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I. DERIVATION OF MEAN LIFETIME 7(F) AND SURVIVAL PROBABILITY Xr(t)

The following sections contain a full derivation of the main observable quantities of interest, the mean bond lifetime
7(F) and survival probability X (¢). Since the derivation involves a large number of individual components, Table
S1 summarizes the main analytical quantities, their meaning, and the equations where they are defined.

Quantity Meaning Equation(s)
U(r,0) bond Hamiltonian (S1)-(S2)
V(r,0) effective Fokker-Planck potential energy (S6)
k1o transition rate from state 1 to 0 (rupture) (S15)-(S17)
k2o transition rate from state 2 to 0 (rupture) (S18)-(S19)
k12 transition rate from state 1 to 2 (S26)-(S27)
ko1 transition rate from state 2 to 1 (S28)

T mean first passage time from state i to rupture (S35)

p? probability of state i at time ¢t = 0 (S36)

T mean bond lifetime (S37)
YF survival probability (S38)-(S39)
s probability of being in small « state at rupture (S41)-(542)
TL mean duration of large o conformation (state 2) (S43)

TABLE S1. Summary of main analytical results in the S1 Appendix, with corresponding equation numbers.

A. Fokker-Planck equation describing the bond dynamics

The theoretical model of the bond dynamics is based on diffusion of the bond vector r = (r,0,¢) on an energy
landscape defined by the Hamiltonian U(r, ) in Egs. 1-2 in the main text:

U(r,0) = %k(@)(r —10)? — Frcosf + C(0) (S1)

where
k(@) =ko+ k‘l(l + COSQ),
H(cos 0—cos Omax) 0>0 S2
clo) - { >0, (S2)
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To restrict the dynamics to the angular region Oy < 6 < Ohax, we assume U(r,0) = oo for 6 < Opin and 0 > Opax-
Note that U(r,d) depends on the applied force F' on the system, so every observable derived from U(r, 6) below also
implicitly depends on F', even if the dependence is not explicitly indicated in the notation.

Given a diffusivity D = kpT/6mnrg, the probability ¥(r,t) to find the system with vector r at time t obeys a
Fokker-Planck equation in spherical coordinates of the form:
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Note that throughout the appendix we will work in units where 3 = (kgT)~! = 1, so that all energies are effectively
measured in units of kgT. Since U(r,0) is independent of ¢, we can define a marginal probability P(r,0,t) by
multiplying ¥ with the spherical Jacobian and integrating over the angle ¢,

2m
P(r,0,t) = r*sinf dp U (r,t), (S4)
0



allowing us to write Eq. S3 as a 2D Fokker-Planck equation in terms of P(r,6,t),
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Here V (r,0) is an effective potential defined by
V(r,0) = U(r,0) — kgT In(r?sin 9). (S6)

We will not be interested in solving Eq. (S5) directly, but rather answering a closely related question: the mean first
passage time (MFPT) to escape from a region in parameter space. Consider a region R of the (r,8) space, with
boundary dR, and let us focus on some subset A C OR of this boundary. Let Tra(r,6) denote the MFPT to any
point on A, given that we started at some point (r,0) in the interior of R at t = 0. We assume we have chosen R
such that there are reflecting boundaries on the portion of R not in A, namely U(r, ) = oo for (r,0) € OR\ A. This
guarantees that 7p4(r, ) is finite, and satisfies the backward Fokker-Planck equation [1],
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with absorbing boundary conditions 7r4(r,0) = 0 for (r,0) € A. To directly solve for the main experimental
observable of interest, the mean bond lifetime, we would set R to be the entire parameter space region where the bond
is intact, r < rg+d = b, Omin < 0 < Onax, and set the absorbing boundary A to be the line 7 = b, Oy < 0 < Opax-
Unfortunately, given the complicated form of the energy landscape, Eq. (S7) does not easily lend itself to an analytical
solution for this choice of R and A. We will work around this problem by describing the escape dynamics from smaller
portions of the parameter space, where Eq. (S7) is more amenable to approximation, and then piece together the
various results to get a good estimate of the mean bond lifetime. This same approximate piece-wise approach will
also yield the survival probability.

B. Partitioning the parameter space into conformational regions
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FIG. S1. The energy landscape from Fig. 2 of the main text, partioned into regions of the (r, @) parameter space that reflect
different conformational states: state 0 corresponding to the bond ruptured, state 1 corresponding to the bond intact with
angle amin < a < ac, and state 2 corresponding to the bond intact with angle a. < & < amax. The arrows depict the transition
rates kio, k20, k12, and k21 between the various states, described in the text.

The energy landscape of Egs. (S1)-(S2) allows us to partition the (r, ) parameter space, or equivalently the space
of (r,a = m — 0), into domains representing different conformational states, as illustrated in Fig. S1. The region
where the bond is intact (r < b) and the angle « is small (amin < @ < a,) is denoted as state 1, the corresponding
region with an intact bond and large angle (o, < & < amax) is denoted as state 2, and the region where the bond is



ruptured (r > b) as state 0. If the bond is intact at time ¢t = 0, the dynamics of the system will consist of diffusion
on the energy landscape, possibly making a number of transitions between states 1 and 2, before eventually the » = b
boundary is crossed and bond rupture occurs upon entry to state 0.

The diffusive dynamics exhibit a separation of time scales: the time to equilibrate within each state is typically
< r¢/D ~ 20 ns for the biologically relevant parameter ranges we consider, which is orders of magnitude smaller than
the typical times to escape each state (which can be as large as ~ 1 s for the energy barriers in our case). We can
thus assume that upon entering either state 1 or state 2, the system will rapidly be driven toward the bottom of the
corresponding energy well, and spend considerable amounts of time in the vicinity of the local energy minimum, with
brief excursions up the slopes of the well (eventually one of which will carry it into the bond rupture region, or a
transition to the other angular state).

Given this partitioning of the parameter space, we can define escape rates from the different states through different
boundaries, related to the reciprocal of the escape MFPT introduced in the previous section. These rates (kio, k20,
k12, and kop) are depicted as transition arrows in Fig. S1. Let k19 be the probability per unit time to escape state
1 to state 0 through the bond rupture (r = b) boundary, conditioned on not passing through state 2. We set
k1o = 1/710(r1,01), where 71 is the solution to Eq. (S7) with the region R corresponding to state 1, an absorbing
boundary A at the border with state 0 (r = b) and a reflecting boundary condition imposed at the border with state 2
(o = a). The starting position (r1,01) is the position of the local minimum of the effective potential V (r,6) in state
1. Using any other starting position in the vicinity will not substantially alter the result, given the fast equilibration
time in the well. We define the escape rate from state 2 to state 0, conditioned on not passing through state 1, as
koo = 1/720(r2,02), with R being state 2, an absorbing boundary A at the border to state 0, and a reflecting boundary
at the border to state 1. The position (rz,602) corresponds to the local minimum of V(r,0) in state 2. The interwell
transition rates k1o and ko are defined analogously: kjo = 1/712(r1,61) is the escape rate from state 1 to state 2,
conditioned on the bond not rupturing (reflecting boundary at r = b), and ko1 = 1/721(r2,02) is the reverse rate from
state 2 to state 1.

In the next two sections (1.3 and 1.4) we will find approximate expressions for kig, koo, k12 and ka; from Eq. (S7),
and then in section 1.5 we will show how we can put these together to get analytical results for the mean bond lifetime
7(F') and survival probability ¥ (t).

C. Deriving expressions for kig and k2o

To find an expression for k19 = 1/710(r1,01), we note that 719 satisfies Eq. (S7) with the region R corresponding to
7 < b, apin < a < a.. The o angular range is equivalent to 0. < 0 < 0,.x. We impose reflecting boundary conditions
at 0. and O,.x, and there is a natural reflecting boundary condition at » = 0 because of the logarithmic term in the
definition of V(r,0) in Eq. (S6). The absorbing boundary A is r = b, the border with state 0. We will reduce the
dimensionality of the problem by integrating both sides of Eq. S7 over the 6 range of R,

9 Omax (r.0) b Omax (r.0)
D— do eV 0 —114(r,0) = —/ df eV, S8
The second term on the left hand side in Eq. S7 vanishes after the integration because exp(—V(r,0)) =0 at 0 = 6,
and 0 = O,. because of the reflecting boundary conditions.

Because of the e=V("% terms inside the integrals on both sides of Eq. (S8), the dominant contribution to the
integrals at any particular value of r occurs when V (r, #) reaches a minimum with respect to 6 inside the state 1 range
0. < 0 < Omax. This happens at some value of 6 = 6,,1(r) for a given r. Thus we can treat Eq. (S8) as an equation
for 719(r, 0m1(r)), which we will write in condensed notation as just 719(r). Note that we are interested in 710(r1),
since 61 = 0,,1(r1) is just the position of the well minimum at r1. In this approximation Eq. (S8) becomes

O | w9 _ T
Dar [e arﬁo(r)] =—e , (S9)

where the effective 1D potential Vi (r) is given by

‘gnlax
Vi(r)=—In [/ d@e_v("e)] . (S10)
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With the absorbing boundary condition 719(b) = 0, Eq. S9 can be solved for 71o(r),

1 b = / v’ i 17
Ti0(r) = 5/ dr' V1 (r )/ dr"e= V2", (511)
T 0
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The function 171( ') is a monotonically increasing function of r’ at large r’. Due to the presence of the exp(‘~/1( )
term, the integral over 7’ in Eq. S11 gets its dominant contribution from 7’ near the upper limit b. Conversely because
of the exp(—V; (1)) term, the integral over 7 gets its dominant contribution near 71, the position where V4 (r) reaches
a minimum. To simplify Eq. (S11), we thus make two approximations: (i) expand Vi (') & V4 (b) + V{(b)(r' — b); (ii)
assume b > 71, so the upper limit in the integral over r” can be replaced by co. Along similar lines, if the starting
position is 7 = rq, the precise value of the lower limit on the r’ integral has a negligible effect on the result, so we can
replace it with 0. Eq. (S11) can then be evaluated to yield an expression for 19(r1),

6‘71(})) > Vi ("
T10(r1) & —= dr” e~ V1) (S12)
DV/(b)

where we have kept the largest contributions to the result. The right-hand side does not have a dependence on the
value of the starting position r1, consistent with the assumption of fast equilibration within the well. We denote the
integral in Eq. S12 as

7 = / dr''e V"), (S13)
0

which needs to be evaluated to get a closed form expression for 719(r1). Because this cannot be done exactly, we will
use a saddle-point approximation by expanding Vj(r) around its minimum at r = 7,

Zyme i) | 2T 27T~ ~ e Vi) 21, (S14)
0

where we have used the fact that ‘71”(7:1) ~ ko in the limit of large ko (which is valid when the barrier to rupture
Eo > kpT, since Eq = (ko + k1(1 + cos Omax))d?/2).

Putting everything together from Egs. (S12)-(S14), we can find 719(r1) explicitly. This requires carrying out Vi
integrals using the definition of Eq. (S10), and approximating 71 = 7. This leads to a final expression for kjo:

1 B
k1o = = —, (S15)
710(7"1) a1
where
~ cFro(c—2p)+2Hp cH+p(H—Frop) c(—2F (betdp)+E1 Az+2Eg+E71)
ay = /m(dro)* (A (2bF — Ey) — 2H) (e & —e a1 ) e 25, ,
i i - (S16)
2 3/2 c2(B1—20F)+2HAg+p(u(B1 —2bF)+2Eq+E1) n(2c(Bq — 2bF)+4H+2Eo+E1)
51 =4b DEO (H — FT()Al) € 241 — € A1

In the above expressions, as well as the ones for the other rates below, we will use a set of abbreviated notations, as
follows:
c=cosb., p=cosbpax, V =cosbpnin,
Ai=c—p, DNo=c—v, Az=c+p Ays=p+v,
+p 5 _ 2B
—p v—p

(S17)

For kog = 1/720(r2,02), the derivation proceeds exactly analogously to the one for kig, except that the region R
now corresponds to r < b, O < 6 < 0.. The final expression for ko is:

L _f

fing = (S18)

where

c(v(E1—2dF)+Eq)—v(2Frqu+Eg—2(G—H))

ap = dr? /EL(AQ(E} — 2F) — 2(G — H))? (1 — eFrodatG-H) 25 ,
0

(S19)
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D. Deriving expressions for ki2 and ko

Let us first consider the transition rate k1o = 1/712(r1,61) from state 1 to state 2, conditioned on the bond not
rupturing. The starting point (r1,6;) is at the local energy minimum in state 1, and we will place the absorbing
boundary at some angle 6 < 6., beyond the angular energy barrier at 6. that defines the border with state 2. Once we
are not in the immediate vicinity of the barrier top, the precise location of the absorbing boundary within state 2 does
not significantly change the value of 75. This is because once the system has overcome the barrier to transition from
state 1 to state 2, it rapidly descends into the state 2 energy well. Using this freedom, we will choose the absorbing
boundary A at 8 = 05, the position of the local energy minimum in the state 2 well.

We choose the region R to have an r range between 0 and b, with a reflecting boundary imposed at r = b. The
logarithmic term in V' (r,#) in Eq. (S6) provides another reflecting boundary at » = 0. Integrating both sides of Eq. S7
over this r range gives:

Dg /b dr ie—v(r,e)gT (r,0) = — /b dre= V(0 (S20)
89 0 7‘2 80 1235 0 '

The first term in Eq. S7 vanishes under integration because of the reflecting boundary conditions.

The dominant contribution to the integral on the left-hand side of Eq. S20 for a given angle 6 occurs at r = r,, (),
where V (r, 0) is minimal with respect to r at that 8. To a good approximation r,,(0) ~ ro for the force and parameter
ranges we consider. We can thus treat Eq. (S20) as an effective equation for 712(rg, 8), which we will denote compactly
as T12(0). We are ultimately interested in getting an expression for kjo = 1/712(61). Using this approximation, we
can rewrite Eq. (S20) as:

0 -V () 9 _ =V
D‘g% {e %7'12(0) =—e , (S21)

where Dy = D/r2, and the effective 1D potential V(0) is given by

b
/ dr eV (0
0

In the second expression on the right, we have kept only the most significant contribution from the saddle-point
approximation of the integral.
With the absorbing boundary condition 712(62) = 0, Eq. S21 can be solved for 712(0):

V(@)=—-In ~ V(ro,0) (S22)

]_ o (0! emax 7ol
T12(0) = Da /9 do’ V(@) / , do" eV, (S23)
2

Substituting V (0) ~ V(ro,0) = U(ro,0) — kgT In(r2sinf) allows us to rewrite Eq. (S23) in terms of integration
variables cos @’ and cos#”. The MFPT 715(60;) from starting position 6 is then

1 cos b2 , ., [Cos 0’ B
miz(th) = Dy / 0 d(cos ") /(o0 i / d(cos ") e~V rof),
cos 01 i

1 cos 02 , cos 0’ .
~ —/ d(cos ') eV (ro:b )/ d(cos ") e~ U(ro.07) (524)
C
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In the second line we have neglected the — Insin? 6 contribution in the first exponential, since it does not significantly
change the value of 712(6; ), and in the third line we have introduced the function Z12(cos ') = f:os o d(cos ") e~ U(ro0"),
The final approximation is to note that 6, is close to 0.y, and 05 is close to @i, SO we can replace cosf; in the
integration bounds with 1 = cosf,.x, and replace cos s with v = cos €. Thus the final integral for 712(01) takes
the form,

T12(01) = Dig/ d(cos0') eV 00 7,5 (cos 0). (525)
m



Since the angular dependence of U(rg, 8’) from Egs. (S1)-(S2) is explicitly in terms of cos ¢, the integration variable,
it turns out the integral in Eq. (S25) can be evaluated exactly, to yield a rather complex (but closed form) expression
for ]43127

k’12 _ 1 _ D(H - FT0A1)2 (826)
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To get the transition rate ko from state 2 back to 1, we note that a physically consistent model should relate k1o
and ko1 to each other through detailed balance. The quasi-equilibrium probability ratio of being in state 1 relative
to state 2 (in the long-time limit, conditioned on the bond not rupturing), is approximately Zi2(c)/Z21(c), where
¢ = cosf, and Za1(cost’) = [, d(cosb”) e~ Uro.0")  Thus we can write:

cG+FrouAg—Hu

Z Ay (efroti=H 1) (FroAy + G — H a
ko1 = k12 le(c) = k1p— (e ) (Frolss - e 27 . (S28)
21(0) v(FroAo+G—H) c(FroAg+G—H)
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Eq. (S28), together with the expressions in Eqs. (S26)-(S27), gives a complete closed form result for ko;.

E. Survival probability and mean bond lifetime

The final part of the derivation involves expressing the survival probability ¥z (¢) and mean bond lifetime 7(F') in
terms of the four rates k1g, koo, k12, and ko1, following a standard approach to first passage problems in discrete state
kinetic networks [1]. As mentioned earlier, all these four rates are themselves functions of F, as can be seen in the
results of the previous two sections, but for simplicity we do not show the F' dependence explicitly.

Consider the probability S;(¢) that the bond survived intact until time ¢, given that the system started in state
i=1,2 at time t = 0. If we discretize time in infinitesimal steps of §t, with ¢ = ndt, then the probability Si(t) can



be written as

Sl (nét) = [1 — (kl() + klg)ét}" + [1 - (kl() + klg)(st]m k125t Sg((n - m)5t) (829)

m=0

The right-hand side of Eq. (S29) can be understood as follows: k1odt is the probability to transition from 1 to 0 in
time step dt, and k120t is the probability to transition from 1 to 2 in time step dt. Thus we see that the first term on
the right-hand side of Eq. (529) is the probability that the bond survived without either rupturing or transitioning to
state 2 for the entire n time steps. This is one contribution to S;(ndt). However there is another contribution, since
the bond could still survive, but make at least one transition to state 2 during those n steps. The sum in Eq. (529) is
this second contribution, consisting of the cases where the bond does not leave state 1 for m time steps, then makes a
transition to state 2, and survives the remaining n —m time steps. The last probability is just Sa((n —m)dt). Taking
the limit 0t — 0, n = t/dt — oo, we can rewrite Eq. (S29) as

t
Sy (t) = e~ (Frotki2)t 4 / dt'e= otk g o 60 (8 — t/). (S30)
0
An exactly analogous argument for Sy(t) yields a second integral equation,

t
Sy(t) = e~ (k2otka1)t / dt/e*(k20+k21)t/k2151 (t — t’). (S31)
0

The system of equations, Eq. (S30)-(S31), can be solved by first applying a Laplace transform, Sz(s) = fooo dte=5tS,(t).
This gives

- 1 k1S
Si(s) = s
kio+kio+s  kio+kia+s ($32)
g (S) _ 1 ]{72151(8)
2 koo + ko1 +s koo + ko1 + s
The solutions for S (s) and Sy(s) are then:
3 (s) = k1o + koo 4 ko1 + s
k1okao + ki2kao + korkio + (k1o + k2o + k12 + ko1)s + s27 ($33)

So(s) = ko1 + k1o + k12 + 5
? kiokao + ki2kao 4 ka1 k1o + (k1o + koo + k12 + ko1)s + s2

Before going further, note that if the system started in state ¢ at time ¢ = 0, the probability to rupture between
times ¢ and ¢ + dt is just S;(t) — S;(t + 0t) = —d6t dS;(t)/dt. Hence the mean time to rupture 7; given starting state 4
is just

== [Can®io [T aso =500 (534
0 dt 0

The second equality follows from integration by parts, and the fact that S;(0) = 1, S;(c0) = 0. Plugging s = 0 into
Eq. (S33) thus gives

_ k12 + koo + ka1

 kiokao + k12k2o + kaikio’

- ka1 + k1o + K12 '
k1okao + k12ka0 + ka1k1o

T1

(S35)

To get the final expression for the mean bond lifetime 7, we need the initial probabilities p? of being in state i at time
t = 0. Since we assume the system has quasi-equilibrated at F' = 0 before the application of force at ¢ > 0, the ratio
Py /Y is just Z12(c)/Za1(c) evaluated at F = 0. From this we get the following probabilities:

Ay (e 1) (G = H)eSs

= ) P9 =1-p. (S36)
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FIG. S2. A: The transition rates kio, k20 (solid lines, Eqgs. (S15)-(S19)) and k12, k21 (dashed lines, Eqgs. (526)-(S28)) as a
function of force F. B: The probability ms (Egs. (S41)-(S42)) to be in state 1 (small ) at rupture versus F. C: The survival
probability Xr(t), Egs. (S38)-(S39), as a function of time ¢, for selected forces F' indicated in the legend. For all panels the
results are plotted for the best-fit parameters given in Table 1 of the main text.

For the best-fit parameters given in Table 1 of the main text, these probabilities are p{ = 0.77, p3 = 0.23. The initial
small o probability was denoted as pg = p) in the main text. The mean bond lifetime, weighting over all possible
starting states, is given by

T = pi7T1 + PhTe. (S37)

Eq. (S37), supplemented by Eqs. (S35)-(S36) and the expressions for k1o, koo, k12, and ko; from the previous two
sections (Egs. (515)-(S19), (S26)-(S28)), constitutes the complete theoretical result for 7.
Similarly the survival probability g (t) is just the weighted sum of S (¢) and Sa(t),

Sp(t) = plSi(t) + pYSa(t), (S38)

where S;(t) can be found by inverse Laplace transforming the solutions from Eq. (S33),

4 2\, — 0o 4
. _ ot/2 2 7 . B
Si(t)=e lcosh (2 o° — 4p> + T 1 sinh (2 o° — 4p>1 . (S39)

Here p = kiokao + k12kao + k10k21, 0 = k10 + koo + k12 + ko1, A1 = 0 — k19, A2 = 0 — kog. Note that because the cosh
and sinh share the same argument, Eq. (S39) can also be expressed in terms of two distinct exponential contributions
with different prefactors. This is what leads to the double-exponential behavior seen in the survival probabilities in
the main text.

Another aspect mentioned in the main text is the final conformational state of the system at the moment of rupture,
whether it is state 1 (small «) or state 2 (large «). If the system could quasi-equilibrate at the applied force F before
rupture occurred (i.e. if the rupture rates k19 and koo were sufficiently small), the probability of being in state 1 at
rupture would be ps = ka1 /(k12 + ko1). For the case F = 15.1 pN, discussed in the main text, ps = 10~* for the
parameter values of Table 1. In reality, however, the system does not have time to fully quasi-equilibrate, and the
actual probability of being in state 1 at rupture is 0.47 for this particular value of F. To derive this number, we define
the splitting probability 7;1, the probability that the system will rupture in state 1, given a starting state ¢ at time
t = 0. The splitting probabilities w11 and mo; satisfy the identities [1]:

ko + k12 - S ka1 -
= 215 21 = T— 711
kio + k12 kio + k12 koo + k21
The first identity states the 711 involves two contributions: starting in state 1, the system can either rupture before
jumping to state 2 (probability - (]k'jr",m ) or jump to state 2 first (probability klokr;m ) and then eventually make it back

to state 1 to rupture (probability me;). Similarly for the second identity, o1 is equal to the probability of jumping to

(S40)
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state 1 before rupture (kafkm) times 1. Eq. (S40) can be solved for w1 and a1,
k1o(koo + Kk kiok
- 10( 2(;) 21)’ S 10p 21 ($41)



The probability of rupturing from state 1 independent of initial state (denoted as 7g in the main text) is
Ts = m11p] + T21PY (S42)

For F = 15.1 pN we get mg = 0.47.

Fig. S2 illustrates some of the physical quantities described up to now. Panel A shows the transition rates kg,
koo, k12, and ko1 versus F for the best-fit parameters of Table 1 in the main text. Panel B shows the corresponding
probabilties g and panel C depicts the survival probabilities Xz (t) for various F. At F = 0, the rupture is almost
entirely from state 1, with 7g ~ 1. Hence Yp(t) at F' = 0 is dominated by a single exponential contribution,
Yr(t) = exp(—k1o(F)t) (red curve in Fig. S2C). The probability mg decreases with F', and in the opposite extreme of
large F', the rupture occurs mainly from state 2. In this regime we again have approximately single exponential survival
probabilities, X (t) = exp(—kao(F)t), as seen for example in Fig. S2C for 30 pN (purple curve). At intermediate
forces, where the chances of rupture from either state are comparable, we have double-exponential behavior in X5 (t),
as seen for F' =5, 10 pN (orange and green curves in Fig. S2C). The latter cases distinctly show two different linear
slopes in the logarithmic plot of Fig. S2C, in contrast to the small and large force regimes, where the decay of In Xz ()
is dominated by a single linear slope.

The final quantity discussed in the main text is 77, the mean duration of the large a conformation (state 2),
measured from the first entrance into the state until either rupture occurs or the system transitions to state 1. Since
the total escape rate from state 2 is kog + ko1, the probability of leaving state 2 between times ¢ and t + §t, where
t = 0 is the time of entrance, is: 0t(k2o + ko1) exp(—(k2o + k21)t). Thus the mean duration is:

1

—_— S43
koo + ko1 (543)

oo
L = / dt t(kgo + k21)6_(k20+k21)t —
0

II. CONSISTENCY WITH AN EARLIER CATCH BOND MODEL

One of the nice features of our approach is its generality: even though we focus in the main text on a system with
a substantial angular barrier H, the theoretical model continues to hold even in the absence of such a barrier. In
this section we show that the 7(F') expression for an earlier, barrier-less model for catch bonds in selectin systems,
introduced and numerically verified in Ref. [2], is just a special case of our more general 7(F).

For the selectin case, the full angular range was used, so 0, = 0° and 0,,x = 7m. There was no angular barrier
or energy offset, so H = G = 0, and we can take 6. = 90°, since the border between state 1 and state 2 is arbitrary
without a barrier present. In this case from Eq. (S17) we see that Ey = Ey and E; = F;. Plugging all these values
into the expressions for the transition rates derived above, we find relatively simple results:

B 4DE3/2F(7”0 + d)Qe—Eo—El/Q—dF(eE1/2 _ eF(ro-i-d))

k

10 Varod (e = 1)(Ey — 2F (ro + d)) ’
. 4DE3/2F(7”0 + d)2ePo=E1(gB1/2 _ F(rotd))

20 = Vrrod2(eFro — 1)(Ey — 2F(ro + d)) (S44)
k B DF262FTO

2= 77 e2Fro(2Fry — 1)’

DF2€FTU

k21 =

1+ e2Fro(2Frg — 1)

Without an angular barrier the transitions between angular regions are many orders of magnitude faster than the
transitions to rupture, as can be seen from the fact that k1o and koo both include a factor of e 0 in the numerator
that is not present in k15 and ko;. Typically the factor e %0 < 1 since Ej sets the overall energy scale for rupture,
and Eg ~ 17 — 26 (units of kgT) for the systems considered in Ref. [2]. Hence we can assume in this case that ko,
koo < k12, ko1. This simplifies the expressions for 71 and 72 in Eq. (S35), so that 7 & 7o &~ (k12+k21)/(k12k20+k21k10)-
Hence the mean bond lifetime is also the same as 7 and 75,

(F) k12 + k21 Vrro(By — 2F (ro + d))eFotaF (e2Fr0 1)
T ~ —

~ = . 545
k12kao + ka1k10 4DES/2F(1 +1o/d)? (1 — e2F(ro+d)—Er) (545)

This is in complete agreement with the 7(F) from Eq. (2) in Ref. [2]. The survival probability in this limit becomes
a single exponential, X (t) ~ exp(—t/7(F)), with 7(F) from Eq. (S45).
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Our derivation of 7(F') and X (¢) in the previous section also allows us to make a comparison to another catch bond
model. By partitioning the parameter space into two angular states, and focusing on four transition rates (k19, k20,
k12, k21), our approach on the surface seems analogous to the phenomenological two-state catch bond model [3, 4].
However in this phenomenological model each transition rate k;; is assumed to have a simple Bell-like dependence
on the force, k;; = k% exp(Fx;;), for coefficients k?j and distances x;;. Our general expressions for the transition
rates in the previous sections, and even the simplified versions of Eq. (S44) in the barrier-less limit, are quite different
from Bell models. This is because these rates are derived from an underlying energy landscape based on a structural
model. Our parameters thus directly connect to structural / energetic features of the system, in contrast to the kioj,
x;; parameters of the phenomenological model.

IIT. MAXIMUM LIKELIHOOD FITTING TO THE EXPERIMENTAL DATA

The experimental data D (Ref. [5] Fig. 4A) consists of N = 803 points, D = {(¢;, F;),i = 1,..., N}, where t; is the
measured bond lifetime, and F; is the applied force. Let A be the set of free parameters in the model other than F'.

The probability P(¢;|F;, A) of observing the ith bond lifetime, given force F; and particular set of parameter values
A, is:

dZFi (ti)

NF A) = —
P(t;|Fi, A) ot o

: (546)
A

where ¥ (t) is the survival probability at force F. Since we have an analytical expression for ¥ (¢) from Eqgs. (S38)-
(S39), we also can get an analytical form for dX r(t)/dt, which allows us to evaluate P(t;|F;, A). The joint probability
of the entire data set, given the model parameters, is

N
P(DIA) = [[P(t:|Fi, A). (S47)

i=1
To find the best-fit parameter set A, we maximize the log-likelihood function £ = InP(DJ|A),

N
B A%, (t;)
L= ?:1 In =5 K (S48)

where we have neglected an additive constant dependent on §t that does not affect the fitting.

To prevent the maximization algorithm, implemented in Mathematica, from veering into unphysical regions of
parameter space, the parameters were constrained to vary over physically sensible ranges: Ey, H, G, d, rq > 0,
Qmax > Q¢ > Qmin + 7. Here the buffer angle v was set to 5°, to put a constraint on the minimum possible angular
range for the small o conformational state. This choice of v was based on the magnitude of fluctuations in molecular
dynamics trajectories of o in Ref. [6], though other choices of v within a few degrees also lead to similar maximum
log-likelihoods and best-fit parameter sets A.
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