Electronic Supporting Information for

Insights into Mechanism and Aging of a noble-metal free H₂-evolving Dye-Sensitized Photocathode

Nicolas Kaeffer,^{1†} Christopher D. Windle,^{1†} Romain Brisse,² Corinne Gablin,³ Didier Leonard,³ Bruno Jousselme,² Murielle Chavarot-Kerlidou¹ and Vincent Artero*¹

¹Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS UMR 5249, CEA, 17 rue des Martyrs, F-38054 Grenoble, Cedex, France

²Laboratory of Innovation in Surface Chemistry and Nanosciences (LICSEN), NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, Cedex, France.

³Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Institut des Sciences Analytiques, UMR 5280, 5, rue de la Doua, F-69100 Villeurbanne, France.

*to whom correspondence should be addressed. E-mail address: <u>vincent.artero@cea.fr</u>, <u>www.solhycat.com</u>

[†]These authors contributed equally

Co_{C11PEt}

Figure S1. Atoms numbering in $Co_{C_{11}PEt}$

Figure S2. Atoms numbering in $Co_{C_{11}P}$

Figure S3. XPS analysis of a Dyenamo **NiO** electrode sintered at 450°C. The core levels of Ni and of O represent main features displayed on the spectrum. The C *Is* peak was used as a reference (at 284.8 eV) for the energy calibration. The presence of carbon is either adventitious (from an external contaminant) and/or residual from the preparation of NiO.

Figure S4. XPS analysis of a $NiO|Co_{C_{11}P}$ electrode in the survey mode.

Figure S5. High resolution XPS analyses of the a) NiO|Co_{C₁₁P}, and b) NiO|RBG-174|Co_{C₁₁P} electrodes at the baseline-corrected Co 2p core levels.

Figure S6. High resolution XPS analyses of the a) NiO|Co_{C11}P, b) NiO|RBG-174 and c) NiO|RBG-174|Co_{C11}P electrodes at the baseline-corrected N *1s*, S *2p* and P *2p* core levels.

Figure S7. Proposed fragments (with corresponding exact masses) for the attribution of the main peaks detected in the ToF-SIMS positive mode spectrum at a **NiO**|**Co**_{C11}P electrode. The secondary ions are monocharged cations; their charges are not shown for the sake of clarity.

Figure S8. Negative mode ToF-SIMS spectra in the m/z 150-250 range for a) NiO blank and b) NiO|RBG-174|Co_{C1P} electrodes.

Figure S9. ToF-SIMS analysis at the surface of the NiO|Co_{C11}P electrode recorded in the positive mode in the m/z range 400-500.

Figure S10. Proposed fragments (with corresponding exact masses) for the attribution of the main peaks detected in the ToF-SIMS positive spectrum of the NiO|RBG-174|Co_{C11}P electrode. The secondary ions are monocharged cations; their charges are not shown for the sake of clarity.

Figure S11. a) CVs recorded at a pristine NiO electrode (black line) and at a NiO|Co_{C11}P electrode (blue line); b) successive scans in the cathodic region at a NiO|Co_{C11}P electrode with a scan rate of 100 mV·s⁻¹ in a NaCl 0.1 M aqueous electrolyte. The broad wave at ~ 0.3 V vs NHE in the CV measured at a pristine NiO electrode is attributed to a surface-confined Ni^{III/II} redox event likely coupled with the exchange of a proton.¹ This feature is also present at the decorated electrode but with a shape slightly modified possibly upon immobilization of the catalyst at the surface.

Figure S12. UV-visible spectra of a NiO|Co_{C11}P electrode (blue lines) and of a pristine NiO electrode (gray lines) poised at -0.24 V vs NHE (dotted lines) then at -0.84 V vs NHE (plain lines) in a NaCl 0.1 M aqueous electrolyte.

Figure S13. UV-visible spectra of a solution of $[Co(DO)(DOH)pnBr_2]$ (1.05 mM in a 0.1M nBu_4PF_6 solution in MeCN) recorded at a Pt grid electrode poised at -1 V vs Ag/AgCl after 30, 180, 300, 420, 600, 950, 1200, 1300, 1500, 1700, 1800 s (from red to purple) in a H₂O/O₂-free glovebox, with a light path of 1.0 mm.

Figure S14. Current densities *vs* time at a) **NiO**|**RBG-174**|**Co**_{C₁₁P} and b) **NiO**|**RBG-174**|**C**₁₀P electrodes poised at 0.14 (red line), 0.34 (blue line) and 0.54 (black line) V vs RHE under chopped light irradiation in MES 0.1M / NaCl 0.1 M aqueous electrolyte at pH 5.5.

Figure S15. LSVs at a **NiO**[**RBG-174**] C_{10} **P** electrode with (red line), without (black line) or with chopped (blue line) light irradiation recorded at a scan rate of 10 mV·s⁻¹ in MES 0.1M / NaCl 0.1 M aqueous electrolyte at pH 5.5.

Figure S16. Chronoamperometric measurements performed on three distinct NiO|RBG-174|Co_{C₁₁P} electrodes under light irradiation recorded at 0.14 V vs RHE in MES 0.1M / NaCl 0.1 M aqueous electrolyte at pH 5.5.

Figure S17. Positive mode ToF-SIMS spectra in the m/z ranges **a**) 800-900, **b**) 600-700 and **c**) 500-600 for the **NiO**|**RBG-174**|**Co**_{C11}**P** electrode after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S18. Proposed fragments (with corresponding exact masses) for the attribution of peaks for $Co_{C_{11}P}$ in a) the positive mode and b) the negative mode and c) for **RBG-174** in the positive mode, in ToF-SIMS spectra at a **NiO**|**RBG-174**|**Co**_{C_{11}P} electrode after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S19. Negative mode ToF-SIMS spectra in the m/z 0-100 range for the NiO|RBG-174|Co_{C11}P electrode a) before and b) after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S20. Positive mode ToF-SIMS spectra in the m/z 400-500 range for the NiOlRBG-174lCo_{C₁₁P} electrode **a**) before and **b**) after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S21. Negative mode ToF-SIMS spectra in the m/z 200-300 range for the NiOlRBG-174lCo_{C₁₁P} electrode a) before and b) after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S22. Positive mode ToF-SIMS spectra in the m/z 200-250 range for the NiO|RBG-174|Co_{C₁₁P} electrode **a**) before and **b**) after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

Figure S23. Positive mode ToF-SIMS spectra in the m/z 350-400 range for the NiOlRBG-174 $|Co_{C_{11}P}$ electrode a) before and b) after two hours of light irradiation poised at E = 0.14 V vs RHE in a MES 0.1 M/NaCl 0.1 M aqueous buffer at pH 5.5.

References

1. (a) Dini, D.; Halpin, Y.; Vos, J. G.; Gibson, E. A., The influence of the preparation method of NiOx photocathodes on the efficiency of p-type dye-sensitized solar cells. *Coord. Chem. Rev.* **2015**, *304-305*, 179-201; (b) Boschloo, G.; Hagfeldt, A., Spectroelectrochemistry of nanostructured NiO. J. Phys. Chem. B **2001**, *105* (15), 3039-3044.