Procedure 1

Procedure 2

Supplementary Fig. 1. Quantitative comparison of surface GABA_AR localization detected with two distinct labeling procedures

Procedure 1: WT mouse hippocampal neurons (14 DIV) were labeled with a rabbit anti- γ 2 antibody and then with an Alexa Fluor 488-conjugated anti-rabbit IgG antibody. After fixation and permeabilization, the neurons were stained with a mouse anti-VGAT antibody, followed by with an Alexa Fluor 594-conjugated anti-mouse IgG antibody. Procedure 2 (a control procedure): WT mouse hippocampal neurons (14 DIV) were labeled with a rabbit anti- γ 2 antibody and then fixed. After labeling with an Alexa Fluor 488-conjugated anti-rabbit IgG antibody and permeabilization, the neurons were stained with a mouse anti-VGAT antibody, followed by with an Alexa Fluor 594-conjugated anti-mouse IgG antibody. Puncta of surface GABA_ARs (green) that overlap with those of the presynaptic marker VGAT (red) were regarded as synaptically localized GABA_ARs (arrowheads). The number of puncta was quantified using ImageJ. Data are shown as the mean \pm SEM. NS, not significant (Student's *t*-test). n = 5 (procedure 1) and 5 (procedure 2) across two independent experiments. There was no significant difference in the number of synaptic GABA_ARs and the ratio of synaptic to surface GABA_ARs between the procedures. We reasoned that artificial aggregation of surface GABA_ARs was kept to the minimum in our surface labeling procedure.

Supplementary Fig. 2. The stimulation conditions for chem-iLTP induction represent a valid experimental model

WT and KO hippocampal neurons (14 DIV) were briefly stimulated with 20 μ M NMDA (plus 10 μ M CNQX) for 3 min in the presence or absence of the cell-permeable CaMKII inhibitor KN93, and the cell lysates were analyzed by immunoblotting with the indicated antibodies. α -tubulin was used as a loading control. We observed two major hallmarks of chem-iLTP^{27,46}: an increase in CaMKII autophosphorylated at Thr²⁸⁶ and a decrease in the GluA1 subunit of α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) phosphorylated at Ser⁸⁴⁵. Pretreatment of neurons with KN93 blocked Thr²⁸⁶ phosphorylation of CaMKII, but not Ser⁸⁴⁵ dephosphorylation of GluA1. These results validated our protocol for chem-iLTP, and we used identical conditions for the subsequent experiments.

Supplementary Fig. 3. PX-RICS is required for GABA_AR transport during chem-iLTP (A) WT and KO hippocampal neurons were treated with vehicle (mock) or moderately stimulated with NMDA in the presence or absence of KN93 as indicated, and surface (green) and intracellular (red) $\gamma 2$ subunits were separately visualized. Scale bars, 10 µm. (B) Quantitative analyses of the $\gamma 2$ fluorescent signals in the perisomatic regions. Data are shown as the mean \pm SEM. ****P* < 0.001 (Student's *t*-test). *n* = 10 (WT) and 10 (KO) across two independent experiments.

Fig. S4 (continued)

Supplementary Fig. 4. GABARAP, 14-3-3 ζ/θ and dynactin1 are required for GABA_AR transport during chem-iLTP

(A) WT hippocampal neurons were transfected with the indicated siRNA plus Red Fluorescent Oligo. After treatment with vehicle (mock) or low-dose NMDA, surface (green) and intracellular (blue) levels of the $\gamma 2$ subunit in the perisomatic regions of siRNA-transfected neurons (red) were analyzed. Scale bars, 10 µm.

(B) Quantitative analyses of $\gamma 2$ fluorescent signals in the perisomatic regions.

Data are shown as the mean \pm SEM. **P* < 0.05; ****P* < 0.001 (Student's *t*-test). *n* = 10 (for each siRNA) across two independent experiments.

siControl

siGabarap-2

Fig. S5 (continued)

si14-3-3ζ-2

si14-3-30-2

Supplementary Fig. 5. GABARAP, 14-3-3 ζ/θ and dynactin1 are required for GABA_AR transport during chem-iLTP

WT hippocampal neurons (10 DIV) were transfected with the indicated siRNAs, the nucleotide sequences of which are different from those used in Figure 2 although they target the same mRNAs. Red Fluorescent Oligo was co-transfected to identify siRNA-transfected neurons. After treatment with vehicle (mock) or low-dose NMDA, surface (green) and intracellular (blue) levels of the γ 2 subunit in the perisomatic regions and in the distal dendrites of siRNA-transfected neurons (red) were analyzed. The quantitative data were integrated into Fig. 2B–D (the distal dendrites) and Supplementary Fig. 4B (the perisomatic regions). Scale bars, 10 µm.

Fig. S6 (continued)

Supplementary Fig. 6. GABA_AR transport during chem-iLTP requires complex formation of PX-RICS with GABARAP and 14-3-3 ζ/θ

(A) KO hippocampal neurons were transfected with plasmids expressing FLAG-tagged wild-type or mutant PX-RICS as indicated. After mock or moderate NMDA stimulation, surface-expressed (green) and intracellular (blue) levels of the $\gamma 2$ subunit in the perisomatic regions of transfected neurons (red) were analyzed. Scale bars, 10 µm. (B) Quantitative analyses of $\gamma 2$ fluorescent signals in the perisomatic regions. Data are shown as the mean ± SEM. **P < 0.01; ***P < 0.001 (Student's *t*-test). n = 10 (for each construct) across two independent experiments.

Supplementary Fig. 7. PX-RICS–mediated GABA_AR trafficking underlies NMDAR– dependent GABAergic iLTP

PX-RICS, GABARAP and 14-3-3s are assembled to form an adaptor complex that interconnects γ 2-containing GABA_ARs (cargo) and dynein/dynactin (motor). Interaction of PX-RICS with 14-3-3s depends on the phosphorylation activity of CaMKII, and this interaction is a critical regulatory point for GABAAR trafficking. When CaMKII activity is at a basal level, the PX-RICS-mediated trafficking complex has a role in steady-state transport of GABA_ARs to maintain the number of surface GABA_ARs as needed for proper synaptic inhibition.³ Neural activity that evokes moderate Ca²⁺ influx through NMDAR preferentially increases the activated form of CaMKII and elicits its translocation to inhibitory synapses,²⁶ where it phosphorylates target proteins such as gephyrin and the GABA_AR β 3 subunit.^{37,38,49} Phosphorylated gephyrin and the GABA_AR β3 subunit regulate the surface dynamics of GABA_ARs such as lateral diffusion and synaptic confinement.^{37,38,49,58} The present study has revealed that PX-RICS is a downstream CaMKII target associated with anterograde transport of GABA_ARs. Enhanced PX-RICS phosphorylation increases the PX-RICS-14-3-3 complex and thereby drives de novo GABAAR surface expression, resulting in GABAergic iLTP. Dysfunction of this trafficking mechanism in the amygdala causes impaired GABAergic synaptic plasticity, which may contribute to deficits in socioemotional behavior as observed in *PX-RICS/RICS*-deficient mice and JBS patients with autism.

Supplementary Table 1. Summary of the statistical analysis for the behavioral data															
Test	Number of mice	Session	Measurement	Genotype	Treatment	Mean	SEM	Statistical test	F value	P value	post hoc test	Comparison	F value	P value	Figure
Fear conditioning	WT = 26	Conditioning	Activity	WT KO		690.96 774.94	31.73 49.08	One-way ANOVA	1.94	NS					5B
	KU = 20		Freezing rate	WT	-	1.75	0.39	One-way	0.56	NS					5C
		Contextual test	Freezing rate	WT		40.28	3.91	One-way	1.56	NS					5D
			Freezing rate	WT	0–30 s	33.32	3.97	One-way	4.72	<0.05					5E
				KO WT	30-60 s	19.86 36.60	3.21 3.79	ANOVA One-way	0.35	NS					
				KO WT	50 00 s	33.20 45.57	4.28	ANOVA One-way	0.55	NE					
				KO WT	60-90 s	40.45	4.70	ANOVA One-way	0.59	NS					
				KO	90–120 s	36.93	3.87	ANOVA	1.55	NS					
				KO	120–150 s	38.13	4.02	ANOVA	1.80	NS					
				KO	150–180 s	46.48 34.94	5.38	ANOVA	2.48	NS					
				KO WT	180–210 s	36.28 34.93	4.73 5.74	One-way ANOVA	0.03	NS					
				WT KO	210–240 s	40.58 34.55	5.49 5.59	One-way ANOVA	0.59	NS					
				WT KO	240–270 s	39.55 31.35	5.37 5.23	One-way ANOVA	1.20	NS					
				WT KO	270–300 s	36.02	5.00	One-way	0.89	NS					
		Cued test	Freezing rate	WT	Pre-CS	3.57	0.80					WT, Pre-CS vs. CS	116.88	< 0.01	5F
				WT	cs	44.54	4.33	ANOVA	20.86	<0.01	Bonferroni's	Pre-CS, WT vs. KO	0.24	<0.01 NS	
			Freezing rate	KO WT	0-30 s	18.20 3.19	3.01	One-way	0.92	NS		CS, WT vs. KO	48.30	< 0.01	5G
				KO WT	30,60,6	1.73 2.57	1.11 0.98	ANOVA One-way	0.52	NS					
				KO WT	50-60 S	1.54 4.17	0.75	ANOVA One-way	0.00	NG					
				KO	60–90 s	1.92	0.72	ANOVA One-way	1.77	NS					
				KO	90–120 s	1.67	0.86	ANOVA	0.45	NS					
				KO	120–150 s	31.92	4.80	ANOVA	21.68	<0.01					
				KO	150–180 s	58.27 28.46	5.10 5.03	ANOVA	17.30	<0.01					
				WT KO	180–210 s	45.65 19.30	4.63 4.44	One-way ANOVA	16.90	<0.01					
				WT KO	210–240 s	39.03 13.08	5.55 3.28	One-way ANOVA	16.21	<0.01					
				WT KO	240–270 s	32.63	5.19	One-way	14.30	<0.01					
				WT	270–300 s	29.22	5.85	One-way	12.96	<0.01					
Pain sensitivity	WT = 8		Shock intensity	WT	Flinch	0.0250	0.0019	One-way	3.50	NS					5H
	KO = 8			WT	Vocalization	0.0200	0.0019	One-way	0.03	NS					
				KO WT	Rupping/Jumping	0.0475	0.0053	ANOVA One-way	0.72	NS					
Fear conditioning	Vehicle	Conditioning	Activity	KO WT	Vahisla	0.0900 638.49	0.0053 37.07	ANOVA							6A
(clonazepam	WT = 30		,	KO WT	venicie	691.81 569.68	24.51 28.10	Two-way ANOVA	0.11	NS					
-auministered mice)	CZP		Franzing rate	KO WT	CZP	642.14	25.76								6.0
	WT = 30 KO = 30		Freezing rate	KO	Vehicle	1.90	0.46	Two-way	0.06	NS					бВ
				KO	CZP	4.25	0.57	ANOVA							
		Contextual test	Freezing rate	WT KO	Vehicle	30.33 20.32	2.84 2.69	Two-way	0.62	NC					6C
				WT KO	CZP	32.27 27.02	3.14 3.35	ANOVA	0.62	IN S					
			Freezing rate	WT KO	0–30 s, Vehicle	21.72	3.74	Two-way							6D
				WT	0–30 s, CZP	25.93	3.39	ANOVA	0.95	NS					
				WT	30–60 s, Vehicle	30.17	3.18	-							
				WT	30-60 s C7P	18.00 35.83	2.84	ANOVA	0.99	NS					
				KO WT	60, 00 s, Vehicle	30.78 36.62	4.12 3.09								
				KO WT	60-90 S, Venicie	26.17 38.78	3.77 3.51	Two-way ANOVA	0.30	NS					
				KO WT	60-90 s, C2P	32.45	4.50								
				KO	90–120 s, Vehicle	29.17	3.89	Two-way	0.48	NS					
				KO	90–120 s, CZP	36.34	4.65	ANUVA							
				МТ КО	120–150 s, Vehicle	31.33 29.55	3.87 4.07	Two-way	0.05	NS					
				WT KO	120–150 s, CZP	38.95 35.33	4.12	ANOVA	0.05	113					
				WT KO	150–180 s, Vehicle	32.45	3.90	Two-way							
				WT	150–180 s, CZP	40.61	4.05	ANOVA	0.17	NS					
				WT	180–210 s, Vehicle	28.34	3.45	-							
				KO WT	180-210 c C7P	20.01 30.44	3.89 4.14	Two-way ANOVA	0.08	NS					
				KO WT	210 210 3, 021	24.28 31.84	3.84 4.18								
				KO WT	210-240 S, VENICIE	20.22	4.14	Two-way	1.89	NS					
				KO	210–240 s, CZP	22.67	4.15		<u> </u>	<u> </u>					
				KO	240–270 s, Vehicle	20.55	4.06	Two-way	1.06	NS					
				WT KO	240–270 s, CZP	25.78 23.05	4.22 4.31	ANOVA							
				WT KO	270–300 s, Vehicle	25.83 12.50	3.79 3.07	Two-way	1.00	NC					
				WT KO	270–300 s, CZP	23.11	4.62	ANOVA	1.09	CVI					
		Cued test	Freezing rate	WT	Pre-CS, Vehicle	4.95	0.98	Two-way	1	1					6E
				ко	Pre-CS, Vehicle	0.81	0.32	ANOVA	1.67	NS					
				M/T	Pre-CS, CZP CS, Vehicle	2.61 45.03	1.04 4.05					Vehicle, WT vs.KO	41.67	<0.01	

					CS. CZP	37.36	4.03	Two-way	40.00	0.04	D (1	CZP. WT vs. KO	3.69	NS	
					CS. Vehicle	13.40	2.37	ANOVA	10.29	<0.01	Bonterroni's	WT, Vehicle vs. CZP	2.45	NS	
				KO	CS CZP	27.96	3.28					KO. Vehicle vs. CZP	8.83	<0.01	
			Freezing rate	WT		4.31	0.99						0.00		6E
			Treezing rute	KO	0–30 s, Vehicle	0.40	0.32	Two-way							0.
				WT		1.61	0.84	ANOVA	VA 3.79	NS					
				KO	0–30 s, CZP	1.33	1.03								
				WT		6.15	1.85								
				KO	30–60 s, Venicie	0.25	0.18	Two-way ANOVA	3.26	NS					
				WT	30-60 s, CZP	3.44	0.95								
				KO		2.39	1.20								
				WT	60–90 s, Vehicle 60–90 s, CZP	6.84	1.74	Two-way ANOVA 1	1.92	NS					
				KO		0.65	0.47					ĺ			
				WT		5.05	1.87								
				KO		2.83	1.33								
				WT	T 90–120 s, Vehicle	2.52	0.88	Two-way ANOVA 0.12		0.12 NS					
				KO		0.65	0.29		0.12						
				WT	90–120 s, CZP	5.11	1.56		0.12						
				KO		2.50	1.16								
				WT	120, 150 c. Vehicle	65.39	3.92	Two-way ANOVA 9.44		9.44 <0.01	Bonferroni's	Vehicle, WT vs.KO	28.56	< 0.01	
				KO	120-150 S, Venicle	33.23	4.42		9.44			CZP, WT vs. KO	1.00	NS	
				WT 1	120–150 s, CZP	58.29	3.92		5.44			WT, Vehicle vs. CZP	1.39	NS	
				KO		52.28	4.64					KO, Vehicle vs. CZP	10.02	< 0.01	
				WT	150–180 s, Vehicle	59.28	4.16	Two-way ANOVA	10.89	<0.01	Bonferroni's	Vehicle, WT vs.KO	35.89	< 0.01	
				KO		21.11	3.67					CZP, WT vs. KO	1.75	NS	
				WT	150-180 s C7P	49.27	4.72					WT, Vehicle vs. CZP	2.47	NS	
			KO	150 100 3, 621	40.84	5.42					KO, Vehicle vs. CZP	9.59	< 0.01		
				WT	180-210 s Vehicle	46.44	5.15	Two-way ANOVA	9.10	<0.01	Bonferroni's	Vehicle, WT vs.KO	34.18	< 0.01	
				KO	180–210 s, CZP	9.44	2.29					CZP, WT vs. KO	2.50	NS	
				WT		36.33	5.38					WT, Vehicle vs. CZP	2.55	NS	
				KO		26.33	4.72					KO, Vehicle vs. CZP	7.12	< 0.01	
				WT	210–240 s, Vehicle	36.56	5.13	Two-way ANOVA	5.36	<0.05	Bonferroni's	Vehicle, WT vs.KO	24.49	< 0.01	
				KO		6.52	2.02					CZP, WT vs. KO	2.81	NS	
				WT		26.22	4.83					WT, Vehicle vs. CZP	2.90	NS	
			KO	ко 210 210 3, се	16.05	4.77					KO, Vehicle vs. CZP	2.47	NS		
			WT	T 240–270 s. Vehicle	34.05	5.30					Vehicle, WT vs.KO	30.86	< 0.01		
				KO Z	2.0 2/03, verificie	4.75	2.19	Two-way	4.71	< 0.05	Bonferroni's	CZP, WT vs. KO	6.17	< 0.05	
					240–270 s, CZP	19.44	4.52	ANOVA Two-way ANOVA 3.4	3.41	NS	Bonferroni's	WT, Vehicle vs. CZP	7.67	< 0.01	
				KO		6.33	2.03					KO, Vehicle vs. CZP	0.09	NS	
				WT		28.44	4.88					Vehicle, WT vs.KO	19.20	< 0.01	
				KO	270 300 S, Venicle	5.35	2.62					CZP, WT vs. KO	3.13	NS	
				WT	270-300 s CZP	15.22	4.45		5.11			WT, Vehicle vs. CZP	6.30	<0.05	
				KO) 270-300 S, CZP	5.89	2.52					KO, Vehicle vs. CZP	0.01	NS	