

Supplementary Material

Ca²⁺ Cycling Impairment in Heart Failure is Exacerbated by Fibrosis: Insights Gained from Mechanistic Simulations

Maria T Mora, Jose M Ferrero, Juan F Gomez, Eric A Sobie, Beatriz Trenor*

* Correspondence: Beatriz Trenor: btrenor@eln.upv.es

In the following tables we provide the required information to replicate our simulations:

Ion current	New formulation	References
	$G_{Na} = 31 \text{ mS/}\mu\text{F}$ $h_{ss} = j_{ss} = \frac{1}{1 + e^{\frac{V+78.5}{6.22}}}$	
I _{Na}	$h_{ssp} = \frac{1}{1 + e^{\frac{V+84.7}{6.22}}}$	(Mora et al., 2017; Passini et al., 2016; ten Tusscher et al., 2004)
	$m_{ss} = \frac{1}{1 + e^{-\frac{V+48.97}{7.5}}}$	
I _{NaL}	$G_{NaL}=0.0144\ mS/\mu F$	(Maltsev and Undrovinas, 2006; Mora et al., 2017)

Supplementary Table 1. Changes in ORd model leading to ORdmm

 G_{Na} and G_{NaL} are maximal conductances of fast (I_{Na}) and late Na^+ currents (I_{NaL}), V is membrane potential and h_{ss} , j_{ss} , h_{ssp} and m_{ss} are steady-state inactivation and activation gates of I_{Na} .

Ionic parameter	% of change compared to the ORdmm	Experimental references
I _{NaL}	180 %	(Maltsev et al., 2007)
$ au_{ m hL}$	180 %	(Maltsev et al., 2007)
I _{to}	40 %	(Beuckelmann et al., 1993)
I _{K1}	68 %	(Tomaselli and Marbán, 1999)
I _{NaK}	70 %	(Bundgaard and Kjeldsen, 1996; Tomaselli, 2004; Tomaselli and Marbán, 1999)
I _{NCX}	175 %	(Winslow et al., 1999)
CaMKa	150 %	(Antoons et al., 2007; Sossalla et al., 2011)
J _{SERCA}	50 %	(Piacentino et al., 2003)
J _{leak}	130 %	(Bers et al., 2006)
K _{rel,Ca}	80 %	(George, 2007)

Supplementary Table 2. Heart failure (HF) remodeling in ORdmm model.

The modified parameters are the maximum values of the late Na⁺ current (I_{NaL}), the time constant of inactivation of the I_{NaL} (τ_{hL}), the transient outward current (I_{to}), the inward rectifier K⁺ current (I_{K1}), the Na⁺/K⁺ pump current (I_{NaK}), the Na⁺/Ca²⁺ exchanger (I_{NCX}), the fraction of active binding sites of the Ca⁺² calmodulin-dependent protein kinase II (CaMKa), the sarcoplasmic reticulum (SR) Ca²⁺ pump (J_{SERCA}), the SR Ca²⁺ leak (J_{leak}) and the sensitivity to [Ca²⁺]_{JSR} of the ryanodine receptors (Ca²⁺ sensitivity of J_{rel,∞}, called K_{rel,Ca}).

Supplementary Figure 1. Univariate and multivariate sensitivities in normal conditions with high and low parameter variability. Modulators of A) action potential duration to 90% of repolarization (APD₉₀), B) Ca²⁺ transient (CaT) duration to 80% of recovery (CaTD₈₀), C) CaT rise time (t_{10-90}) and, D) Systolic peak of CaT.

Supplementary Figure 2. Univariate and multivariate sensitivities in heart failure with high and low parameter variability. Modulators of A) action potential duration to 90% of repolarization (APD₉₀), B) Ca²⁺ transient (CaT) duration to 80% of recovery (CaTD₈₀), C) CaT rise time (t_{10-90}) and, D) Systolic peak of CaT.

Supplementary Figure 3. Comparison of sensitivities obtained from 4 multivariable regression analyses: normal (N) and heart failure (HF) conditions with or without coupled fibroblasts (Fb). Modulators of A) action potential duration to 90% of repolarization (APD₉₀), B) Ca²⁺ transient (CaT) duration to 80% of recovery (CaTD₈₀), C) CaT rise time (t₁₀₋₉₀) and, D) Systolic peak of CaT. Low parameter variability (σ =0.1). Regression coefficients (B) are scaled to the standard deviation (σ) of log-normal distributed biomarkers in uncoupled myocytes (M).

Supplementary Figure 4. Comparison of the effects of coupling fibroblasts (Fb) and myofibroblasts (MyoFb) on action potential and Ca²⁺ transient of a myocyte (M) in normal (N) and heart failure (HF) conditions. For myofibroblast simulations, MacCannell et al. (2007) active model was modified, increasing C_m to 50 pF and depolarizing the resting membrane potential of the fibroblast to -24.5 mV.

Supplementary Figure 5. Comparison of the effects of coupling fibroblasts (Fb) to epicardial and endocardial cells (M) on action potential waveform. Insets show phase 1 with higher resolution. The number of coupled fibroblasts is 0 (M), 1 and 5.

REFERENCES

- Antoons, G., Oros, A., Bito, V., Sipido, K. R., and Vos, M. A. (2007). Cellular basis for triggered ventricular arrhythmias that occur in the setting of compensated hypertrophy and heart failure: considerations for diagnosis and treatment. J. Electrocardiol. 40, S8–S14. doi:10.1016/j.jelectrocard.2007.05.022.
- Bers, D. M., Despa, S., and Bossuyt, J. (2006). Regulation of Ca2+ and Na+ in Normal and Failing Cardiac Myocytes. *Ann. N. Y. Acad. Sci.* 1080, 165–177. doi:10.1196/annals.1380.015.
- Beuckelmann, D. J., Nabauer, M., and Erdmann, E. (1993). Alterations of K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. *Circ. Res.* 73, 379–385. doi:10.1161/01.RES.73.2.379.
- Bundgaard, H., and Kjeldsen, K. (1996). Human myocardial Na,K-ATPase concentration in heart failure. *Mol. Cell. Biochem.* 163–164, 277–283. doi:10.1007/BF00408668.
- George, C. H. (2007). Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance? *Cardiovasc. Res.* 77, 302–314. doi:10.1093/cvr/cvm006.
- MacCannell, K. A., Bazzazi, H., Chilton, L., Shibukawa, Y., Clark, R. B., and Giles, W. R. (2007). A mathematical model of electrotonic interactions between ventricular myocytes and fibroblasts. *Biophys. J.* 92, 4121–4132. doi:10.1529/biophysj.106.101410.
- Maltsev, V. A., Silverman, N., Sabbah, H. N., and Undrovinas, A. I. (2007). Chronic heart failure slows late sodium current in human and canine ventricular myocytes: Implications for repolarization variability. *Eur. J. Heart Fail.* 9, 219–227. doi:10.1016/j.ejheart.2006.08.007.

- Maltsev, V. A., and Undrovinas, A. I. (2006). A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. *Cardiovasc. Res.* 69, 116–127. doi:10.1016/j.cardiores.2005.08.015.
- Mora, M. T., Ferrero, J. M., Romero, L., and Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. *PLoS One* 12, e0187739. doi:10.1371/journal.pone.0187739.
- Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., et al. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 96, 72–81. doi:10.1016/j.yjmcc.2015.09.003.
- Piacentino, V., Weber, C. R., Chen, X., Weisser-Thomas, J., Margulies, K. B., Bers, D. M., et al. (2003). Cellular basis of abnormal calcium transients of failing human ventricular myocytes. *Circ. Res.* 92, 651–658. doi:10.1161/01.RES.0000062469.83985.9B.
- Sossalla, S., Maurer, U., Schotola, H., Hartmann, N., Didié, M., Zimmermann, W.-H., et al. (2011). Diastolic dysfunction and arrhythmias caused by overexpression of CaMKII&C can be reversed by inhibition of late Na+ current. *Basic Res. Cardiol.* 106, 263–272. doi:10.1007/s00395-010-0136-x.
- ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., and Panfilov, A. V (2004). A model for human ventricular tissue. *Am. J. Physiol. Heart Circ. Physiol.* 286, H1573-89. doi:10.1152/ajpheart.00794.2003.
- Tomaselli, G. F. (2004). What Causes Sudden Death in Heart Failure? *Circ. Res.* 95, 754–763. doi:10.1161/01.RES.0000145047.14691.db.
- Tomaselli, G., and Marbán, E. (1999). Electrophysiological remodeling in hypertrophy and heart failure. *Cardiovasc. Res.* 42, 270–283. doi:10.1016/S0008-6363(99)00017-6.
- Winslow, R. L., Rice, J., Jafri, S., Marban, E., and O'Rourke, B. (1999). Mechanisms of Altered Excitation-Contraction Coupling in Canine Tachycardia-Induced Heart Failure, II: Model Studies. *Circ. Res.* 84, 571–586. doi:10.1161/01.RES.84.5.571.