Supporting Information

Diverse Secondary C(sp³)-H bond functionalization via Site-Selective

Trifluoroacetoxylation of Aliphatic Amines

Yongzhen Tang, Yuman Qin, Dongmei Meng, Chaoqun Li, Junfa Wei and Mingyu

Yang *

Key Laboratory of Applied Surface and Colloid Chemistry of MOE & School of Chemistry and Chemical Engineering Shaanxi Normal University, 620 West Chang'an Ave, Xi'an, 710119, China

yangmy05@snnu.edu.cn; yangmy05@gmail.com

Table of Contents

Instrumentation and Chemicals	S1-S2
Preparation of amides	S2–S6
Characterization Data for amides	S7–S25
Site-Selective Oxidation Trifluoroacetoxylation of Aliphatic Amines	S26
Characterization Data for Products	S26–S46
Late-stage functionalization of Steroidal compounds	S46–S51
Comparative experiments	S52–S55
Mechanism studies	S55–S61
References	S61
NMR Spectra	S62–S164

Instrumentation and Chemical

NMR spectra were recorded on Bruker 400 and 600 M spectrometers, operating at 400 and 600 MHz for ¹H NMR and 100 and 150 MHz for ¹³C NMR spectrophotometer using CDCl₃ and TMS as the internal standard. Chemical shift values for ¹H and ¹³C are referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for ¹H, 77.00 ppm for ¹³C; Chemical shifts are reported in δ ppm. All coupling constants (*J* values) were reported in Hertz (Hz). Data for ¹H NMR spectra are reported as follows: chemical shift (ppm, referenced to TMS; s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, m = multiplet), coupling constant (Hz) and integration. Column chromatography was performed on silica gel 200-300 mesh. High-resolution mass spectra (HRMS) were recorded on electron-spray ionization (ESI) technique.

All reactions were carried out under nitrogen atmosphere. Materials were obtained from commercial suppliers or prepared according to standard noteprocedures unless otherwise noted. CuI was purchased from Energy Chemical Reagent Co., Ltd., PhI(OTFA)₂ was purchased from Beijing Innochem Science & Technology Co., Ltd. Tetrabuylammonium bromide (TBAB) was purchased from Tokyo Chemical Industry Co., Ltd. DCM was freshly distilled over CaH₂ under N₂.

General Procedure: Preparation of aliphatic amides Procedure A

n-BuLi in hexane (2.5 M, 20 mmol, 1.05 equiv) was added dropwise to a solution of i-

Pr₂NH (3.5 mL, 21.0 mmol, 1.05 equiv) in THF (40 mL) at -78 °C and stirred for 0.5 h. Then alkyl nitrile **1** (20 mmol, 1.0 equiv) was added dropwise to the resulting LDA solution at -78 °C and stirred at this temperature for 1 h. Alkyl halide (30 mmol, 1.5 equiv) was then added dropwise to the solution at -78 °C. After the addition, the mixture was warmed to room temperature and stirred overnight. After down, the mixture was quenched with saturated aqueous NH₄Cl, and extracted with EtOAc (20 mL × 3). Combined extracts were washed with water, brine solution and dried with anhydrous Na₂SO₄. Solvent was evaporated in Rota-evaporator. The residue was purified by silica gel chromatography (2%–10% EtOAc/petroleum ether) to provide corresponding nitrile **2**.

LiAlH₄ (2.28 g, 60 mmol, 3.0 equiv) was slowly added to the solution of crude nitrile in THF (30 mL) at room temperature. Then the mixture was heated to 88 °C for 24 hours. After that, the reaction was cooled down, the Na₂SO₄ • 10H₂O was added slowly until the mixture was clear to quench the reaction, filtered, solid was washed with Et₂O, the combined ether solution was concentrated in vacuo to give the desired amide **3**.

To a solution of amine **3** (10 mmol, 1.0 equiv) in dichloromethane (20 mL) was added triethylamine (2.78 mL, 20 mmol, 2.0 equiv) at 0 °C. Benzoyl chloride (1.34 g, 9.5 mmol, 0.95 equiv) was added dropwise. Then the mixture was stirring overnight at room temperature. Then the mixture was quenched by water (20 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (20 mL \times 2). The combined organic phase was washed with brine (30 mL), and then dried with anhydrous Na₂SO₄. Evaporation and column chromatography on silica gel (ethyl acetate/hexane = 1:100–1:5 as eluent) afforded corresponding amides **a** as white solid. Aliphatic amide substrates *PG* 2-*PG* 6, *PG* 8-*PG* 13, 2a-2f, 2k-2u, 2ag were prepared according to the procedure A.

PG 7 can be found in reference 1. **Procedure B**

To a solution of 5-chloropentan-1-ol (20 mmol, 1.0 equiv) in acetone (20 mL) was added NaI (40 mmol, 2.0 equiv). Then the mixture was reflux for 5 hours until the 5-chloropentan-1-ol was consumed. Evaporation and column chromatography on silica gel (EA/PE/DCM = 1:20:0.5 as eluent) afforded corresponding **4** as colorless oil.

Follow procedure A to give the aliphatic amides 2g and 2h.

To a solution of amino alcohol **6** (10 mmol, 1.0 equiv) in dichloromethane (10 mL) was added triethylamine (4.17 mL, 30 mmol, 3.0 equiv) at room temperature. Benzoyl chloride (1.34 g, 9.5 mmol, 0.95 equiv) was added dropwise under the same temperature. Then the mixture was stirring for 30 min at room temperature (detected by TLC). After that, the mixture was quenched by water (20 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (20 mL × 2). The combined organic phase was washed with brine (30 mL), and then dried over Na₂SO₄. Evaporation and column chromatography on silica gel (EA/PE/DCM = 1:2:1 as eluent) afforded amino protected compound **7** as white solid. Compound 7 (10 mmol, 1.0 equiv) was dissolved in the DCM (10 mL), pyridine (2.41 mL, 30 mmol,

3.0 equiv) was added dropwise at 0 °C, then Tosyl Chloride (10 mmol, 1.0 equiv) was added portion wise. The mixture was stiring for 24 h. After that, the mixture was quenched by water (20 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (20 mL \times 2). The combined organic phase was washed with brine (30 mL), and then dried over Na₂SO₄. Evaporation and column chromatography on silica gel (EA/PE/DCM = 1:10:0.5 as eluent) to give the desired product **2i** and **2j**.

Procedure C:

The amino alcohol **8** (20 mmol, 1.0 equiv) was dissolved in DCM (20 mL), Et₃N (5.6 mL, 40 mmol, 2.0 equiv) was added dropwise, then BzCl was added at room temperature, the reaction mixture was stiring for 30 min. After that, the mixture was quenched by water (20 mL). The organic layer was separated and the aqueous layer was extracted with dichloromethane (20 mL \times 2). The combined organic phase was washed with brine (30 mL), and then dried over Na₂SO₄. Evaporation and column chromatography on silica gel (EA/PE/DCM = 1:20:0.5 as eluent) afforded amino protected compound **9** as white solid. Compound **9** was followed the same procedure as above to give **2v** as a white solid.

2w-2y, 2z, 2aa were prepared as the above procedure C.

2ab², 2ac², 2ad², 2af³ were synthesized according to previous reported procedure.

Preparation of 2ak:

Lithocholic acid (7.53 g, 20 mmol, 1.0 equiv) was dissolved in THF (100 mL), LiAlH₄ (1.9 g, 50 mmol, 2.5 equiv) was added portion wise under 0 °C, then the mixture was refluxing for 12 h. After that, the reaction was cooled down, the Na₂SO₄ \cdot 10H₂O was added slowly until the mixture was clear to quench the reaction, filtered, solid was washed with Et₂O, the combined ether solution was concentrated in vacuo to give the alcohol-10.

PPh₃ (9.83 g, 37.5 mmol, 2.5 equiv) and 1*H*-imidazole (4.6 g, 67.5 mmol, 4.5 equiv) were successively added to a soln. of alcohol-**10** (5.43 g, 15 mmol, 1.0 equiv) in THF (150 mL). The mixture was cooled to -20 °C and I₂ (7.61 g, 30 mmol, 2.0 equiv) was added in three portions each 5 min. After 15 min, the mixture was removed from the cooling bath and stirred for 30 min at rt. The reaction was quenched by slow addition of sat. NaHCO₃ soln. (15 mL) and sat. Na₂S₂O₃ soln. (15 mL). The aq. Layer was extracted with EtOAc (25 mL × 3), the combined organic layer dried over Na₂SO₄. Evaporation and column chromatography on silica gel (EA/PE/DCM = 1:8:0.5 as eluent) afforded I-**11**.

Then followed the procedure A afforded the product 2ag.

Characterization Data for amides *N*-(2,2-dimethylhexyl)benzamide (2a, *PG* 1)

White solid. mp: 71.8–73.0 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 6.09 (br s, 1H), 3.30 (d, J = 6.0 Hz, 2H), 1.24–1.30 (m, 6H), 0.95 (s, 6H), 0.91 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.59, 135.01, 131.09, 128.37, 126.74, 49.47, 39.72, 34.38, 26.00, 24.91, 23.42, 13.99. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₂₃NNaO, 256.1672; found, 256.1675. **IR** (KBr, cm⁻¹): v 3414, 1637, 1400, 1118, 617.

N-(2,2-dimethylhexyl)-4-methylbenzamide (PG 2)

White solid. mp: 68.2–68.6 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.66 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 6.13 (br s, 1H), 3.28 (d, J = 6.3 Hz, 2H), 2.39 (s, 3H), 1.21–1.34 (m, 6H), 0.93 (s, 6H), 0.90 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.52, 141.61, 132.17, 129.17, 126.74, 49.44, 39.76, 34.39, 26.08, 25.00, 23.51, 21.39, 14.10. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₆H₂₅NNaO, 270.1828; found, 270.1821. **IR** (KBr, cm⁻¹): v 3474, 3415, 2957, 2925, 1639, 1397, 838.

N-(2,2-dimethylhexyl)-4-chlorobenzamide (PG 3)

White solid. mp: 89.5–90.0 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz,

2H), 7.39 (d, J = 8.4 Hz, 2H), 6.25 (br s, 1H), 3.26 (d, J = 6.3 Hz, 2H), 1.21–1.34 (m, 6H), 0.93 (s, 6H), 0.90 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.60, 137.39, 133.36, 128.71, 128.23, 49.61, 39.75, 34.42, 26.05, 24.96, 23.48, 14.08. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₂ClNNaO, 290.1282; found, 290.1275. IR (KBr, cm⁻¹): v 3476, 3415, 2961, 2926, 1789, 1637, 1597, 1484, 823.

N-(2,2-dimethylhexyl)-4-methoxybenzamide (*PG* 4)

White solid. mp: 86.0–87.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.01 (br s, 1H), 3.86 (s, 3H), 3.28 (d, J = 6.3 Hz, 2H), 1.23–1.33 (m, 6H), 0.94 (s, 6H), 0.91 (t, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.07, 161.89, 128.51, 127.25, 113.60, 55.29, 49.42, 39.74, 34.38, 26.04, 24.95, 23.47, 14.06. HRMS–ESI (m/z): [M+H]⁺ calcd. for C₁₆H₂₆NO₂, 264.1958; found, 264.1960. IR (KBr, cm⁻¹): v 3415, 1637, 1399, 1251, 1173, 614.

N-(2,2-dimethylhexyl)-4-nitrobenzamide (PG 5)

White solid. mp: 73.1–74.2 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 8.31 (d, J = 8.4 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 6.12 (br s, 1H), 3.32 (d, J = 6.1 Hz, 2H), 1.26–1.34 (m, 6H), 0.96 (s, 6H), 0.92 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.72, 149.33, 140.64, 128.00, 123.73, 49.88, 39.74, 34.48, 26.04, 24.95, 23.45, 14.06. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₂N₂NaO₃, 301.1523; found, 301.1515. IR (KBr, cm⁻¹): v 3475, 3415, 2927, 1640, 1399, 1108, 866.

N-(2,2-dimethylhexyl)-2-nitrobenzamide (PG 6)

White solid. mp: 72.3–73.4 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.53 (d, J = 7.5 Hz, 1H), 5.78 (br s, 1H), 3.32 (d, J = 6.3 Hz, 2H), 1.22–1.35 (m, 6H), 0.97 (s, 6H), 0.92 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.65, 146.31, 133.58, 133.13, 130.27, 128.67, 124.39, 49.79, 39.67, 34.31, 26.01, 24.89, 23.44, 14.07. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₂N₂NaO₃, 301.1523; found, 301.1515. IR (KBr, cm⁻¹): v 3416, 1638, 1399, 1119, 616.

N-(2,2-dimethylhexyl)-4-methylbenzenesulfonamide (PG 7)

PG 7

White solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 4.30 (t, *J* = 6.9 Hz, 1H), 2.68 (d, *J* = 6.9 Hz, 2H), 2.43 (s, 3H), 1.19–1.25 (m, 2H), 1.09–1.17 (m, 4H), 0.84 (t, *J* = 7.2 Hz, 3H), 0.82 (s, 6H).

N-(2,2-dimethylhexyl)-2,3,4,5,6-pentafluorobenzamide (PG 8)

Yellow solid. mp: 31.9–33.4 °C; ¹H NMR (600 MHz, CDCl₃) δ 5.86 (br s, 1H), 3.30 (d, J = 6.3 Hz, 2H), 1.22–1.33 (m, 6H), 0.94 (s, 6H), 0.91 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.43, 49.87, 39.55, 34.30, 26.01, 24.85, 23.44, 14.01. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₈F₅NNaO, 346.1201; found, 346.1192. **IR** (KBr, cm⁻¹): v 3474, 3415, 1620, 1399, 1115, 618.

N-(2,2-dimethylhexyl)picolinamide (PG 9)

Yellow oil; ¹**H** NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 4.2 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 8.17 (br s, 1H), 7.85 (t, J = 7.8 Hz, 1H), 7.43 (t, J = 6.3 Hz, 1H), 3.30 (d, J = 6.6 Hz, 2H), 1.23–1.37 (m, 6H), 0.96 (s, 6H), 0.91 (t, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.09, 149.79, 147.82, 137.12, 125.83, 122.01, 49.02, 39.55, 34.31, 25.94, 24.81, 23.33, 13.94. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₄H₂₂N₂NaO, 257.1624; found, 257.1624. **IR** (KBr, cm⁻¹): v 3397, 3060, 2929, 2866, 1680, 1529, 1388, 1293, 624.

tert-butyl (2,2-dimethylhexyl)carbamate (PG 10)

White solid. mp: 72.3–73.4 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 5.63 (br s, 1H), 3.07 (d, J = 6.0 Hz, 2H), 1.26–1.32 (m, 4H), 1.21 (s, 9H), 1.17–1.18 (m, 2H), 0.90 (t, J = 7.2 Hz, 3H), 0.86 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 178.20, 48.74, 39.69, 38.83, 34.20, 27.63, 27.05, 26.01, 24.96, 23.48, 14.05. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₃H₂₇NNaO, 236.1985; found, 236.1985. **IR** (KBr, cm⁻¹): v 3416, 2961, 1638, 1220, 1184, 702.

N-(2,2-dimethylhexyl)acetamide (*PG* 11)

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 5.62 (br s, 1H), 3.07 (d, J = 6.3 Hz, 2H), 2.01 (s, 3H), 1.17–1.30 (m, 6H), 0.90 (t, J = 7.2 Hz, 3H), 0.86 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 170.11, 49.22, 39.62, 33.95, 26.01, 24.85, 23.48, 23.40, 14.06. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₀H₂₁NNaO, 194.1515; found, 194.1513. **IR** (KBr, cm⁻¹): v 3414, 2960, 2630, 1655, 1556, 1466, 605.

methyl (2,2-dimethylhexyl)carbamate (PG 12)

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 4.65 (s, 1H), 3.67 (s, 3H), 3.00 (d, J = 6.4 Hz, 2H), 1.24–1.29 (m, 2H), 1.16–1.24 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H), 0.85 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 157.33, 52.02, 51.01, 39.43, 34.16, 26.02, 24.74, 23.51, 14.08. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₀H₂₁NNaO₂, 210.1465; found, 210.1462. **IR** (KBr, cm⁻¹): v 3416, 2956, 1638, 1399, 1122, 615.

N-(2,2-dimethylhexyl)-2,2,2-trifluoroacetamide (PG 13)

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 6.40 (br s, 1H), 3.19 (d, J = 6.3 Hz, 2H), 1.20–1.36 (m, 6H), 0.90 (t, J = 7.2 Hz, 3H), 0.90 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 157.42 (q, J = 42.0 Hz), 115.99 (q, J = 285.0 Hz), 49.50, 39.49, 34.29, 25.95, 24.67, 23.37, 13.96. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₀H₁₈F₃NNaO, 248.1233; found, 248.1230. **IR** (KBr, cm⁻¹): v 3414, 2963, 2934, 1706, 1621, 1592, 1121, 1167, 723.

N-(2,2-dimethylpentyl)benzamide (2b)

White solid. mp: 70.1–70.4 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.50 (t, J = 8.0 Hz, 1H), 7.44 (t, J = 8.0, 8.0 Hz, 2H), 6.11 (s, 1H), 3.30 (d, J = 8.0 Hz, 2H), 1.30–1.37 (m, 2H), 1.21–1.28 (m, 2H), 0.95 (s, 6H), 0.91 (t, J = 8.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.62, 135.05, 131.24, 128.52, 126.76, 49.55, 42.50, 34.52, 25.00, 17.10, 14.94. **HRMS–ESI** (m/z): [M+H]⁺ calcd. for C₁₄H₂₂NO, 220.1696; found, 220.1699. **IR** (KBr, cm⁻¹): v 3475, 3414, 1638, 1399, 1119, 618.

N-(2,2-dimethyldecyl)benzamide (2c)

White solid. mp: 55.8–56.1 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.45 (dd, J = 6.0, 6.0 Hz, 2H), 6.09 (br s, 1H), 3.30 (d, J = 6.0 Hz, 2H), 1.22–1.35 (m, 14H), 0.94 (s, 6H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.62, 135.07, 131.25, 128.53, 126.76, 49.53, 40.08, 34.43, 31.85, 30.48, 29.57, 29.28, 25.01, 23.86, 22.63, 14.09. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₃₁NNaO,312.2298; found, 312.2296. IR (KBr, cm⁻¹): v 3475, 3415, 1638, 1399, 1119, 617.

N-(2,2-dimethyltetradecyl)benzamide (2d)

White solid. mp: 58.2–59.0 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 6.09 (br s, 1H), 3.30 (d, J = 6.0 Hz, 2H), 1.22–1.30 (m, 22H), 0.94 (s, 6H), 0.88 (t, J = 6.0 Hz, 3H). ¹³C NMR

(150 MHz, CDCl₃) δ 167.63, 135.09, 131.22, 128.51, 126.77, 49.55, 40.11, 34.44, 31.87, 30.49, 29.63, 29.62, 29.61, 29.30, 25.01, 23.87, 22.64, 14.07. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₂₃H₃₉NNaO, 368.2924; found, 368.2927. **IR** (KBr, cm⁻¹): v 3550, 3476, 3414, 2959, 2921, 1639, 1537, 1121, 802, 639.

N-(2,2-dimethyloctadecyl)benzamide (2e)

White solid. mp: 71.1–71.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.8, 7.2 Hz, 2H), 6.08 (br s, 1H), 3.30 (d, J = 6.3 Hz, 2H), 1.21–1.33 (m, 30H), 0.94 (s, 6H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.61, 135.14, 131.25, 128.55, 126.77, 49.57, 40.13, 34.45, 31.90, 30.51, 29.67, 29.66, 29.63, 29.33, 25.04, 23.89, 22.66, 14.09. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₇H₄₇NNaO, 424.3550; found, 424.3552. IR (KBr, cm⁻¹): v 3475, 3415, 2920, 1638, 1399, 1119, 616.

N-(5-cyclohexyl-2,2-dimethylpentyl)benzamide (2f)

White solid. mp: 112.4–113.0 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.5, 7.2 Hz, 2H), 6.09 (br s, 1H), 3.29 (d, J = 6.3 Hz, 2H), 1.59–1.72 (m, 5H), 1.27–1.33 (m, 2H), 1.19–1.25 (m, 5H), 1.11–1.17 (m, , 3H), 0.94 (s, 6H), 0.83–0.88 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 167.59, 135.08, 131.21, 128.50, 126.74, 49.55, 45.71, 40.36, 38.25, 37.52, 34.47, 33.36, 26.65, 26.34, 25.00, 21.00, 8.55. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₀H₃₁NNaO, 324.2298; found, 324.2297. **IR** (KBr, cm⁻¹): v 3475, 3414, 2923, 2848, 1639, 1551, 1304, 1106, 705.

7-benzamido-6,6-dimethylheptyl benzoate (2g)

White solid. mp: 57.6–58.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, J = 6.0 Hz, 2H), 7.76 (d, J = 6.0 Hz, 2H), 7.55 (t, J = 6.0 Hz, 1H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 4H), 6.12 (br s, 1H), 4.32 (t, J = 6.0 Hz, 2H), 3.31 (d, J = 6.0 Hz, 2H), 1.76–1.81 (m, 2H), 1.35–1.46 (m, 4H), 1.28–1.31 (m, 2H), 0.95 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.61, 166.54, 134.96, 132.69, 131.13, 130.32, 129.38, 128.40, 128.19, 126.75, 64.85, 49.40, 39.81, 34.49, 28.59, 26.75, 24.90, 23.50. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₃H₂₉NNaO₃, 390.2040; found, 390.2035. IR (KBr, cm⁻¹): v 3417, 1721, 1634, 1396, 1113, 710, 617.

White solid. mp: 56.2–56.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.43 (dd, J = 8.0, 8.0 Hz, 4H), 6.08 (br s, 1H), 4.31 (t, J = 6.0 Hz, 2H), 3.30 (d, J = 8.0 Hz, 2H), 1.73–1.80 (m, 2H), 1.43–1.56 (m, 2H), 1.24–1.39 (m, 6H), 0.95(s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.62, 166.60, 135.02, 132.73, 131.21, 130.40, 129.44, 128.48, 128.24, 126.74, 64.96, 49.48, 39.95, 34.46, 30.05, 28.62, 25.95, 24.97, 23.75. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₄H₃₁NNaO₃,404.2196; found, 404.2191. IR (KBr, cm⁻¹): v 3474, 3415, 1637, 1399, 1111, 616.

7-benzamido-6,6-dimethylheptyl 4-methylbenzenesulfonate (2i)

White solid. mp: 58.3–59.5 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.78 (d, J = 6.0 Hz, 2H), 7.76 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.6 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 7.33 (d, J = 6.0 Hz, 2H), 6.11 (br s, 1H), 4.02 (t, J = 6.0 Hz, 2H), 3.27 (d, J = 6.0 Hz, 2H), 2.44 (s, 3H), 1.63–1.68(m, 2H), 1.21–1.31 (m, 6H), 0.92 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.60, 144.61, 134.90, 133.03, 131.23, 129.75, 128.48, 127.74, 126.75, 70.50, 49.31, 39.65, 34.46, 28.65, 26.05, 24.91, 23.16, 21.53. HRMS–ESI (*m/z*): [M+Na]⁺ calcd. for C₂₃H₃₁NNaO₄S, 440.1866; found, 440.1860. IR (KBr, cm⁻¹): v 3475, 3415, 1636, 1400, 1171, 618.

8-benzamido-7,7-dimethyloctyl 4-methylbenzenesulfonate (2j)

White solid. mp: 67.8–69.3 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 6.09 (br s, 1H), 4.01 (t, J = 6.3 Hz, 2H), 3.28 (d, J = 6.3 Hz, 2H), 2.45 (s, 3H), 1.64 (quint, J = 6.6 Hz, 2H), 1.30–1.35 (m, 2H), 1.19–1.29 (m, 6H), 0.93 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.47, 144.46, 134.69, 132.67, 130.93, 129.57, 128.16, 127.49, 126.66, 70.44, 49.19, 39.57, 34.37, 29.42, 28.42, 24.98, 24.70, 23.36, 21.32. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₄H₃₃NNaO₄S, 454.2023; found, 454.2020. IR (KBr, cm⁻¹): v 3475, 3415, 3255, 2923, 1639, 1560, 1467, 1357, 1176, 954, 813, 662.

N-(2,2-diethyloctyl)benzamide (2k)

White solid. mp: 46.8–47.6 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 5.95 (br s, 1H), 3.32 (d, J = 6.0 Hz, 2H), 1.22–1.32 (m, 14H), 0.88 (t, J = 6.0 Hz, 3H), 0.85 (t, J = 6.0 Hz, 6H).

¹³**C NMR** (150 MHz, CDCl₃) *δ* 167.40, 135.08, 131.07, 128.39, 126.67, 43.78, 38.63, 34.06, 31.70, 30.09, 26.78, 22.75, 22.55, 13.94, 7.42. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₁₉H₃₁NNaO, 312.2298; found, 312.2308. **IR** (KBr, cm⁻¹): v 3550, 3475, 3414, 2926, 1636, 1301, 1174, 619.

N-(2-ethyl-2-methyloctyl)benzamide (21)

White solid. mp: 57.6–58.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.44 (dd, J = 7.2, 7.2 Hz, 2H), 6.02 (br s, 1H), 3.32 (d, J = 6.0 Hz, 2H), 1.22–1.38 (m, 12H), 0.90 (s, 3H), 0.89–0.85 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.60, 135.00, 131.14, 128.42, 126.72, 46.99, 37.02, 36.56, 31.74, 30.11, 29.65, 23.26, 22.57, 22.56, 13.99, 7.86. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₉NNaO, 298.2141; found, 298.2149. IR (KBr, cm⁻¹): v 3752, 3550, 3475, 2926, 1639, 1550, 1383, 704.

N-(2,2-dipropylpentyl)benzamide (2m)

White solid. mp: 104.2–104.8 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.74 (d, J = 6.0 Hz, 2H), 7.51 (t, J = 6.0 Hz, 1H), 7.45 (dd, J = 6.0, 6.0 Hz, 2H), 5.96 (br s, 1H), 3.32 (d, J = 6.0 Hz, 2H), 1.26–1.30 (m, 6H), 1.21–1.23 (m, 6H), 0.90 (t, J = 6.0 Hz, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.51, 135.18, 131.19, 128.54, 126.71, 44.86, 38.91, 37.85, 16.29, 14.97. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₈H₂₉NNaO, 298.2141; found, 298.2149. **IR** (KBr, cm⁻¹): v 3754, 3652, 3476, 2928, 1637, 1557, 1171, 698.

N-(2-isopropyl-2-methylpentyl)benzamide (2n)

White solid. **mp**: 63.2–64.5 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.5, 7.2 Hz, 2H), 6.01 (br s, 1H), 3.39 (dd, J = 13.8, 6.0 Hz, 2H), 1.67 (sept, J = 6.6 Hz, 1H), 1.24–1.32 (m, 4H), 0.92 (d, J = 6.6 Hz, 6H), 0.91 (s, 3H), 0.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.56, 135.14, 131.23, 128.55, 126.72, 45.29, 38.65, 38.37, 32.80, 19.47, 17.25, 17.17, 16.68, 15.09. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₆H₂₅NNaO, 270.1828; found, 270.1828. **IR** (KBr, cm⁻¹): v 3551, 3476, 2960, 1634, 1317, 1183, 710, 619.

N-((1-butylcyclohexyl)methyl)benzamide (20)

White solid. mp: 91.5–93.2 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.8 Hz, 2H), 7.50 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.8, 7.2 Hz, 2H), 6.01 (br s, 1H), 3.38 (d, J = 6.0 Hz, 2H), 1.50–1.57 (m, 2H), 1.40–1.48 (m, 4H), 1.26–1.39 (m, 10H), 0.92 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.58, 135.17, 131.19, 128.52, 126.74, 45.80, 36.32, 35.55, 33.75, 26.22, 25.11, 23.57, 21.44, 14.06. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₇NNaO, 296.1985; found, 296.1984. IR (KBr, cm⁻¹): v 3751, 3474, 2930, 1642, 1546, 1303, 699, 613.

White solid. mp: 62.5–62.9 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (t, J = 6.0, 6.0 Hz, 2H), 6.01 (br s, 1H), 3.38 (d, J = 6.0 Hz, 2H), 1.38–1.53 (m, 7H), 1.33–1.37 (m, 4H), 1.21–1.31 (m, 13H), 0.87 (t, J = 6.0 Hz, 3H). ¹³C NMR (150MHz, CDCl₃) δ 167.53, 135.10, 131.12, 128.44, 126.73, 45.80, 36.33, 35.79, 33.68, 31.82, 30.52, 29.50, 29.25, 26.18, 22.82, 22.57, 21.41, 14.02. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₂₂H₃₅NNaO, 352.2611; found, 352.2613. **IR** (KBr, cm⁻¹): v 3474, 3415, 2926, 1637, 1549, 1301, 700, 613.

N-(2-methylpentyl)benzamide (2q)

Colorless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.44 (t, J = 7.2, 7.5 Hz, 2H), 6.14 (br s, 1H), 3.41 (ddd, J = 13.2, 7.2, 6.0 Hz, 1H), 3.27 (ddd, J = 13.2, 7.2, 6.0 Hz, 1H), 1.73–1.81 (m, 1H), 1.38–1.46 (m, 2H), 1.29–1.37 (m, 1H), 1.15–1.22 (m, 1H), 0.97 (d, J = 6.6 Hz, 3H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.62, 134.72, 131.00, 128.22, 126.81, 45.90, 36.56, 32.97, 19.85, 17.44, 14.13. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₃H₁₉NNaO,228.1359; found, 228.1351. IR (KBr, cm⁻¹): v 3317, 2961, 1643, 1543, 1300, 702.

N-(2-propylpentyl)benzamide (2r)

White solid. mp: 63.7–64.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 6.05 (br s, 1H), 3.41 (t, J = 6.0 Hz, 2H), 1.65 (sept, J = 6.0 Hz, 1H), 1.34–1.41 (m, 4H), 1.30–1.33 (m, 4H), 0.92 (t, J = 6.0 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.57, 134.89, 131.16,

128.43, 126.77, 43.24, 37.54, 34.16, 19.74, 14.37. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₁₅H₂₃NNaO, 256.1672; found, 256.1676. **IR** (KBr, cm⁻¹): v 3752, 3551, 3476, 2956, 2925, 1631, 1540, 1301, 695.

N-(2-isopropylpentyl)benzamide (2s)

White solid. mp: 69.6–71.3 °C; ¹**H NMR** (600 MHz, CDCl₃) δ 7.75 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.44 (dd, J = 6.0, 6.0 Hz, 2H), 6.03 (s, 1H), 3.38–3.47 (m, 2H), 1.75–1.81(m, 1H), 1.44–1.50 (m, 1H), 1.32–1.44 (m, 3H), 1.18–1.25 (m, 1H), 0.95 (d, J = 6.0, 3H), 0.94 (d, J = 6.0, 3H), 0.92 (t, J = 6.0, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.49, 134.96, 131.20, 128.49, 126.76, 43.90, 41.14, 31.16, 28.61, 20.82, 19.42, 19.06, 14.42. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₅H₂₃NNaO, 256.1672; found, 256.1675. **IR** (KBr, cm⁻¹): v 3474, 3415, 1633, 1549, 1315, 1122, 705, 617.

N-octylbenzamide (2t)

White solid. mp: 41.6–42.0 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.5 Hz, 1H), 7.43 (dd, J = 7.5, 7.5 Hz, 2H), 6.13 (br s, 1H), 3.43–3.47 (m, 2H), 1.58–1.66 (m, 2H), 1.27–1.40 (m, 10H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.49, 134.73, 131.00, 128.23, 126.83, 40.01, 31.65, 29.52, 29.17, 29.07, 26.90, 22.48, 13.93. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₅H₂₃NNaO, 256.1672; found, 256.1672. **IR** (KBr, cm⁻¹): v 3474, 3415, 2921, 1631, 1532, 1121, 615.

N-(2,2,4-trimethylpentyl)benzamide (2u)

White solid. mp: 58.0–58.5 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.5, 7.2 Hz, 2H), 6.11 (br s, 1H), 3.31 (d, J = 6.3 Hz, 2H), 1.75 (sept, J = 6.0 Hz, 1H), 1.23 (d, J = 5.4 Hz, 2H), 0.98 (s, 6H), 0.95 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.59, 135.01, 131.24, 128.52, 126.75, 50.04, 48.85, 35.17, 25.44, 23.98. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₃NNaO, 256.1672; found, 256.1665. IR (KBr, cm⁻¹): v 3474, 3415, 2958, 1638, 1398, 1178, 614.

N-(2-heptanyl)benzamide (2v)

White solid. mp: 64.7–65.3 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.49 (t, J = 8.0 Hz, 1H), 7.42 (dd, J = 8.0, 8.0 Hz, 2H), 5.86 (d, J = 8.0 Hz, 1H), 4.14–4.24 (m, 1H), 1.50–1.57 (m, 2H), 1.27–1.40 (m, 6H), 1.23 (d, J = 8.0 Hz, 3H), 0.88 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.77, 135.07, 131.15, 128.44, 126.77, 45.73, 36.98, 31.67, 25.73, 22.52, 20.98, 13.96. HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₄H₂₁NNaO, 242.1515; found, 242.1518. IR (KBr, cm⁻¹): v 3415, 2923, 1633, 1457, 1162, 889, 698.

N-(1-octylcyclopentyl)benzamide (2w)

White solid. mp: 89.1–89.7 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.71 (d, J = 8.0 Hz, 2H), 7.48 (t, J = 8.0 Hz, 1H), 7.42 (dd, J = 8.0, 8.0 Hz, 2H), 5.84 (br s, 1H), 2.05–2.11 (m, 2H), 1.90–1.94 (m, 2H), 1.68–1.77 (m, 6H), 1.24–1.29 (m, 12H), 0.86 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.89, 135.92, 131.02, 128.46, 126.65,

65.19, 38.12, 37.35, 31.82, 29.97, 29.60, 29.26, 25.10, 23.75, 22.62, 14.06. **HRMS– ESI** (*m/z*): [M+Na]⁺ calcd. for C₂₀H₃₁NNaO, 324.2298; found, 324.2288. **IR** (KBr, cm⁻¹): v 3416, 2924, 1636, 1400, 1119, 617.

(±)2-benzamidohexyl pivalate (2x)

White solid. mp: 71.8–73.3 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.2 Hz, 2H), 7.50 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 7.2, 7.5 Hz, 2H), 6.21 (d, J = 7.5 Hz, 1H), 4.40–4.46 (m, 1H), 4.32 (dd, J = 11.4, 6.3 Hz, 1H), 4.12 (dd, J = 11.4, 4.2 Hz, 1H), 1.53–1.64 (m, 2H), 1.33–1.42 (m, 4H), 1.19 (s, 9H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 178.72, 167.01, 134.40, 131.30, 128.41, 126.77, 65.58, 49.01, 38.77, 31.25, 27.82, 27.03, 22.41, 13.81. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₇NNaO₃, 328.1883; found, 328.1887. IR (KBr, cm⁻¹): v 3417, 2925, 1637, 1400, 1173, 614.

(±) 2-benzamidohexyl acetate (2y)

White solid. mp: 63.7–64.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.0 Hz, 2H), 7.51 (t, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0, 8.0 Hz, 2H), 6.20 (d, J = 8.0 Hz, 1H), 4.36–4.44 (m, 1H), 4.30 (dd, J = 12.0, 4.0 Hz, 1H), 4.14 (dd, J = 12.0, 4.0 Hz, 1H), 2.08 (s, 3H), 1.52–1.66 (m, 2H), 1.32–1.43 (m, 4H), 0.91 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.25, 167.14, 134.47, 131.37, 128.45, 126.85, 65.93, 48.95, 31.27, 27.94, 22.44, 20.75, 13.84. HRMS–ESI (m/z): [M+Na]⁺ calcd. for

C₁₅H₂₁NNaO₃, 286.1414; found, 286.1418. **IR** (KBr, cm⁻¹): v 3415, 2926, 1732, 1637, 1399, 1121, 695, 616.

(±)2-benzamidohexyl benzoate (2z)

White solid. mp: 117.0–118.0 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.8 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 7.8, 7.2 Hz, 2H), 7.42 (dd, J = 7.8, 7.5 Hz, 2H), 6.32 (d, J = 7.2 Hz, 1H), 4.53–4.57 (m, 1H), 4.52 (dd, J = 11.1, 6.0 Hz, 1H), 4.43 (dd, J = 11.1, 3.3 Hz, 1H), 1.71–1.76 (m, 1H), 1.64–1.69 (m, 1H), 1.42–1.50 (m, 2H), 1.33–1.41 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.23, 166.90, 134.59, 133.20, 131.47, 129.81, 129.66, 128.59, 128.47, 126.87, 66.51, 49.28, 31.55, 28.07, 22.56, 13.93. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₃NNaO₃, 348.1570; found, 348.1576. IR (KBr, cm⁻¹): v 3416, 2956, 1719, 1635, 1399, 1127, 706, 615.

(±)2-benzamidohexyl 2,3,4,5,6-pentafluorobenzoate (2aa)

White solid. mp: 96.0–97.6 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 6.15 (d, J = 7.8 Hz, 1H), 4.57 (dd, J = 10.5, 4.2 Hz, 1H), 4.49–4.54 (m, 2H), 1.62–1.73 (m, 2H), 1.34–1.45 (m, 4H), 0.92 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.20, 158.90, 134.12, 131.42, 128.37, 126.79, 67.89, 48.42, 31.04, 27.94, 22.35, 13.74. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₁₈F₅NNaO₃, 438.1099; found, 438.1089. IR (KBr, cm⁻¹): v

3475, 3415, 1734, 1639, 1531, 1396, 1106, 696.

(±)-methyl 2-benzamidohexanoate (2ab) $Ph \xrightarrow[]{}{N} (\pm)$ 2ab

White solid. mp: 69.5–71.3 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.5, 7.5 Hz, 2H), 6.65 (d, J = 7.2 Hz, 1H), 4.84 (dd, J = 13.2, 7.2 Hz, 1H), 3.79 (s, 3H), 1.95–1.99 (m, 1H), 1.76–1.82 (m, 1H), 1.30–1.41 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.06, 166.95, 133.65, 131.37, 128.20, 126.91, 52.39, 52.06, 31.79, 27.29, 22.05, 13.61. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₄H₁₉NNaO₃, 272.1257; found, 272.1252. IR (KBr, cm⁻¹): v 3415, 2954, 1752, 1634, 1363, 1157, 720, 633.

White solid. mp: 79.4–81.1 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.8, 7.5 Hz, 2H), 6.68 (d, J = 7.2 Hz, 1H), 4.82 (dt, J = 13.2, 7.2 Hz, 1H), 4.25 (dq, J = 7.2, 1.8 Hz, 2H), 1.95–2.00 (m, 1H), 1.76–1.82 (m, 1H), 1.30–1.44 (m, 4H), 1.31 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.68, 166.92, 133.95, 131.47, 128.37, 126.95, 61.27, 52.51, 32.15, 27.25, 22.19, 14.04, 13.71. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₁NNaO₃, 286.1414; found, 286.1410. IR (KBr, cm⁻¹): v 3415, 2924, 1745, 1637, 1399, 1161, 715, 618.

(±)-methyl 2-benzamidodecanoate (2ad)

White solid. mp: 49.7–50.8 °C; ¹**H** NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 6.0 Hz, 2H), 7.50 (t, J = 6.0 Hz, 1H), 7.42 (t, J = 6.0 Hz, 2H), 6.77 (br s, 1H), 4.82 (dt, J = 9.0, 6.0 Hz, 1H), 3.77 (s, 3H), 1.92–1.97 (m, 1H), 1.75–1.80 (m, 1H), 1.20–1.41 (m, 12H), 0.87 (t, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.22, 166.95, 133.97, 131.60, 128.48, 127.01, 52.54, 52.29, 32.52, 31.71, 29.25, 29.15, 29.08, 25.21, 22.54, 13.99. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₇NNaO₃, 328.1883; found, 328.1889. IR (KBr, cm⁻¹): v 3289, 2923, 1745, 1642, 1213, 703.

(±)-methyl 2-benzamido-5-cyclohexylpentanoate (2ae)

White solid. mp: 61.4–63.2 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, J = 7.2 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.45 (t, J = 7.2, 7.5 Hz, 2H), 6.65 (d, J = 7.5 Hz, 1H), 4.83 (td, J = 7.5, 5.7 Hz, 1H), 3.78 (s, 3H), 1.90–1.96 (m, 1H), 1.73–1.79 (m, 1H), 1.61–1.68(m, 5H), 1.38–1.45 (m, 1H), 1.30–1.37 (m, 1H), 1.09–1.24 (m, 6H), 0.80–0.90 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 173.30, 166.99, 134.04, 131.71, 128.60, 127.04, 52.59, 52.41, 37.40, 36.98, 33.31, 33.24, 32.97, 26.62, 26.32, 22.52. HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd. for C₁₉H₂₇NNaO₃, 340.1883; found, 340.1881. IR (KBr, cm⁻¹): v 3416, 2922, 1749, 1637, 1400, 1169, 614.

White solid. mp: 61.9–62.8 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 7.8 Hz,

2H), 7.81 (d, J = 7.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.52 (dd, J = 7.5, 7.5 Hz, 1H), 7.42–7.46 (m, 4H), 6.67 (t, J = 6.9 Hz, 1H), 4.85 (dd, J = 13.2, 6.5 Hz, 1H), 4.30 (t, J = 6.6 Hz, 2H), 3.79 (s, 3H), 1.95–2.02 (m, 1H), 1.71–1.84 (m, 3H), 1.33–1.44 (m, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 173.05, 166.96, 166.49, 133.77, 132.69, 131.56, 130.25, 129.35, 128.39, 128.18, 126.95, 64.75, 52.39, 52.28, 32.30, 28.70, 28.43, 25.67, 25.08. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₃H₂₇NNaO₅, 420.1781; found, 420.1780. **IR** (KBr, cm⁻¹): v 3416, 2924, 1636, 1400, 1118, 617.

17-(-7-benzamido-6,6-dimethyl-2-heptanyl)-10,13-dimethylhexadecahydro-1*H*cyclopenta[a]phenanthren-3-yl benzoate (2ag)

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 6.6 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.44 (d, J = 7.8 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 6.10 (t, J = 5.7 Hz, 1H), 4.95–5.00 (m, 1H), 3.30 (d, J = 6.3 Hz, 2H), 1.98 (t, J = 11.1 Hz, 2H), 1.86–1.88 (m, 2H), 1.77–1.83 (m, 2H), 1.67-1.69 (m, 1H), 1.51–1.57 (m, 3H), 1.32–1.48 (m, 8H), 1.16–1.29 (m, 8H), 1.08–1.13 (m, 4H), 0.96 (s, 3H), 0.95 (s, 6H), 0.92 (d, J = 6.5 Hz, 3H), 0.65 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.62, 166.13, 135.11, 132.66, 131.31, 130.90, 129.50, 128.59, 128.23, 126.77, 74.99, 56.49, 56.26, 49.63, 42.69, 41.94, 40.65, 40.47, 40.15, 36.75, 35.79, 35.73, 35.06, 34.62, 34.51, 32.33, 28.33, 27.04, 26.74, 26.34, 25.11, 25.05, 24.19, 23.36, 20.87, 20.26, 18.68, 12.04. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₄₂H₅₉N₂NaO₃, 648.4387; found, 648.4377. IR (KBr, cm⁻¹): v 3750, 3474, 2924, 1637, 1460, 1399, 615.

Procedures for Site-Selective Oxidation Trifluoroacetoxylation of Aliphatic Amines

Procedure A: To an oven-dried 25 mL Schlenk tube, **2a** (23.3 mg, 0.10 mmol, 1.0 equiv), TBAB (16.2 mg, 0.05 mmol, 50 mol%), Br₂ (6.0 μ L, 0.12 mmol, 1.2 equiv), 1.0 mL DCM were added sequentially. The reaction mixture was stirred at room temperature for 15 min. After that, CuI (3.8 mg, 0.02 mmol, 20 mol%), PhI(OTFA)₂ (95.0 mg, 0.22 mmol, 2.2 equiv) were added, the tube was sealed and placed in a 100 °C parallel synthesizer and stirred for 5 h. After completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. Flash Silica gel column purification (EtOAc/petroleum ether/DCM = 1:25:0.5 as eluent) of the crude product provided **3a** (21.4 mg, 0.08mmol) in 72% isolated yield.

Procedure B: Changed: AgOAc (3.3 mg, 0.02 mmol, 20mol%). Other process is the same as the **Procedure A**.

Characterization Data for Product

6-benzamido-5,5-dimethylhexan-3-yl 2,2,2-trifluoroacetate (3a)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 6.0 Hz, 2H), 7.52 (t, J = 9.0 Hz, 1H), 7.46 (dd, J = 6.0, 9.0 Hz, 2H), 6.29 (br s, 1H), 5.19–5.23 (m, 1H), 3.53 (dd, J = 12.0, 6.0 Hz, 1H), 3.10 (dd, J = 12.0, 6.0 Hz, 1H), 1.81 (dd, J = 12.0, 9.0 Hz, 1H), 1.71 (td, J = 9.0, 6.0 Hz, 2H), 1.56 (dd, J = 12.0, 1.8 Hz, 1H), 0.98 (s, 6H), 0.92 (t, J = 9.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.68, 157.24 (q, J = 42.0 Hz) 134.64, 131.52, 128.65, 126.77, 114.55 (q, J = 285.0 Hz), 78.35, 49.33, 42.31, 34.54, 28.66, 25.34, 25.19, 9.06. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₂F₃NNaO₃, 368.1444; found, 368.1442. IR (KBr, cm⁻¹): v 3415, 1679, 1544, 1205, 800, 716.

5,5-dimethyl-6-(4-methylbenzamido)hexan-3-yl 2,2,2-trifluoroacetate (3-PG 2)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.94 (s, 1H), 7.59 (d, J = 7.8 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 6.22 (s, 1H), 5.18-5.21 (m, 1H), 3.52 (dd, J = 13.8, 7.8 Hz, 1H), 3.08 (dd, J = 13.8, 5.4 Hz, 1H), 2.45 (s, 3H), 1.79 (dd, J = 15.3, 8.4 Hz, 1H), 1.66–1.75 (m, 2H), 1.55 (dd, J = 15.3, 1.8 Hz, 1H), 0.98 (s, 6H), 0.93 (t, J = 7.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.14, 157.27 (q, J = 42.0 Hz), 141.74, 133.81, 130.89, 130.87, 125.52, 125.15, 114.54 (q, J = 285.0 Hz), 78.37, 49.32, 42.31, 34.57, 28.65, 25.42, 25.22, 22.99, 9.09. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₃BrF₃NNaO₃, 460.0706; found, 460.0700. IR (KBr, cm⁻¹): v 3415, 1637, 1400, 1172, 617.

6-(4-chlorobenzamido)-5,5-dimethylhexan-3-yl 2,2,2-trifluoroacetate (3-PG 3)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.42 (d, J = 8.4 Hz, 2H), 6.27 (br s, 1H), 5.16–5.23 (m, 1H), 3.52 (dd, J = 13.8, 7.8 Hz, 1H), 3.09 (dd, J = 13.8, 5.4 Hz, 1H), 1.80 (dd, J = 15.4, 8.4 Hz, 1H), 1.67–1.75 (m, 2H), 1.55 (d, J = 15.4 Hz, 1H), 0.98 (s, 6H), 0.93 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 166.62, 157.27 (q, 42.0 Hz), 137.78, 132.96, 128.90, 128.22, 114.55, 78.38, 49.32, 42.37, 34.54, 28.65, 25.48, 25.21, 9.07. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₂₁F₃NCINaO₃, 402.1054; found, 402.1041. **IR** (KBr, cm⁻¹): v 3415, 1637, 1400, 1120, 617.

5,5-dimethyl-6-(4-nitrobenzamido)hexan-3-yl 2,2,2-trifluoroacetate (3-PG 5)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.30 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.4 Hz, 2H), 6.46 (br s, 1H), 5.15–5.23 (m, 1H), 3.57 (dd, J = 13.8, 7.8 Hz, 1H), 3.13 (dd, J = 13.8, 5.4 Hz, 1H), 1.82 (dd, J = 15.3, 8.1 Hz, 1H), 1.69–1.78 (m, 2H), 1.58 (dd, J = 15.4, 2.1 Hz, 1H), 1.00 (s, 6H), 0.94 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 165.73, 157.31 (q, J = 42.0 Hz), 149.60, 140.16, 128.01, 123.87, 114.53 (q, J = 285.0 Hz), 78.41, 49.44, 42.43, 34.57, 28.64, 25.64, 25.20, 9.07. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₂₁F₃N₂NaO₅, 413.1295; found, 413.1282. **IR** (KBr, cm⁻¹): v 3416, 1638, 1400, 1172, 615, 481.

5,5-dimethyl-6-(2-nitrobenzamido)hexan-3-yl 2,2,2-trifluoroacetate (3-PG 6)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, 1H), 7.68 (t, J = 7.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 6.03 (br s, 1H), 5.21– 5.24 (m, 1H), 3.49–3.52 (m, 1H), 3.09 (dd, J = 13.8, 5.7 Hz, 1H), 1.83 (dd, J = 15.6, 8.7 Hz, 1H), 1.69–1.77 (m, 2H), 1.66 (d, J = 15.3 Hz, 1H), 1.01 (s, 3H), 0.98 (s, 3H), 0.93 (t, J = 7.4 Hz, 3H). ¹³**C** NMR (150 MHz, CDCl₃) δ 166.63, 157.23 (q, J = 42.0 Hz), 146.61, 133.62, 133.03, 130.53, 128.64, 124.56, 114.58 (q, J = 285.0 Hz), 78.49, 49.89, 42.16, 34.53, 28.65, 25.26, 25.21, 8.98. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₁F₃N₂NaO₅, 413.1295; found, 413.129. IR (KBr, cm⁻¹): v 3415, 1638, 1400, 1120, 616, 480.

5,5-dimethyl-6-(perfluorobenzamido)hexan-3-yl 2,2,2-trifluoroacetate (3-PG 8)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 6.15 (br s, 1H), 5.16–5.20 (m, 1H), 3.52 (dd, J = 13.8, 7.8 Hz, 1H), 3.10 (dd, J = 13.8, 5.4 Hz, 1H), 1.79 (dd, J = 15.3, 8.4 Hz, 1H), 1.66–1.76 (m, 2H), 1.57 (d, J = 15.3 Hz, 1H), 0.98 (d, J = 8.4 Hz, 6H), 0.93 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.64, 157.25 (q, J = 42.0 Hz), 114.51 (q, J = 285.0 Hz), 78.17, 49.65, 42.14, 34.43, 28.62, 25.29, 24.99, 8.97. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₁₇F₈NNaO₇, 458.0973; found, 458.0960. **IR** (KBr, cm⁻¹): v 3416, 1639, 1511, 1399, 1118, 616, 482.

5,5-dimethyl-6-(picolinamido)hexan-3-yl 2,2,2-trifluoroacetate (3-PG 9)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.57 (d, J = 4.5 Hz, 1H), 8.23 (br s, 1H), 8.20 (d, J = 7.8 Hz, 1H), 7.86 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 6.9, 5.4 Hz, 1H), 5.21–5.25 (m, 1H), 3.44 (dd, J = 13.5, 7.5 Hz, 1H), 3.19 (dd, J = 13.5, 6.0 Hz, 1H), 1.81 (dd, J = 15.3, 8.7 Hz, 1H), 1.65–1.76 (m, 2H), 1.58 (d, J = 13.2 Hz, 1H), 0.99 (d, J = 3.6 Hz, 6H), 0.91 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.47, 149.78, 148.07, 137.38, 126.18, 122.31, 78.12, 49.37, 42.39, 34.53, 28.70, 25.20, 24.96, 9.03 (OCOCF₃ is difficult to detect). **HRMS–ESI (m/z)**: [M+Na]⁺ calcd. for C₁₆H₂₁F₃N₂NaO₃, 369.1396; found, 369.1389. **IR** (KBr, cm⁻¹): v 3415, 2960, 1621, 1533, 1399, 1170, 619, 480.

5,5-dimethyl-6-pivalamidohexan-3-yl 2,2,2-trifluoroacetate (3-PG-10)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 5.76 (br s, 1H), 5.15–5.18 (m, 1H), 3.32 (dd, J = 13.8, 7.8 Hz, 1H), 2.85 (dd, J = 13.8, 5.4 Hz, 1H), 1.64 –1.73 (m, 3H), 1.46 (dd, J = 15.3, 2.1 Hz, 1H), 1.21 (s, 9H), 0.91 (t, J = 7.8 Hz, 3H), 0.90 (s, 3H), 0.89 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 178.38, 157.19 (q, J = 42.0 Hz), 114.59 (q, 285.0 Hz), 78.34, 48.57, 42.24, 38.88, 34.38, 28.62, 27.62, 25.31, 25.14, 8.99. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₅H₂₆F₃NNaO₃, 348.1757; found, 348.1762. **IR** (KBr, cm⁻¹): v 3415, 2962, 1778, 1541, 1165, 702.

6-((methoxycarbonyl)amino)-5,5-dimethylhexan-3-yl-2,2,2-trifluoroacetate (3-*PG* 12)

Colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 5.12–5.15 (m, 1H), 4.75 (br s, 1H), 3.67 (s, 3H), 3.12 (dd, J = 13.8, 7.5 Hz, 1H), 2.90 (dd, J = 13.8, 5.7 Hz, 1H), 1.73 (dd, J = 15.5, 8.7 Hz, 1H), 1.64–1.68 (m, 2H), 1.48 (d, J = 15.3 Hz, 1H), 0.91 (t, J = 11.1 Hz, 3H), 0.90 (s, 3H), 0.86 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 157.36, 157.18 (q, J = 42.0 Hz,), 114.58 (q, J = 285.0 Hz), 78.13, 52.18, 51.15, 42.08, 34.18, 28.68, 24.94, 24.83, 8.98. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₂H₂₀F₃NNaO₄, 322.1237; found, 322.1243. **IR** (KBr, cm⁻¹): v 3753, 3416, 2926, 1622, 1400, 1172, 615, 472.

5-benzamido-4,4-dimethylpentan-2-yl 2,2,2-trifluoroacetate (3b)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 6.33 (br s, 1H), 5.28–5.33 (m, 1H), 3.54 (dd, J = 13.8, 7.8 Hz, 1H), 3.09 (dd, J = 13.8, 5.7 Hz, 1H), 1.87 (dd, J = 15.3, 8.4 Hz, 1H), 1.52 (dd, J = 15.3, 2.7 Hz, 1H), 1.38 (d, J = 6.0 Hz, 3H), 0.99 (d, J = 6.6 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.68, 157.00 (q, J = 42.0 Hz), 134.61, 131.52, 128.63, 126.77, 114.46 (q, J = 285.0 Hz), 74.24, 49.27, 44.50, 34.63, 25.41, 25.26, 21.61. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₀F₃NNaO₃, 354.1287; found, 354.1282. IR (KBr, cm⁻¹): v 3415, 2960, 1638, 1399, 1173, 616.

1-benzamido-2,2-dimethyldecan-4-yl 2,2,2-trifluoroacetate (3c)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 6.31 (br s, 1H), 5.22–5.26 (m, 1H), 3.51 (dd, J = 13.8, 7.5 Hz, 1H), 3.10 (dd, J = 13.8, 5.7 Hz, 1H), 1.80 (dd, J = 15.4, 8.4 Hz, 1H), 1.61–1.68 (m, 2H), 1.57 (dd, J = 15.4, 2.4 Hz, 1H), 1.21–1.33 (m, 8H), 0.98 (d, J = 1.8 Hz, 6H), 0.87 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.69, 157.16 (q, J = 42.0 Hz), 134.63, 131.43, 128.55, 126.78, 114.52 (q, J = 285.0 Hz) 77.40, 49.38, 42.77, 35.66, 34.56, 31.49, 28.83, 25.27, 25.14, 24.68, 22.41, 13.92. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₃₀F₃NNaO₃, 424.2070; found, 424.2066. IR (KBr, cm⁻¹): v 3416, 2960, 1680, 1538, 1465, 1167, 711.

1-benzamido-2,2-dimethyltetradecan-4-yl 2,2,2-trifluoroacetate (3d)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.45 (dd, *J* = 7.5, 7.2 Hz, 2H), 6.29 (br s, 1H), 5.22–5.26 (m, 1H), 3.51 (dd, *J* = 13.8, 7.5 Hz, 1H), 3.10 (dd, *J* = 13.8, 5.4 Hz, 1H), 1.80 (dd, *J* = 15.4, 8.4 Hz,

1H), 1.58–1.73 (m, 2H), 1.57 (dd, J = 15.4, 1.8 Hz, 1H), 1.14–1.34 (m, 16H), 0.98 (s, 6H), 0.88 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.67, 157.22 (q, J = 42.0 Hz), 134.68, 131.50, 128.63, 126.79, 114.57 (q, J = 285.0 Hz), 77.45, 49.40, 42.84, 35.71, 34.59, 31.86, 29.52, 29.44, 29.35, 29.26, 29.22, 25.40, 25.19, 24.78, 22.65, 14.07. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₅H₃₈F₃NNaO₃, 480.2696; found, 480.2691. **IR** (KBr, cm⁻¹): v 3415, 2926, 1638, 1400, 1172, 617.

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.2 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.46 (dd, J = 7.2, 7.2 Hz, 2H), 6.25 (br s, 1H), 5.22–5.26 (m, 1H), 3.53 (dd, J = 13.8, 7.5 Hz, 1H), 3.10 (dd, J = 13.8, 5.4 Hz, 1H), 1.81 (dd, J = 15.4, 8.4 Hz, 1H), 1.60–1.71 (m, 2H), 1.57 (dd, J = 15.0, 2.4 Hz, 1H), 1.20–1.34 (m, 24H), 0.98 (s, 3H), 0.97 (s, 3H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.66, 157.24 (q, J = 42.0 Hz), 134.70, 131.53, 128.67, 126.80, 114.59 (q, J = 285.0 Hz), 77.47, 49.40, 42.85, 35.74, 34.61, 31.93, 29.69, 29.68, 29.66, 29.64, 29.60, 29.48, 29.39, 29.36, 29.26, 25.46, 25.22, 24.82, 22.70, 14.12. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₉H₄₆F₃NNaO₃, 536.3322; found, 536.3321. IR (KBr, cm⁻¹): v 3416, 1636, 1400, 1119, 616.

(5-benzamido-1-cyclohexyl-4,4-dimethylpentan-2-yl 2,2,2-trifluoroacetate (3f)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) *δ* 7.77 (d, *J* = 7.8 Hz, 2H), 7.52 (t, *J* = 7.2 Hz, 1H), 7.46 (dd, *J* = 7.8, 7.2 Hz, 2H), 6.31 (br s, 1H), 5.30–5.36 (m, 1H), 3.52 (dd, *J* = 13.8, 7.5 Hz, 1H), 3.12 (dd, *J* = 13.8, 5.4 Hz, 1H), 1.76–1.80 (m, 2H), 1.62–

1.69 (m, 5H), 1.56–1.61 (m, 2H), 1.43–1.49 (m, 1H), 1.12–1.22 (m, 5H), 0.99 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.64, 157.22 (q, J = 42.0 Hz), 134.64, 131.52, 128.64, 126.79, 114.53 (q, J = 285.0 Hz), 75.62, 49.37, 43.48, 43.31, 34.66, 34.00, 33.29, 33.02, 26.27, 26.03, 25.97, 25.57, 25.21. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₂H₃₀F₃NNaO₃, 436.2070; found, 436.2084. **IR** (KBr, cm⁻¹): v 3415, 2925, 1638, 1400, 1120, 616.

7-benzamido-6,6-dimethyl-4-(2,2,2-trifluoroacetoxy)heptyl benzoate (3g)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 7.2 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.43 (dd, J = 7.2, 7.5 Hz, 4H), 6.32 (br s, 1H), 5.35–5.40 (m, 1H), 4.29–4.38 (m, 2H), 3.55 (dd, J = 13.8, 7.5 Hz, 1H), 3.11 (dd, J = 13.8, 5.4 Hz, 1H), 1.75–1.87 (m, 5H), 1.60 (dd, J = 15.4, 2.4 Hz, 1H), 0.99 (s, 6H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.70, 166.51, 157.26 (q, J = 42.0 Hz), 134.61, 133.00, 131.53, 130.07, 129.55, 128.65, 128.38, 126.79, 114.53 (q, J = 285.0 Hz), 76.70, 64.00, 49.28, 42.72, 34.67, 32.36, 25.41, 25.26, 24.21. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₂₅H₂₈F₃NNaO₅, 502.1812; found, 502.1808. **IR** (KBr, cm⁻¹): v 3416, 1636, 1400, 1120, 616.

8-benzamido-7,7-dimethyl-5-(2,2,2-trifluoroacetoxy)octyl benzoate (3h)

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 7.5 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.42–7.45 (m, 4H), 6.27 (br s, 1H), 5.28–5.32 (m, 1H), 4.31 (t, J = 6.3 Hz, 2H), 3.54 (dd, J = 13.8, 7.8 Hz, 1H), 3.10 (dd, J = 13.8, 5.4 Hz, 1H), 1.73–1.84 (m, 5H), 1.58 (dd, J = 15.4, 2.1 Hz, 1H), 1.45–1.52 (m, 2H), 0.98 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.70, 166.58,

157.23 (q, J = 42.0 Hz), 134.57, 132.92, 131.56, 130.23, 129.51, 128.66, 128.34, 126.78, 114.53 (q, J = 285.0 Hz), 64.34, 49.35, 42.81, 35.39, 34.62, 28.34, 25.30, 21.38. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₂₆H₃₀F₃NNaO₅, 516.1968; found: 516.1964. **IR** (KBr, cm⁻¹): v 3418, 1637, 1400, 1120, 615.

1-benzamido-2,2-dimethyl-7-(tosyloxy)heptan-4-yl 2,2,2-trifluoroacetate(3i)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 2H), 7.76 (d, J = 7.5 Hz, 1H), 7.52 (d, J = 7.5 Hz, 2H), 7.46 (dd, J = 7.5, 7.5 Hz, 2H), 7.34 (d, J = 7.8 Hz, 2H), 6.27 (br s, 1H), 5.25–5.29 (m, 1H), 4.00–4.08 (m, 2H), 3.50 (dd, J = 13.8, 7.5 Hz, 1H), 3.10 (dd, J = 13.8, 5.7 Hz, 1H), 2.45 (s, 3H), 1.77 (dd, J = 15.4, 8.4 Hz, 1H), 1.64–1.73 (m, 4H), 1.53 (dd, J = 15.3, 2.4 Hz, 1H), 0.96 (s, 6H). ¹³C **NMR** (100 MHz, CDCl₃) δ 167.73, 157.20 (q, J = 42.0 Hz), 144.96, 134.51, 132.85, 131.58, 129.91, 128.68, 127.86, 126.81, 114.44 (q, J = 285.0 Hz), 76.19, 69.45, 49.23, 42.66, 34.66, 31.84, 25.42, 25.16, 24.31, 21.62. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₂₅H₃₀F₃NNaO₆S, 552.1638; found, 552.1633. **IR** (KBr, cm⁻¹): v 3417, 1637, 1400, 1120, 615.

1-benzamido-2,2-dimethyl-8-(tosyloxy)octan-4-yl 2,2,2-trifluoroacetate (3j)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 4H), 7.52 (t, J = 7.2 Hz, 1H), 7.46 (dd, J = 8.1, 7.5 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.28 (br s, 1H), 5.20–5.24 (m, 1H), 4.00 (t, J = 6.3 Hz, 2H), 3.53 (dd, J = 13.8, 7.8 Hz, 1H), 3.07 (dd, J = 13.8, 5.4 Hz, 1H), 2.45 (s, 3H), 1.77 (dd, J = 15.3, 8.7 Hz, 1H), 1.62–1.66 (m, 4H), 1.53 (d, J = 15.3 Hz, 1H), 1.31–1.38 (m, 2H), 0.96 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.72, 157.19 (q, J = 42.0 Hz), 144.85, 134.59, 132.97, 131.60, 129.89,

128.70, 127.87, 126.82, 114.51 (q, J = 285.0 Hz), 76.78, 69.88, 49.34, 42.65, 34.99, 34.64, 28.40, 25.38, 25.23, 21.64, 20.77. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₂₆H₃₂F₃NNaO₆S, 566.1795; found: 566.1793. **IR** (KBr, cm⁻¹): v 3417, 1636, 1400, 1119, 616.

3-(benzamidomethyl)-3-ethylnonan-5-yl 2,2,2-trifluoroacetate (3k)

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 6.18 (br s, 1H), 5.26–5.29 (m, 1H), 3.69 (dd, J = 14.4, 8.4 Hz, 1H), 2.97 (dd, J = 14.4, 4.8 Hz, 1H), 1.78 (dd, J = 16.2, 9.0 Hz, 1H), 1.65–1.70 (m, 2H), 1.60 (d, J = 18.9 Hz, 1H), 1.23–1.37 (m, 8H), 0.87–0.91 (m, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 167.45, 156.63 (q, J = 42.0 Hz), 134.67, 131.47, 128.63, 126.74, 114.55 (q, J = 285,0 Hz), 77.16, 43.73, 39.22, 37.58, 35.56, 26.92, 26.64, 22.39, 13.83, 7.43, 7.38. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₃₀F₃NO₃Na, 424.2070; found: 424.2064. IR (KBr, cm⁻¹): v 3751, 3415, 2927, 1640, 1400, 1126, 704, 614.

3-(benzamidomethyl)-3-methylnonan-5-yl -2,2,2-trifluoroacetate (31)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 8.1 Hz, 1/2×4H, 1/2×4H), 7.51 (t, J = 6.9 Hz, 1/2×2H, 1/2×2H), 7.45 (dd, J = 8.1, 6.9 Hz, 1/2×4H, 6.22 (br s, 1/2×2H, 1/2×2H), 5.21–5.29 (m, 1/2×2H, 1/2×2H), 3.60 (t, J = 6.9 Hz, 1H), 3.58 (t, J = 6.9 Hz, 1H), 3.09 (t, J = 4.8 Hz, 1H), 3.06 (t, J = 4.8 Hz, 1H), 1.82 (dd, J = 15.6, 8.4 Hz, 1H), 1.78 (dd, J = 15.6, 8.4 Hz, 1H), 1.63–1.67 (m, 1/2×4H, 1/2×4H), 1.61 (dd, J = 15.6, 2.4 Hz, 1H), 1.55 (dd, J = 15.6, 2.4 Hz, 1H), 1.27–1.38 (m, 1/2×12H, 1/2×12H), 0.93 (s, 3H), 0.91 (s, 3H), 0.91 (t, J = 7.2 Hz, 3H), 0.90 (t, J = 1.25.6 (t, J = 1.25.6) (t, J = 1.25.6 (t, J = 1.25.6) (t, J = 1.25.6 (t, J = 1.25.6) (t, J = 1.25.6) (t, J = 1.25.6) (t, J = 1.25.6 (t, J = 1.25.6) (t,

= 7.2 Hz, 3H), 0.89 (t, J = 6.9 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.60, 167.57, 157.24 (q, J = 42.0 Hz), 157.15 (q, J = 42.0 Hz), 134.70, 134.68, 131.50, 131.49, 128.65, 128.64, 126.77, 126.75, 114.57 (q, J = 285.0 Hz), 114.55 (q, J = 285.0 Hz), 77.29, 77.26, 46.86, 46.84, 40.46, 39.98, 37.02, 36.89, 35.52, 35.48, 30.40, 30.17, 26.94, 26.90, 22.68, 22.44, 22.36, 13.83, 7.90, 7.88. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₂₀H₂₈F₃NNaO₃, 410.1913; found, 410.1913. **IR** (KBr, cm⁻¹): v 3417, 1638, 1400, 1122, 616.

4-(benzamidomethyl)-4-propylheptan-2-yl 2,2,2-trifluoroacetate (3m)

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 7.2 Hz, 2H), 7.52 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 7.5, 7.2 Hz, 2H), 6.19 (br s, 1H), 5.29–5.34 (m, 1H), 3.71 (dd, J = 14.1, 8.1 Hz, 1H), 2.97 (dd, J = 14.1, 4.8 Hz, 1H), 1.85 (dd, J = 15.8, 8.7 Hz, 1H), 1.53 (dd, J = 15.9, 2.1 Hz, 1H), 1.38 (d, J = 6.3 Hz, 3H), 1.13–1.35 (m, 9H), 0.92 (t, J = 6.9 Hz, 3H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.48, 156.97 (q, J = 42.0 Hz), 134.74, 131.46, 128.65, 126.72, 114.46 (q, J = 285.0 Hz) 74.09, 44.63, 40.49, 39.35, 37.67, 37.43, 21.72, 16.28, 14.76, 14.72. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₈F₃NNaO₃, 410.1913; found, 410.1903. IR (KBr, cm⁻¹): v 3417, 1636, 1400, 1120, 616.

4-(benzamidomethyl)-4,5-dimethylhexan-2-yl 2,2,2-trifluoroacetate (3n)

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (t, J = 6.9 Hz, $1/2 \times 4H$, $1/2 \times 4H$), 7.51 (t, J = 7.8 Hz, $1/2 \times 2H$, $1/2 \times 2H$), 7.46 (dd, J = 6.9, 7.8 Hz , $1/2 \times 4H$, $1/2 \times 4H$), 6.22 (br s, $1/2 \times 2H$, $1/2 \times 2H$), 5.31–5.37 (m, $1/2 \times 2H$, $1/2 \times 2H$), 3.85 (dd, J = 14.1, 8.4
Hz, 1H), 3.73 (dd, J = 14.1, 8.1 Hz, 1H), 3.10 (dd, J = 14.1, 4.8 Hz, 1H), 2.97 (dd, J = 14.1, 4.8 Hz, 1H), 1.93 (dd, J = 15.6, 9.0 Hz, 1H), 1.86 (dd, J = 15.6, 8.4 Hz, 1H), 1.67 (dd, J = 16.2, 3.0 Hz, 1H), 1.63–1.69 (sept, J = 6.6 Hz, $1/2 \times 2H$, $1/2 \times 2H$), 1.54 (d, J = 16.2 Hz, 1H), 1.39 (d, J = 6.6 Hz, 3H), 1.38 (d, J = 6.6 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H), 0.95 (d, J = 6.9 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H), 0.91 (d, J = 6.9 Hz, 3H), 0.91 (s, 3H), 0.85 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.60, 167.54, 157.01 (q, J = 42.0 Hz), 156.86 (q, J = 42.0 Hz), 134.68, 134.67, 131.49, 131.47, 128.66, 128.62, 126.76, 126.70, 114.49 (q, J = 285.0 Hz), 114.45 (q, J = 285.0 Hz), 74.27, 74.21, 45.48, 45.18, 41.21, 40.44, 39.27, 38.90, 33.17, 32.84, 21.82, 21.69, 19.42, 18.74, 17.32, 17.30, 17.20, 17.15. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₈H₂₄F₃NNaO₃, 382.1600; Found: 382.1579. **IR** (KBr, cm⁻¹): v 3415, 2964, 1779, 1649, 1381, 1200, 715.

1-(1-(benzamidomethyl)cyclohexyl)butan-2-yl 2,2,2-trifluoroacetate (30)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 6.32 (br s, 1H), 5.25–5.29 (m, 1H), 3.92 (dd, J = 14.1, 8.7 Hz, 1H), 2.93 (dd, J = 14.1, 4.5 Hz, 1H), 1.85 (dd, J = 15.8, 8.1 Hz, 1H), 1.65–1.78 (m, 2H), 1.58–1.65 (m, 1H), 1.61 (dd, J = 15.8, 3.6 Hz, 1H), 1.51–1.58 (m, 1H), 1.42–1.51 (m, 4H), 1.25–1.41 (m, 4H), 0.94 (t, J = 7.5 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.57, 157.21 (q, J = 42.0 Hz), 134.64, 131.44, 128.60, 126.75, 114.57 (q, J = 285.0 Hz), 78.32, 36.69, 34.12, 34.00, 28.73, 25.97, 21.40, 21.24, 9.09. **HRMS–ESI** (*m*/*z*): [M+H]⁺ calcd. for C₂₀H₂₇F₃NO₃, 386.1938; found, 386.1943. **IR** (KBr, cm⁻¹): v 3415, 2930, 1777, 1642, 1398, 1172, 710.

1-(1-(benzamidomethyl)cyclohexyl)octan-2-yl 2,2,2-trifluoroacetate (3p)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.5, 7.5 Hz, 2H), 6.31 (br s, 1H), 5.25–5.32 (m, 1H), 3.92 (dd, J = 14.1, 8.7 Hz, 1H), 2.93 (dd, J = 14.1, 4.5 Hz, 1H), 1.85 (dd, J = 15.7, 8.1 Hz, 1H), 1.61–1.73 (m, 3H), 1.51–1.58 (m, 1H), 1.20–1.51 (m, 17H), 0.87 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.51, 157.20 (q, J = 42.0 Hz), 134.64, 131.45, 128.61, 126.77, 114.56 (q, J = 285.0 Hz), 77.42, 36.74, 35.77, 34.13, 34.10, 31.56, 28.92, 25.99, 24.81, 22.46, 21.42, 21.26, 14.00. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₂₄H₃₄F₃NNaO₃, 464.2383; found, 464.2380. **IR** (KBr, cm⁻¹): v 3414, 2925, 1641, 1400, 1128, 699.

5-benzamido-4-methylpentan-2-yl 2,2,2-trifluoroacetate (3q)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 7.5Hz, 2H), 7.51 (d, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.5, 7.1 Hz, 2H), 6.28 (br s, 1H), 5.24–5.30 (m, 1H), 3.39– 3.44 (m, 1H), 3.33–3.38 (m, 1H), 1.85–1.91 (m, 1H), 1.65–1.72 (m, 2H), 1.37 (d, J = 6.3 Hz, 3H), 1.02 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.73, 157.13 (q, J = 42.0 Hz), 134.51, 131.53, 128.63, 126.80, 114.53 (q, J = 285.0 Hz), 75.11, 45.40, 40.02, 30.55, 19.77, 17.94. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₅H₁₈F₃NNaO₃, 340.1131; found, 340.1122. **IR** (KBr, cm⁻¹): v 3415, 2959, 1640, 1380, 1150, 803, 700.

4-(benzamidomethyl)heptan-2-yl 2,2,2-trifluoroacetate (3r)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.75 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.44 (dd, J = 7.2, 7.2 Hz, 2H), 6.23 (br s, 1H), 5.29–5.35 (m, 1H), 3.56–3.60 (m, 1H), 3.29–3.34 (m, 1H), 1.76–1.80 (m, 1H), 1.67–1.74 (m, 1H), 1.55–1.62 (m, 1H), 1.38–1.43 (m, 3H), 1.37 (d, J = 12.0 Hz, 3H), 1.28–1.32 (m, 1H), 0.92 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.77, 157.23 (q, J = 42.0 Hz), 134.54, 131.51, 128.63, 126.78, 114.56 (q, J = 285.0 Hz), 75.15, 42.99, 38.04, 34.91, 34.56, 20.15, 19.69, 14.14. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₂₂F₃NNaO₃, 368.1444; Found: 368.1441. **IR** (KBr, cm⁻¹): v 3415, 2961, 1780, 1639, 1399, 1170, 703, 616.

4-(benzamidomethyl)-5-methylhexan-2-yl 2,2,2-trifluoroacetate (3s)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.8, 7.5 Hz, 2H), 6.16 (br s, 1H), 5.27–5.33 (m, 1H), 3.52–3.58 (m, 1H), 3.39–3.45 (m, 1H), 1.83 (sept, J = 7.8 Hz, 1H), 1.77–1.80 (m, 1H), 1.52 (d, J = 3.6 Hz, 1H), 1.50 (d, J = 3.6 Hz, 1H), 1.38 (d, J = 6.3 Hz, 3H), 0.96 (d, J = 6.9 Hz, 3H), 0.94 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.66, 157.40 (q, J = 42.0 Hz), 134.51, 131.51, 128.64, 126.79, 114.59 (q, J = 285.0 Hz) 75.51, 41.53, 40.87, 35.41, 29.10, 20.32, 19.63, 18.46. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₁₇H₂₂F₃NNaO₃, 368.1444; found, 368.1443. **IR** (KBr, cm⁻¹): v 3415, 1622, 1400, 1122, 616.

1-benzamidooctan-4-yl 2,2,2-trifluoroacetate (3t)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.44 (t, J = 7.5 Hz, 2H), 6.18 (br s, 1H), 5.08–5.14 (m, 1H), 3.44–3.53 (m, 2H), 1.73–1.79 (m, 2H), 1.60–1.72 (m, 4H), 1.27–1.36 (m, 4H), 0.90 (t, J = 6.5 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.58, 157.41 (q, J = 42.0 Hz), 134.49, 131.51, 128.61, 126.81, 114.63 (q, J = 285.0 Hz), 79.50, 39.51, 33.35, 31.11, 27.09, 25.49, 22.32, 13.82. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₂₂F₃NNaO₃, 368.1444; found, 368.1442. **IR** (KBr, cm⁻¹): v 3415, 2960, 1465, 1174, 618.

6-benzamidoheptan-3-yl 2,2,2-trifluoroacetate (3v)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.75 (d, J = 6.6 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.44 (dd, J = 7.5, 6.6 Hz, 2H), 5.87 (d, J = 8.4 Hz, 1H), 5.04–5.09 (m, 1H), 4.22–4.28 (m, 1H), 1.75–1.78 (m, 2H), 1.68–1.73 (m, 2H), 1.53–1.61 (m, 2H), 1.26 (d, J = 6.6 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.97, 157.38 (q, J = 42.0 Hz), 134.67, 131.45, 128.58, 126.77, 114.69 (q, J = 285.0 Hz), 80.70, 45.15, 32.70, 29.91, 26.71, 21.19, 9.23. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₀F₃NNaO₃, 354.1287; found, 354.1294. IR (KBr, cm⁻¹): v 3416, 1637, 1400, 1172, 616.

(1-benzamidocyclopentyl)octan-3-yl 2,2,2-trifluoroacetate (3w)

Colourless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 7.2 Hz, 2H), 7.50 (t, J =

7.5 Hz, 1H), 7.43 (dd, J = 7.2, 7.5 Hz, 2H), 5.81 (br s, 1H), 5.04 (quint, J = 6.0 Hz, 1H), 2.08–2.14 (m, 2H), 2.01–2.03 (m, 1H), 1.89–1.94 (m, 1H), 1.62–1.75 (m, 10H), 1.23–1.33 (m, 6H), 0.85 (t, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.00, 157.28 (q, J = 42.0 Hz), 135.52, 131.30, 128.59, 126.65, 114.65 (q, J = 285.0), 80.12, 64.69, 38.33, 38.24, 33.19, 32.16, 31.35, 29.31, 24.59, 23.56, 22.38, 13.86. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₂H₃₀F₃NNaO₃, 436.2070; found, 430.2064. IR (KBr, cm⁻¹): v 3415, 1637, 1400, 1175, 618.

2-benzamido-5-(2,2,2-trifluoroacetoxy)hexyl pivalate (3x)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.46 (dd, J = 7.5 Hz, 2H), 6.35 (d, J = 8.7 Hz, 1H), 5.15–5.20 (m, 1H), 4.45–4.51 (m, 1H), 4.34 (dd, J = 11.7, 6.3 Hz, 1H), 4.12 (dd, J = 11.7, 3.6 Hz, 1H), 1.75–1.87 (m, 2H), 1.59–1.65 (m, 2H), 1.37 (d, J = 6.3 Hz, 3H), 1.19 (s, 9H). ¹³**C NMR** (150 MHz, CDCl₃) δ 178.97, 167.13, 157.09 (q, J = 42.0 Hz), 134.01, 131.73, 128.68, 126.83, 114.51 (q, J = 285.0 Hz), 75.93, 65.61, 48.78, 38.93, 31.78, 27.54, 27.09, 19.59. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₀H₂₆F₃NNaO₅, 440.1655; found, 440.1662. **IR** (KBr, cm⁻¹): v 3416, 1638, 1400, 1168, 617.

6-acetoxy-5-benzamidohexan-2-yl 2,2,2-trifluoroacetate (3y)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 6.9 Hz, 1H), 7.46 (dd, J = 7.5, 6.9 Hz, 2H), 6.34 (d, J = 9.0 Hz, 1H), 5.15–5.20 (m,

1H), 4.39–4.50 (m, 1H), 4.32 (dd, J = 11.5, 5.4 Hz, 1H), 4.10–4.17 (m, 1H), 2.09 (s, 3H), 1.89–1.95 (m, 1H), 1.81–1.86 (m, 1H), 1.74–1.79 (m, 1H), 1.63–1.67 (m, 1H), 1.37 (d, J = 6.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 171.40, 167.23, 157.10 (q, J = 42.0 Hz), 134.05, 131.76, 128.69, 126.88, 114.53 (q, J = 285.0 Hz), 75.89, 65.87, 48.54, 31.78, 27.45, 20.75, 19.58. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₇H₂₀F₃NNaO₅, 398.1186; found, 398.1192. **IR** (KBr, cm⁻¹): v 3415, 1638, 1398, 1171, 616.

2-benzamido-5-(2,2,2-trifluoroacetoxy)hexyl benzoate (3z)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.8 Hz, 2H), 7.77 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.1 Hz, 1H), 7.51 (t, J = 6.9 Hz, 1H), 7.45 (dd, J = 7.5, 7.1 Hz, 4H), 6.45 (d, J = 8.4 Hz, 1H), 5.17–5.22 (m, 1H), 4.57–4.63 (m, 1H), 4.53 (dt, J = 11.4, 6.0 Hz, 1H), 4.43–4.47 (m, 1H), 1.96–2.00 (m, 1H), 1.81–1.86 (m, 1H), 1.75–1.80 (m, 2H), 1.38 (d, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.34, 166.93, 157.12 (q, J = 42.0 Hz), 134.09, 133.42, 131.73, 129.65, 129.45, 128.68, 128.53, 126.89, 114.53 (q, J = 285.0 Hz), 75.92, 66.38, 48.80, 31.84, 27.59, 19.60. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₂₂H₂₂F₃NNaO₅, 460.1342; found, 460.1333. IR (KBr, cm⁻¹): v 3417, 1636, 1400, 1119, 615.

2-benzamido-5-(2,2,2-trifluoroacetoxy)hexyl-2,3,4,5,6-pentafluorobenzoate (3aa)

3aa

S42

Yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.77 (d, J = 7.5 Hz, 2H), 7.53 (t, J = 7.2 Hz, 1H), 7.46 (dd, J = 7.5, 7.3 Hz, 2H), 6.29 (d, J = 8.2 Hz, 1H), 4.58 (dd, J = 10.8, 3.6 Hz, 1H), 4.52–4.56 (m, 1H), 4.50 (dd, J = 10.2, 3.0 Hz, 1H), 4.16 (dd, J = 12.7, 6.4 Hz, 1H), 1.88–2.02 (m, 3H), 1.72–1.82 (m, 1H), 1.72 (d, J = 6.6 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.13, 133.95, 131.83, 128.70, 126.88, 67.99, 53.39, 50.91, 48.40, 37.46, 29.95, 26.37. (OCOCF₃ is difficult to detect). HRMS–ESI (*m/z*): [M+Na]⁺ calcd. for C₂₂H₁₇F₈NNaO₅, 550.0871; Found: 550.0860. IR (KBr, cm⁻¹): v 3417, 1638, 1400, 1118, 616.

methyl-2-benzamido-5-(2,2,2-trifluoroacetoxy)hexanoate (3ab)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (d, J = 7.5 Hz, 2H), 7.54 (t, J = 7.2 Hz, 1H), 7.47 (dd, J = 7.5, 7.2 Hz, 2H), 6.75 (d, J = 6.9 Hz, 1H), 5.13–5.18 (m, 1H), 4.86–4.89 (m, 1H), 3.81 (s, 3H), 2.03–2.11 (m, 1H), 1.71–1.84 (m, 3H), 1.36 (d, J = 6.3 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 172.62, 167.10, 157.05 (q, J = 42.0 Hz) 133.62, 131.96, 128.68, 127.03, 114.50 (q, J = 285.0 Hz), 75.66, 52.77, 51.86, 31.21, 28.63, 19.56. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₆H₁₈F₃NNaO₅, 384.1029; found: 384.1029. **IR** (KBr, cm⁻¹): v 3415, 1620, 1400, 1121, 617.

(±)-ethyl-2-benzamido-5-(2,2,2-trifluoroacetoxy)hexanoate (3ac)

Colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H), 7.47 (dd, *J* = 7.2, 7.2 Hz, 2H), 6.74 (d, *J* = 7.5 Hz, 1H), 4.79–4.87 (m, 1H), 4.26 (q, *J* = 7.2 Hz, 2H), 4.10–4.18 (m, 1H), 2.20–2.28 (m, 1H), 1.83–1.99 (m,

3H), 1.71 (d, J = 6.6 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.15, 167.09, 157.04 (q, J = 42.0 Hz), 133.68, 131.92, 128.67, 127.02, 114.50 (q, J = 285.0 Hz), 75.68, 61.97, 51.87, 31.14, 28.62, 19.58, 14.08. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₀F₃NNaO₅, 398.1186; found, 398.1183. IR (KBr, cm⁻¹): v 3416, 1637, 1400, 1172, 616.

methyl-2-benzamido-5-(2,2,2-trifluoroacetoxy)decanoate (3ad)

Colourless oil. ¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 6.9 Hz, 2/5×2 H, 3/5×2 H), 7.53 (t, J = 7.2 Hz, 2/5×1 H, 3/5×1 H), 7.45 (dd, J = 7.2, 6.9 Hz, 2/5×2 H, 3/5×2H), 6.68–6.78 (m, 2/5×1H, 3/5×1H), 5.08–5.14(m, 2/5×1H), 4.81–4.89 (m, 2/5×1H, 3/5×1H), 3.98–4.05 (m, 3/5×1H), 3.79 (s, 2/5×3 H, 3/5×3H), 2.24–2.29 (m, 2/5×1H), 1.99–2.07 (m, 3/5×1H), 1.25–2.00 (m, 2/5×11H, 3/5×11H), 0.88 (t, J = 6.0 Hz, 2/5×3H, 3/5×3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.64, 172.56, 167.10, 167.06, 133.65, 133.63, 131.95 (C×2), 128.68 (C×2), 127.03 (C×2), 79.17, 79.06, 52.76, 52.74, 52.17, 51.88, 33.61, 33.32, 31.32, 31.29, 29.51, 29.45, 28.59, 28.18, 24.56, 24.53, 22.35 (C×2), 13.86 (C×2). (OCOCF₃ is difficult to detect). HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₀H₂₆F₃NNaO₃, 440.1655; found, 440.1662. IR (KBr, cm⁻¹): v 3416, 1636, 1400, 1119, 616.

methyl-2-benzamido-5-cyclohexyl-5-(2,2,2-trifluoroacetoxy)pentanoate (3ae)

Colourless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 2/5×2 H, 3/5×2

H), 7.54 (t, J = 6.9 Hz, $2/5 \times 1$ H, $3/5 \times 1$ H), 7.46 (dd, J = 8.1, 6.9 Hz, $2/5 \times 2$ H, $3/5 \times 2$ H), 6.70 (d, J = 7.2 Hz, $3/5 \times 1$ H), 6.68 (d, J = 7.2 Hz, $2/5 \times 1$ H), 4.86–4.89 (m, $2/5 \times 1$ H), 4.81–4.86 (m, $3/5 \times 1$ H), 3.97–4.00 (m, $2/5 \times 1$ H), 3.92–3.96 (m, $3/5 \times 1$ H), 3.80 (s, $2/5 \times 3$ H, $3/5 \times 3$ H), 2.28–2.33 (m, $3/5 \times 1$ H), 2.05–2.16 (m, $2/5 \times 1$ H), 1.64–2.01 (m, $2/5 \times 7$ H, $3/5 \times 7$ H), 1.47–1.55 (m, $3/5 \times 1$ H, $2/5 \times 1$ H), 1.18–1.28 (m, $3/5 \times 6$ H), 1.10–1.17 (m, $2/5 \times 6$ H). ¹³C NMR (150 MHz, CDCl₃) δ 172.88, 172.82, 167.15, 167.06, 133.78, 133.76, 131.87(2 × C), 128.66, 128.65, 127.05 (C × 2), 64.65, 64.57, 52.68, 52.63, 52.19, 51.83, 44.65, 44.30, 32.08, 31.87, 31.52, 31.33, 30.88, 30.83, 29.40, 29.30, 26.16 (C × 2), 26.07 (C × 2), 25.95 (C × 2) (OCOCF₃ is difficult to detect). ¹HRMS–ESI (*m*/*z*): [M+Na]⁺ calcd. for C₂₁H₂₆F₃NNaO₅, 452.1655; found, 452.1646. IR (KBr, cm⁻¹): v 3415, 1621, 1400, 1120, 617.

7-benzamido-8-methoxy-8-oxo-4-(2,2,2-trifluoroacetoxy)octyl benzoate (3af)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 2 H), 7.80 (d, J = 7.8 Hz, 2 H), 7.56 (t, J = 7.2 Hz, 2H), 7.45 (dd, J = 7.2, 7.8 Hz, 4H), 6.75 (d, J = 7.8 Hz, 1H), 5.23 (br s, 1H), 4.88–4.90 (m, 1H), 4.30–4.38 (m, 2H), 3.80 (s, 3H), 2.28–2.34 (m, 1H), 1.74–2.09 (m, 7H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.55, 167.13, 166.46, 157.27 (q, J = 42.0 Hz), 133.59, 133.01, 131.96, 130.04, 129.54, 128.68, 128.38, 127.03, 114.56 (q, J = 285.0 Hz), 78.36, 63.98, 52.79, 51.78, 30.40, 29.55, 28.60, 24.38. **HRMS–ESI** (*m*/*z*): [M+Na]⁺ calcd. for C₂₅H₂₆NF₃NaO₇, 532.1554; found, 532.1553. **IR** (KBr, cm⁻¹): v 3415, 1722, 1534, 1277, 714.

(3R,5R,8R,9S,10S,13R,14S,17R)-17-((2R,4R)-7-benzamido-6,6-dimethyl-4-(2,2,2-trifluoroacetoxy)heptan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl benzoate (3ag)

Colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H), 7.78 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 7.43 (dd, J = 7.2, 7.5 Hz, 2H), 6.35 (t, J = 6.4 Hz, 1H), 5.40 (br s, 1H), 4.92– 5.03 (m, 1H), 3.52 (dd, J = 13.7, 7.6 Hz, 1H), 3.14 (dd, J = 13.7, 5.6 Hz, 1H), 1.95-1.98 (m, 2H), 1.79-1.92 (m, 6H), 1.66-1.69 (m, 1H), 1.52–1.57 (m, 4H), 1.36-1.49 (m, 4H), 1.26-1.32 (m, 3H), 1.20-1.22 (m, 2H), 1.14-1.17 (m, 2H), 1.04-1.11 (m, 4H), 0.99 (s, 6H), 0.98 (s, 3H), 0.96 (s, 3H), 0.62 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.64, 166.12, 157.47 (q, J = 42.0 Hz), 134.62, 132.66, 131.52, 130.93, 129.50, 128.64, 128.24, 126.81, 114.59 (q, J = 285.0 Hz), 75.48, 74.99, 56.47, 56.30, 49.48, 44.31, 43.15, 42.81, 41.94, 40.45, 40.06, 35.76, 35.06, 34.75, 34.63, 32.50, 32.36, 28.37, 27.02, 26.76, 26.31, 25.50, 25.36, 24.12, 23.35, 20.82, 18.86, 11.80. **HRMS– ESI** (*m/z*): [M+Na]⁺ calcd. for C₄₄H₅₈F₃NNaO₅, 760.4159; found, 760.4153. **IR** (KBr, cm⁻¹): v 3416, 1636, 1400, 1120, 616.

Late-stage functionalization of steroids compounds:

Preparation of 4ag:

Procedure: KO'Bu (13 mg, 0.12 mmol, 3.6 equiv) was added to an oven-dried vial and then THF (0.2 mL) was added under agron atmosphere. The mixture was cooled to -78 °C. Five minutes later, a solution of **3ag** (23.9 mg, 0.032 mmol, 1.0 equiv) in THF (0.4 mL) was slowly added and stiring for another 30 min at that temperature. Then, the reaction was allowed to warm to room temperature and stired for 5 hours. The reaction was diluted with water, extracted with EtOAc and washed with brine.

The combined solvent was dried with Na_2SO_4 and concentrated under reduce pressure. The desired residue was purified by flash column chromatography on silica gel (PE:EA:DCM = 5:1:0.5 as eluent) to give the title product **4ag**.

((2R)-2-((2R)-2-((3R,5R,8R,10S,13R,14S,17R)-3-hydroxy-10,13dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)propyl)-4,4dimethylpyrrolidin-1-yl)(phenyl)methanone (4ag)

Colourless oil. ¹**H** NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 7.5 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.44 (dd, J = 7.5, 7.2 Hz, 2H), 7.30 (t, J = 6.0 Hz, 1H), 3.91–3.97 (m, 1H), 3.59–3.67 (m, 1H), 3.51 (dd, J = 13.5, 6.3 Hz, 1H), 3.31 (dd, J = 13.5, 6.9 Hz, 1H), 2.16 (d, J = 5.1 Hz, 1H), 1.99–2.01 (m, 1H), 1.77–1.88 (m, 4H), 1.63–1.70 (m, 1H), 1.48–1.62 (m, 4H), 1.36–1.45 (m, 6H), 1.17–1.30 (m, 6H), 1.04–1.11 (m, 5H), 1.02 (s, 3H), 0.98 (d, J = 8.7 Hz, 3H), 0.97 (s, 3H), 0.92 (s, 3H), 0.69 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.45, 135.05, 131.17, 128.49, 126.90, 71.86, 66.18, 56.85, 56.56, 48.80, 47.84, 46.10, 42.86, 42.07, 40.42, 40.25, 36.44, 35.83, 35.32, 34.80, 34.56, 32.49, 30.54, 29.69 (grease), 28.61, 28.57, 27.18, 26.40, 24.86, 24.19, 23.36, 20.82, 18.54, 12.13. HRMS–ESI (m/z): [M+H]⁺ calcd. for C₃₅H₅₃NHO₂, 520.4149; found, 520.4149. IR (KBr, cm⁻¹): v 3752, 3415, 1623, 1400, 1120, 615.

Preparation of 5ag:

Procedure: 3ag (23.5 mg, 0.032 mmol, 1.0 equiv), NaN₃ (4.2 mg, 0.064 mmol, 2.0 equiv), DMF (0.15 mL), were added to an oven-dried vial, and the mixture was heated at 90 $^{\circ}$ C for 6 hours. The reaction was diluted with water, extracted with

EtOAc and washed with brine. The combined solvent was dried with anhydrous Na_2SO_4 and concentrated under reduce pressure. The desired residue was purified by flash column chromatography on silica gel (PE:EA:DCM = 10:1:0.5 as eluent) to give the title product **5ag**.

(3R,5R,8R,10S,13R,14S,17R)-17-((2R,4R)-4-azido-7-benzamido-6,6dimethylheptan-2-yl)-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3-yl benzoate (5ag)

Colourless oil. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, $1/2 \times 4$ H, $1/2 \times 4H$, 7.78 (d, J = 7.2 Hz, $1/2 \times 4H$, $1/2 \times 4H$), 7.55 (t, J = 7.5 Hz, $1/2 \times 2H$, $1/2 \times 2H$), 7.51 (t, J = 6.6 Hz, $1/2 \times 2$ H, $1/2 \times 2$ H), 7.45 (dd, J = 8.1, 7.2 Hz, $1/2 \times 4$ H, $1/2 \times 4$ H), 7.43 (dd, J = 7.2, 6.6 Hz, $1/2 \times 4$ H, $1/2 \times 4$ H), 6.64 (t, J = 6.0 Hz, 1H), 6.45 (t, J = 6.1Hz, 1H), 4.94–5.01 (m, $1/2 \times 2H$, $1/2 \times 2H$), 3.59 (dd, J = 13.7, 7.8 Hz, 1H), 3.52 (dd, J= 13.5, 7.5 Hz, 1H), 3.40–3.54 (m, $1/2 \times 2H$, $1/2 \times 2H$), 3.23 (dd, J = 13.8, 5.7 Hz, 1H), 3.17 (dd, J = 13.8, 5.1 Hz, 1H), 1.92–2.00 (m, $1/2 \times 4$ H, $1/2 \times 4$ H), 1.75–1.93 (m, 1/2×10H, 1/2×10H), 1.61–1.69 (m, 1/2×6H, 1/2×6H), 1.49–1.55 (m, 1/2×4H, 1/2×4H), 1.36-1.47 (m, 1/2×14H, 1/2×14H), 1.25-1.31 (m, 1/2×7H, 1/2×7H), 1.07-1.13 (m, 1/2×11H, 1/2×11H), 1.06 (s, 3H), 1.03 (s, 3H), 1.02 (s, 3H), 1.00 (s, 3H), 0.99 (s, 3H), 0.97 (d, J = 6.6 Hz, 3H), 0.96 (s, 6H), 0.70 (s, 3H), 0.66 (s, 3H).¹³C NMR (150 MHz, $CDCl_3$) δ 167.49, 167.37, 166.13, 134.87, 134.81, 132.68, 132.66, 131.42, 131.37, 130.94, 130.92, 129.51, 128.63, 128.61, 128.24, 126.81, 75.00, 74.97, 57.24, 56.76, 56.51, 56.48, 56.46, 49.18, 48.45, 44.84, 43.14, 42.99, 42.86, 41.95, 41.94, 41.59, 40.48, 40.45, 40.19, 40.16, 35.80, 35.79, 35.07, 34.81, 34.73, 34.65, 33.53, 33.30, 32.36, 28.60, 28.45, 27.03, 26.85, 26.77, 26.33, 26.31, 26.16, 25.23, 25.13, 24.19, 24.14, 23.37, 20.86, 18.76, 18.53, 12.05, 12.04. HRMS-ESI (*m/z*): [M+Na]⁺ calcd. for C₄₂H₅₈N₄NaO₃, 689.4401; found, 689.4400. **IR** (KBr, cm⁻¹): v 3418, 1637, 1400,

1118, 614.

Preparation of 6ag and 7ag:

Procedure: 3ag (23.5 mg, 0.032 mmol, 1.0 equiv), K_2CO_3 (28 mg, 0.2 mmol, 4.0 equiv), DMF (0.1 mL) were added to an oven-dried vial, and the mixture was heated at 100 °C for 5 hours. The reaction was diluted with water, extracted with EtOAc and washed with brine. The combined solvent was dried with Na₂SO₄ and concentrated under reduce pressure. The desired residue was purified by flash column chromatography on silica gel (PE:EA:DCM = 5:1:0.5 as eluent) to give the title product **6ag**.

To a solution of **6ag** (10.8 mg, 0.02 mmol, 1.0 equiv) in DCM (0.1 mL) was added SOCl₂ (0.04 mmol, 2.0 equiv) at room temperature then the vial was sealed with a cap and heated at 100 °C for 1.5 hours. The vial was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was further purified with flash column chromatography (PE: EtOAc: DCM = 5:1:0.5) to give the titled compound **7ag.**

(3R,5R,8R,10S,13R,14S,17R)-17-((2R,4R)-7-benzamido-4-hydroxy-6,6dimethylheptan-2-yl)-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3-yl benzoate (6ag)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H), 7.80 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.2 Hz, 1H), 7.43 (dd, J = 7.2, 7.5 Hz, 2H), 7.42 (dd, J = 7.2, 7.2 Hz, 2H), 7.29 (t, J = 6.3 Hz, 1H), 4.95–5.00 (m, 1H), 3.93–3.96 (m, 1H), 3.52 (dd, J = 13.5, 6.3 Hz, 1H), 3.31 (dd, J = 13.5, 6.9 Hz, 1H),

2.15 (d, J = 4.5 Hz, 1H), 2.01–2.03 (m, 1H), 1.97 (q, J = 12.0 Hz, 1H), 1.79–1.91 (m, 4H), 1.66–1.71 (m, 1H), 1.50–1.60 (m, 6H), 1.39–1.47 (m, 4H), 1.26–1.31 (m, 3H), 1.18–1.23 (m, 3H), 1.06–1.15 (m, 5H), 1.02 (s, 3H), 1.00 (d, J = 6.6 Hz, 3H), 0.98 (s, 3H), 0.97 (s, 3H), 0.71 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 167.45, 166.14, 135.03, 132.67, 131.18, 130.93, 129.51, 128.50, 128.24, 126.90, 75.00, 66.16, 56.90, 56.55, 48.79, 47.83, 46.11, 42.88, 41.95, 40.48, 40.22, 35.80, 35.07, 34.80, 34.65, 32.48, 32.36, 29.69 (grease), 28.61, 28.57, 27.05, 26.76, 26.34, 24.86, 24.18, 23.36, 20.87, 18.56, 12.15. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₄₂H₅₉NNaO₄, 664.4336; found, 664.4331. **IR** (KBr, cm⁻¹): v 3415, 2926, 1622, 1400, 1119, 615.

(3R,5R,8R,10S,13R,14S,17R)-17-((2R,4R)-7-benzamido-4-chloro-6,6dimethylheptan-2-yl)-10,13-dimethylhexadecahydro-1Hcyclopenta[a]phenanthren-3-yl benzoate (7ag)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H), 7.78 (d, J = 7.2 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.2, 7.5 Hz, 2H), 7.43 (dd, J = 7.2, 7.2 Hz, 2H), 6.49–6.51 (m, 1H), 4.95–5.00 (m, 1H), 4.12–4.16 (m, 1H), 3.63 (dd, J = 13.8, 8.1 Hz, 1H), 3.24 (dd, J = 13.8, 5.1 Hz, 1H), 1.92–2.03 (m, 4H), 1.77–1.89 (m, 5H), 1.67–1.69 (m, 1H), 1.57–1.63 (m, 2H), 1.39–1.47 (m, 4H), 1.27–1.30 (m, 4H), 1.17–1.22 (m, 3H), 1.08–1.14 (dt, J = 16.2, 4.5 Hz, 5H), 1.06 (s, 3H), 1.01 (s, 3H), 0.97 (s, 3H), 0.96 (d, J = 6.0 Hz, 3H), 0.71 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.43, 166.13, 134.86, 132.66, 131.39, 130.96, 129.51, 128.62, 128.24, 126.82, 75.02, 58.26, 56.56, 56.51, 49.42, 48.41, 47.35, 42.93, 41.97, 40.50, 40.23, 35.81, 35.33, 35.09, 34.67, 33.32, 32.38, 28.25, 27.05, 26.78, 26.70, 26.35, 25.23, 24.18, 23.38, 20.88, 18.03, 12.14. HRMS–ESI (m/z): [M+Na]⁺ calcd. for C₄₂H₅₈ClNNaO₃, 682.3997; found, 682.3998. IR (KBr, cm⁻¹): v 3415, 2927, 1622, 1400, 1118, 616.

Preparation of 8ag:

Procedure: PCC (5 mg, 0.024 mmol, 1.2 equiv) was added to a solution of **6ag** (10.8 mg, 0.02 mmol, 1.0 equiv) in DCM (0.1 mL), then stired for 2 hours. The vial was allowed to cool to room temperature. The solvent was then removed in vacuo and the residue was further purified with flash column chromatography (PE: EtOAc: DCM = 5:1:0.5) to give the titled compound **8ag**.

(3R,5R,8R,10S,13R,14S,17R)-17-((R)-7-benzamido-6,6-dimethyl-4-oxoheptan-2yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-yl benzoate (8ag)

Colourless oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, J = 7.8Hz, 2H), 7.86 (d, J = 7.5Hz, 2H), 7.55 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.2Hz, 1H), 7.46 (dd, J = 7.8, 7.2 Hz, 2H), 7.44 (dd, J = 7.5, 7.2 Hz, 2H), 7.37 (t, J = 5.4 Hz, 1H), 4.94–5.02 (m, 1H), 3.42 (dd, J = 13.8, 6.3 Hz, 1H), 3.32 (dd, J = 13.8, 6.0 Hz, 1H), 2.51 (dd, J = 16.5, 2.1 Hz, 1H), 2.44 (s, 2H), 2.21 (dd, J = 16.4, 9.9 Hz, 1H), 1.95–2.00 (m, 3H), 1.76–1.90 (m, 4H), 1.67–1.69 (m, 1H), 1.52–1.62 (m, 5H), 1.40–1.47 (m, 4H), 1.25–1.29 (m, 3H), 1.10–1.15 (m, 4H), 1.08 (s, 3H), 1.07 (s, 3H), 0.96 (s, 3H), 0.92 (d, J = 6.3 Hz, 3H), 0.70 (s, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 213.09, 167.31, 166.12, 134.64, 132.68, 131.29, 130.89, 129.49, 128.52, 128.24, 126.94, 74.97, 56.51, 56.04, 52.98, 52.47, 49.50, 42.81, 41.90, 40.41, 40.02, 35.77, 35.41, 35.05, 34.63, 32.57, 32.34, 28.52, 27.00, 26.74, 26.67, 26.43, 26.30, 24.14, 23.34, 20.81, 19.84, 12.07. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₄₂H₅₇NNaO₄, 662.4180; found, 662.4172. **IR** (KBr, cm⁻¹): v 3415, 1636, 1400, 1119, 616.

Comparative experiments. Suárez:⁴

Procedure: To an oven-dried 25 mL round bottom flask with a condenser, **2a** (23.3 mg, 0.10 mmol, 1.0 equiv), Pb(OAc)₄ (443.38 mg, 1 mmol, 10 equiv), I₂ (127 mg, 0.5 mmol, 5.0 equiv), 7.5 mL cyclohexane were added sequentially under nitrogen atmosphere. The reaction mixture was irradiation with 100 W LED and stirred at 100 $^{\circ}$ C for 2 hours. After completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. The result was determined by crude ¹H NMR.

Muñiz:⁵

Procedure: A Schlenk tube equipped with a stirrer bar is charged with PhI(mcba)₂ (113 mg, 0.22 mmol, 1.0 equiv), and the amide **2a** (23.3 mg, 0.10 mmol, 1.0 equiv), evacuated, and backfilled with argon, before 1.5 mL of absolute dichloroethane are added. The solution is stirred at 25 °C for 12 h under visible light. After completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure.The result was determined by crude ¹H NMR. 90 % of SM was recovered. (We have successfully reproduced the Muñiz reaction with sulphoamide under this condition).

Nagib:6

Procedure: To an oven-dried vial with a PTFE septa cap, was added a magnetic stir bar, amide **2a** (46.7 mg, 0.20 mmol, 1.0 equiv), iodobenzene diacetate (256 mg, 0.8 mmol, 4.0 equiv), and dry sodium iodide (148.7 mg, 0.8 mmol, 4.0 equiv).* This vial was sealed and sequentially evacuated and backfilled with nitrogen three times. Separately, acetonitrile was degassed using a freeze-pump-thaw technique three times. Acetonitrile (2 mL) was added to the vial and the vial was stired at 25 °C in oil bath and iriadiation with blue LED light for 10 hours. After completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. The result was determined by crude ¹H NMR. 85% of SM was recovered. (We have successfully reproduced the Nagib reaction with sulphoamide under this condition).

Yu:[7]

Procedure: A Schlenk tube equipped with a stirrer bar is charged with $Cu(TFA)_2$ (3.1 mg, 0.01 mmol, 10 mol%), 1,10-Phenanthroline (1.8 mg, 0.01 mmol, 10 mol%), NBS (53.4 mg, 0.3 mmol, 3.0 equiv), TMSN₃ (37 µL, 0.3 mmol, 3.0 equiv), amide **2a** (23.3 mg, 0.10 mmol, 1.0 equiv) and DCE (1.0 mL) was added sequentially under air.And then tube was sealed with rubber cap. The mixture was stirred at 60 °C for 18 h. After completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure.The result was determined by crude ¹H NMR. 55 % of SM was recovered.

Mechanism Studies:

Preparation of 4a:

3a (138 mg. 0.4 mmol, 1.0 equiv), K_2CO_3 (221 mg, 1.6 mmol, 4.0 equiv), DMF (0.5 M) were added to an oven-dried vial, and the mixture was heated at 100 °C for 5 hours. The reaction was diluted with water, extracted with EtOAc and washed with

brine. The combined solvent was dried with Na_2SO_4 and concentrated under reduce pressure. The desired residue was purified by flash column chromatography on silica gel (PE:EA:DCM = 5:1:0.5 as eluent) to give the alcohol.

PPh₃ (122 mg, 0.466 mmol, 1.33 equiv) was dissolved in DCM (0.7 M), then cooled to 0 °C, then Br₂ (74 mg, 0.466 mmol, 1.33 equiv) was added slowly until the solvent turned to yellow solution, the alcohol was added at one time, the desired mixture was striing 2 hours at that temperature (Detected by TLC). The reaction was diluted with water and sat. Na₂S₂O₃ solution, extracted with DCM. The combined organic solvent was dried with Na₂SO₄, and concentrated under reduce pressure. The desired residue was purified by flash column chromatography on silica gel (PE:EA:DCM = 8:1:0.5 as eluent) to give the **4a**.

N-(4-bromo-2,2-dimethylhexyl)benzamide (4a)

Colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.79 (d, J = 7.2 Hz, 2H), 7.51 (t, J = 7.2 Hz, 1H), 7.45 (dd, J = 7.2, 7.2 Hz, 2H), 6.54 (br s, 1H), 4.08–4.14 (m, 1H), 3.62 (dd, J = 13.8, 8.1 Hz, 1H), 3.25 (dd, J = 13.8, 5.4 Hz, 1H), 2.16 (dd, J = 15.9, 8.1 Hz, 1H), 1.83–1.94 (m, 2H), 1.80 (dd, J = 15.9, 2.1 Hz, 1H), 1.05 (t, J = 7.2 Hz, 3H), 1.04 (s, 3H), 1.01 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.45, 134.81, 131.42, 128.63, 126.82, 55.11, 48.53, 47.99, 35.44, 34.77, 26.60, 25.08, 12.01. **HRMS–ESI** (m/z): [M+Na]⁺ calcd. for C₁₅H₂₂BrNNaO, 334.0777; found, 334.0778. **IR** (KBr, cm⁻¹): v 3550, 3476, 3414, 1619, 1400, 1117.

Preparation of 5a:8

The 5a was prepared as reference 8

To a 25 mL flame dried, foil wrapped flask under N₂, amide **2a** (233 mg, 1.0 equiv, 1.0 mmol) was added followed by acetyl hypobromite solution (7.5 mL, 1.47 mmol, 0.20 M) in CCl₄. The reaction was stirred at room temperature for 1.5 hours. When the reaction was complete as judged by ¹H NMR analysis (1.5 hours usually sufficient) the reaction was concentrated under reduced pressure to give a yellow solid. The desired residue was purified by flash column chromatography on silica gel (PE:Et₂O = 5:1 as eluent) quickly to give the **5a**.

General storage: All N-Bromo reagents were stored in foil-wrapped vials in the freezer when not in use.

N-bromo-N-(2,2-dimethylhexyl)benzamide (5a)

Yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.49 (d, J = 6.9 Hz, 2H), 7.38–7.43 (m, 3H), 3.76 (s, 2H), 1.25–1.28 (m, 4H), 1.19–1.23 (m, 2H), 0.96 (s, 6H), 0.88 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (150 MHz, CDCl₃) δ 173.75, 134.97, 130.20, 128.04, 127.66, 65.07, 40.27, 36.79, 25.92, 25.52, 23.45, 14.05. **HRMS–ESI** (*m/z*): [M+Na]⁺ calcd. for C₁₅H₂₂BrNNaO, 334.0777; found, 334.0767. **IR** (KBr, cm⁻¹): v 3476, 3414, 1639, 1618, 1121, 1094, 713, 616, 479.

1. TEMPO Control Experiments

2. Radical capture experiments

3. Competition experiments

Results:

1. By adding TEMPO and 2,6-di-*tert*-butylphenol to the reaction mixture independently, the reaction was completely inhibited.

- 2. The intermolecular competition experiment showed that this reactio gave the excellent selectivity on the secondary C-H bond than the tertiary one.
- 3. The conpound **4a** can be transferred to the final product, so it maybe the possible intermediate in this reaction.
- 4. The compound 5a was subjected to the reaction condition of CuI (20 mol%) and PIFA (2.2 equiv) in DCE (1.0 mL) at 100 °C, 60% trifluoroacetoxylation product 3a was observed and 40% of protonation product 2a was observed.

Proposed Mechanism:

We propose that this transformation is preferred to a single-electron-oxidation process (Scheme 3). With the assistance of PhI(OTFA)2 and copper catalyst, the N-Br intermediate I (path a) or Cu(III)-amidine intermediate III (path b) can be generated.17 Subsequent homolysis of the N-Br or N-Cu bond afforded amidinyl radical II. This was followed by a 1,5-H radical shift to give the corresponding C-radical V, which resulted in the selective C–H bond trifluoroacetoxylation at δ position. For the next step, two possible pathways could be followed: one is the oxidative addition of a carbon radical by a Cu(II) catalyst to generate Cu(III)-amide intermediate IV, and after ligand exchange and reductive elimination to afford the trifluoroacetoxylation product 3a (path c). The other is the oxidation of carbon radical to carbocation (VI) which is captured by OTFA-, to directly give product (path d). Although we didn't detect any δ -brominated product (VII) even with decreased PIFA

or shorter reaction time, the possibility that the product is formed through a substitution reaction of intermediate VII cannot be ruled out.

S60

References

- (1) D. Meng, Y. Tang, J. Wei, X. Shi and M. Yang, Chem. Commun., 2017, 53, 5744.
- (2) (a) M. J. O'Donnell and R. L. Polt, J. Org. Chem., 1982, 47, 2663; (b) M. M. Hansen, C. F. Bertsch, A. R. Harkness, B. E. Huff, D. R. Hutchison, V. V. Khau, M. E. LeTourneau, M. J. Martinelli, J. W. Misner, B. C. Peterson, J. A. Rieck, K. A. Sullivan and I. G. Wright, J. Org. Chem., 1998, 63, 775; (c) M.Yang, X. Jiang and Shi, Z.-J. Org. Chem. Front., 2015, 2, 51.
- (3) A. Kolocouris, C. Tzitzoglaki, F. B. Johnson, R. Zell, A. K. Wright, T. A. Cross, I. Ian Tietjen, D. Fedida and D. D. Busath, *J. Med. Chem.*, 2014, **57**, 4629.
- (4) C. Betancor, J. I. Concepcion, R. Hernandez, J. A. Salazar and E. Suárez. J. Org. Chem., 1983, 48, 4430.
- (5) C. Martínez and K. Muńiz, Angew. Chem., Int. Ed., 2015, 54, 8287.
- (6) E. A. Wappes, S. C. Fosu, T. C. Chopko and D. A. Nagib, Angew. Chem., Int. Ed., 2016, 55, 9974.
- (7) T. Liu, M. C. Myers and J.-Q. Yu, Angew. Chem. Int. Ed., 2017, 56, 306.
- (8) V. A. Schmidt, R. K. Quinn, A. T. Brusoe and E. J. Alexanian, J. Am. Chem. Soc., 2014, 136, 14389.

NMR Spectra

S62

S94

S99

Spectra of product:

-500

-0

--500

