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Supplementary Figure S1 A histogram of NKI Rockland sample subject ages; for the 620 subjects used 
in this study. 



 
Supplementary Figure S2 Scatterplots of age versus various subject measurements. Top-Left: Age versus 
total number of edges; here we see a slight downward slope which aligns with the reported decrease in 
number of recovered streamline connections with age 1,2  Top-Right: Age versus total edge strength; the 
sum of all edges weights appears to increase with age.  Bottom-Left: Age versus brain volume; 
Supratentorial brain volume measured by FreeSurfer. Bottom-Right: Age versus Euclidean distance; the 
average amount of movement measured after aligning volumes of the dMRI scan. Details to calculate the 
measure can be found at the following DOI: 10.15200/winn.146228.88496.  

Network measure definitions 

Let 𝐴𝐴𝑖𝑖,𝑗𝑗 be an undirected and weighted adjacency matrix, let the community label of node 𝑖𝑖 be 
𝑧𝑧𝑖𝑖  ∈  𝑍𝑍 , where 𝑍𝑍 =  {1, … ,𝑘𝑘} is a set of 𝑘𝑘 number of community labels. Let 𝑟𝑟 and 𝑠𝑠 be 
communities {𝑟𝑟, 𝑠𝑠} ∈  {1, … ,𝑘𝑘}. 

Mean within-community & mean between-community strength 

The mean within-community (𝑊𝑊𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖) and mean between (𝑊𝑊𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖) community strengths are 
measures of connectivity at the level of community structure. 

Let 𝓌𝓌 be the average block matrix defined as: 

𝓌𝓌𝑟𝑟𝑟𝑟 =  
1

𝑛𝑛𝑟𝑟 ∙  𝑛𝑛𝑟𝑟
 � 𝐴𝐴𝑖𝑖,𝑗𝑗

𝑖𝑖∈𝑟𝑟,𝑗𝑗∈𝑟𝑟
 , if 𝑟𝑟 ≠ 𝑠𝑠  



𝓌𝓌𝑟𝑟𝑟𝑟 =  
1

𝑛𝑛𝑟𝑟 ∙  (𝑛𝑛𝑟𝑟 − 1) � 𝐴𝐴𝑖𝑖,𝑗𝑗
𝑖𝑖∈𝑟𝑟,𝑗𝑗∈𝑟𝑟

  

Where 𝑛𝑛𝑟𝑟 and 𝑛𝑛𝑟𝑟 are the number of nodes in communities 𝑟𝑟 and 𝑠𝑠. The mean within-community 
strength for community 𝑟𝑟 would be: 

𝑊𝑊𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑖𝑖𝑖𝑖 =  𝓌𝓌𝑟𝑟𝑟𝑟 

and the between-community for community 𝑟𝑟 would be 

𝑊𝑊𝑏𝑏𝑏𝑏𝑤𝑤𝑤𝑤𝑏𝑏𝑏𝑏𝑖𝑖 =  
1

𝑘𝑘 − 1
 � 𝓌𝓌𝑟𝑟𝑟𝑟 

𝑟𝑟≠𝑟𝑟
 

Participation coefficient 

The participation coefficient of node 𝑖𝑖 (𝑃𝑃𝑖𝑖) is a measure of how well-connected node 𝑖𝑖 is to is 
own community versus other communities. If a node is uniformly connected to all communities, 
the participation coefficient will be near 1. If a node is only connected to nodes of the same 
community, its participation coefficient will be 0. See 3 equation 4. It is defined as: 

𝑃𝑃𝑖𝑖 = 1 −  ��
𝑑𝑑𝑖𝑖(𝑟𝑟)
𝑑𝑑𝑖𝑖

�
2

𝑟𝑟∈𝑍𝑍

 

where Z is the set of communities, 𝑑𝑑𝑖𝑖 is the weighted degree for node 𝑖𝑖, and 𝑑𝑑𝑖𝑖(𝑟𝑟) is the 
weighted degree between 𝑖𝑖 and all nodes in community 𝑟𝑟.  

Community assortativity 

Community assortativity 4 for community 𝑟𝑟 (𝒜𝒜𝑟𝑟) compares the within community strength, 
which we can think of as on-diagonal community strength, with the max between community 
strength, which we can think of as the max off-diagonal community strength. It is defined as: 

𝒜𝒜𝑟𝑟 = �𝓌𝓌𝑟𝑟𝑟𝑟 −  max
𝑟𝑟≠𝑟𝑟

(𝓌𝓌𝑟𝑟𝑟𝑟)� 

Nodal assortativity 

The nodal assortativity 4 for node 𝑖𝑖 (𝛼𝛼𝑖𝑖) compares a node’s weighted connectivity to its assigned 
community (𝑧𝑧𝑖𝑖) to the maximum weighted connectivity to other communities. Given node 𝑖𝑖’s 
community assignment 𝑧𝑧𝑖𝑖, its weighted connection density to community 𝑟𝑟 is defined as 

𝑎𝑎𝑖𝑖(𝑟𝑟) =  
1
𝑛𝑛𝑟𝑟

 � 𝐴𝐴𝑖𝑖𝑗𝑗
𝑗𝑗∈𝑟𝑟

 

then the nodal assortativity can be defined as: 

𝛼𝛼𝑖𝑖 =  𝑎𝑎𝑖𝑖(𝑧𝑧𝑖𝑖) −  max
𝑟𝑟≠𝑧𝑧𝑖𝑖

𝑎𝑎𝑖𝑖(𝑟𝑟) 

Within-module (community) z-score 



The within-module z-score 5 for node 𝑖𝑖 (𝐼𝐼𝑖𝑖) is a measure of a node’s relative within-community 
connectivity, given within-community connectivity for all the nodes of the same community. It is 
defined as: 

𝐼𝐼𝑖𝑖 =  
𝑑𝑑𝑖𝑖(𝑟𝑟𝑖𝑖) −  𝑑𝑑𝚤𝚤� (𝑟𝑟𝑖𝑖)

𝜎𝜎𝑑𝑑(𝑟𝑟𝑖𝑖)
 

where 𝑟𝑟𝑖𝑖 is the community containing node 𝑖𝑖, 𝑑𝑑𝑖𝑖(𝑟𝑟𝑖𝑖) is the within-community weighted degree of 
node 𝑖𝑖, and 𝑑𝑑𝚤𝚤� (𝑟𝑟𝑖𝑖) and 𝜎𝜎𝑑𝑑(𝑟𝑟𝑖𝑖) are the mean and standard deviation of the within-community 
weighted degree distribution.  

Nodal versatility 

The nodal versatility 6 for node 𝑖𝑖 (𝑉𝑉𝑖𝑖) is an index of how readily a node is assigned a community 
with the same neighboring nodes. It is defined as: 

Where p is the pairwise membership probability, or in other words, the probability of nodes 𝑖𝑖 and 
𝑗𝑗 resulting in the same community: 

𝑝𝑝𝑖𝑖,𝑗𝑗 =  
∑ 𝑔𝑔𝓃𝓃�𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗�𝒩𝒩
𝓃𝓃

𝒩𝒩
 

where 𝒩𝒩 is the number of repetitions of a community detection algorithm and the 𝑔𝑔 is the 
agreement matrix, where: 

𝑔𝑔𝓃𝓃(𝑖𝑖, 𝑗𝑗) = �
1, if 𝑧𝑧𝑖𝑖 = 𝑧𝑧𝑗𝑗  for the 𝓃𝓃th repetition
0, else

 

then the nodal versatility for node 𝑖𝑖 is: 

𝑉𝑉𝑖𝑖 =  
∑ sin�𝜋𝜋 ∙ 𝑝𝑝𝑖𝑖,𝑗𝑗�𝑗𝑗

∑ 𝑝𝑝𝑖𝑖,𝑗𝑗𝑗𝑗
 

Consensus convergence 

Consensus convergence 7 (𝒞𝒞) is an index of how consistently nodes are assigned the same 
community membership, given a pairwise membership probability matrix, 𝑝𝑝. It is defined as: 

𝒞𝒞 =  
∑ �𝑝𝑝𝑖𝑖,𝑗𝑗 − 0.5�

2
(𝑖𝑖,𝑗𝑗)∈𝒢𝒢

|𝒢𝒢|  ×
1

(0.5)2 

where 𝒢𝒢 is the set of nonzero entries in the agreement matrix, 𝑔𝑔, and |𝒢𝒢| is the size of set 𝒢𝒢. 

Further workflow validation methods and results 

For the generative module evaluation framework, we sought to show how the WSBM consensus 
model could effectively generate synthetic adjacency matrices. Given that the consensus 
community structure models were fit to the young adult representative matrix, there is a 
possibility that the WSBM model could be overfit to the input data. To measure the 



generalizability of the model, we measured the energy between generated synthetic networks of 
our consensus models and each adjacency matrix in our sample. Specifically, for each subject we 
measured the mean KS energy over 5000 iterations for each consensus model (WSBM and 
modular). We found that the WSBM consensus model produced lower energies (M=0.4, 
SD=0.013) on average than the modular consensus model (M=0.42, SD=0.014; t(1.24x103)=-
27.28, p < 10-9).   

When evaluating the symmetry of our consensus partitions, we wanted to ensure that the 
symmetry demonstrated by the WSBM is not merely a result of a consensus fit procedure. 
Therefore, we repeated this hemispheric symmetry analysis 100 times, switching out the 
consensus WSBM partition for one of the 100 WSBM models of our fitting workflow (the 
models represented by Figure 2, panel b). These are models fit to the representative adjacency 
matrix at a given k, but not modified by consensus information. In 97 of the 100 WSBM tested, 
the partition produced a distribution of hemispheric KS scores (across 620 subjects) significantly 
lower (Wilcoxon rank sum test; p < 10-9; z-value range for significant comparisons: -25.87 – -
8.95) than the distribution of hemispheric KS scores (across 620 subjects) derived from the 
modular partition. 

Supplemental results using a different brain parcellation 

In our original analysis, we used a brain parcellation consisting of 114 nodes in the cortical grey 
matter, derived from a clustering method applied to 1000 resting-state fMRI scans 8. Many 
plausible parcellations of the cortical grey matter exists, constructed to optimize a variety of 
objective functions 9. It is therefore good practice to perform brain network analysis on an 
additional parcellation; which is what we do here. For this reevaluation, we chose to use the 
Lausanne scale125 parcellation (scale125), containing 234 cortical nodes 10. This parcellation 
was created by randomly subdividing the nodes of a widely-used structural parcellation 11. In the 
same manner as previously, we recorded the streamline density between each region of the 
scale125 parcellation to create our subject-level data. By changing the number of nodes being 
used, we also changed the sparsity of the individual-level data, necessitating a new sparsity 
cutoff which was set at 0.15; yielding 609 subjects to analyze. The young adult representative 
matrix was created from 50 subjects between 25-35 years old, with an edge-existence density of 
17.7%. Following the creation of the young adult representative matrix, we performed the 
identical analysis as described before (with the Yeo parcellation); however, we did not repeat the 
individual fit analysis due to computational feasibility. Here we describe these results and find 
that they align generally with our previous findings.  

Using the scale125 node definitions, we identified 11 communities using the WSBM 
consensus workflow (supplementary Figure S4). Like previously, the WSBM has modeled some 
off-diagonal block interactions with high edge weights; such as interactions 6-8 and 4-10. The 
WSBM consensus model contains 3 communities that we could consider disassortative 
(communities 4, 5, and 10) while the modular consensus model does not contain any such 
communities (supplementary table S1). Using MLR to measure strengths between block 
interactions, we see that in the WSBM partition, the top three MLR trends as measured by R2 are 
off-diagonal whereas the top three MRL trends for the modular partition are on the diagonal 
(supplemental Figure S5).  



We again find that the WSBM model generates synthetic brain networks (supplemental 
Figure S6, panel a) with a lower energy than the modular model (t(1999)=-21.11, p <10-9); 
supplemental Figure S6). However, here we find that both the WSBM and modular models 
perform considerably better than the randomized counterpart model. When measuring how well 
each consensus partition respects brain symmetry (supplemental Figure S6, panel b), we find that 
in contrast to the results reported with the Yeo parcellation, the modular partition has a slightly 
smaller between hemisphere KS when measuring participation coefficient (t(1.18x103)=4.84, p = 
1.5 x 10-6). The differences observed for within-module z-score and assortativity recapitulate 
what we previously observed (p < 10-9 and p = 0.0077, respectively). Finally, measuring vector 
similarity/distance between individual subjects and the consensus vectors (supplemental Figure 
S6, panel c) yielded results analogous to the previous findings, the vector measurements given 
the WSBM partition are more similar and less distant than the vector measurements made using 
the modular partition (p < 10-9 for both). In all tests, without and with covariates, the R2 values of 
the WSBM trend is high than the R2 values of the modular trend.  

Comparing community structure partitions across parcellation 

We also assessed the performance of community detection algorithm across parcellation 
choice (Yeo and scale125), to see if the community structure identified by a specific model for 
one parcellation would be statistically similar to the community structure identified by the same 
model, but with a difference parcellation. Straightforward computation of a similarity is not 
feasible as the number of nodes between the parcellations differs. To make this comparison, we 
obtained the spatial arrangement of the parcellations on the FreeSurfer average surface, which 
contains 163842 vertices per hemisphere. For each vertex not part of the “medial gap” (the area 
where the two hemispheres are attached through the callosum and subcortical volumes), we 
identified the community assignment for that vertex. This resulted in 135679 and 135625 valid 
vertices for the left and right hemispheres, which were concatenated to create a vector of length 
271,304. Projecting the communities onto the same geometric space allowed us to measure the 
variation of information (VI; distance) and adjusted rand index (ARI; similarity) between the 
vector of community assignments across parcellation. We computed both of these measurements, 
to make sure that we could observe converging distance/similarity results 12. Were measured the 
empirical distance/similarity between the WSBM partitions in both the Yeo and scale125 
parcellations. We repeated this procedure for the modular partitions as well.   

To assess statistical significance of these spatial community structure 
distances/similarities, we employed a spin-based permutation test 13,14. For each hemisphere of 
the fsaverage surface, we have a mapping of the points in a spherical space (Figure S7, panel a). 
For each permutation, and repeated within an iteration for each hemisphere, a sphere is randomly 
rotated along the x, y, and z axes. Based on this rotation, spatial map originally in the corrected 
fsaverage space can be transformed to new points along the surface. The advantage of such a 
permutation method is the ability to maintain the spatial adjacencies of the parcellation. We 
performed 5000 spin permutations and recorded the VI and ARI between the unrotated Yeo, and 
the rotated scale125 at each permutation, disregarding the medial gap areas. At each iteration, the 
WSBM scale125 and the modular scale125 partitions were rotated according to the same angles. 



We found that for both the WSBM and modular community structures, the identified partitions 
are less distant than by chance. We also see that the modular community structures across 
parcellation are less distant than the WSBM community structures. Overall, this analysis shows 
that the spatial similarity within algorithm (and across parcellation) is significant, for both 
methods. The empirical VI and ARI are outside the range of null values (empirical VI is to the 
left of the null distribution, empirical ARI is to the right of the null distribution) for each test 
(Figure S7). How should we interpret the finding that the modular partitions appear “closer” 
across the two parcellations than the WSBM partitions? We do not think that this necessarily 
indicates greater robustness on the part of modular partitions. An alternative interpretation is that 
modular partitions more strongly reflect spatial (proximity) effects (that are independent of 
partitions). 



 
Supplemental Figure S3 Extended results of multiple linear regression analysis on edge strengths of 
community interactions in the WSBM (a) and modular community (b) structures; here we visualize the 
top 12 MLR trends for both community structures. The top three trends in both (a) and (b) are repeated 
from Figure 6 in the main text.  



 
Supplementary Figure S4 WSBM and modular consensus models fit to a representative matrix averaged 
across 53 young adult subjects, using nodes from the Lausanne scale125 parcellation (214 cortical nodes). 
Note that the colors of communities in this figure do not correspond to the colors used in the analysis using 
the Yeo parcellation. a) The analogous figures to Figure 3 of the main text are shown. From top left to 
bottom right: the adjacency matrix ordered by the blocks of the WSBM consensus model; the community 
structure of the WSBM visualized with colors; the predicted edge-existence and edge weight matrices 
(white entries in the predicted edge weight matrix indicate where a negligible probability of an edge existing 
is modeled); the paired parameters of the block interactions (z-score transformed). b) The adjacency matrix 
ordered by the modular consensus model and community structure of the modular model visualized with 
colors.  



 

Supplementary Figure S5 Results of multiple linear regression analysis on edge strengths of 
community interactions in the WSBM (a) and modular community (b) structures for the Lausanne 
scale125 parcellation. Note for this figure, we display all trends with R2 values above 0, instead of 
thresholding based on p-value.  



 

Supplementary Figure S6 Figures for analogous analysis conducted when using the nodes of the Lausanne 
scale125 parcellation. a) Evaluation of generative energy between WSBM and modular models b) 
Evaluation of between hemisphere KS statistics given WSBM or modular structure c) Evaluation of static 
community structure vector similarity/distance.  

 



 

Supplemental Figure S7 a) An illustration of the surfaces used in spin-based permutation test; the 
FreeSurfer fsaverage surface vertices can be transformed to a sphere and in the space of the sphere, random 
rotations in the x, y, and z planes can be applied to create null parcellations; colored with Yeo and scale125 
parcellation for illustrative purposes b) Results of spin-based permutation test when comparing the WSBM 
partitions of the Yeo and scale125 parcellations (blue), and when comparing the modular partitions of the 
Yeo and scale125 parcellations (orange); lines represent the empirical measurements and lighter shade 
distributions reflect null measurements; for both partitions, and for both variation of information and 
adjusted rand index, the empirical measurement is out of the range of the null distribution 

  



Supplementary Table S1 Table of community statistics for the WSBM and modular consensus 
partitions using the Lausanne scale125 parcellation. Statistics from the representative young 
adult matrix; across-subject mean ± standard deviation in parentheses 

Community 
Label 

Mean within-community 
strength 

Mean between-community 
strength 

Mean community 
participation coef. 

Community 
assortativity 

WSBM     

1 0.09 (0.083 ± 0.02) 0.022 (0.019 ± 0.0039) 0.75 (0.67 ± 0.027) 0.039 (0.03 ± 0.017) 

2 0.44 (0.43 ± 0.083) 0.016 (0.016 ± 0.0035) 0.56 (0.5 ± 0.05) 0.35 (0.36 ± 0.081) 

3 0.11 (0.1 ± 0.028) 0.023 (0.019 ± 0.0045) 0.77 (0.67 ± 0.037) 0.066 (0.051 ± 
0.024) 

4 0.079 (0.07 ± 0.023) 0.038 (0.033 ± 0.008) 0.78 (0.72 ± 0.026) -0.11 (-0.089 ± 
0.054) 

5 0.083 (0.08 ± 0.015) 0.017 (0.016 ± 0.0031) 0.65 (0.59 ± 0.032) -0.0057 (0.0037 ± 
0.02) 

6 0.086 (0.082 ± 0.019) 0.023 (0.019 ± 0.0041) 0.69 (0.62 ± 0.031) 0.00096 (0.0075 ± 
0.018) 

7 0.096 (0.088 ± 0.017) 0.018 (0.018 ± 0.0032) 0.65 (0.6 ± 0.029) 0.013 (0.011 ± 
0.017) 

8 0.11 (0.1 ± 0.033) 0.023 (0.016 ± 0.004) 0.68 (0.55 ± 0.046) 0.022 (0.037 ± 
0.036) 

9 0.11 (0.097 ± 0.031) 0.014 (0.0096 ± 0.0028) 0.65 (0.54 ± 0.049) 0.052 (0.065 ± 0.03) 

10 0.072 (0.07 ± 0.021) 0.04 (0.035 ± 0.0079) 0.76 (0.71 ± 0.028) -0.12 (-0.089 ± 
0.052) 

11 0.31 (0.3 ± 0.05) 0.015 (0.015 ± 0.0034) 0.48 (0.46 ± 0.044) 0.23 (0.22 ± 0.047) 

Modular     

1 0.11 (0.1 ± 0.025) 0.021 (0.018 ± 0.0042) 0.72 (0.66 ± 0.027) 0.062 (0.05 ± 0.028) 

2 0.2 (0.19 ± 0.1) 0.026 (0.025 ± 0.0074) 0.8 (0.73 ± 0.044) 0.14 (0.12 ± 0.095) 

3 0.15 (0.12 ± 0.029) 0.021 (0.018 ± 0.0043) 0.66 (0.62 ± 0.032) 0.11 (0.081 ± 0.025) 

4 0.22 (0.22 ± 0.086) 0.021 (0.02 ± 0.0056) 0.79 (0.73 ± 0.046) 0.17 (0.15 ± 0.077) 

5 0.16 (0.15 ± 0.024) 0.014 (0.014 ± 0.003) 0.42 (0.41 ± 0.041) 0.11 (0.098 ± 0.025) 

6 0.39 (0.32 ± 0.11) 0.015 (0.012 ± 0.003) 0.56 (0.53 ± 0.061) 0.33 (0.27 ± 0.11) 

7 0.11 (0.1 ± 0.021) 0.017 (0.015 ± 0.0039) 0.59 (0.54 ± 0.045) 0.078 (0.063 ± 
0.021) 

8 0.17 (0.12 ± 0.035) 0.017 (0.014 ± 0.0036) 0.69 (0.65 ± 0.033) 0.11 (0.068 ± 0.03) 

9 0.09 (0.077 ± 0.018) 0.016 (0.014 ± 0.0031) 0.64 (0.58 ± 0.036) 0.052 (0.046 ± 
0.015) 

10 0.21 (0.17 ± 0.042) 0.017 (0.017 ± 0.0051) 0.64 (0.59 ± 0.059) 0.17 (0.13 ± 0.042) 

11 0.21 (0.19 ± 0.029) 0.01 (0.011 ± 0.0025) 0.4 (0.39 ± 0.041) 0.17 (0.15 ± 0.027) 

 

  



Supplementary Table S2 Node names and community affiliations for WSBM and modular consensus 
partitions; using the Yeo 17 subdivided nodes. Colors correspond to the label colors for communities used 
in Figure 3. 

WSBM community WSBM node name Modular community Modular node name 

1 LH SalVentAttnA Ins 1 LH SalVentAttnA Ins 

1 LH SalVentAttnB PFCl 1 LH SalVentAttnB PFCv 

1 LH SalVentAttnB PFCv 1 LH ContB PFClv 

1 LH Limbic OFC 1 LH DefaultB Temp 

1 LH ContA PFClv 1 LH DefaultB PFCv 

1 LH ContB PFCl 2 LH SomMotB S2 

1 LH ContB PFClv 2 LH SomMotB Ins 

1 LH DefaultA PFCd 2 LH SomMotB Aud 

1 LH DefaultB Temp 2 LH DorsAttnB TempOcc 

1 LH DefaultB PFCv 2 LH DorsAttnB PostC 

1 RH SalVentAttnA Ins 2 LH SalVentAttnA ParOper 

1 RH SalVentAttnB PFCl 2 LH SalVentAttnA PrCv 

1 RH SalVentAttnB PFClv 2 LH SalVentAttnB IPL 

1 RH SalVentAttnB PFCv 2 LH ContA IPS 

1 RH Limbic OFC 2 LH ContA PFCd 

1 RH ContB PFClv 2 LH ContA PFCl 

1 RH DefaultA PFCd 2 LH ContB IPL 

1 RH DefaultB PFCv 2 LH ContB PFCd 

2 LH SomMotB S2 2 LH DefaultA IPL 

2 LH SalVentAttnA ParOper 2 LH DefaultB IPL 

2 LH SalVentAttnB IPL 2 LH DefaultB PFCl 

2 LH ContB IPL 2 LH TempPar 

2 RH SomMotB S2 3 LH SalVentAttnB PFCl 

2 RH SalVentAttnA ParOper 3 LH ContA PFClv 

2 RH SalVentAttnB IPL 3 LH ContB PFCl 

2 RH ContA IPS 3 LH DefaultA PFCd 

2 RH ContB IPL 3 LH DefaultB PFCd 

3 LH ContA PFCl 3 RH SalVentAttnB PFCl 

3 LH DefaultA PFCm 3 RH ContA PFCl 

3 LH DefaultB PFCd 3 RH ContB PFCld 

3 LH DefaultB PFCl 3 RH DefaultA PFCd 

3 RH ContA PFCl 3 RH DefaultB PFCd 

3 RH ContB PFCld 4 LH SalVentAttnB PFCmp 

3 RH DefaultA PFCm 4 LH ContB PFCmp 

3 RH DefaultB PFCd 4 LH DefaultA PFCm 

4 LH ContA Cinga 4 RH SalVentAttnB PFCmp 

4 LH ContC Cingp 4 RH SalVentAttnB Cinga 

4 LH DefaultC Rsp 4 RH ContB PFCmp 

4 RH SalVentAttnB Cinga 4 RH DefaultA PCC 

4 RH ContA Cinga 4 RH DefaultA PFCm 

4 RH ContC Cingp 5 LH VisCent Striate 

4 RH DefaultC Rsp 5 LH VisCent ExStr 

5 LH DorsAttnA TempOcc 5 LH DorsAttnA TempOcc 

5 LH DorsAttnA ParOcc 5 LH DorsAttnA ParOcc 

5 LH Limbic TempPole 5 LH SalVentAttnB OFC 

5 LH DefaultC IPL 5 LH Limbic TempPole 

5 RH DorsAttnA TempOcc 5 LH Limbic OFC 

5 RH DorsAttnA ParOcc 5 LH ContA Temp 

5 RH Limbic TempPole 5 LH ContB Temp 

5 RH DefaultA Temp 5 LH DefaultC IPL 

5 RH DefaultB AntTemp 5 LH DefaultC PHC 

5 RH DefaultC IPL 6 LH DorsAttnA SPL 

6 LH SomMotA 6 RH SomMotB S2 

6 LH DorsAttnB PostC 6 RH DorsAttnA SPL 

6 LH SalVentAttnA FrMed 6 RH DorsAttnB PostC 

6 RH SomMotA 6 RH SalVentAttnA ParOper 



6 RH DorsAttnB PostC 6 RH ContA IPS 

6 RH SalVentAttnA FrMed 7 LH VisPeri Striate 

7 LH VisCent Striate 7 LH VisPeri ExStrInf 

7 LH VisCent ExStr 7 LH VisPeri ExStrSup 

7 LH VisPeri Striate 7 LH DefaultC Rsp 

7 LH VisPeri ExStrInf 7 RH VisCent Striate 

7 LH VisPeri ExStrSup 7 RH VisCent ExStr 

7 LH SalVentAttnB OFC 7 RH VisPeri Striate 

7 LH DefaultC PHC 7 RH VisPeri ExStrInf 

7 RH VisCent Striate 7 RH VisPeri ExStrSup 

7 RH VisCent ExStr 7 RH DefaultC Rsp 

7 RH VisPeri Striate 7 RH DefaultC PHC 

7 RH VisPeri ExStrInf 8 RH SomMotB Ins 

7 RH VisPeri ExStrSup 8 RH SomMotB Aud 

7 RH DefaultC PHC 8 RH DorsAttnA TempOcc 

8 LH SomMotB Aud 8 RH DorsAttnA ParOcc 

8 LH DorsAttnB TempOcc 8 RH DorsAttnB TempOcc 

8 LH ContA Temp 8 RH SalVentAttnA Ins 

8 LH ContB Temp 8 RH SalVentAttnB IPL 

8 LH DefaultA IPL 8 RH SalVentAttnB PFClv 

8 LH DefaultB IPL 8 RH SalVentAttnB PFCv 

8 LH TempPar 8 RH Limbic TempPole 

8 RH SomMotB Ins 8 RH Limbic OFC 

8 RH SomMotB Aud 8 RH ContA Temp 

8 RH DorsAttnB TempOcc 8 RH ContB Temp 

8 RH ContA Temp 8 RH ContB IPL 

8 RH ContB Temp 8 RH ContB PFClv 

8 RH DefaultA IPL 8 RH DefaultA Temp 

8 RH DefaultB Temp 8 RH DefaultA IPL 

8 RH TempPar 8 RH DefaultB Temp 

9 LH DorsAttnA SPL 8 RH DefaultB AntTemp 

9 LH ContA IPS 8 RH DefaultB PFCv 

9 LH ContC pCun 8 RH DefaultC IPL 

9 LH DefaultA PCC 8 RH TempPar 

9 RH DorsAttnA SPL 9 LH ContC pCun 

9 RH ContC pCun 9 RH ContC pCun 

9 RH DefaultA PCC 10 LH SomMotA 

10 LH SomMotB Cent 10 LH SomMotB Cent 

10 LH SomMotB Ins 10 LH DorsAttnB FEF 

10 LH DorsAttnB FEF 10 LH DorsAttnB PrCv 

10 LH DorsAttnB PrCv 10 LH SalVentAttnA ParMed 

10 LH SalVentAttnA PrCv 10 LH SalVentAttnA FrMed 

10 LH SalVentAttnA ParMed 10 LH SalVentAttnB PFCd 

10 LH SalVentAttnB PFCd 10 LH ContA Cinga 

10 LH SalVentAttnB PFCmp 10 LH ContC Cingp 

10 LH ContA PFCd 10 LH DefaultA PCC 

10 LH ContB PFCd 10 RH SomMotA 

10 LH ContB PFCmp 10 RH SomMotB Cent 

10 RH SomMotB Cent 10 RH DorsAttnB FEF 

10 RH DorsAttnB FEF 10 RH DorsAttnB PrCv 

10 RH DorsAttnB PrCv 10 RH SalVentAttnA PrC 

10 RH SalVentAttnA PrC 10 RH SalVentAttnA PrCv 

10 RH SalVentAttnA PrCv 10 RH SalVentAttnA ParMed 

10 RH SalVentAttnA ParMed 10 RH SalVentAttnA FrMed 

10 RH SalVentAttnB PFCd 10 RH SalVentAttnB PFCd 

10 RH SalVentAttnB PFCmp 10 RH ContA PFCd 

10 RH ContA PFCd 10 RH ContA Cinga 

10 RH ContB PFCmp 10 RH ContC Cingp 
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