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Supplemental Figure S1 

A. Schematic of VEGF actions in the renal glomerulus. Left side: Under 

physiological conditions, VEGF is secreted from podocytes (red) into the primary 

urine. From theoretical considerations [1], about 30% of the secreted VEGF are 

estimated to be back-filtered by diffusion (orange arrows) across the glomerular filtration 

barrier against the flow of the filtrate (blue arrows) to endothelial cells. Right side: When 

VEGF levels are artificially increased within the blood or in podocytes, glomeruli undergo 

hypertrophy [2]. B. Model of endothelial plasticity to detect VEGF levels in vivo. 

Increasing VEGF action induces a specific sequence of morphological changes in 

endothelial cells: Continuous endothelial cells without pores > diaphragmed fenestrae 

(PV-1 positive) > open fenestrae (PV-1 negative). Experimental validations of 

endothelial changes in response to changes in VEGF activity are indicated (for 

references see reference list in the main body of the manuscript, ref. 54; Roberts WG, 

Palade GE. Increased microvascular permeability and endothelial fenestration induced 

by vascular endothelial growth factor. J Cell Sci 1995;108 (6):2369-2379).   

 

  



supplemental Figure S2
serial sections of an incidental atubular glomerulus 
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Supplemental Figure S2 

Serial immunostainings for PV-1 in human biopsies 

A. Anti-PV-1 staining revealed ubiquitous expression of PV-1 in incidental atubular 

glomeruli (as defined by serial sections, a smaller glomerular tuft and absence of tubular 

orifice). (Scale bars 50 μm)  
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Supplemental Figure S3 

Progressive sealing of the efferent arteriole correlates with decreasing effective 

filtration flux. A-B. The glomerular endothelium shows a specific sequence of 

morphological changes towards the efferent arteriole (first described in [3]): 1. Open 

fenestrae (A’, dotted line), 2. transition to diaphragmed fenestrae within the same 

endothelial cell (A’, continuous line, B, arrows). 3.  Finally, endothelial cells become 

continuous and filtration is prevented (arrowheads in B). B, Schematic of endothelial 

changes (as described in [3]). Note that changes in endothelial morphology are 

independent of podocyte foot process formation (A’, white arrowheads). C. Schematic 

of the pressure profiles correlate with endothelial morphology along a filtering 

fenestrated capillary (not to scale). Towards the distal end, effective filtration flux is 

reduced by the increasing oncotic pressure of the retained plasma proteins (termed 

filtration pressure reduction or equilibrium).  

 

 

  



Mathematical Model for VEGF backfiltration 

Following the electrokinetic model [4], we assume that VEGF backfiltration is governed 

by the transport mechanisms of diffusion, convection, and electromigration (also known 

as electrophoretic effects). The total flux (J) of VEGF is thus given by the sum of a 

diffusive (JD), a convective (JC), and an additional electrophoretic (JE) flux, i.e., 

(1) J(x) = JD(x) + JC(x) + JE(x),       

where x in (0,L) denotes the spatial position within the filter and L is the thickness of the 

filter. Since VEGF does not accumulate within the renal filter, mass conservation yields 

that 

(2) J(x) = const., or equivalently  d/dx J(x) = 0. 

Denoting the concentration of VEGF in the plasma across the filter by C(x), the diffusive 

flux reads 

(3) JD(x) = - D0 HD d/dx C(x),  

where D0 is the diffusion coefficient determined by the Stokes-Einstein equation 

assuming a spherical particle diffusing through a liquid medium at a low Reynolds 

number,  

(4) D0 = KB T /(6 π η rVEGF). 

Here, KB is Boltzmann’s constant, T is the temperature (37°C = 310.15K), η is the 

viscosity of the solvent, and r is the Stokes radius of the molecule. 

The Stokes-Einstein relation does not account for the pore-structure of the membrane 

with pores that are from its size similar to the VEGF molecule. As such, the standard 

diffusion coefficient generally overpredicts mass transport. An analytical model for pore-

diffusion (see Equ. (16) in [5]) is used to estimate hindrance factors HD that account for 

the diffusive transport in small pores, with  



HD = 1 + 9/8 λ ln(λ) - 1.56034 λ + 0.528155 λ2 + 1.91521*λ3 - 2.81903*λ4   
        + 0.270788*λ5 + 1.10115*λ6 - 0.435933*λ7, 
 

 where λ is the particle-to-pore ratio (λ = rVEGF / rpore). 

 

The convective flux is directly proportional to the velocity and given by  

(5) JC(x) =  HC vH2O C(x),  

where HC is the hindrance factor for convection that accounts again for the pore 

structure of the membrane (taken from [5] Equ. (18)), given by 

 HC = (1-λ)2 (1 + 3.867 λ - 1.907 λ2 - 0.834 λ3) / (1 + 1.867 λ - 0.741*λ2). 
 
The flow velocity of the solvent across the filter vH2O is proportional to the pressure 

difference.  

Finally, the electrophoretic flux is given by 

(6) JE (x) = HE µE E C(x),  

where  E = ΔΦ/L is the electric field, with ΔΦ denoting the electric potential difference, µE 

= q / (6 π η rVEGF) is the electrophoretic mobility, and q = zVEGF e is the charge of the 

molecules with valence z and elementary charge e. An analytic approximation for the 

hindrance factor of the electrophoretic flux is not given in literature[5]. In agreement with 

previous works, we assume that the hindrance factor for the electrophoretic flux is 

equivalent to the one for convection (HE=HC). A detailed discussion on this assumption 

is given in[4, 6].  

For the case that the electric field results from the streaming potential, the strength of 

the electric field E depends on the velocity vH2O. The streaming potential in a capillary of 

radius rpore in a dielectric material can be estimated on an analytical basis (see 

Electrochemical Systems, Third Edition, by John Newman and Karen E. Thomas-Alyea, 

Wiley Interscience) and is given by 



(7) Estr = -8vH2O ζε/( rVEGF
2κeff ) I2(rpore)/I1(rpore), 

where ζ is the streaming potential, ε is the dielectric constant of the liquid, κeff the 

effective electric conductivity of the electrolyte, and I2(rpore)/I1(rpore) denote the modified 

Bessel function of the first kind of order one and two in dependence of the pore-radius 

rpore. As most of the coefficients in this equation are unknown, we only make use of the 

general linear relationship between the streaming potential and the velocity vH2O. From 

eq. (7), the known potential difference of -0.2 mV at a glomerular filtration rate of GFR = 

180 liters/day, and the relation vH2O = GFR / AFilter with AFilter being the filter surface area 

we approximate the electric field with 

(8) Estr = c1 vH2O, 

where the constant c1 yields -3.2*108 with unit Vs/m². 

A first order differential equation for the unknown concentration, C(x), is obtained if the 

different flux contributions (eqn. 3,5, and 6) are used in equation (2), which yields  

(9) (HC + HE µE c1) vH2O d/dx C(x) = d/dx(D0 HD d/dx C(x)) 

This is the classical diffusion-advection equation that can be rewritten in dimensionless 

form as 

(10) PeC+E  d/dx C(x) = d/dx(d/dx C(x)) 

With the Peclet number relates all fluxes proportional to the velocity (convection and 

electromigration) to the diffusive fluxes 

(11) PeC+E  = (HC + HE µE c1) vH2O/ D0 HD 

The boundary conditions behind the filter is  

(12) C(L) = CPod   

Here, CPod denotes the concentration of VEGF at the level of the podocytes.  Note that 

the concentration CPod can take any value because the solution is linear dependent on 



this boundary condition. The sieving coefficient is independent from the choice of CPod. 

The second boundary condition is connected to the VEGF concentration in the 

capillaries which rises from Cinlet to Coutlet. At any position y in the capillary, the 

concentration is given by Ccapillary(y) such that the boundary condition in front of the filter 

yields 

(13) C(0,y) = Ccapillary(y) 

The differential equation describing the increase in VEGF in the capillary along the y-

coordinate is given later. The boundary conditions (12) and (13) allow to define a 

dimensionless concentration Φ=[C(Ξ)-C(0)]/[C(L)-C(0)], where Ξ is the dimensionless 

coordinate Ξ = x/L. The differential equation has the solution 

(14) Φ = [exp(PeC+E Ξ) – 1]/exp(PeC+E  - 1). 

With the given concentration, the total flux of VEGF in front of the filter (x=0) is 

(15) J(x=0,y) = (HC + HE µE c1) vH2O C(0,y) - D0 HD PeC+E /L/(exp(PeC+E)-1) (Cpod-C(0,y)) 

 

In the two-dimensional model, the total flux of VEGF contributes to an increase in VEGF 

concentration in the capillary. The following differential equation describes the process: 

dC/dy vcapillary π r²capillary = -J(x=0,y) 2π rcapillary.  

The negative sign states that the flux J(0) leaves the control volume of the capillaries 

and results from the definition of x. The VEGF concentration in the systemic circulation 

is negligible [1]) such that the boundary condition at the inlet of the capillary reads 

C(y=0) ≈ 0. 

From the definition of the individual fluxes Ji(x) (i = D, C, E) and the solution (14) we can 

compute the averaged fluxes in front of the filter defined by 

(15) Jav = 1/H ∫0Lcapillary J(x=0,y) dy.  



In a similar way, the different flux contributions JD,av, JC,av, and JE,av can be calculated in 

front and also behind (x=Lfilter) the filter. 

 



Glossary 

Afilter filter surface [m2] 

C1 constant decoupling the electric field E from the velocity vH2O [Vs m-1] 

Cpod concentration of VEGF at the podocyte 

Ci(x)  concentration of VEGF [mol m-3] across the length x of the filter 

D0 diffusion coefficient [m2 s-1] 

ΔΦ  potential difference [V] 

e elementary charge 1.6eE-19 [C] 

ε  dielectric constant of the liquid [F m-1] 

E  electric field strength [V/m-1] 

η  eta, viscosity [Pa s] 

Φ dimensionless concentration [-] 

GFR  glomerular filtration rate [if not denoted otherwise: liters/day] 

HC  hindrance factor for convection [-] 

HD  hindrance factor for diffusion [-] 

Ji flux i of VEGF across the filtration barrier [mol s-1 m-2] 

KB  Boltzmann's constant [J/K] 

L  length (thickness) of glomerular filter [m] 

PeC+E Peclet number including convection and electrophoretic mobility 

q charge of a molecule, q = z e 

rpore  radius of pore [m] 

rVEGF  effective Stokes-Einstein radius of solute [m] 

θalb  sieving coefficient (urinealbumin * perfusateinulin) / (serumalbumin * urineinulin)  

[dimensionless]  



T  temperature [K] 

µE  electrodynamic mobility [m2/s] 

vH20  velocity of solute [m/s] 

vcapillary plasma velocity in the capillary [m s-1] 

x coordinate in the direction of the filter [m] 

y coordinate in the direction of the capillary [m] 

zVEGF  valence of a molecule indicating its charge [dimensionless number] 

ζ zeta potential [V] 

Ξ dimensionless coordinate [-] 

 

 

Numerical Parameter Values 

Afilter 1 m2 (estimated from [7]) 

c1 -1/9*10-5 V*d/l 

e 1.602*10-19 C 

η 10-3 Pa*s 

KB 1.3806504*10-23 J K-1 

L 0.3*10-6 m  

Lcapillary 
26.3*10-6 m (estimated from [7]) 

rpore 
4.18*10-9 m 

rVEGF 2.7*10-9 m 

T 310.15 K 



vcapillary 104*10-6 m s-1 

z 10 
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