5 kDA filters to isolate the ~1 kDA peptide epitopes.17,18 

 

DIMS-MS/MS targeted mass spectrometry for UNC-GRK4-V 

Pure UNC-GRK4-V peptide was diluted to 100 nM in water/acetonitrile/formic acid 

(50/50/0.1%) prior to nanoelectrospray-DIMS-MS. The tandem mass spectrometry (MS/MS) 

spectrum and EC for optimal transmission of UNC-GRK4-V were recorded.19,20 The peptide 

epitope pool was desalted using a ZipTip (C18, 0.6μL) and directly nano-electrosprayed into the 

DIMS-MS with the EC set for optimal transmission (86 V/cm). The MS/MS spectrum of the 

UNC-GRK4-V peptide from the epitope pool was compared to that of the pure UNC-GRK4-V 

peptide, and a Fit score was calculated based on the agreement between the reference and 

experimental UNC-GRK4-V MS/MS spectra using Bruker DataAnalysis. The Fit score was 

calculated as the sum of the product of peak intensities of the experimental unknown and library 

spectrum squared, divided by the product of the sum of the squared peak intensities in the library 

spectrum and the sum of the squared peak intensities in the experimental spectrum where the 

library spectrum has peak intensity greater than zero.  

𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  1000 ∗
(∑𝑢𝑢 ∗ 𝑙𝑙)2

  ∑ 𝑙𝑙2 ∗ ∑ 𝑢𝑢2𝑙𝑙>0
 

 

 



Synthesis of UNC-GKR4-V/HLA-A*02:01 tetramers 

HLA-A*02:01 containing a biotinylation site and β2 microglobulin were overexpressed in E. coli 

and purified by FPLC as previously reported.21 The HLA-A*02:01, β2 microglobulin and UNC-

GRK4-V peptide were combined to induce folded UNC-GRK4-V/HLA-A*02:01 monomers. 

Folded monomers were purified by FPLC. The purified monomers were biotinylated by BirA 

ligase. The biotinylated monomers were then complexed with APC-avidin to produce UNC-

GRK4-V/HLA-A*02:01 tetramers. 

 

Detection of UNC-GRK4-V specific CD8+ T cells in post-SCT samples 

Post-SCT peripheral blood mononuclear cell (PBMC) samples from HLA-A*02:01 expressing 

patients and donors were genotyped for the rs1801058 cSNP, under IRB approved protocols Lab 

99-062 for M.D. Anderson samples and LCCC-0824 for UNC samples. The PBMC samples 

were thawed, washed in PBS and split so CD8+ T cell avidity to both a negative tetramer and the 

UNC-GRK4-V/HLA-A*02:01 tetramer could be measured. The washed PBMC were incubated 

in DPBS + 0.5% BSA at 4°C for 30 min with the following antibodies and stained: DAPI 

live/dead stain, CD4-FITC, CD14-FITC, CD16-FITC, CD19-FITC (dump channel), CD8-PE, 

tetramer-APC (either negative tetramer or UNC-GRK4-V/HLA-A*02:01 tetramer). All samples 

were analyzed on a MacQuant analytical flow cytometer, and data were analyzed using FlowJo 

software. 
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Supplementary Figure 1: Additional Patient Cohort Survival Outcomes. (A) There was a 

statistically significant difference in OS according to age (p = 0.0027).  (B-D) There was no 

significant difference in OS based on SCT source (peripheral blood vs bone marrow) or patient 

sex (female vs male) or DRP gender mismatch (female donor into male recipient vs all other 

combinations). 

 

Supplementary Figure 2: NetMHCpan Performance Testing. (A, B) There was no 

statistically significant correlation between the number of training peptides during NetMHCpan 

performance testing and the sensitivity or specificity with which NetMHCpan predicted 

previously validated experimental peptide HLA binding affinity, though the data does trend 

toward more precision and accuracy with an increased number of test peptides. (C, D) There was 

a statistically significant correlation (and negative correlation, respectively) between the percent 

of test peptides experimentally proven to bind stronger than 500nM and the sensitivity and 

specificity of the NetMHCpan algorithm for predicting binders.  For HLA with training sets 

having a higher percentage of peptide HLA ‘binders,’ the NetMHCpan algorithm had increased 

sensitivity and decreased specificity (p = 5.7e-8 and p = 6.1e-17, respectively). 

 

Supplementary Figure 3: NetMHCpan HLA Verification. (3A,B) HLA-A*02:01 has a 

similar experimental and predicted peptide binding profile to HLA-A*02:02 and (3C, D) to 

HLA-A*02:03. (3E) HLA-A*02:01, one of the most well studied alleles, has predictably high 

accuracy. (3F) HLA-B*51:01 barely met inclusion criteria but still retained good accuracy. (3G) 

HLA-B*15:02 was one of the few Class I HLA alleles that did not meet inclusion criteria and 

has significantly worse accuracy. 



Supplementary Figure 4: GRK4 Expression Across Tumor Types in TCGA. This violin plot 

compares GRK4 expression (RSEM upper quartile normalized log transformed read counts) 

across tumor types in TCGA. GRK4 is expressed at a high level in AML (“LAML”) compared to 

many other cancer types.  Glioma and glioblastoma tumors also had relatively high expression of 

GRK4 compared to other tumor types.  

ACC Adrenocortical carcinoma 
BLCA Bladder Urothelial Carcinoma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
CHOL Cholangiocarcinoma 
COAD Colon adenocarcinoma 
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
ESCA Esophageal carcinoma 
GBM Glioblastoma multiforme 
HNSC Head and Neck squamous cell carcinoma 
KICH Kidney Chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LAML Acute Myeloid Leukemia 
LGG Brain Lower Grade Glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
MESO Mesothelioma 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and Paraganglioma 
PRAD Prostate adenocarcinoma 
READ Rectum adenocarcinoma 
SARC Sarcoma 
SKCM Skin Cutaneous Melanoma 
STAD Stomach adenocarcinoma 
TGCT Testicular Germ Cell Tumors 
THCA Thyroid carcinoma 
THYM Thymoma 
UCEC Uterine Corpus Endometrial Carcinoma 
UCS Uterine Carcinosarcoma 
UVM Uveal Melanoma 

 

The TCGA study abbreviations can be found at https://gdc.cancer.gov/resources-tcga-users/tcga-

code-tables/tcga-study-abbreviations. 

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations


Supplementary Figure 5: Patient outcomes according to mHA number. (A-B) There was no 

significant difference in OS based upon the number of predicted mHA in MRD transplants (A) 

or MUD transplants (B). (C-D) There was also no significant difference in relapse rate based on 

the number of predicted GVL mHA in MRD transplants (C) or MUD transplants (D). (E) There 

is no association between number of total Class I GvL mHA and relapse for MRD or MUD. (F) 

There is no association between number of total Class I GvH mHA and GVHD. 

 

Supplementary Figure 6: Characteristics of Class II mHA with Patient Outcomes.  

(A) There is a large difference in the number of peptides that can bind with high affinity to class 

I HLA (0.09 to 1.32 per gMM) and class II HLA (12.4 to 27.3 per gMM). (B) MUD SCT is 

associated with roughly twice as many class II mHA compared to MRD SCT. (C) There is no 

association between number of Class II GvL mHA and relapse for MRD or MUD. (D) There is 

no association between number of Class II GvH mHA and GVHD. 

 

Supplementary Figure 7: Characteristics of GvL and GvH mHA using the Pearson Model. 

(A, B) The distributions for Class I and Class II GvL mHA determined with the Pearson model 

closely mirror the distributions of the underlying unrestricted mHA. (C) The number of GvL 

mHA correlates more tightly with the number of GvH mHA when determined with the Pearson 

model than with expression thresholds alone (Main Figure 3D). (D) The PFS curve does not 

significantly depend on the number of GvL mHA when determined with the Pearson model or 

with expression thresholds alone.  (E, F) There is a significant association between the number of 

GvH mHA and GVHD in MUD when GvH mHA are determined with the Pearson Model (n = 

29, p = 0.01) that is not seen with expression thresholds alone (Main Figure 3F). 



Supplementary Figure 8: Coverage of Study Population by Public GvL mHA Targets. 

Considering the most frequent GvL restricted mHA predicted in our study population first, the 

cumulative fraction of study DRPs that had at least one predicted GvL restricted mHA target 

rapidly approached 100% after considering only 12 of the 102 predicted public GvL restricted 

mHA. This curve approaches 100% somewhat faster than would a random sample of SCT DRPs 

as everyone in the study population possessed HLA-A*02:01 which is associated with a 

disproportionate fraction of the public GvL restricted mHA targets predicted by this study. Of 

the 102 predicted public GvL restricted mHA, 53 mHA had at least one peptide associated with 

HLA-A*02:01, and 92 mHA had at least one peptide associated with HLA-A*03:01, A*11:01, 

A*24:02, B*07:02, B*35:02, or B*44:03).    
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