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Supplementary Materials 

 

Materials and Methods 

 

Participants 

 

For the Primary cohort and the Replication Cohort, children with ASD received an autism 

diagnosis based on scores from the Autism Diagnostic Interview-Revised (ADI-R) (Lord et al., 

2000) and/or the Autism Diagnostic Observation Schedule (ADOS) (Luyster et al., 2009)  

following criteria established by the National Institute of Child Health & Human 

Development/National Institute of Deafness and Other Communication Disorders Collaborative 

Programs for Excellence in Autism (Lainhart, 2006). Children with ASD were screened through 

a parent phone interview and excluded if they had any history of known genetic, psychiatric, or 

neurological disorders (e.g., Fragile X syndrome or Tourette’s syndrome), or were currently 

prescribed anti-psychotic medications. TD children were screened and excluded if they or a first-

degree relative had developmental, language, learning, neurological, psychiatric disorders, or 

psychiatric medication usage, or if the child met the clinical criteria for a childhood disorder on 

the Child Symptom Inventory – Fourth Edition or Child and Adolescent Symptom Inventory. All 

participants underwent a battery of standardized neuropsychological assessments including 

WASI (Wechsler Intelligence Scale for Children–3rd Edition, Wechsler Intelligence Scale for 

Children–4th Edition, or Wechsler Abbreviated Scale of Intelligence (The Psychological, 1999)), 

and the Wechsler Individual Achievement Test (WIAT-II; Wechsler, 2001). Full Scale IQ was 

determined from scores on the WASI. The primary and the replication cohorts were part of 
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separate data collection efforts. Specifically, the primary cohort HARDI and fMRI data were 

obtained as part of a study investigating brain systems underlying social information processing 

in autism while the secondary cohort HARDI data were obtained as part of a study examining 

structural connectivity of large-scale brain networks in autism. Additionally, Primary and 

Replication cohort data were obtained from two different 3-Tesla GE Signa MRI scanners 

located in adjacent suites in the Stanford Richard M. Lucas Center for Imaging. 

 

Primary Cohort  

HARDI. Twenty-four children with ASD and twenty-four age-, gender-, and IQ-matched TD 

children were included in the HARDI part of this study. Children with ASD (23 males, 1 

females) ranged in age from 8 to 13 years (mean age: 10.62) with an IQ range of 80 to 145 

(mean IQ: 113.67), and TD children (24 males, 0 females) ranged in age from 8 to 13 years 

(mean age: 10.39) with an IQ range of 87 to 146 (mean IQ: 121.29) (Supplementary Table 1). 

 

fMRI. Sixteen children with ASD and twenty age-, gender-, and IQ-matched TD children were 

included in the fMRI part of this study. All participants completed an fMRI task involving 

perception of social and non-social stimuli. Children with ASD (13 males, 3 females) ranged in 

age from 8 to 13 years (mean age: 10.82) with an IQ range of 83 to 139 (mean IQ: 119.23); the 

TD children (20 males, 0 females) ranged in age from 8 to 13 years (mean age: 10.46) with an IQ 

range of 87 to 146 (mean IQ: 126.06) (Supplementary Table 2, Supplementary Table 4). As 

noted below, AROMA (Pruim et al., 2015) was used on fMRI data from each participant to 

correct for potential motion artefacts, and the two groups were matched on mean framewise 
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displacement, the six motion parameters and variance removed by AROMA (Supplementary 

Table 4).      

 

Replication Cohort  

HARDI. Seventeen children with ASD and seventeen age-, gender-, and IQ-matched TD 

children were included in the HARDI part of this study. Children with ASD (15 males, 2 

females) ranged in age from 8 to 13 years (mean age: 10.60) with an IQ range of 85 to 150 

(mean IQ: 107.59); the TD children (15 males, 2 females) ranged in age from 8 to 13 years 

(mean age: 10.57) with an IQ range of 93 to 136 (mean IQ: 116.82) (Supplementary Table 1).  

 

Imaging 

Structural MRI 

Structural MRI acquisition  

A high resolution T1-weighted spoiled gradient recalled (SPGR) inversion recovery 3D MRI 

sequence was acquired for selecting the regions of interest. The following parameters were used: 

TI = 400 ms, TR = 5.9 ms; TE = 1.952  ms; flip angle = 11o ; 22 cm field of view; 166 slices in 

axial plane; 256 × 192 matrix; 2 NEX, acquired resolution = 0.9375 × 0.9375 × 1.0 mm  

 

 

Structural MRI Processing  

MR images were processed with FreeSurfer (http://surfer.nmr.mgh.harvard.edu, v5.3) to obtain 

the NAc segmentation for each subject in their native space (Fischl et al., 2002). Prior to cortical 

reconstruction, all images were resampled to a common isotropic voxel size of 1x1x1mm.  

http://surfer.nmr.mgh.harvard.edu/
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To facilitate ROI generation for functional analyses, the MNI template T1w volume was co-

registered individual T1w images using ANTs. The registration procedure comprised four stages 

each of rigid and affine co-registrations (# iterations = 10000, 10000, 11110, 11110, shrink 

factors = 8, 4, 2, 1, smoothing sigmas = 4, 3, 2, 1) using the NMI cost metric, followed by three 

stages of SyN (# iterations = 100, 30, 20, shrink factors = 8, 4, 2, smoothing sigmas = 4, 2, 1) 

using NMI and CC as the cost metrics.  

 

HARDI  

HARDI acquisition  

The HARDI pulse sequence was a diffusion-weighted single-shot spin-echo, echo planar imaging 

sequence (TE = minimum; TR = 5.3 s; field of view = 260 mm; matrix size = 128 × 128; 

bandwidth = ±250kHz; partial k-space acquisition). The following parameters were used: 50 

axial, 2.9-mm thick slices (no skip) for 2 b values, b = 0 and b = approximately 2500 s/mm2The 

high b value was obtained by applying gradients along 150 different diffusion directions.  

 

HARDI preprocessing  

HARDI data were preprocessed to simultaneously correct for head motion and eddy-current-

induced distortions using the method developed by Rohde et al.  implemented in mrDiffusion 

(Rohde et al., 2004), and resampled to 2mm isotrophic voxels using a spline-based interpolation. 

Our acquisition does not include the blip up/down (reverse phase encoded) acquisitions 

necessary to perform susceptibility distortion correction (i.e. TOPUP). The diffusion gradient 

vectors were rotated to preserve their orientation with respect to anatomy. Response functions 



5 

 

(RFs), which are used as kernel during the constrained spherical deconvolution (CSD) step, for 

each participant were estimated using the “Tournier” algorithm with default parameters in 

MRtrix3’s dwi2response. CSD was then performed using the computed RFs to estimate fiber 

orientation distribution functions (fODFs) with a maximum spherical harmonic degree of ten 

(Tournier et al., 2012).  

 

HARDI quality control  

Systematic differences in HARDI data quality can lead to spurious findings across groups 

particularly when comparing children with ASD, who may be more prone to head motion during 

acquisition, to their typically developing peers (Koldewyn et al., 2014; Yendiki et al., 2014). 

Subjects with extreme excessive motion were excluded, and we used the approach of Yendiki 

and colleagues (Benner et al., 2011; Koldewyn et al., 2014), to quantify data quality and match 

across the two groups. Specifically, we computed four measures of HARDI data quality: (1) 

average translation, (2) average rotation, (3) percent bad slices, and (4) average dropout score 

(Supplementary Table 3). Importantly, TD and ASD groups did not differ significantly in any of 

the four measures, in both cohorts. 

 

HARDI ROI selection  

ROIs for the NAc and Amygdala were extracted from the FreeSurfer-based segmentation of each 

individual’s T1-weighted image. To transform these ROIs to diffusion space, we first performed 

co-registration of the T1 and FA images, using ANTs. The registration procedure comprised four 

stages of rigid alignment (# iterations = 1000, 500, 250, 100, shrink factors = 8, 4, 2, 1, 

smoothing sigmas = 3, 2, 1, 0) followed by three stages of Symmetric Normalization (# iterations 
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= 100, 50, 30, shrink factors = 3, 2, 1, smoothing sigmas = 2, 1, 0), each using NMI as the cost 

metric. Next, the T1-space NAc and Amygdala ROIs were warped to diffusion space using the 

inverse of the transformations derived from the co-registration of the FA and T1 images 

described above. A white matter mask was also extracted and warped to diffusion space using 

the same transformations. NAc and Amygdala ROIs were then dilated once into the white matter 

to ensure feasibility of tractography.  

 

ROIs for the VTA were generated in MNI space from midbrain peaks in the “REWARD” 

(Delgado et al., 2000) contrast z-map distributed in the R440 data released as part of the Human 

Connectome Project (Van Essen et al., 2012). This approach allowed us to reliably identify VTA 

voxels that are most sensitive to reward. The z-map was rotated to bring the midbrain section 

containing the VTA into the plane of image, inclusively masked using a 2D MNI-template 

transform. The transform was generated as follows:  First, we delineated the midbrain section 

containing the VTA. by reorienting the entire brain volume to obtain an axial section 

encompassing the mammillary body and the superior colliculi following previously suggested 

procedures (Eapen et al., 2011). Then, we used a region growing approach to segment the 

midbrain from non-midbrain structures. The same procedure was also applied to the Montreal 

Neurological Institute (MNI) template brain to create a normalized reference space for the 

midbrain sections. The resulting template was thresholded at the level z >= 6, masked to exclude 

posterior voxels (y < −20mm), symmetrized by reflecting across the Z-Y plane, and binarized. 

Each participant’s midbrain section was co-registered to that of the MNI template using 

Advanced Normalization Tools (ANTs) (Avants et al., 2011). Separate registrations were carried 

out in 2D for each slice, optimizing parameters for a set of linear transformations (translation, 
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rigid, affine) followed by a nonlinear transformation (Symmetric Normalization [SyN]). For each 

linear transformation, three stages were performed with numbers of iterations = 100000, 111100, 

111100, shrink factors = 3, 2, 1, and smoothing sigmas = 4, 2, 1, respectively, and normalized 

mutual information (NMI) as the cost metric. SyN was carried out in three stages using number 

of iterations = 100, 30, 20, shrink factors = 4, 2, 1, and smoothing sigmas = 1, 0.5, 0, 

respectively, and a combined cost metric comprising NMI and CC. Finally, to project the ROIs 

to individual subject HARDI space, ROIs were first warped to the space of each subject’s 

midbrain section using the inverse parameters from the co-registration to the 2D MNI midbrain 

section. These 2D ROIs were placed in the space of the (3D) reoriented T1w images described 

above, then projected to HARDI space by prepending the linear transformation (derived from 

rotating the T1 to place the midbrain section in the plane of the image) to the T1-to-FA 

transformations.  

 

HARDI Tract analysis  

Probabilistic tractography was performed by seeding 10,000 points in each voxel of an ROI and 

generating streamlines using the iFOD2 algorithm (Tournier JDC and Connely, 2010) in 

MRtrix3. iFOD2 is an improved probabilistic streamlines tractography by 2nd order integration 

over fibre orientation distributions. iFOD2 is also the recommended approach in Mrtrix3. In our 

case, we iFOD2 with the following default parameters: step size = 0.5*voxel size = 1mm, angle 

= 90deg * step size / voxel size = 90deg * 1mm / 2mm = 45 deg, FOD amplitude cutoff = 0.1. 

All valid streamlines, according to MRTrix3 criteria, were included in subsequent analyses. 

Fiber density – the source- and target-volume-normalized fraction of streamlines emanating from 

the seed ROI and intersecting the ipsilateral target ROI – was then computed for each child and 
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used as a measure of structural integrity. In separate analyses, the NAc was seeded and targets in 

the VTA and Amygdala were used to measure NAc-VTA and NAc-Amygdala fiber densities, 

respectively. These fiber density values were compared between the two groups. 

 

Relationship between structural connectivity and ASD symptom severity: Multivariate 

analysis 

We used multivariate sparse regression (LASSO) combined with cross-validation analysis 

(Tibshirani, 1996) to determine the relationships between the structural connectivity and the 

ASD symptom severity.  Our machine learning approach overcomes several shortcomings of 

conventional linear regression methods: The LASSO regression algorithm produces more 

interpretable solutions as it employs the L1 regularization procedure that drives the small 

magnitude coefficients/weights to zero thereby performing automatic feature selection. This 

regularization procedure also prevents over-fitting of the data and therefore improves the 

generalizability of the regression model. The use of cross-validation further prevents over-fitting.  

 

ADI-R Social Interaction subscale score, ADI-R Communication and Language subscale score, 

ADI-R Restricted and Repetitive Behaviors subscale score, age, and IQ as independent variables 

and NAc-VTA fiber density as dependent variable were used as the input to a LASSO regression 

algorithm. Leave-one-out-cross-validation (LOOCV) procedure was used to select the L1 

regularization tuning parameter lambda. In LOOCV, data are divided into N folds (where N is 

the number of subjects). LASSO regression models for a range of lambda values are built using 

N – 1 folds, leaving out one sample. The left out sample is then used as a validation set for these 

regression models. The above procedure is repeated N times by leaving out one sample each 
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time, and finally an optimal lambda is selected. For the optimal lambda value, beta coefficient 

and the associated P value for each independent variable is then computed. The aforementioned 

procedures were implemented using the R packages glmnet1 and selectiveInference2. 

 

fMRI 

fMRI acquisition  

A total of 31 axial slices (4.0mm thickness, 0.5mm skip) parallel to the ACPC line and covering 

the whole brain were imaged using a T2*-weighted gradient echo spiral in-out pulse sequence 

(Glover and Law, 2001) with the following parameters: TR = 2000 ms, TE = 30 ms, flip angle = 

80°, 1 interleave, for the duration of a 4-minute task scan. Head movement was minimized 

during scanning by small cushions. 

 

fMRI preprocessing  

A linear shim correction was applied separately for each slice during reconstruction using a 

magnetic field map acquired automatically by the pulse sequence at the beginning of the scan. 

Functional MRI data were then analyzed using SPM8 analysis software 

(http://www.fil.ion.ucl.ac.uk/spm). Images were realigned to correct for motion, corrected for 

errors in slice-timing, spatially transformed to standard stereotaxic space (based on the Montreal 

Neurologic Institute (MNI) coordinate system), resampled every 2 mm using sinc interpolation 

and smoothed with a 6mm full-width half-maximum Gaussian kernel to increase the signal-to 

noise ratio prior to statistical analysis. Translational movement in millimeters (x, y, and z) and 

rotational motion in degrees (pitch, roll, and yaw) were calculated based on the SPM parameters 

                                                 
1 https://cran.r-project.org/web/packages/glmnet/index.html 

2 https://cran.r-project.org/web/packages/selectiveInference/index.html 

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/selectiveInference/index.html
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for motion correction of the functional images in each subject. Motion correction was performed 

on the smoothed images, using an Independent Component Analysis (ICA) – based AROMA 

method, using procedures described in (Pruim et al., 2015). 

 

fMRI regions of interest (ROI) selection  

Regions of interest for the VTA were generated from the midbrain peaks in the “REWARD” 

(Delgado et al., 2000) contrast z-map distributed in the R440 data released as part of the Human 

Connectome Project, using procedures described above. Regions of interest for the NAc and 

Amygdala were generated by inverting and applying the MNI to T1 transforms (described in the 

Section: T1-weighted MRI Processing) to the subject-space NAc and Amygdala ROIs, averaging 

across subjects and thresholding at 0.5 to create a probabilistic group-consensus MNI-space NAc 

and Amygdala ROI.  

 

fMRI Signal-to-Noise Ratio (SNR) analysis  

We computed SNR of the fMRI signal in each of the ROIs – NAc, VTA, Amygdala and 

compared the computed SNR values between the ASD and TD groups using two sample t-tests. 

SNR of the fMRI signal in a ROI was calculated as the ratio of mean of the ROI fMRI timeseries 

and standard deviation of the ROI fMRI timeseries. 

 

fMRI connectivity analysis  

The regional fMRI timeseries was computed for each of the ROIs – NAc, VTA, Amygdala – by 

computing the first eigenvector of timeseries of all the voxels within each region. We examined 

the functional connectivity between the regions of interest using the generalized 
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psychophysiological interaction (gPPI) model (McLaren et al., 2012), with the goal of 

identifying connectivity between the NAc and VTA in response to social (face) and non-social 

(scene) stimuli. We used SPM gPPI toolbox for this analysis. gPPI is a method that is more 

sensitive than PPI to context-dependent differences in the connectivity (McLaren et al., 2012). 

Unlike dynamical causal modeling (DCM), gPPI does not use a temporal precedence model (x(t+ 

1) ~ x(t)) and therefore makes no claims of causality. At the individual subject level, the regional 

timeseries from each ROI is deconvolved to uncover neuronal activity and then multiplied with 

the task design waveforms to form an interaction term. This interaction term is then convolved 

with the hemodynamic response function (HRF) to form the gPPI regressor, and the resulting 

timeseries of one ROI is regressed against the other two ROIs. This final step is repeated for each 

ROI yielding functional connectivity values between the NAc and the VTA, and the NAc and the 

Amygdala, in response to face and scene stimuli respectively. The aforementioned model is 

summarized in Equation 1 and Equation 2.  

 

𝑉𝑇𝐴 ~𝑁𝐴𝐶 + 𝑐𝑜𝑛𝑣(𝑑𝑒𝑐𝑜𝑛𝑣(𝑁𝐴𝑐) ∗ 𝑡𝑎𝑠𝑘𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚)                                                                      (1) 

 

and similarly, 

 

𝐴𝑚𝑦𝑔𝑑𝑎𝑙𝑎 ~𝑁𝐴𝐶 + 𝑐𝑜𝑛𝑣(𝑑𝑒𝑐𝑜𝑛𝑣(𝑁𝐴𝑐) ∗ 𝑡𝑎𝑠𝑘𝑤𝑎𝑣𝑒𝑓𝑜𝑟𝑚)                                                        (2) 

 

 

Given our goal of contrasting differential functional connectivity responses to social vs. non-

social stimuli, we performed between group t-tests on the differences between the computed 

functional connectivity values for faces and scenes.  

 

Relationship between functional connectivity and ASD symptom severity: Multivariate 

analysis 
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We repeated the multivariate sparse regression combined with cross-validation analysis with 

strength of functional interactions between the NAc and VTA in response to social stimuli as 

dependent variable, and ADI-R Social Interaction subscale score, ADI-R Communication and 

Language subscale score, ADI-R Restricted and Repetitive Behaviors subscale score, age, and 

IQ as independent variables. 

 

 

 

Results 

 

Robustness of functional connectivity findings against potential motion-related 

confounds 

In light of recent concerns about the influence of head motion on functional connectivity 

estimates, we applied a stringent movement exclusion criterion, as recently recommended by 

Fornito and colleagues (Parkes et al., 2017), and repeated the functional connectivity analyses. 

Specifically, we excluded participants who have mean framewise displacement greater than 0.55. 

Additionally, we matched the two groups on mean framewise displacement and six other motion 

parameters, and age resulting in a sample consisting of thirteen children with ASD and well-

matched thirteen TD children (Supplementary Table 4). The results from this analysis were 

similar to the original results:  (i) children with ASD, in contrast to their TD peers, showed 

decreased functional connectivity between the NAc and VTA during face processing relative to 

scene processing (MASD = −0.46, SDASD = 0.60, MTD = 0.16, SDTD = 0.85, t(24) = −2.16, P = 

0.04, Bayes Factor (BF) = 1.88, Cohen’s d = −0.85, Supplementary Fig. 2), (ii)  no significant 
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group differences in functional connectivity between the NAc and the Amygdala during face 

relative to scene processing (MASD = −0.09, SDASD = 0.77, MTD = −0.02, SDTD = 0.85, t(24) = 

−0.21, P = 0.84, Bayes Factor (BF) = 0.37, Cohen’s d = −0.08), and (iii) in children with ASD, 

the ADI-R Social Interaction subscale scores and not the ADI-R Communication and Language 

or the ADI-R Restricted and Repetitive Behaviors subscale scores, were uniquely associated with 

NAc-VTA functional connectivity (Supplementary Table 8).  

 

Relationship between structural/functional connectivity of the mesolimbic reward 

pathway and social interaction impairments, as measured by ADOS 

We performed analysis to determine the relationship between social interaction impairments as 

measured by ADOS and the structural connectivity and the functional connectivity of the reward 

pathway. We did not find a significant relationship between the severity of social impairments as 

measured by ADOS social interaction subscale, and (i) the density of the NAc-VTA tracts 

(Primary Cohort: rs (20) = −0.31, P = 0.18, BF = 0.78; Replication Cohort: rs(15) = −0.21, P = 

0.45, BF = 0.54), and (ii) the strength of functional interactions between the NAc and VTA in 

response to social stimuli, in children with ASD (rs(16) = 0.05, P = 0.86, BF = 0.43).  

 

fMRI SNR analysis  

In light of concerns that VTA is an area that can be hard to reliably collect fMRI data, we 

performed SNR analysis and found no significant between group differences in the SNR values 

of the three ROIs in the TD group (F(2, 57) = 1.31, P = 0.28) and in the ASD group (F(2, 45) = 

1.04, P = 0.36).  
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Figures 

 

Figure 1. Control analyses based on NAc-Amygdala tracts. (A-C) Using analytical 

procedures illustrated in main Fig. 1, white matter tracts connecting the NAc and Amygdala 

could be reliably detected in individual participants. (D) No significant between group 

differences were observed for the density of the NAc-Amygdala tracts, in both cohorts (Primary 

cohort: MASD = 4.36 × 10−6, SDASD = 3.92 × 10−6 , MTD = 4.46 × 10−6, SDTD = 2.24 × 10−6, t(46) 

= −0.11,  P = 0.91, BF = 0.29, Cohen’s d = −0.03; Replication Cohort: MASD = 4.04 × 10−6, 

SDASD = 1.70 × 10−6 , MTD = 4.10 × 10−6, SDTD = 2.02 × 10−6, t(32) = −0.10,  P = 0.92, BF = 

0.33, Cohen’s d = −0.03). (E) There was no significant association between the density of the 

NAc- Amygdala tracts and social interaction deficits, as measured by ADI-R social interaction 

subscale, in both cohorts (Primary Cohort: rs (22) = −0.19, P = 0.39, BF = 0.50; Replication 

Cohort: rs(15) = −0.12, P = 0.67, BF = 0.46).  
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Figure 2. Aberrant functional connectivity in mesolimbic reward pathway for social stimuli 

in children with ASD – reduced sample based on a more stringent movement criterion 

(ASD = 13; TD = 13). (A) Each participant viewed social stimuli (faces)and non-social stimuli 

(scenes). (B) Functional connectivity between the NAc and VTA during face relative to scene 

processing was disrupted in ASD. In contrast to their TD peers, children with ASD showed 

lower functional connectivity between the NAc and the VTA when viewing faces compared to 

scenes (MASD = −0.46, SDASD = 0.60, MTD = 0.16, SDTD = 0.85, t(24) = −2.16, P = 0.03, BF = 

1.88, Cohen’s d = −0.85). 

 

 

 

 

 

  



16 

 

Tables 
 

 

Table 1. Participant demographics - HARDI 

 

 Primary Cohort (HARDI)a 

 

 Replication Cohort (HARDI)b 

 

 

ASD (n = 24) TD (n = 24) P ASD (n = 17) TD (n = 17) P 

Age 

 

10.62 ± 0.28 10.39 ± 0.25 0.54 10.60 ± 0.30 10.57 ± 0.34 0.94 

Gender 

 

23 M: 1 F 24 M: 0 F 0.83 15 M: 2 F 15 M: 2 F 1 

IQ 

 

113.67 ± 3.90 121.29 ± 3.65 0.16 107.59 ± 3.88 116.82 ± 2.76 0.06 

ADI-R Social 

Interaction 

19.00 ± 1.48   20.47 ± 1.66   

       

ADI-R 

Communication 

and Language 

15.93 ± 1.28   16.40 ± 1.24   

       

ADI-R 

Restricted 

Repetitive 

Behaviors 

5.47 ± 0.81   6.53 ± 0.65   

       

ADOS Social 10.14 ± 0.82   11.13 ± 0.83   

       

ADOS 

Restricted 

Repetitive 

Behaviors 

2.64 ± 0.43   1.93 ± 0.33   

       
aIn Primary Cohort (HARDI), ADI scores were not available for 2 participants and ADOS scores 

were not available for 4 participants.  
bIn Replication Cohort (HARDI), ADI and ADOS scores were not available for 2 participants.  
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Table 2. Participant demographics - fMRI 

 

 Primary Cohort (HARDI) 

 

 

 

 

ASD (n = 16) TD (n = 20) P 

Age 

 

10.82 ± 0.39 10.46 ± 0.29 0.46 

Gender 

 

13 M: 3 F 20 M: 0 F 0.08 

IQ 

 

115.94 ± 4.80 124.80 ± 4.04 0.17 

ADI-R Social 

Interaction 

21.56 ± 0.87   

    

ADI-R 

Communication 

and Language 

16.88 ± 1.25   

    

ADI-R Restricted 

Repetitive 

Behaviors 

5.50 ± 0.74   

    

ADOS Social 9.38 ± 0.71   

    

ADOS Restricted 

Repetitive 

Behaviors 

2.50 ± 0.33   
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Table 3. Summary of HARDI quality measures 

 

 Primary Cohort (HARDI) 

 

 Replication Cohort (HARDI) 

 

 
ASD (n = 24) TD (n = 24) P ASD (n = 17) TD (n = 17) P 

Translati

on 

 

1.29 ± 0.11 1.31 ± 0.11 0.90 2.72 ± 0.14 2.61 ± 0.11 0.56 

Rotation 

 

0.03 ± 0.01 0.03 ± 0.01 0.55 0.02 ± 0.001 0.02 ± 0.001 0.38 

% Bad 

Slices 

 

0.48 ± 0.14 0.35 ± 0.13 0.50 0.21 ± 0.06 0.24 ± 0.07 0.76 

Dropout 

score 

1.15 ± 0.02 1.14 ± 0.03 0.98 1.13 ± 0.03 1.14 ± 0.03 0.70 
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Table 4. Summary of fMRI quality measures 

 

 Primary Cohort (fMRI) 

 

 Primary Cohort (fMRI – low motion 

reduced sample) 

 

 
ASD (n = 16) TD (n = 20) P ASD (n = 13) TD (n = 13) P 

Mean FD 0.32 ± 0.06 0.32 ± 0.09 0.88 0.23 ± 0.04 0.13 ± 0.02 0.07 

       

Range x 

 

1.83 ± 0.26 2.77 ± 0.80 0.22 1.72 ± 0.30 1.84 ± 0.82 0.22 

Range y 

 

3.86 ± 0.85 5.45 ± 1.74 0.37 3.82 ± 1.02 1.69 ± 0.47 0.37 

Range z 

 

6.25 ± 1.05 5.54 ± 1.15 0.75 5.56 ± 1.02 3.18 ± 0.67 0.75 

Range roll 2.71 ± 0.88 3.30 ± 0.78 0.54 1.77 ± 0.30 2.17 ± 0.57 0.54 

       

Range pitch 5.47 ± 1.14 7.14 ± 1.78 0.39 4.34 ± 0.90 3.05 ± 0.72 0.39 

       

Range yaw 2.33 ± 0.84 2.56 ± 0.98 0.80 1.33 ± 0.20 2.16 ± 1.42 0.80 

       

AROMA 

%var 

removed 

34 ± 6 32 ± 5 0.68 35 ± 7 37 ± 7 0.68 
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Table 5: Relationship between structural connectivity and ASD symptom severity: 

Multivariate analysis (Primary Cohort). In the primary cohort, multivariate sparse linear 

regression with cross-validation analysis revealed that structural deficits in mesolimbic reward 

pathway are uniquely associated with social interaction impairments in children with ASD. 

 

  β z P  

ADI-R Social 

Interaction 
−0.618 −2.895 0.007 

ADI-R Communication 

and Language 
0.417 1.416 0.155 

ADI-R Restricted 

Repetitive Behaviors 
−0.283 −1.111 0.234 

Age −0.285 −1.415 0.155 

IQ 0.039 0.195 0.820 
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Table 6: Relationship between structural connectivity and ASD symptom severity: 

Multivariate analysis (Replication Cohort). In the replication cohort, multivariate sparse linear 

regression with cross-validation analysis revealed that structural deficits in mesolimbic reward 

pathway are uniquely associated with social interaction impairments in children with ASD. 

 

  β z P  

ADI-R Social 

Interaction 
−0.625 −2.397 0.028 

ADI-R Communication 

and Language 
0   

ADI-R Restricted 

Repetitive Behaviors 
0   

Age 0   

IQ 0   
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Table 7: Relationship between functional connectivity and ASD symptom severity: 

Multivariate analysis (Primary Cohort). In the primary cohort, multivariate regression with 

cross-validation analysis revealed aberrant functional connectivity in mesolimbic reward 

pathway for social stimuli are uniquely associated with social interaction impairments in children 

with ASD.  

 

 

  β z P  

ADI-R Social 

Interaction 
−0.615 −2.890 0.004 

ADI-R Communication 

and Language 
−0.144 −0.571 0.641 

ADI-R Restricted 

Repetitive Behaviors 
−0.279 −1.384 0.180 

Age −0.464 −1.900 0.219 

IQ −0.381 −1.859 0.070 
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Table 8: Relationship between functional connectivity and ASD symptom severity: 

Multivariate analysis (Primary Cohort – reduced sample). In the primary cohort (reduced 

fMRI sample; n = 13 children with ASD), multivariate regression with cross-validation analysis 

revealed aberrant functional connectivity in mesolimbic reward pathway for social stimuli are 

uniquely associated with social interaction impairments in children with ASD  

 

  β z P  

ADI-R Social 

Interaction 
−0.653 −2.484 0.015 

ADI-R Communication 

and Language 
0   

ADI-R Restricted 

Repetitive Behaviors 
−0.300 −1.158 0.268 

Age −0.365 −1.257 0.253 

IQ −0.311 −1.135 0.311 
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