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I. DERIVATION OF MEAN LIFETIME τ(F ) AND SURVIVAL PROBABILITY ΣF (t)

The following sections contain a full derivation of the main observable quantities of interest, the mean bond lifetime
τ(F ) and survival probability ΣF (t). Since the derivation involves a large number of individual components, Table
S1 summarizes the main analytical quantities, their meaning, and the equations where they are defined.

Quantity Meaning Equation(s)
U(r, θ) bond Hamiltonian (S1)-(S2)
V (r, θ) effective Fokker-Planck potential energy (S6)
k10 transition rate from state 1 to 0 (rupture) (S15)-(S17)
k20 transition rate from state 2 to 0 (rupture) (S18)-(S19)
k12 transition rate from state 1 to 2 (S26)-(S27)
k21 transition rate from state 2 to 1 (S28)
τi mean first passage time from state i to rupture (S35)
p0i probability of state i at time t = 0 (S36)
τ mean bond lifetime (S37)
ΣF survival probability (S38)-(S39)
πS probability of being in small α state at rupture (S41)-(S42)
τL mean duration of large α conformation (state 2) (S43)

TABLE S1. Summary of main analytical results in the S1 Appendix, with corresponding equation numbers.

A. Fokker-Planck equation describing the bond dynamics

The theoretical model of the bond dynamics is based on diffusion of the bond vector r = (r, θ, φ) on an energy
landscape defined by the Hamiltonian U(r, θ) in Eqs. 1-2 in the main text:

U(r, θ) =
1

2
k(θ)(r − r0)2 − Fr cos θ + C(θ) (S1)

where

k(θ) = k0 + k1(1 + cos θ),

C(θ) =

{
H(cos θ−cos θmax)

cos θc−cos θmax
, θ ≥ θc

(H−G)(cos θ−cos θmin)
cos θc−cos θmin

+G, θ < θc
.

(S2)

To restrict the dynamics to the angular region θmin ≤ θ ≤ θmax, we assume U(r, θ) = ∞ for θ < θmin and θ > θmax.
Note that U(r, θ) depends on the applied force F on the system, so every observable derived from U(r, θ) below also
implicitly depends on F , even if the dependence is not explicitly indicated in the notation.

Given a diffusivity D = kBT/6πηr0, the probability Ψ(r, t) to find the system with vector r at time t obeys a
Fokker-Planck equation in spherical coordinates of the form:

∂Ψ

∂t
=
D

r2

∂

∂r

[
r2e−U

∂(eUΨ)

∂r

]
+

D

r2 sin θ

∂

∂θ

[
sin θe−U

∂(eUΨ)

∂θ

]
+

D

r2 sin2 θ

∂

∂φ

[
e−U

∂(eUΨ)

∂φ

]
, (S3)

Note that throughout the appendix we will work in units where β = (kBT )−1 = 1, so that all energies are effectively
measured in units of kBT . Since U(r, θ) is independent of φ, we can define a marginal probability P (r, θ, t) by
multiplying Ψ with the spherical Jacobian and integrating over the angle φ,

P (r, θ, t) ≡ r2 sin θ

∫ 2π

0

dφΨ(r, t), (S4)
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allowing us to write Eq. S3 as a 2D Fokker-Planck equation in terms of P (r, θ, t),

∂P

∂t
= D

∂

∂r

[
e−V

∂(eV P )

∂r

]
+
D

r2

∂

∂θ

[
e−V

∂(eV P )

∂θ

]
. (S5)

Here V (r, θ) is an effective potential defined by

V (r, θ) ≡ U(r, θ)− kBT ln(r2 sin θ). (S6)

We will not be interested in solving Eq. (S5) directly, but rather answering a closely related question: the mean first
passage time (MFPT) to escape from a region in parameter space. Consider a region R of the (r, θ) space, with
boundary ∂R, and let us focus on some subset A ⊆ ∂R of this boundary. Let τRA(r, θ) denote the MFPT to any
point on A, given that we started at some point (r, θ) in the interior of R at t = 0. We assume we have chosen R
such that there are reflecting boundaries on the portion of ∂R not in A, namely U(r, θ) =∞ for (r, θ) ∈ ∂R \A. This
guarantees that τRA(r, θ) is finite, and satisfies the backward Fokker-Planck equation [1],

D
∂

∂r

[
e−V

∂τRA
∂r

]
+
D

r2

∂

∂θ

[
e−V

∂τRA
∂θ

]
= −e−V , (S7)

with absorbing boundary conditions τRA(r, θ) = 0 for (r, θ) ∈ A. To directly solve for the main experimental
observable of interest, the mean bond lifetime, we would set R to be the entire parameter space region where the bond
is intact, r < r0 + d ≡ b, θmin ≤ θ ≤ θmax, and set the absorbing boundary A to be the line r = b, θmin ≤ θ ≤ θmax.
Unfortunately, given the complicated form of the energy landscape, Eq. (S7) does not easily lend itself to an analytical
solution for this choice of R and A. We will work around this problem by describing the escape dynamics from smaller
portions of the parameter space, where Eq. (S7) is more amenable to approximation, and then piece together the
various results to get a good estimate of the mean bond lifetime. This same approximate piece-wise approach will
also yield the survival probability.

B. Partitioning the parameter space into conformational regions
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FIG. S1. The energy landscape from Fig. 2 of the main text, partioned into regions of the (r, α) parameter space that reflect
different conformational states: state 0 corresponding to the bond ruptured, state 1 corresponding to the bond intact with
angle αmin ≤ α < αc, and state 2 corresponding to the bond intact with angle αc ≤ α ≤ αmax. The arrows depict the transition
rates k10, k20, k12, and k21 between the various states, described in the text.

The energy landscape of Eqs. (S1)-(S2) allows us to partition the (r, θ) parameter space, or equivalently the space
of (r, α = π − θ), into domains representing different conformational states, as illustrated in Fig. S1. The region
where the bond is intact (r < b) and the angle α is small (αmin ≤ α < αc) is denoted as state 1, the corresponding
region with an intact bond and large angle (αc ≤ α ≤ αmax) is denoted as state 2, and the region where the bond is
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ruptured (r ≥ b) as state 0. If the bond is intact at time t = 0, the dynamics of the system will consist of diffusion
on the energy landscape, possibly making a number of transitions between states 1 and 2, before eventually the r = b
boundary is crossed and bond rupture occurs upon entry to state 0.

The diffusive dynamics exhibit a separation of time scales: the time to equilibrate within each state is typically
< r2

0/D ∼ 20 ns for the biologically relevant parameter ranges we consider, which is orders of magnitude smaller than
the typical times to escape each state (which can be as large as ∼ 1 s for the energy barriers in our case). We can
thus assume that upon entering either state 1 or state 2, the system will rapidly be driven toward the bottom of the
corresponding energy well, and spend considerable amounts of time in the vicinity of the local energy minimum, with
brief excursions up the slopes of the well (eventually one of which will carry it into the bond rupture region, or a
transition to the other angular state).

Given this partitioning of the parameter space, we can define escape rates from the different states through different
boundaries, related to the reciprocal of the escape MFPT introduced in the previous section. These rates (k10, k20,
k12, and k21) are depicted as transition arrows in Fig. S1. Let k10 be the probability per unit time to escape state
1 to state 0 through the bond rupture (r = b) boundary, conditioned on not passing through state 2. We set
k10 = 1/τ10(r1, θ1), where τ10 is the solution to Eq. (S7) with the region R corresponding to state 1, an absorbing
boundary A at the border with state 0 (r = b) and a reflecting boundary condition imposed at the border with state 2
(α = αc). The starting position (r1, θ1) is the position of the local minimum of the effective potential V (r, θ) in state
1. Using any other starting position in the vicinity will not substantially alter the result, given the fast equilibration
time in the well. We define the escape rate from state 2 to state 0, conditioned on not passing through state 1, as
k20 = 1/τ20(r2, θ2), with R being state 2, an absorbing boundary A at the border to state 0, and a reflecting boundary
at the border to state 1. The position (r2, θ2) corresponds to the local minimum of V (r, θ) in state 2. The interwell
transition rates k12 and k21 are defined analogously: k12 = 1/τ12(r1, θ1) is the escape rate from state 1 to state 2,
conditioned on the bond not rupturing (reflecting boundary at r = b), and k21 = 1/τ21(r2, θ2) is the reverse rate from
state 2 to state 1.

In the next two sections (1.3 and 1.4) we will find approximate expressions for k10, k20, k12 and k21 from Eq. (S7),
and then in section 1.5 we will show how we can put these together to get analytical results for the mean bond lifetime
τ(F ) and survival probability ΣF (t).

C. Deriving expressions for k10 and k20

To find an expression for k10 = 1/τ10(r1, θ1), we note that τ10 satisfies Eq. (S7) with the region R corresponding to
r < b, αmin ≤ α < αc. The α angular range is equivalent to θc < θ ≤ θmax. We impose reflecting boundary conditions
at θc and θmax, and there is a natural reflecting boundary condition at r = 0 because of the logarithmic term in the
definition of V (r, θ) in Eq. (S6). The absorbing boundary A is r = b, the border with state 0. We will reduce the
dimensionality of the problem by integrating both sides of Eq. S7 over the θ range of R,

D
∂

∂r

∫ θmax

θc

dθ e−V (r,θ) ∂

∂r
τ10(r, θ) = −

∫ θmax

θc

dθ e−V (r,θ). (S8)

The second term on the left hand side in Eq. S7 vanishes after the integration because exp(−V (r, θ)) = 0 at θ = θc
and θ = θmax because of the reflecting boundary conditions.

Because of the e−V (r,θ) terms inside the integrals on both sides of Eq. (S8), the dominant contribution to the
integrals at any particular value of r occurs when V (r, θ) reaches a minimum with respect to θ inside the state 1 range
θc < θ ≤ θmax. This happens at some value of θ = θm1(r) for a given r. Thus we can treat Eq. (S8) as an equation
for τ10(r, θm1(r)), which we will write in condensed notation as just τ10(r). Note that we are interested in τ10(r1),
since θ1 = θm1(r1) is just the position of the well minimum at r1. In this approximation Eq. (S8) becomes

D
∂

∂r

[
e−Ṽ1(r) ∂

∂r
τ10(r)

]
= −e−Ṽ1(r), (S9)

where the effective 1D potential Ṽ1(r) is given by

Ṽ1(r) = − ln

[∫ θmax

θc

dθe−V (r,θ)

]
. (S10)

With the absorbing boundary condition τ10(b) = 0, Eq. S9 can be solved for τ10(r),

τ10(r) =
1

D

∫ b

r

dr′ eṼ1(r′)

∫ r′

0

dr′′e−Ṽ1(r′′). (S11)
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The function Ṽ1(r′) is a monotonically increasing function of r′ at large r′. Due to the presence of the exp(Ṽ1(r′))
term, the integral over r′ in Eq. S11 gets its dominant contribution from r′ near the upper limit b. Conversely because

of the exp(−Ṽ1(r′′)) term, the integral over r′′ gets its dominant contribution near r̃1, the position where Ṽ1(r) reaches

a minimum. To simplify Eq. (S11), we thus make two approximations: (i) expand Ṽ1(r′) ≈ Ṽ1(b) + Ṽ ′1(b)(r′ − b); (ii)
assume b � r̃1, so the upper limit in the integral over r′′ can be replaced by ∞. Along similar lines, if the starting
position is r = r1, the precise value of the lower limit on the r′ integral has a negligible effect on the result, so we can
replace it with 0. Eq. (S11) can then be evaluated to yield an expression for τ10(r1),

τ10(r1) ≈ eṼ1(b)

DṼ ′1(b)

∫ ∞
0

dr′′ e−Ṽ1(r′′), (S12)

where we have kept the largest contributions to the result. The right-hand side does not have a dependence on the
value of the starting position r1, consistent with the assumption of fast equilibration within the well. We denote the
integral in Eq. S12 as

Z̃1 ≡
∫ ∞

0

dr′′e−Ṽ1(r′′), (S13)

which needs to be evaluated to get a closed form expression for τ10(r1). Because this cannot be done exactly, we will

use a saddle-point approximation by expanding Ṽ1(r) around its minimum at r = r̃1,

Z̃1 ≈ e−Ṽ1(r̃1)

√
2π

Ṽ ′′1 (r̃1)
≈ e−Ṽ1(r̃1)

√
2π

k0
, (S14)

where we have used the fact that Ṽ ′′1 (r̃1) ≈ k0 in the limit of large k0 (which is valid when the barrier to rupture
E0 � kBT , since E0 = (k0 + k1(1 + cos θmax))d2/2).

Putting everything together from Eqs. (S12)-(S14), we can find τ10(r1) explicitly. This requires carrying out Ṽ1

integrals using the definition of Eq. (S10), and approximating r̃1 ≈ r0. This leads to a final expression for k10:

k10 =
1

τ10(r1)
=
β1

α1
, (S15)

where

α1 ≡
√
π(dr0)2(∆1(2bF − Ẽ1)− 2H)

(
e
cFr0(c−2µ)+2Hµ

∆1 − e
cH+µ(H−Fr0µ)

∆1

)
e
c(−2F (bc+dµ)+Ẽ1∆3+2Ẽ0+Ẽ1)

2∆1 ,

β1 ≡ 4b2DẼ
3/2
0 (H − Fr0∆1)

(
e
c2(Ẽ1−2bF )+2H∆3+µ(µ(Ẽ1−2bF )+2Ẽ0+Ẽ1)

2∆1 − e
µ(2c(Ẽ1−2bF )+4H+2Ẽ0+Ẽ1)

2∆1

)
.

(S16)

In the above expressions, as well as the ones for the other rates below, we will use a set of abbreviated notations, as
follows:

c ≡ cos θc, µ ≡ cos θmax, ν ≡ cos θmin,

∆1 ≡ c− µ, ∆2 ≡ c− ν, ∆3 ≡ c+ µ, ∆4 ≡ µ+ ν,

Ẽ0 ≡ E0 −
1 + µ

ν − µ
E1, Ẽ1 ≡

2E1

ν − µ
.

(S17)

For k20 = 1/τ20(r2, θ2), the derivation proceeds exactly analogously to the one for k10, except that the region R
now corresponds to r < b, θmin ≤ θ ≤ θc. The final expression for k20 is:

k20 =
1

τ20(r2)
=
β2

α2
, (S18)

where

α2 ≡ dr2
0

√
π

Ẽ0

(∆2(Ẽ1 − 2bF )− 2(G−H))2
(
1− eFr0∆2+G−H) e c(ν(Ẽ1−2dF )+E2)−ν(2Fr0ν+E2−2(G−H))

2∆2 ,

β2 ≡ 4b2DẼ
3/2
0 (Fr0∆2 +G−H)

(
e
ν(ν(Ẽ1−2bF )+2(G−H))

2∆2 − e−
c((Ẽ1−2bF )(c−2ν)−2(G−H))

2∆2

)
.

(S19)
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D. Deriving expressions for k12 and k21

Let us first consider the transition rate k12 = 1/τ12(r1, θ1) from state 1 to state 2, conditioned on the bond not
rupturing. The starting point (r1, θ1) is at the local energy minimum in state 1, and we will place the absorbing
boundary at some angle θ < θc, beyond the angular energy barrier at θc that defines the border with state 2. Once we
are not in the immediate vicinity of the barrier top, the precise location of the absorbing boundary within state 2 does
not significantly change the value of τ12. This is because once the system has overcome the barrier to transition from
state 1 to state 2, it rapidly descends into the state 2 energy well. Using this freedom, we will choose the absorbing
boundary A at θ = θ2, the position of the local energy minimum in the state 2 well.

We choose the region R to have an r range between 0 and b, with a reflecting boundary imposed at r = b. The
logarithmic term in V (r, θ) in Eq. (S6) provides another reflecting boundary at r = 0. Integrating both sides of Eq. S7
over this r range gives:

D
∂

∂θ

∫ b

0

dr
1

r2
e−V (r,θ) ∂

∂θ
τ12(r, θ) = −

∫ b

0

dr e−V (r,θ). (S20)

The first term in Eq. S7 vanishes under integration because of the reflecting boundary conditions.
The dominant contribution to the integral on the left-hand side of Eq. S20 for a given angle θ occurs at r = rm(θ),

where V (r, θ) is minimal with respect to r at that θ. To a good approximation rm(θ) ≈ r0 for the force and parameter
ranges we consider. We can thus treat Eq. (S20) as an effective equation for τ12(r0, θ), which we will denote compactly
as τ12(θ). We are ultimately interested in getting an expression for k12 = 1/τ12(θ1). Using this approximation, we
can rewrite Eq. (S20) as:

Dθ
∂

∂θ

[
e−Ṽ (θ) ∂

∂θ
τ12(θ)

]
= −e−Ṽ (θ), (S21)

where Dθ ≡ D/r2
0, and the effective 1D potential Ṽ (θ) is given by

Ṽ (θ) = − ln

[∫ b

0

dr e−V (r,θ)

]
≈ V (r0, θ) (S22)

In the second expression on the right, we have kept only the most significant contribution from the saddle-point
approximation of the integral.

With the absorbing boundary condition τ12(θ2) = 0, Eq. S21 can be solved for τ12(θ):

τ12(θ) =
1

Dθ

∫ θ

θ2

dθ′ eṼ (θ′)

∫ θmax

θ′
dθ′′ e−Ṽ (θ′′). (S23)

Substituting Ṽ (θ) ≈ V (r0, θ) = U(r0, θ) − kBT ln(r2
0 sin θ) allows us to rewrite Eq. (S23) in terms of integration

variables cos θ′ and cos θ′′. The MFPT τ12(θ1) from starting position θ1 is then

τ12(θ1) =
1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)−ln sin2 θ′

∫ cos θ′

µ

d(cos θ′′) e−U(r0,θ
′′),

≈ 1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)

∫ cos θ′

µ

d(cos θ′′) e−U(r0,θ
′′),

≡ 1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)Z12(cos θ′).

(S24)

In the second line we have neglected the − ln sin2 θ contribution in the first exponential, since it does not significantly

change the value of τ12(θ1), and in the third line we have introduced the function Z12(cos θ′) ≡
∫ cos θ′

µ
d(cos θ′′) e−U(r0,θ

′′).

The final approximation is to note that θ1 is close to θmax, and θ2 is close to θmin, so we can replace cos θ1 in the
integration bounds with µ = cos θmax, and replace cos θ2 with ν = cos θmin. Thus the final integral for τ12(θ1) takes
the form,

τ12(θ1) ≈ 1

Dθ

∫ ν

µ

d(cos θ′) eU(r0,θ
′)Z12(cos θ′). (S25)



6

Since the angular dependence of U(r0, θ
′) from Eqs. (S1)-(S2) is explicitly in terms of cos θ′, the integration variable,

it turns out the integral in Eq. (S25) can be evaluated exactly, to yield a rather complex (but closed form) expression
for k12,

k12 =
1

τ12(θ1)
=

D(H − Fr0∆1)2

r2
0

(
αa3
(
βa3 + βb3 + βc3 + βd3

)
+ αb3

(
γa3 + γb3 + γc3

)) , (S26)

where,

αa3 ≡
∆2 (Fr0∆1 −H) e−

cH
∆1
− ν(Fr0∆2+G)

∆2

(Fr0∆2 +G−H) 2
+ ∆2

1

(
eH−Fr0∆1 + Fr0∆1 −H − 1

)
,

αb3 ≡
∆2 (H − Fr0∆1) e−

cFr0∆2+c(G−H)+Hν
∆2

− cH∆1

(Fr0∆2 +G−H) 2
,

βa3 ≡ c2Fr0

(
Fr0νe

cH
∆1

+Fr0ν+Gν
∆2 + e

cG
∆2

+ cH
∆1

+Fr0µ − ecFr0+ cG
∆2

+Hµ
∆1 + e

cFr0∆2+c(G−H)+Hν
∆2

+ cH
∆1

)
,

βb3 ≡ Hνe
cH
∆1

+Hν
∆2

(
ecFr0+

c(G−H)
∆2 + (Fr0ν −G+H) e

ν(Fr0∆2+G−H)
∆2

)
,

βc3 ≡ µ
(

(G−H − Fr0ν) ecFr0+ cG
∆2

+Hµ
∆1 + (Fr0ν −G+H) e

cG
∆2

+ cH
∆1

+Fr0µ

+Fr0ν (Fr0ν −G+H) e
cH
∆1

+Fr0ν+Gν
∆2 + Fr0νe

cFr0∆2+c(G−H)+Hν
∆2

+ cH
∆1

)
,

βd3 ≡ −c
(
Fr0ν (Fr0∆4 −G+ 2H) e

cH
∆1

+Fr0ν+Gν
∆2 + (G−H − Fr0∆4) ecFr0+ cG

∆2
+Hµ

∆1

+ (Fr0∆4 −G+H) e
cG
∆2

+ cH
∆1

+Fr0µ + (Fr0∆4 +H) e
cFr0∆2+c(G−H)+Hν

∆2
+ cH

∆1

)
,

γa3 ≡ e
c(G−H)

∆2

(
c2Fr0

(
(cFr0 + 1) ecFr0+ cH

∆1
+Hν

∆2 + e
cH
∆2

+ cH
∆1

+Fr0µ − ecFr0+ cH
∆2

+Hµ
∆1

)
(S27)

+H (cFr0ν − c(G−H) + cmax) ecFr0+ cH
∆1

+Hν
∆2

)
,

γb3 ≡ µe
cG
∆2

(
(G−H − Fr0ν)

(
ecFr0+Hµ

∆1 − e
cH
∆1

+Fr0µ
)

+ Fr0 (cFr0ν − c(G−H) + ν) e
cFr0∆2−cH+Hν

∆2
+ cH

∆1

)
,

γc3 ≡ −ce
c(G−H)

∆2

((
cF 2r2

0∆4 + Fr0(−cG+ 2cH + ∆4) +H
)
ecFr0+ cH

∆1
+Hν

∆2

+ (G−H − Fr0∆4) ecFr0+ cH
∆2

+Hµ
∆1 + (Fr0∆4 −G+H) e

cH
∆2

+ cH
∆1

+Fr0µ
)
.

To get the transition rate k21 from state 2 back to 1, we note that a physically consistent model should relate k12

and k21 to each other through detailed balance. The quasi-equilibrium probability ratio of being in state 1 relative
to state 2 (in the long-time limit, conditioned on the bond not rupturing), is approximately Z12(c)/Z21(c), where

c = cos θc and Z21(cos θ′) ≡
∫ ν

cos θ′
d(cos θ′′) e−U(r0,θ

′′). Thus we can write:

k21 = k12
Z12(c)

Z21(c)
= k12

∆1

(
eFr0∆1−H − 1

)
(Fr0∆2 +G−H) e

cG+Fr0µ∆2−Hν
∆2

∆2 (Fr0∆1 −H)

(
e
ν(Fr0∆2+G−H)

∆2 − e
c(Fr0∆2+G−H)

∆2

) . (S28)

Eq. (S28), together with the expressions in Eqs. (S26)-(S27), gives a complete closed form result for k21.

E. Survival probability and mean bond lifetime

The final part of the derivation involves expressing the survival probability ΣF (t) and mean bond lifetime τ(F ) in
terms of the four rates k10, k20, k12, and k21, following a standard approach to first passage problems in discrete state
kinetic networks [1]. As mentioned earlier, all these four rates are themselves functions of F , as can be seen in the
results of the previous two sections, but for simplicity we do not show the F dependence explicitly.

Consider the probability Si(t) that the bond survived intact until time t, given that the system started in state
i = 1, 2 at time t = 0. If we discretize time in infinitesimal steps of δt, with t = nδt, then the probability S1(t) can
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be written as

S1(nδt) = [1− (k10 + k12)δt]
n

+

n∑
m=0

[1− (k10 + k12)δt]
m
k12δt S2((n−m)δt). (S29)

The right-hand side of Eq. (S29) can be understood as follows: k10δt is the probability to transition from 1 to 0 in
time step δt, and k12δt is the probability to transition from 1 to 2 in time step δt. Thus we see that the first term on
the right-hand side of Eq. (S29) is the probability that the bond survived without either rupturing or transitioning to
state 2 for the entire n time steps. This is one contribution to S1(nδt). However there is another contribution, since
the bond could still survive, but make at least one transition to state 2 during those n steps. The sum in Eq. (S29) is
this second contribution, consisting of the cases where the bond does not leave state 1 for m time steps, then makes a
transition to state 2, and survives the remaining n−m time steps. The last probability is just S2((n−m)δt). Taking
the limit δt→ 0, n = t/δt→∞, we can rewrite Eq. (S29) as

S1(t) = e−(k10+k12)t +

∫ t

0

dt′e−(k10+k12)t′k12S2(t− t′). (S30)

An exactly analogous argument for S2(t) yields a second integral equation,

S2(t) = e−(k20+k21)t +

∫ t

0

dt′e−(k20+k21)t′k21S1(t− t′). (S31)

The system of equations, Eq. (S30)-(S31), can be solved by first applying a Laplace transform, S̃i(s) ≡
∫∞

0
dt e−stSi(t).

This gives

S̃1(s) =
1

k10 + k12 + s
+

k12S̃2(s)

k10 + k12 + s
,

S̃2(s) =
1

k20 + k21 + s
+

k21S̃1(s)

k20 + k21 + s
.

(S32)

The solutions for S̃1(s) and S̃2(s) are then:

S̃1(s) =
k12 + k20 + k21 + s

k10k20 + k12k20 + k21k10 + (k10 + k20 + k12 + k21)s+ s2
,

S̃2(s) =
k21 + k10 + k12 + s

k10k20 + k12k20 + k21k10 + (k10 + k20 + k12 + k21)s+ s2
.

(S33)

Before going further, note that if the system started in state i at time t = 0, the probability to rupture between
times t and t+ δt is just Si(t)− Si(t+ δt) ≈ −δt dSi(t)/dt. Hence the mean time to rupture τi given starting state i
is just

τi = −
∫ ∞

0

dt t
dSi
dt

=

∫ ∞
0

dt Si(t) = S̃i(0). (S34)

The second equality follows from integration by parts, and the fact that Si(0) = 1, Si(∞) = 0. Plugging s = 0 into
Eq. (S33) thus gives

τ1 =
k12 + k20 + k21

k10k20 + k12k20 + k21k10
,

τ2 =
k21 + k10 + k12

k10k20 + k12k20 + k21k10
.

(S35)

To get the final expression for the mean bond lifetime τ , we need the initial probabilities p0
i of being in state i at time

t = 0. Since we assume the system has quasi-equilibrated at F = 0 before the application of force at t > 0, the ratio
p0

1/p
0
2 is just Z12(c)/Z21(c) evaluated at F = 0. From this we get the following probabilities:

p0
1 =

∆1

(
eH − 1

)
(G−H)e

cG
∆2

∆1 (eH − 1) (G−H)e
cG
∆2 + ∆2H

(
e
Gν
∆2

+H − e
c(G−H)+H(∆2+ν)

∆2

) , p0
2 = 1− p0

1. (S36)
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FIG. S2. A: The transition rates k10, k20 (solid lines, Eqs. (S15)-(S19)) and k12, k21 (dashed lines, Eqs. (S26)-(S28)) as a
function of force F . B: The probability πS (Eqs. (S41)-(S42)) to be in state 1 (small α) at rupture versus F . C: The survival
probability ΣF (t), Eqs. (S38)-(S39), as a function of time t, for selected forces F indicated in the legend. For all panels the
results are plotted for the best-fit parameters given in Table 1 of the main text.

For the best-fit parameters given in Table 1 of the main text, these probabilities are p0
1 = 0.77, p0

2 = 0.23. The initial
small α probability was denoted as p0

S ≡ p0
1 in the main text. The mean bond lifetime, weighting over all possible

starting states, is given by

τ = p0
1τ1 + p0

2τ2. (S37)

Eq. (S37), supplemented by Eqs. (S35)-(S36) and the expressions for k10, k20, k12, and k21 from the previous two
sections (Eqs. (S15)-(S19), (S26)-(S28)), constitutes the complete theoretical result for τ .

Similarly the survival probability ΣF (t) is just the weighted sum of S1(t) and S2(t),

ΣF (t) = p0
1S1(t) + p0

2S2(t), (S38)

where Si(t) can be found by inverse Laplace transforming the solutions from Eq. (S33),

Si(t) = e−σt/2

[
cosh

(
t

2

√
σ2 − 4ρ

)
+

2λi − σ√
σ2 − 4ρ

sinh

(
t

2

√
σ2 − 4ρ

)]
. (S39)

Here ρ ≡ k10k20 + k12k20 + k10k21, σ ≡ k10 + k20 + k12 + k21, λ1 ≡ σ− k10, λ2 ≡ σ− k20. Note that because the cosh
and sinh share the same argument, Eq. (S39) can also be expressed in terms of two distinct exponential contributions
with different prefactors. This is what leads to the double-exponential behavior seen in the survival probabilities in
the main text.

Another aspect mentioned in the main text is the final conformational state of the system at the moment of rupture,
whether it is state 1 (small α) or state 2 (large α). If the system could quasi-equilibrate at the applied force F before
rupture occurred (i.e. if the rupture rates k10 and k20 were sufficiently small), the probability of being in state 1 at
rupture would be pS = k21/(k12 + k21). For the case F = 15.1 pN, discussed in the main text, pS = 10−4 for the
parameter values of Table 1. In reality, however, the system does not have time to fully quasi-equilibrate, and the
actual probability of being in state 1 at rupture is 0.47 for this particular value of F . To derive this number, we define
the splitting probability πi1, the probability that the system will rupture in state 1, given a starting state i at time
t = 0. The splitting probabilities π11 and π21 satisfy the identities [1]:

π11 =
k10

k10 + k12
+

k12

k10 + k12
π21, π21 =

k21

k20 + k21
π11. (S40)

The first identity states the π11 involves two contributions: starting in state 1, the system can either rupture before
jumping to state 2 (probability k10

k10+k12
) or jump to state 2 first (probability k12

k10+k12
) and then eventually make it back

to state 1 to rupture (probability π21). Similarly for the second identity, π21 is equal to the probability of jumping to
state 1 before rupture ( k21

k20+k21
) times π11. Eq. (S40) can be solved for π11 and π21,

π11 =
k10(k20 + k21)

ρ
, π21 =

k10k21

ρ
. (S41)
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The probability of rupturing from state 1 independent of initial state (denoted as πS in the main text) is

πS = π11p
0
1 + π21p

0
2 (S42)

For F = 15.1 pN we get πS = 0.47.
Fig. S2 illustrates some of the physical quantities described up to now. Panel A shows the transition rates k10,

k20, k12, and k21 versus F for the best-fit parameters of Table 1 in the main text. Panel B shows the corresponding
probabilties πS and panel C depicts the survival probabilities ΣF (t) for various F . At F = 0, the rupture is almost
entirely from state 1, with πS ≈ 1. Hence ΣF (t) at F = 0 is dominated by a single exponential contribution,
ΣF (t) ≈ exp(−k10(F )t) (red curve in Fig. S2C). The probability πS decreases with F , and in the opposite extreme of
large F , the rupture occurs mainly from state 2. In this regime we again have approximately single exponential survival
probabilities, ΣF (t) ≈ exp(−k20(F )t), as seen for example in Fig. S2C for 30 pN (purple curve). At intermediate
forces, where the chances of rupture from either state are comparable, we have double-exponential behavior in ΣF (t),
as seen for F = 5, 10 pN (orange and green curves in Fig. S2C). The latter cases distinctly show two different linear
slopes in the logarithmic plot of Fig. S2C, in contrast to the small and large force regimes, where the decay of ln ΣF (t)
is dominated by a single linear slope.

The final quantity discussed in the main text is τL, the mean duration of the large α conformation (state 2),
measured from the first entrance into the state until either rupture occurs or the system transitions to state 1. Since
the total escape rate from state 2 is k20 + k21, the probability of leaving state 2 between times t and t + δt, where
t = 0 is the time of entrance, is: δt(k20 + k21) exp(−(k20 + k21)t). Thus the mean duration is:

τL =

∫ ∞
0

dt t(k20 + k21)e−(k20+k21)t =
1

k20 + k21
. (S43)

II. CONSISTENCY WITH AN EARLIER CATCH BOND MODEL

One of the nice features of our approach is its generality: even though we focus in the main text on a system with
a substantial angular barrier H, the theoretical model continues to hold even in the absence of such a barrier. In
this section we show that the τ(F ) expression for an earlier, barrier-less model for catch bonds in selectin systems,
introduced and numerically verified in Ref. [2], is just a special case of our more general τ(F ).

For the selectin case, the full angular range was used, so θmin = 0◦ and θmax = π. There was no angular barrier
or energy offset, so H = G = 0, and we can take θc = 90◦, since the border between state 1 and state 2 is arbitrary
without a barrier present. In this case from Eq. (S17) we see that Ẽ0 = E0 and Ẽ1 = E1. Plugging all these values
into the expressions for the transition rates derived above, we find relatively simple results:

k10 =
4DE

3/2
0 F (r0 + d)2e−E0−E1/2−dF (eE1/2 − eF (r0+d))√

πr0d2(eFr0 − 1)(E1 − 2F (r0 + d))
,

k20 =
4DE

3/2
0 F (r0 + d)2e−E0−E1(eE1/2 − eF (r0+d))√
πr0d2(eFr0 − 1)(E1 − 2F (r0 + d))

,

k12 =
DF 2e2Fr0

1 + e2Fr0(2Fr0 − 1)
,

k21 =
DF 2eFr0

1 + e2Fr0(2Fr0 − 1)
.

(S44)

Without an angular barrier the transitions between angular regions are many orders of magnitude faster than the
transitions to rupture, as can be seen from the fact that k10 and k20 both include a factor of e−E0 in the numerator
that is not present in k12 and k21. Typically the factor e−E0 � 1 since E0 sets the overall energy scale for rupture,
and E0 ∼ 17 − 26 (units of kBT ) for the systems considered in Ref. [2]. Hence we can assume in this case that k10,
k20 � k12, k21. This simplifies the expressions for τ1 and τ2 in Eq. (S35), so that τ1 ≈ τ2 ≈ (k12+k21)/(k12k20+k21k10).
Hence the mean bond lifetime is also the same as τ1 and τ2,

τ(F ) ≈ k12 + k21

k12k20 + k21k10
=

√
πr0(E1 − 2F (r0 + d))eE0+dF (e2Fr0 − 1)

4DE
3/2
0 F (1 + r0/d)2

(
1− e2F (r0+d)−E1

) . (S45)

This is in complete agreement with the τ(F ) from Eq. (2) in Ref. [2]. The survival probability in this limit becomes
a single exponential, ΣF (t) ≈ exp(−t/τ(F )), with τ(F ) from Eq. (S45).
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Our derivation of τ(F ) and ΣF (t) in the previous section also allows us to make a comparison to another catch bond
model. By partitioning the parameter space into two angular states, and focusing on four transition rates (k10, k20,
k12, k21), our approach on the surface seems analogous to the phenomenological two-state catch bond model [3, 4].
However in this phenomenological model each transition rate kij is assumed to have a simple Bell-like dependence
on the force, kij = k0

ij exp(Fxij), for coefficients k0
ij and distances xij . Our general expressions for the transition

rates in the previous sections, and even the simplified versions of Eq. (S44) in the barrier-less limit, are quite different
from Bell models. This is because these rates are derived from an underlying energy landscape based on a structural
model. Our parameters thus directly connect to structural / energetic features of the system, in contrast to the k0

ij ,
xij parameters of the phenomenological model.

III. MAXIMUM LIKELIHOOD FITTING TO THE EXPERIMENTAL DATA

The experimental data D (Ref. [5] Fig. 4A) consists of N = 803 points, D = {(ti, Fi), i = 1, . . . , N}, where ti is the
measured bond lifetime, and Fi is the applied force. Let Λ be the set of free parameters in the model other than F .
The probability P(ti|Fi,Λ) of observing the ith bond lifetime, given force Fi and particular set of parameter values
Λ, is:

P(ti|Fi,Λ) = −δt dΣFi(ti)

dt

∣∣∣∣
Λ

, (S46)

where ΣF (t) is the survival probability at force F . Since we have an analytical expression for ΣF (t) from Eqs. (S38)-
(S39), we also can get an analytical form for dΣF (t)/dt, which allows us to evaluate P(ti|Fi,Λ). The joint probability
of the entire data set, given the model parameters, is

P(D|Λ) =

N∏
i=1

P(ti|Fi,Λ). (S47)

To find the best-fit parameter set Λ, we maximize the log-likelihood function L = lnP(D|Λ),

L =

N∑
i=1

ln
dΣFi(ti)

dt

∣∣∣∣
Λ

, (S48)

where we have neglected an additive constant dependent on δt that does not affect the fitting.
To prevent the maximization algorithm, implemented in Mathematica, from veering into unphysical regions of

parameter space, the parameters were constrained to vary over physically sensible ranges: E0, H, G, d, r0 ≥ 0,
αmax > αc > αmin + γ. Here the buffer angle γ was set to 5◦, to put a constraint on the minimum possible angular
range for the small α conformational state. This choice of γ was based on the magnitude of fluctuations in molecular
dynamics trajectories of α in Ref. [6], though other choices of γ within a few degrees also lead to similar maximum
log-likelihoods and best-fit parameter sets Λ.
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